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Abstract— Reordering the eigenvalues of a periodic matrix
pair is a computational task that arises from various appli-
cations related to discrete-time periodic descriptor systems,
such as pole placement or linear-quadratic optimal control.
However, it is also implicitly present in recently developed
robust control methods for linear time-invariant systems. In this
contribution, a direct algorithm for performing this task based
on the solution of a periodic generalized Sylvester equation is
proposed. The new approach is numerically backward stable
and it is demonstrated that the resulting deflating subspaces
can be much more accurate than those computed by collapsing
methods.

I. INTRODUCTION

Let us consider a linear discrete-time descriptor system for
which the coefficient matrices change periodically in time:

Ekxk+1 = Akxk + Bkuk

yk = Ckxk + Dkuk,
(1)

with Ek = Ek+p ∈ R
n×n, Ak = Ak+p ∈ R

n×n,
Bk = Bk+p ∈ R

n×m, Ck = Ck+p ∈ R
r×n, and Dk =

Dk+p ∈ R
r×m for some period p ≥ 1. Systems of this form

are called linear discrete-time periodic descriptor systems
and arise naturally from processes that exhibit seasonal or
periodic behavior, see, e.g., [5]. In practice, one occasion-
ally encounters systems for which the system matrices Ek

and Ak are rectangular and have time-varying dimension.
This issue can be resolved by applying the preprocessing
techniques presented in [32], [34] and truncating those parts
that correspond to spurious characteristic values, which then
yields square system matrices of constant dimension.

Provided that all Ek are nonsingular, the poles (also called
characteristic values) of (1) are given by the eigenvalues of
the matrix product

E−1
p−1Ap−1E

−1
p−2Ap−2 · · ·E

−1
1 A1E

−1
0 A0 (2)

associated with the periodic matrix pair (Ak, Ek). In prin-
ciple, much of what is said in the following can be directly
extended to the case when some of the Ek happen to be
singular, see also [16]. For the sake of simplifying the pre-
sentation, however, we restrict ourselves to the nonsingular
case.

Among the numerically reliable methods for obtaining
the eigenvalues of a periodic matrix pair is the periodic
QZ algorithm [7], [17]. It computes orthogonal matrices
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Qk, Zk ∈ R
n×n with Zk+p = Zk such that the transformed

matrices

Sk = QT
k AkZk, Tk = QT

k EkZk+1, k = 0, . . . , p − 1,

are all upper triangular, except for Sp−1 which is in quasi-
triangular form. That is, Sp−1 is block upper triangular with
1× 1 and 2× 2 blocks on the diagonal. The matrix product

T−1
p−1Sp−1T

−1
p−2Sp−2 · · ·T

−1
1 S1T

−1
0 S0 (3)

is also block upper triangular, has the same eigenvalues
as (2), and the periodic matrix pair (Sk, Tk) is said to
be in generalized periodic real Schur form (GPRSF). The
eigenvalues can thus be easily extracted from the 1 × 1 and
2 × 2 blocks on the diagonal, although great care has to
be exercized to avoid disastrous under- and overflow in this
computation [30]. It is usually assumed that the 2×2 blocks
correspond to complex conjugate pairs of eigenvalues only.

When applying the periodic QZ algorithm or related
methods, no particular order of the eigenvalues on the block
diagonal of (3) can be guaranteed. Obtaining a certain order
is, however, often a desirable goal. For example, if we have

Sk =

[
S

(k)
11 S

(k)
12

0 S
(k)
22

]
, Tk =

[
T

(k)
11 T

(k)
12

0 T
(k)
22

]
,

with S
(k)
11 , T

(k)
11 ∈ R

j×j such that the upper left part
(S

(k)
11 , T

(k)
11 ) contains all eigenvalues in the open unit disc,

then the first j columns of Zk span stable deflating sub-
spaces. For initial states x0 ∈ span(Z0e1, . . . , Z0ej) with ei

being the ith unit vector, the states of the open loop system
Ekxk+1 = Akxk satisfy xk ∈ span(Zke1, . . . , Zkej) and 0
is an asymptotically stable equilibrium.

Using the algorithm presented in this contribution, any or-
der of the eigenvalues can be reliably attained by successively
swapping adjacent diagonal blocks in the GPRSF. As shown
in Section II, such a swapping can be realized via the solution
of a periodic generalized Sylvester equation. This approach is
in the spirit of various existing swapping procedures [1], [15],
[21], [23] for special cases of the GPRSF. In Section III, we
discuss several other applications of eigenvalue reordering,
such as the solution of periodic Riccati equations. Several
other methods have been successfully applied to address
these applications; we briefly compare these approaches with
our new method in Section IV. Finally, in Section V, some
important steps to be taken to turn the presented method into
reliable and efficient library software are briefly summarized.
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II. SWAPPING DIAGONAL BLOCKS IN THE GPRSF

Swapping consists of computing orthogonal matrices
Uk, Vk with Vk+p = Vk such that[

S̃
(k)
11 S̃

(k)
12

0 S̃
(k)
22

]
= UT

k

[
S

(k)
11 S

(k)
12

0 S
(k)
22

]
Vk, (4)

[
T̃

(k)
11 T̃

(k)
12

0 T̃
(k)
22

]
= UT

k

[
T

(k)
11 T

(k)
12

0 T
(k)
22

]
Vk+1, (5)

for k = 0, . . . , p − 1, and

λ(Π̃11) = λ(Π22), λ(Π̃22) = λ(Π11), (6)

where Πii =
[
T

(p−1)
ii

]−1
S

(p−1)
ii · · ·

[
T

(0)
ii

]−1
S

(0)
ii (Π̃ii is

similarly defined) and λ(·) denotes the set of all eigenvalues
of a matrix. For our purpose, S

(k)
ii , T

(k)
ii ∈ R

ni×ni are the
diagonal blocks of a GPRSF; it can thus be assumed that
ni ∈ {1, 2}.

A. Block diagonalization and the PGCSY

If the off-diagonal blocks in (4)–(5) were not present
then swapping could be achieved in a very simple manner,
by permuting the diagonal blocks. Temporarily admitting
nonorthogonal transformations, we can achieve block diag-
onal form by computing matrices Lk, Rk ∈ R

n1×n2 with
Rp = R0 such that

[
I −Lk

0 I

] [
S

(k)
11 S

(k)
12

0 S
(k)
22

] [
I Rk

0 I

]
=

[
S

(k)
11 0

0 S
(k)
22

]
[

I −Lk

0 I

] [
T

(k)
11 T

(k)
12

0 T
(k)
22

] [
I Rk+1

0 I

]
=

[
T

(k)
11 0

0 T
(k)
22

]

for k = 0, . . . , p − 1. This relation can be rewritten as a
system of matrix equations:

S
(k)
11 Rk − LkS

(k)
22 = −S

(k)
12 ,

T
(k)
11 Rk+1 − LkT

(k)
22 = −T

(k)
12 ,

(7)

which happens to be a so called periodic generalized
(coupled) Sylvester equation. Following the acronyms used
in [20] we refer to it as PGCSY. Equations of this and
similar kind play a role in various other applications related
to periodic discrete-time systems [35] and their numerical
solution is discussed in [10], [28], [31]. In particular, it
can be shown that (7) has a unique solution provided that
λ(Π11) ∩ λ(Π22) = ∅. If this condition is not satisfied then
– since S

(k)
ii and T

(k)
ii are diagonal blocks of a GPRSF – the

eigenvalues of Π11 and Π22 are actually equal and there is
little need for swapping.

B. Solution of the PGCSY

One way to solve (7) is to consider a Kronecker product
reformulation[

S11 −S22

T11Z −T22

] [
R
L

]
= −

[
S12

T12

]
, (8)

where

R =

⎡
⎢⎣

vec(R0)
...

vec(Rp−1)

⎤
⎥⎦ , S12 =

⎡
⎢⎢⎣

vec(S(0)
12 )

...

vec(S(p−1)
12 )

⎤
⎥⎥⎦ ,

and L, T12 are defined analogously. Here, the vec operator
stacks the columns of a matrix into one long vector [14].
Moreover, S11 and S22 are block diagonal matrices with
diagonal entries In2

⊗ S
(0)
11 , . . . , In2

⊗ S
(p−1)
11 and S

(0)T
22 ⊗

In1
, . . . , S

(p−1)T
22 ⊗ In1

, respectively (similarly for T11 and
T22). Finally, the block shift matrix Z is given by

Z =

⎡
⎢⎢⎢⎢⎣

0 I
. . .

. . .

. . . I

I 0

⎤
⎥⎥⎥⎥⎦ .

Hence, (8) represents a 2pn1n2 × 2pn1n2 linear system of
equations. Since we assumed n1, n2 ∈ {1, 2}, this linear
system is of moderate dimension. Moreover, the coefficient
matrix has a particular structure, which – after applying an
appropriate permutation of the blocks – can be seen to be
bordered almost block diagonal (BABD). Efficient and stable
algorithms for solving BABD systems are discussed, e.g.,
in [12].

C. How to obtain orthogonal transformations and guarantee
backward stability

For the sake of numerical stability, it is important to
avoid explicit block diagonalization and use orthogonal trans-
formations. For this purpose, one computes QR and RQ
factorizations[

Lk

I

]
= Uk

[
L̃k

0

]
,

[
I −Rk

]
=

[
0 R̃k

]
V T

k , (9)

for k = 0, . . . , p − 1, such that Uk, Vk ∈ R
(n1+n2)×(n1+n2)

are orthogonal matrices and L̃k ∈ R
n2×n2 , R̃k ∈ R

n1×n1 are
upper triangular matrices. Partitioning Uk, Vk conformally
with the blocks in (4) and setting Vp = V0, we obtain

UT
k

[
S

(k)
11 S

(k)
12

0 S
(k)
22

]
Vk =

[
L̃kS

(k)
22 V

(k)
21 �

0 U
(k)T
12 S

(k)
11 R̃k

]
,

UT
k

[
T

(k)
11 T

(k)
12

0 T
(k)
22

]
Vk+1 =

[
L̃kT

(k)
22 V

(k+1)
21 �

0 U
(k)T
12 T

(k)
11 R̃k+1

]
,

for k = 0, . . . , p − 1. From (9), it can be seen that the
matrices U

(k)
12 , V

(k)
21 , L̃k, R̃k are all invertible, which implies

– by direct computation – that (6) holds for the diagonal
blocks of the transformed matrices. Thus, the matrices Uk

and Vk yield the desired swapping (4)–(6).
In finite-precisision arithmetic, the above relations are

affected by roundoff error, resulting in perturbed transformed
matrices [

Ŝ
(k)
11 Ŝ

(k)
12

Ŝ
(k)
21 Ŝ

(k)
22

]
,

[
T̂

(k)
11 T̂

(k)
12

T̂
(k)
21 T̂

(k)
22

]
. (10)
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Experimentally it can be observed that the subdiagonal
blocks Ŝ

(k)
21 and T̂

(k)
21 are negligible compared to the rest

of the matrix. But it occasionally may happen, in particular
if the eigenvalues of Π11 and Π22 are poorly separated, that
‖Ŝ

(k)
21 ‖F � u‖S(k)‖F or ‖T̂

(k)
21 ‖F � u‖T (k)‖F for some

k, where ‖ · ‖F denotes the Frobenius norm of a matrix and
u is the unit roundoff. In this case, Ŝ

(k)
21 and T̂

(k)
21 cannot

be set to zero without sacrificing backward stability and the
swap must be rejected.

D. The overall algorithm

The considerations made above lead to the following
algorithm for swapping an (n1 + n2) × (n1 + n2) periodic
matrix pair (Sk, Tk) in GPRSF.

1) Compute the solutions Lk, Rk of the PGCSY (7) by
solving the linear system (8).

2) Perform p QR and p RQ factorizations[
Lk

I

]
= Uk

[
L̃k

0

]
,

[
I −Rk

]
=

[
0 R̃k

]
V T

k .

3) Compute Ŝk = UT
k SkVk and T̂k = UT

k TkVk+1 for
k = 0, . . . , p − 1.

4) If all subdiagonal blocks Ŝ
(k)
21 , T̂

(k)
21 , see (10), are

sufficiently small then
set Ŝ

(k)
21 = T̂

(k)
21 = 0 and accept swap;

otherwise
reject swap.

Properly implemented, this algorithm requires O(p) float-
ing point operations (flops). If it is used to reorder two
adjacent diagonal blocks in a larger n × n periodic matrix
pair in GPRSF then the off-diagonal parts must be updated
by the transformation matrices Uk and Vk, which additionally
requires O(pn) flops.

Several important details regarding the implementation of
this algorithm have been omitted. If the matrices Sk and
Tk have widly differing norms then a scaling step should
be applied in order to avoid artificial ill-conditioning of
the linear system (8), see also [15, Ex. 5]. Also, the use
of iterative refinement for improving the accuracy of the
solution and decreasing the possibility of rejection needs to
be investigated. Moreover, the criterion for the decision to be
made in Step 4 should be based on a careful error analysis.
These and other issues will be addressed in a forthcoming
paper [16].

III. APPLICATIONS

Besides the computation of stable deflating subspaces
mentioned in the introduction, eigenvalue reordering is of
use in a number of other computational tasks related to
periodic discrete-time descriptor systems. In the following,
we illustrate two such applications, pole placement and
discrete-time optimal control.

A. Pole placement

By applying a linear state feedback law of the form

uk = Fkxk + vk

with Fk ∈ R
m×n, Fk+p = Fk, and the new external input

vk, the open loop system (1) is transformed into the closed
loop system

Ekxk+1 = (Ak + BkFk)xk + Bkvk

yk = (Ck + DkFk)xk + Dkvk,
(11)

which is again periodic. The poles of (11) are given by the
eigenvalues of the periodic matrix pair (Ek, Ak + BkFk).
The goal of pole placement is to move some or all of these
poles to desired locations in the complex plane. For example,
a possibly unstable system (1) can be stabilized by moving
all poles outside or on the unit circle into the open unit disc.

The following algorithm for pole placement is in the spirit
of [27]. By applying the periodic QZ algorithm, we may
assume without loss of generality that (Ek, Ak) is in GPRSF.
Let us furthermore assume that the last subdiagonal entry of
Ap−1 is zero, i.e., we can partition

Ek =

[
E

(k)
11 E

(k)
12

0 ηk

]
, Ak =

[
A

(k)
11 A

(k)
12

0 αk

]
, Bk =

[
B

(k)
1

βk

]

with αk, ηk ∈ R and βk ∈ R
1×m. Assuming (1) to be

completely reachable, it can be guaranteed that there is at
least one j ∈ [0, p− 1] with βj 	= 0 [22]. Then for a desired
closed loop pole λ, we can choose vectors f0, . . . , fp−1 ∈
R

m such that

λ =

p−1∏
k=0

η−1
k (αk + βkfk). (12)

Choosing Fk = fkeT
n , one pole of the closed loop sys-

tem (11) is moved to λ while the others remain the same.
We can place further poles by reordering the matrix pair
(Ak +BkFk, Ek) so that the nth diagonal entries correspond
to an open loop pole, and repeating the described procedure.

There is a lot of freedom in the choice of fk, even in
the single-input case m = 1. To keep the scaling of the
coefficients Ak balanced, it is advisable to distribute the
influence of the state feedback equally over the whole period.
For this purpose, we set γ = (η0η1 · · · ηp−1)λ and choose
scalars ζk such that ζ0ζ1 · · · ζp−1 = sign(γ) and

ζk|γ|
1/p − αk = c�‖βk‖

for some constant c�. To determine this constant one needs
to solve

(c‖β0‖+α0)(c‖β1‖+α1) · · · (c‖βp−1‖+αp−1) = γ. (13)

This then leads to the state feedback

fk =

{
(ζk|γ|

1/p−αk)βT
k

‖βk‖2 if βk 	= 0;

0, otherwise,

which satisfies (12) by construction and, moreover, ‖fk‖ =
|c�| for all k. Note that (13) needs not be solved exactly to
attain near balancing.

The described procedure can be easily extended to com-
plex eigenvalues if one admits periodic complex Schur forms.
How to directly work on periodic real Schur forms and avoid
complex arithmetic in a numerically reliable manner is not
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clear and subject to further investigation. For m > 1, the
multi-input case, the additional degrees of freedom may be
used to attain higher robustness by minimizing the spectral
condition numbers of the closed-loop system or the norms
of the feedback matrices or a combination of both [33].

B. LQ optimal control

Given a periodic discrete-time descriptor system (1), the
aim of LQ optimal control is to find a feedback uk which
stabilizes the system and minimizes

1

2

∞∑
l=0

(xT
l Qlxl + uT

l Rlul),

with Qk ∈ R
n×n symmetric positive semidefinite and Rk ∈

R
m×m symmetric positive definite. Moreover, we suppose

that the weighting matrices are periodic, i.e., Qk+p = Qk

and Rk+p = Rk. Under mild assumptions [6], the optimal
feedback is linear and unique; it can be expressed as

u�
k = −(Rk + BT

k Xk+1Bk)−1BT
k Xk+1Akxk,

where Xk = Xk+p is the unique symmetric positive semidef-
inite solution of the discrete-time periodic Riccati equation
(DPRE)

0 = CT
k QkCk − ET

k−1XkEk−1 + AT
k Xk+1Ak

−AT
k Xk+1Bk(Rk + BT

k Xk+1Bk)−1BT
k Xk+1Ak,

(14)

provided that all Ek are invertible. The following 2n × 2n

periodic matrix pair is clol associated with (14):

(Lk,Mk) =

([
Ak 0

−CT
k QkCk ET

k−1

]
,

[
Ek−1 BkR−1

k BT
k

0 AT
k

])
.

Similarly as for the case Ek = In [17], it can be shown
that this pair has exactly n eigenvalues inside the unit disk
under the reasonable assumption that (1) is d-stabilizable and
d-detectable. By reordering the GPRSF of (Lk,Mk) we can
compute orthogonal matrices Uk, Vk ∈ R

2n×2n with Vk+p =
Vk such that

UT
k LkVk =

[
S

(k)
11 S

(k)
12

0 S
(k)
22

]
, UT

k MkVk+1 =

[
T

(k)
11 T

(k)
12

0 T
(k)
22

]
,

where the n × n periodic matrix pair (S
(k)
11 , T

(k)
11 ) contains

all eigenvalues inside the unit disk. If we partition

Uk =

[
U

(k)
11 U

(k)
12

U
(k)
21 U

(k)
22

]

with U
(k)
ij ∈ R

n×n, then

U
(k)
21

[
U

(k)
11

]−1

= XkEk−1,

from which Xk can be computed. The proof of this relation
is similiar as for the case p = 1, see, e.g., [26]. We note
that Rk can be ill-conditioned or even singular, e.g., when
solving dead-beat control problems [34]. In such cases, it is
necesssary to avoid the inversion of Rk and to work instead
with (2n+m)× (2n+m) matrix pairs as described in [26],
[29].

C. Other applications

Reordering the eigenvalues of periodic matrix pairs can
be used to reliably implement restarting and deflation tech-
niques in numerical methods for solving large-scale product
eigenvalue problems, such as the periodic Krylov-Schur and
Jacobi-Davidson algorithms [19], [24]. Also, recently devel-
oped algorithms [4] for computing deflating subspaces of
structured matrix pencils to address linear-quadratic optimal
control problems for linear time-invariant systems benefit
from our algorithm.

IV. COMPARISON WITH OTHER APPROACHES

In this section, we summarize and compare other existing
techniques for reordering eigenvalues and computing deflat-
ing subspaces of periodic matrix pairs.

1) Explicit formation of matrix products: For performing
the swapping (4) of an (n1 +n2)×(n1 +n2) periodic matrix
pair (Sk, Tk), one could explicitly form the matrix product

Π = T−1
p−1Sp−1T

−1
p−2Sp−2 · · ·T

−1
1 S1T

−1
0 S0, (15)

and apply standard reordering to obtain the orthogonal trans-
formation matrix V0. The other transformation matrices can
then be generated by propagating V0 through the triangular
factors [8].

Such an approach has been proposed in [17], [25] for
the case n1 = n2 = 1. If n1 > 1 or n2 > 1, triangular
matrix-matrix multiplication is not a numerically backward
stable operation [18]. Moreover, there are serious numerical
difficulties to be expected for long products as the entries
of Π become prone to under- and overflow. Nearly singular
factors T−1

k pose another source of instability. The following
example illustrates some of the drawbacks of working on
matrix products.

Example 1: Let D = diag(1, 10−1, 10−2) and consider
the periodic matrix pair (Ek, Ak) = (I3, Q

T
k+1DQk) where

Qk are random orthogonal matrices with Qk+p = Qk.
For various periods p, we computed the eigenvector of the
matrix product Π belonging to the eigenvalue 10−p using two
different approaches. In the first approach, denoted by RSF
below, we formed Π explicitly and computed the reordered
Schur form of Π such that 10−p appears in the top left corner.
Then, at least in exact arithmetic, the first column of the
orthogonal transformation matrix is the desired eigenvector.
In the second approach, denoted by GPRSF, we used the
reordered generalized periodic Schur form instead, yielding
the desired eigenvector in the first column of the “outer”
transformation matrix Z0. The following table contains the
angles between the computed and exact eigenvectors.

p = 10 p = 15 p = 20
RSF 2 × 10−13 9 × 10−05 2 × 10−01

GPRSF 3 × 10−16 4 × 10−16 3 × 10−16

It can be observed that, in contrast to GPRSF, the accuracy
of the eigenvectors computed by RSF drops rapidly with
increasing p, being completely polluted by roundoff error
for p ≥ 20.
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2) Collapsing matrix pairs: Collapsing the periodic ma-
trix pair into a single matrix pair [2], [3], [11] offers a more
robust alternative than forming Π, especially when some of
the factors Ek are nearly singular. This approach, which was
shown to be numerically backward stable for p = 2, is based
on the following lemma.

Lemma 2 ([2]): Let UT E0X = C and V T A1X = S

be the generalized singular value decomposition [14] of
E0, A1 ∈ R

n×n, i.e., U, V ∈ R
n×n are orthogonal matrices,

X ∈ R
n×n is nonsingular, and C,S ∈ R

n×n are non-
negative, diagonal matrices. Define Ẽ1 = CV T and Ã0 =
SUT . Then

A1E
−1
0 = Ẽ−1

1 Ã0.

Lemma 2 turns a product of the form E−1
1 A1E

−1
0 A0 into

a product of the form (Ẽ1E1)
−1(Ã0A0). The successive

application to a periodic matrix pair (Ak, Ek) yields Π =
Ẽ−1Ã for some matrices Ẽ, Ã ∈ R

n×n. Now, the reordered
generalized real Schur form (GRSF) can be applied to
compute the outer deflating subspaces of the periodic matrix
pair. The inner deflating subspaces can be found by a simple
substitution procedure, see [2].

Repeating the numerical experiments from Example 1, we
found that collapsing led to the following angles between the
exact and computed eigenvectors belonging to the eigenvalue
10−p.

p = 10 p = 15 p = 20
GRSF 3 × 10−15 7 × 10−07 1 × 10−02

Although such a statement does not hold in general, this
example demonstrate that GRSF can, when compared to
RSF, result in higher accuracy even for the case Ek = I .
Nevertheless, the rapid loss of accuracy for increasing values
of p is not cured by using GRSF and GPRSF remains the
method of choice.

3) Block cyclic embedding: Lifting [13] is a popular
technique to turn a discrete-time periodic (descriptor) system
into an equivalent time-invariant (descriptor) system. These
techniques can also be used to extract the deflating subspaces
of an n×n periodic matrix pair of period p from the deflating
subspaces of an embedded pn × pn block diagonal/block
cyclic matrix pair, see, e.g., [24] for more details. Besides
being more costly, it was shown in [9] that such an approach
may also sometimes lead to serious loss of accuracy due the
fact that the condition number of the deflating subspaces can
be considerably increased by lifting.

V. CONCLUSIONS

A new method for reordering the eigenvalues of a periodic
matrix pair in generalized periodic real Schur form was pre-
sented. Unlike other approaches, this method is guaranteed
to be numerically backward stable, an important property to
attain high accuracy in the resulting deflating subspaces, as
confirmed by the numerical experiments.

Ongoing work, to be reported in [16], is directed towards
making the presented approach more robust and efficient.
For example, solving the arising periodic Sylvester equations
by more accurate methods in combination with a careful

error analysis may help avoid unnecessary rejections in the
swapping algorithm. It is planned to include the reordering
algorithm into a broader, publicly available software library
for solving periodic eigenvalue problems, which can then
be used to address the applications described in Section III.
These developments include recursive blocked methods and
software (PRECSY) for periodic Sylvester equations, build-
ing on RECSY [20].
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