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The minimal block storage Distributed Square Block Packed (DSBP) format for distributed mem-
ory computing on symmetric and triangular matrices is presented. Three algorithm variants
(Basic, Static, and Dynamic) of the blocked right-looking Cholesky factorization are designed for
the DSBP format, implemented, and evaluated. On our target machine, all variants outperform
standard full storage implementations while saving almost half the storage. Communication over-
head is shown to be virtually eliminated by the Static and Dynamic variants, both of which take
advantage of hardware parallelism to hide communication costs. The Basic variant is shown to
yield comparable or slightly better performance than full storage ScaLAPACK routine PDPOTRF
while clearly outperformed by both Static and Dynamic. Models of execution assuming zero
communication costs and overhead are developed. For medium and larger sized problems the
Static schedule is near-optimal on our target machine based on comparisons with these models
and measurements of synchronization overhead.

Categories and Subject Descriptors: F.2.1 [Analysis of Algorithms and Problem Com-
plexity]: Numerical Algorithm and Problems— Computation on matrices; G1.3 [Numerical
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Software]: Algorithm Design and Analysis, Reliability and robustness, Performance
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1. INTRODUCTION

Cholesky factorization is a special case of Gaussian elimination for symmetric pos-
itive definite matrices. Algorithms for Cholesky factorization can save roughly half
of the floating point operations, use half of the memory, and since A is positive
definite there is no need for pivoting [Golub and van Loan 1996]. In the literature
there has been a great deal of interest in sparse parallel Cholesky algorithms but
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here we only consider dense matrices. Although not as ubiquitous as large sparse
Cholesky factorization, there are applications of large dense Cholesky factorization,
for example when solving linear least squares problems with the method of normal
equations [Baboulin et al. 2005a].

A number of different parallel dense Cholesky factorization algorithms have been
designed and implemented on a wide range of computer architectures. Three of
the earliest ones are on use of systolic arrays [Brent and Luk 1982], data-flow
[O’Leary and Stewart 1985] and distributed memory [Geist and Heath 1985]. In
regard to scheduling, [Gerasoulis and Nelken 1989] considers parallel Cholesky fac-
torization on MIMD architectures. Today, distributed memory computing (DMC)
with message passing through the MPI interface is the de-facto standard for paral-
lel large-scale computations. Scalable, portable routines for Cholesky factorization
adapted to DM architectures can be found in ScaLAPACK [Choi et al. 1996] and
PLAPACK [van de Geijn 1997] to name but two.

However, few attempts have been made at storing the symmetric matrix in a
packed format. Previous approaches have often looked at packed routines as special
cases and have not been able to deliver the same level of performance as full storage
routines. Here, we present the Distributed Square Block Packed (DSBP) format
which generalizes both standard packed and full storage [Gustavson et al. 2007a).
This format allows a unification of packed and full storage routines into a single
high performance implementation.

In [Gustavson et al. 2007b], we first examined the feasibility of the DSBP for-
mat. We demonstrated that performance better than the ScaLAPACK full stor-
age Cholesky factorization routine PDPOTRF ([Choi et al. 1996]) is achievable for
a packed storage routine. In this contribution, three DSBP algorithm variants of
parallel packed Cholesky factorization are developed. The first variant (Basic) is a
right-looking Cholesky factorization algorithm and it is comparable with PDPOTRF
but operates on a matrix in DSBP format. The second variant (Static) takes ad-
vantage of hardware parallelism to overlap communication with computation via
use of look-ahead and non-blocking communication primitives. The third variant
(Dynamic) uses a more flexible scheduling on DM nodes and is important on hy-
brid systems with SMP or multi-core nodes. Our goal is to reach an optimal task
schedule on the nodes and perfect overlap between communication and computation
(see [Agarwal et al. 1994] for earlier such results for parallel matrix multiplication).
We do this by a technique called algorithmic look-ahead [Agarwal and Gustavson
1988; 1989; Dackland et al. 1992; Dackland et al. 1993; Strazdins 1998] which re-
orders the outer loop to perform the next panel factorization before the current
trailing matrix update is complete.

Earlier contributions on packed distributed storage of symmetric matrices include
work by [D’Azevedo and Dongarra 1998] where a packed lower triangular matrix
is represented as a collection of block columns, each using standard column major
storage format. Their main focus is to encapsulate the packed storage within the
abstraction framework of the ScaLAPACK building blocks such as the PBLAS.
Performance figures are presented which show respectable but slightly worse per-
formance compared with full storage ScaLAPACK routines.

In [Baboulin et al. 2005b], a secondary blocking level is introduced. An elemen-
ACM Transactions on Mathematical Software, Vol. V, No. N, M 20YY.
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tary block corresponds to a distribution block of a two-dimensional square block-
cyclic distribution. A grid block is a P, x P, block matrix of elementary blocks.
A distributed block is a square matrix of elementary blocks. Each dimension of a
distributed block consists of an integral multiple of lem(P,, P.) elementary blocks.
Thus, a distributed block is made up of a set of complete grid blocks and as a re-
sult the elementary blocks are perfectly distributed and all distributed blocks have
the same distribution. The packed Cholesky implementation reuses ScaLAPACK
and PBLAS on the level of distributed blocks. Performance is for the most part
slightly worse than for the full storage ScaLAPACK routine, possibly due to extra
communication, library overhead, and a reduced degree of concurrency. We remark
that the storage requirement is larger than that of the DSBP format.

2. ORGANIZATION AND NOTATION

The rest of the paper is organized as follows. Section 3 describes the DSBP for-
mat for memory efficient storage and high-performance DMC implementations. In
Section 4, the three Cholesky algorithm variants are described along with a brief
discussion of the details of the communication algorithms. The MPI interface pro-
vides the possibility to express overlap of communication with computation at the
application level, but to what extent overlap is actually exploited is highly machine
and software specific. In Section 5, we therefore present an evaluation of the target
machine’s overlap capabilities. This is crucial for interpreting the performance re-
sults given in Section 6. Scalability is examined in Section 7. Finally, we conclude
with a summary of our major findings and outline future work in Section 8.

Processors are arranged in a logical P, x P, mesh with each processor having
2-dimensional coordinates (p,q) with p € {0,...,P, — 1} and ¢ € {0,...,P. — 1}.
The matrix A being factored is of size N x N. It is partitioned into

v

submatrices of order n; with padding of the possibly incomplete last block row and
column. Padding simplifies the DSBP addressing scheme; see Section 3 below.
The following LAPACK /BLAS names are used in the text:

—POTRF: computes the Cholesky factorization A = LLT.

—TRSM: solves a triangular system of equations with multiple right-hand sides.
—GEMM: performs a matrix multiply and add update.

—SYRK: performs a symmetric rank-k update.

It is important to distinguish the different notions of blocking in DMC. A block
cyclic layout (BCL) has a distribution block size, which, in our case, is square. A
blocked algorithm usually has one, and sometimes more, algorithmic block sizes. For
the combination of a BCL and a blocked algorithm it is common to use the same
block size for both the distribution and the algorithm (typified by ScaLAPACK) and
referred to as distribution blocking. However, a more general approach decouples
the two block sizes and this is often called algorithmic blocking. This allows for
better computational load balance since the distribution block size can be reduced.
Processor interactions are often more frequent when using algorithmic blocking. For
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example, the diagonal block factorization (see Section 4) is a local operation when
using distribution blocking while it is a collective operation when using algorithmic
blocking. We do not consider algorithmic blocking in conjunction with DSBP since
they may have contradicting goals (improved load balance versus reduced data
movement).

3. DISTRIBUTED SQUARE BLOCK PACKED FORMAT

In this section, we give a self-contained discussion on the Square Block Packed
(SBP) and Distributed Square Block Packed (DSBP) storage formats. Much of the
discussion on SBP have appeared in earlier publications but is summarized here for
completeness.

The motivation for looking at other packed storage formats than the standard
stacked column format used in BLAS and LAPACK is that there is no efficient
way to use level-3 BLAS in combination with the latter format. High performance
implementations of the BLAS at IBM and elsewhere have for a long time inter-
nally transformed the input into architecture-aware formats, for example the Square
Block (SB) format. A block in SB format is stored contiguously and therefore it
maps optimally into all levels of the memory hierarchy. The SBP format for packed
storage is a convention on how to store a symmetric or triangular matrix as a set
of contiguous square blocks.

Researchers at IBM have demonstrated that implementing Cholesky factorization
on SBP input on a sequential architecture may not only be faster than standard
packed Cholesky but also faster than standard full storage Cholesky. The difference
between Cholesky on full storage and on SBP is claimed to be due to a better
utilization of the memory hierarchy brought about by the contiguous block storage
in SBP. Another benefit of SBP is that the Cholesky code can directly call BLAS
kernels that do less data copying and internal transformations since the data is
already in a suitable format. Further improvements can be made by storing the
blocks themselves in some architecture-aware format, e.g., to better match memory
streams or contiguous SIMD register loads. A block stored in a non-canonical
format is referred to as a non-simple block [Gustavson et al. 2007a].

DSBP is a distributed memory generalization of SBP that maps the blocks to
processors by a 2D block-cyclic distribution. Implementations using the DSBP
format may also reduce memory traffic when sending and receiving messages by
avoiding message packing.

3.1 Description of the DSBP Format

An Ny x Nj block matrix (with square blocks of order n;) is distributed according
to a two-dimensional BCL with the first block stored on processor (0,0). The last
local block column index on processor column q is

. Ny —1)—

st (q) = %
Similarly for the last local block row index on processor row p:

. Ny —1)—

itast (p) = (”?T)p
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On each processor we construct an integer array cp (short for Column Pointer)
with one component per local block column to speed up address calculation to a
constant-time operation. The jth component of cp is defined by

cplj] = i <i1ast(p) - [%W + 1) —1.

k=0

The expression in the sum calculates the number of local blocks on local block
column k.

To each block we associate a block offset to index the block vector which stores
the blocks. The block offset of local block (i, 5) is

blockoffset (i, j) = cp[j] — (f1ast (P) — 7).

Figure 1 shows a detailed example of a block matrix in DSBP format.

0 1 2
g g
e 2 o1 0,21
|8g- I I
1 BB | : |
1 00 00 100 : I
) 120 v 1 2o '
) 2 1 B 1

ol 24 411 P24t o .
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1
| Global 0 1 I 2 5 8 B |
1 Local 0 0 I 0o 1 2 3 I

1 1]

Fig. 1. Detailed example of a 12 x 12 block matrix distributed on a 2 x 3 mesh from the pro-
cessors’ viewpoint. Hexadecimal numbers indicate the local block offsets and circled block offsets
correspond to the values in the column pointer array. Dotted blocks emphasize the typical full
storage requirements.

Notice how the addressing scheme is based on the last block of a column and
a negative offset depending on the local block row index. Thus, the addressing
scheme is not dependent on whether the blocks are stored in a block packed or
block full storage matrix. For full storage the column pointer array on all processors
in Figure 1 contain (5,11,17,23) and the same addressing scheme and Cholesky
algorithms can be used. In this case the column pointer array reduces to

epli] = Y (irase(p) + 1) = 1= (j + Litast (p) + J.
k=0

There is a strong connection between the local storage format of DSBP and the
Block Compressed Column Storage (BCCS) used for sparse blocked matrices. The
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column pointer array plays a similar role as the column pointer array in BCCS
(hence the same name). Because there is a regular pattern when the matrix is
dense the row index array in BCCS does not need to be stored explicitly and the
block offset is instead calculated directly from the column pointer array and the
row index.

3.2 Properties of the DSBP Format
3.2.1 Reduced Memory Requirements. The storage required by the DSBP for-
mat is roughly half that of full storage. In case there are incomplete blocks, the last
block row and column are padded. The storage requirement of the DSBP format
in number of words is thus
. N2 ([N
Nund( + 1) _ [#5] 7 ([ ] +1)

2 2

3.2.2 Less Data Movement in BLAS Operations. Memory streams, vector reg-
isters, and other hardware features typically require register blocking. In order
to effectively utilize such advanced hardware features, state-of-the-art kernels for
BLAS routines such as GEMM usually reformat all or some of their operands [Goto
and van de Geijn 2007; Gustavson et al. 2007a]. In [Gustavson et al. 2007a] it is
shown that the amount of data copying performed in dense matrix factorization is
O (N?) but could potentially be reduced to O (N?) by using SBP with non-simple
storage formats for the blocks together with special kernel routines that operate on
the non-simple blocks.

The four kernels in our Cholesky variants (POTRF, TRSM, GEMM, and SYRK) take
as input one (POTRF), two (TRSM, SYRK) or three (GEMM) blocks, all of which are
contiguous on account of the DSBP format. All operands will thus map into all
levels of the memory hierarchy without conflict misses (assuming the cache capacity
is sufficient to hold the operands and that the caches are at least three-way set
associative). Combined with non-simple formats and special kernels this would
provide an ideal situation for optimal kernel performance.

3.2.3 Less Data Movement in Communication. The message passing library (in
this case an implementation of MPI) must pack and unpack messages when sending
and receiving. This is more expensive for non-contiguous messages. An m X n
submatrix in column major format generally consists of n contiguous vectors of
length m, each separated by LDA > m elements. On the other hand, our Cholesky
variants send and receive contiguous square blocks.

4. DSBP ALGORITHM VARIANTS OF THE CHOLESKY FACTORIZATION

There are various ways to implement Cholesky factorization, such as left/right-
looking and a symmetric version of Crout’s method. We have chosen the vari-
ant commonly called blocked right-looking Cholesky factorization [Dongarra et al.
1998]. Algorithm 1 describes this variant on a high level.

4.1 Buffers

We begin by describing the use of buffers in our parallel implementations. Be-
cause some data is remote we use explicit communication into local buffers. In the
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Algorithm 1 High-Level Right-Looking Cholesky
1: while N, order of A # 0 do
2:  Choose block size b = min(np, N).

. .. _ A11 Ale .
3:  Partition A = where A;; has size b x b.
Ao As

4 Compute the Cholesky factorization A3 = L11L}’"1 in-place.
5: Scale Ay AQlLl_lT.

6:  Update the trailing matrix Aoy ¢ A9y — Ay AL

7. Continue with A = As».

8: end while

algorithms that we present there are three types of buffers:

—R (short for Reciprocal) contains a factored diagonal block used as input for
scaling (TRSM) operations. Each R is generated by the pivot process and commu-
nicated to a separate replicated R residing on processor column.

—W (short for West) stores the scaled blocks of a panel used as input for up-
dates (SYRK and GEMM). The West buffer is distributed along mesh columns and
replicated along mesh rows.

—S (short for South) stores the block transpose of W (i.e., it is a row block vector
and each block remains untransposed) used as input for GEMM updates. The South
buffer is distributed along mesh rows and communicated along mesh columns to
each processor.

In Basic, we only need one set of local buffers so W (j) and S(j) refer to these
local West and South buffers, respectively. In Static and Dynamic, where two
iterations are active at the same time, we use two sets of local buffers to reduce
data dependencies and enhance performance. In these algorithms, W (j) and S(j)
are instead to be read as the local West buffer j mod 2 and the local South buffer
jmod 2, respectively. Subscripts ¢ and k in W;(5—1) and S (j —1), see Algorithm 3,
refer to blocks 7 and k, respectively.

4.2 Basic Variant

The high-level blocked right-looking Cholesky factorization is adapted to DSBP in
Algorithm 2. The distribution of computation follows the owner-computes rule,
which states that the owner of an affected block is also the process that performs
the computation. The details of the communication are left until Section 4.5 since
they are common to all three variants. Also, communication is intermixed with the
computation in both Static and Dynamic variants.

4.3 Static Variant

Basic (Algorithm 2) is divided into distinct communication and computation phases
and is therefore unable to effectively overlap communication with computation. By
algorithmic look-ahead we mean that a processor begins to factor a panel before all
of its preceeding trailing matrix updates have completed on that processor. The
number of extra iterations that can be active in this way on any processor is the
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Algorithm 2 Basic
1: for j =0,N; —1do

2: % Panel factorization

3:  Cholesky(A,;), (POTRF)

4: R+ AJ’J’

5. Start to replicate R (Algorithm 5)

6:  Wait for R

7. fori=j5+1,Ny,—1do

8: Aij — AUR_T, (TRSM)

9: Wi(j) < Aij

10: Start to replicate W;(j) and S;(j) (Algorithm 4)
11:  end for

12: % Trailing matrix update

13:  Wait for all W.(j) and S.(j)

14: fork=j+1,Ny,—1do

15: Agk < Agr — Wi ())Wi ()T, (SYRK)
16: fori=k+1,N,—1do

17: Aj — Ajr — Wz(])Sk(])T, (GEMM)
18: end for

19: end for

20: end for

depth of the look-ahead. With this definition, Basic has look-ahead depth zero (no
look-ahead), Static and Dynamic both have look-ahead depth one.

Static (Algorithm 3) is our look-ahead depth one variant with aggressively early
scheduling of panel factorization suboperations. This scheduling is derived by fol-
lowing the critical path of the Cholesky factorization algorithm.

Figure 2 is a pictorial representation of parts of Algorithm 3. The left part
illustrates a fused panel factorization (lines 14-28) consisting of a diagonal block
update and factorization (bottom left) and a panel update and scaling (bottom
right). The right part illustrates a trailing matrix update (lines 30-36) with diagonal
block updates (bottom left) and full block updates (bottom right).

4.4 Dynamic Variant

A careful examination of Algorithm 3 using a Gantt-chart of its execution reveals
two situations where a processor becomes idle although it still has work to do. We
call these situations spurious synchronizations since they could have been avoided,
at least in the short term, by scheduling another available operation. These are:

(1) Updates become available in random order (see Figure 3) due to the non-
deterministic order in which messages arrive. The static schedule enforces a
strict order on the independent kernel operations that form a trailing matrix
update.

(2) Scaling is scheduled early (line 25) in order to maximize the overlap possibilities.
However, the updates on lines 24 and 30-36 might be possible to partially
perform prior to the scaling. The static schedule waits for R (line 21) before any
of the updates are performed and thus enforces a strict order on the operations.

ACM Transactions on Mathematical Software, Vol. V, No. N, M 20YY.
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Algorithm 3 Static

1: % First panel factorization

2: Cholesky(Ago), (POTRF)

3: R« Aoo

4: Start to replicate R (Algorithm 5)

5. Wait for R

6: fori=1,N, — 1 do

7 Ajp AioR_T, (TRSM)

8: Wi (0) «— Aig

9:  Start to replicate W;(0) and S;(0) (Algorithm 4)
10: end for
11: % Loop over remaining panels
12: for j =1,Ny; — 1 do
13: % Update and factor diagonal block
14: Wait for W;(j — 1)
15 Ajj = Aj = W57 — DW;(j — 17, (SYRK)
16:  Cholesky(A,;), (POTRF)
17: R+ Ajj
18:  Start to replicate R (Algorithm 5)
19: % Update and scale panel
20:  Wait for S;(j — 1)
21:  Wait for R
222 fori=j+1,N,—1do
23: Wait for W;(j — 1)
24: Aij — Aij — Wl(] — 1)5‘7(] — 1)T, (GEMM)
25: Aij + Ay R™T, (TRSM)
26: Wl(]) «— Aij
27: Start to replicate W;(j) and S;(j) (Algorithm 4)
28: end for
29: % Update non-panel part of trailing matrix
30 fork=j5+1,Ny,—1do
31: Wait for Si(j — 1)
32: Apg = Ape = Wi (j = OWi(j — 1)7, (SYRK)
33: fori=k+1,N,—1do
34: A = Aigy = Wi(j = 1)Sk(j — 1T, (GEMM)
35: end for
36: end for
37: end for

In both cases, the static schedule causes spurious synchronizations to occur and it
should be clear that any static schedule would have similar problems.

The first type of synchronization is described in Figure 3. It depicts a 12 x 12
block matrix distributed on a 2 x 3 mesh with details for processor (0,1). To the
left is a West buffer and below is a South buffer. Remote blocks and buffers have
a dotted outline. For a block update to be available the corresponding West and
South buffer blocks must both have received their data. The order in which buffer

ACM Transactions on Mathematical Software, Vol. V, No. N, M 20YY.



10 . F. Gustavson, L. Karlsson and B. K&gstrom

LEGEND

] B NOT REFERENCED
ON o

& WRITTEN
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Fig. 2. The two tasks of fused panel factorization and trailing matrix update broken down into
series of kernel operations with information on how the buffers are used.

blocks become available is random and therefore it is impossible to optimally match
by any static schedule.

Not used

Pending

Arrived

B O0OKX

Available update

577
/////4
b

8
Z

Performed update

N

Unavailable update

Fig. 3. Availability of updates is determined by the arrival of blocks in both West and South
buffers.

An example of the second type of synchronization (obtained from an execution of
Static) is illustrated in Figure 4. Note that the figure provides only partial timelines
for two of the four processors and that time flows from left to right. The updates
on processor (0,1) labeled A depend only on operations prior to the ones labeled
B and can therefore be executed before B. The second group of updates labeled
B are the updates following the panel factorization partially performed in the first
group labeled B. The gap before B could be filled by operations in A although the
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Schedule Early
{Dynamically)

—

Fig. 4. A partial view of the timelines for the second processor column of a 2 X 2 mesh executing
the Static variant on a 16 X 16 block matrix. Black boxes are diagonal block factorizations (POTRF),
dark gray boxes are TRSM operations, and the light gray boxes are the SYRK and GEMM operations.
The Static schedule introduces a gap on the (0,1) processor although any of the updates labeled
A (rotated) could be scheduled there.

optimal number and selection of operations will depend on many factors, including
the iteration number. It is impractical, if not impossible, to construct a static
schedule which would fill such gaps.

A dynamic scheduling of tasks on the nodes would be more flexible and allow
local avoidance of spurious synchronizations. In order to investigate if removing
these spurious synchronizations reduces overall execution time, we designed and
implemented a scheduling mechanism which addresses these issues. We give a brief
description of the dynamic scheduling mechanism which we refer to as the Dynamic
variant. At the start of each iteration a list is created with information about all
the kernel operations (the tasks) that will execute in that iteration. The tasks are
ordered in the list in exactly the same order as they would be executed by the
Static variant. A pointer to the first unexecuted task is kept. The list is scanned
sequentially for the first ready task, starting from the first unexecuted task. Figure 5
visualizes an example task list (acronyms used in the figure: TRSM, SYRK, and
GEMM). One sees that the next task to execute would be the first ready GEMM task

Done Ready Ready Ready Ready Ready

D fer]e]r]s Jefo]s |

First unexecuted task

Fig. 5. Data structure for efficient dynamic scheduling.

since the data for the first TRSM task is unavailable.

45 Node Communication

Since all blocks are square they can be communicated as atomic units. Algorithm 4
shows how a single panel block (scaled block A;;) is communicated to all its replicas
in the remote West and South buffers. Communication starts at the root process
(pi,q;) that owns the scaled panel block A4;;. The block is passed on from west to
east until it reaches process (p;, ¢;) that owns the diagonal block A;;. This process
then splits the communication into a north to south transfer to fill the replicas of
the South buffer. Both communications continue in parallel. At the end of this

ACM Transactions on Mathematical Software, Vol. V, No. N, M 20YY.
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Algorithm 4 Communicate W;(j) and S;(j) from iteration j

1: Let processor (p;, q;) be the processor that holds block A;;
2: if I am on row p; and need W;(j) for some update then
3:  if T am processor (p;,q;) then

4: Wi(j) < Aij

5. else

6: receive(W;(j), WEST)

7. end if

8:  send(W;(j), EAST) if needed for some update on EAST neighbour
9: end if

10: Let processor (p;, ¢;) be the processor that holds block A;;
11: if T am on column ¢; and need S;(j) for some update then
12:  if T am processor (p;,¢;) then

13: Si(j) < Wi(j)

14:  else
15: receive(S;(j), NORTH)
16: end if

17:  send(S;(j), SOUTH) if needed for some update on SOUTH neighbour
18: end if

procedure, processors (p;,*) have their copy of W;(j) and processors (x*,q;) have
their copy of S;(j).

All communication is performed using non-blocking MPI routines. The algorithm
is executed for all the blocks of W and S concurrently and asynchronously. MPI
polling is used to discover transfer completion and to resume the corresponding
algorithm instance.

Algorithm 5 Communicate R from iteration j

1: Let processor (pj,g;) be the processor that holds block A;;

2: if I am on column ¢; and need R for some scaling operation then
3:  if T am processor (p;,q;) then

4 R + Ajj

5 else

6 receive(R, NORTH)

7. end if

8 send(R, SOUTH) if needed for some scaling operation on SOUTH neighbour
9: end if

Communication of the R buffer is similar (Algorithm 5). The root process (pj, g;)
that owns the factored diagonal block A;; starts a north to south transfer to build
the replicas of R on processors (%, ;).

4.6 Considerations for Hybrid Systems

If the nodes of the distributed memory system are shared memory (e.g. SMP or
multi-core), an additional level of scheduling is required if message passing within
a node is to be avoided. We use the term node-level scheduling to refer to the
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scheduling of the tasks of an MPI process onto the processor cores of a DM node.
One technique to solve the node-level scheduling problem is to use multi-threaded
BLAS on each node and map only one MPI process to each node. This is one way
the node-level scheduling problem can be addressed in LAPACK and ScaLAPACK.

For the variants presented here it is probably not efficient to parallelize the ker-
nels, especially if n; is small. Dynamic scheduling of atomic kernel operations is
one way to expose parallelism to many threads. This strategy has been successfully
tested recently, by both the PLASMA and FLAME projects [Buttari et al. 2007;
Chan et al. 2007] in pure shared memory environments.

Even though several threads are computing there need not be more than one
thread that calls MPI routines. In fact, for the Cell BE it might be advisable
to let the PPE handle all MPI calls and delegate all computations to the SPEs.
Therefore, it is not necessary to have a thread-safe implementation of MPI in order
to use algorithms and methods discussed here.

5. COMPUTATION-COMMUNICATION OVERLAP EVALUATION

In what follows, we assume the reader is familiar with concepts such as blocking /non-
blocking, send/receive requests, and other basic MPI terminology. For definitions
see the MPI standard documents ([MPI Forum 1995]).

On many systems there is separate hardware for communication and computation
that execute concurrently. The extent to which this parallelism can be exploited
is highly dependent on the machine and system software. We therefore present an
evaluation of the overlap capabilities of our target machine in this section.

With MPI, overlap is enabled by using non-blocking primitives for point-to-point
communication (the MPI standard interface does not define any non-blocking col-
lective operations). When the network controller detects an incoming message it
must know where to store it. If a process has posted a receive the MPI library
could instruct the network controller to place the message directly into the buffer
supplied by the user. If the process has not yet posted a receive when an incoming
message is detected then either the message transfer must be delayed or some tem-
porary buffer must be allocated. These two options result in two different types of
message transfer protocols:

(1) The eager protocol: allocate a temporary buffer into which the message is
received, and copy from the temporary buffer to the receive buffer when the re-
ceive is posted. The eager protocol is used to improve latency of small messages
at the cost of reduced bandwidth due to the extra memory copy operations.

(2) The rendezvous protocol: the sender and receiver handshakes to make sure
a receive buffer is available. Transfer of data directly into the receive buffer
can thus be guaranteed and this protocol is used for large, bandwidth limited
messages.

The eager protocol allows for hardware parallelism but costs at least one extra
memory copy. The rendezvous protocol allows overlap on the sending side but not
on the receiving side unless the receive is non-blocking too. We therefore conclude
that the use of non-blocking send and receive is critical as only then is overlap
practically possible on both sides of the communication.
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An important feature of an MPI implementation is independent progress [Brightwell
and Underwood 2004], which gives an MPI implementation the capability of per-
forming communication while the user process is not executing an MPI routine.
An MPT implementation that supports independent progress can actually overlap
communication with computation and such an implementation is thus preferred.

5.1 Micro-Benchmarks

We designed two micro-benchmarks on our target machine to investigate which type
of protocol is used in what situation and also to measure the amount of speedup
that we can realistically achieve.

In both benchmarks we combine the execution of one or several GEMM updates
with the transmission of a message. In all cases we used two processes on separate
nodes and the computation of a GEMM update with the chosen parameters took
approximately Tcompute = 944p1s. We denote the time to send a message of any
particular size Tcommunicate-
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Fig. 6. Two micro-benchmarks to evaluate the MPI library overlap capabilities. Left: a test for
the use of an eager protocol. Right: a test for independent progress.

5.1.1 Benchmark A: Eager versus Rendezvous. This benchmark is designed to
identify which type of protocol is used depending on the message size and it is visu-
ally described in Figure 6 (left). Two processes, sender and receiver, each compute
one GEMM update. The sender starts a non-blocking send prior to starting a GEMM
computation and waits for it to complete after its GEMM computation completes. The
receiver starts a blocking receive at the end of its GEMM computation. If an eager
protocol is used, we would expect the time for both processes to be approximately

maX(Tcompute7 Tcommunicate)

since the communication would be concurrent with the computation. This expected
execution time is marked with a dashed curve in Figure 7. In the same figure, the
solid curve marks the measured time. Clearly, up to about 32 KB the total time
is just above the time to compute, whereas for larger messages it is closer to the
sum of the compute and communicate times. We can be sure, based only on these

ACM Transactions on Mathematical Software, Vol. V, No. N, M 20YY.



Parallel Cholesky using Minimal Block Storage .

Sender

Receiver

1.3 1.3
~——— Compute + Wait Compute + Wait
1.2t / 1.2f
1.1 B [/ . 11
1 / 1

@ g
£ E
@ 0.9 o 0.9
E E
S S

0.8 0.8

’
0.7 f ™~ 0.7 "
. { .
| . | .
06 f : S 06 i s
. . "
T - - - g T - - ——— - e
0.5 05
[ 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160
Message size (KB) Message size (KB)
Fig. 7. Results for Benchmark A.

results, that for messages up to 32 KB the system uses an eager protocol. For
larger messages a rendezvous protocol is probably used. However, it could also be
explained by a lack of independent progress.

5.1.2  Benchmark B: Independent Progress and Speedup. This benchmark is de-
signed to discover if the MPI implementation supports independent progress and
also allows us to assess the practically achievable speedup of overlapping commu-
nication with computation (see Figure 6 (right) for description). Both processes
now compute a GEMM twice and the receiver starts the receive between the two
computations and waits for it to complete after the second computation. If a ren-
dezvous type protocol is used, then the time for both processes in the presence of
independent progress is expected to be

Tcompute + maX(Tcomputea Tcommunicate)-

This is marked with a dashed curve in Figure 8. As with the previous benchmark,
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Fig. 8. Results for Benchmark B.

the measured times are marked with a solid curve. There are no major deviations
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from the expected times and the difference on the expected flat part indicates that
overlap slightly affects computation time. This indicates that 90 — 95% of the
communication overhead is eliminated on both sides of the communication.

6. PERFORMANCE RESULTS

The performance and scalability of the three algorithm variants were evaluated on
the Sarek cluster at the High-Performance Computing Center North (HPC2N) in
Umea, Sweden. The Sarek cluster has 192 nodes with dual AMD Opteron 248
(2.2 GHz) processors. The nodes are connected with a Myrinet 2000 high speed
interconnect with the MPI library MPICH-MX version 1.2.7 capable of point-to-
point communication with roughly 230 MB/s bandwidth. Each node has 8 GB
of memory and the BLAS library we used was GotoBLAS version r1.12. All the
tests were performed with a distribution and algorithmic block size of n, = 100.
The Dynamic variant executed nearly identically as fast as the Static variant. For
this reason, we omit reporting on the performance and scalability of the Dynamic
variant.

For large problems the time spent in GEMM operations completely dominate the
time spent in all other operations as well as the idle time and communication
overhead. Therefore, if two algorithms have different GEMM performance the one with
the highest performance will eventually outperform the other. Hence, we focus our
attention on small and medium sized problems to highlight the differences amongst
our DSBP algorithms and their relation to PDPOTRF in ScaLAPACK. However, large
scale problems are also tested to make sure performance does not, degrade.

Below, the performance of each kernel is examined. In addition, the communi-
cation system’s characteristics are determined and discussed. The section ends by
comparing our measured performance to our models of execution showing that the
Static variant has a near-optimal scheduling of tasks on the nodes for medium and
larger sized problems.

6.1 Kernel Performance

Since the operands to each of the four kernels are stored as contiguous blocks
of a known size, the execution time of these kernel routines can be accurately
approximated by a simple benchmark. There is little variability in the performance
of a kernel routine except for where in the memory hierarchy the operands are at
the time of the invocation.

To get a fair estimate of the performance of each kernel under a realistic scenario
(e.g., the operands are not optimally placed in the memory hierarchy), the time
spent in each kernel during the execution of Basic was measured and averaged over
the total number of their invocations. The results of these tests are reported in
Table I. Note the relatively poor performance of POTRF. The reason for this is that
LAPACK uses a level 2 kernel factorization routine POTF2. Furthermore, the early
flattening of the performance is indicative of a mismatch between the blocksize
and/or algorithm with the BLAS implementation.

We have not optimized the kernels to take advantage of non-simple block storage
formats. In all measurements we used LAPACK and BLAS routines. It is therefore
important for us to investigate the performance of each of the these four employed
routines (see Figure 9). It also justifies the choice of n, = 100 for the other tests,
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Kernel flops Time (us) Gflops/s

POTRF n3/3 192 1.74
TRSM np 350 2.86
SYRK ng +n? 318 3.18
GEMM 2n} 565 3.54

Table I. Kernel performance figures (n;, = 100).
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Fig. 9. Performance of kernels with respect to block size.

because at this block size the performance of the GEMM routine is almost flat.

6.2 Communication Performance

An important characteristic of a distributed memory machine is its message pass-
ing performance. In our case, it is the MPI implementation MPICH-MX that we
benchmark. We use the communication model

ts + tym

for an m-word message and estimate the parameters t; and ¢,, by experimentation.
The startup cost (ts) and inverse bandwidth (¢,,) were determined by fitting this
model to a ping-pong benchmark (see Table II for results). Note that the latency

ts 29.6 us
tw 34.6 ns

Table II. The communication parameters for the Sarek cluster.

is almost 1000 times higher than the inverse bandwidth. Even so, for the chosen
block size of n, = 100 the block transmission time will be approximately 10 times
the latency.

6.3 Absolute Performance

We tested Basic and Static as well as the ScaLAPACK full storage PDPOTRF routine
on various mesh and problem sizes. The largest test was on a 12 x 12 mesh and a
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matrix of order 110000. In Figure 10, we report the performance per processor on
the 12 x 12 mesh.

Absolute performance on a 12-by-12 mesh

e ,9_.——6-—”9““6*—"9—9—

Gflops/s per processpr

~—&— Static
...... 6 Basic
- S

i i i i i i T T T
10 20 30 40 50 60 70 80 90 100 110
N (x1000)

Fig. 10. Absolute performance per processor of Basic, Static, and PDPOTRF on 12 x 12 mesh for
various problem sizes.

6.4 Modeled Versus Measured Performance

In this section, we model the execution of Basic and Static to support our claim of
the near-optimality of the Static schedule.

6.4.1 Models of Basic and Static. Inter-node data dependencies are handled via
message passing and intra-node data dependencies by the ordering of the operations.
The execution time is determined by the speed of the kernels, the communication
overhead, and the inter-node dependencies. Since the kernels are assumed to be
optimized, a parallel algorithm should minimize the impact of the communication
and other overheads. Therefore, we model the performance of Basic and Static
by simulations to see if our algorithms meet this expectation. We do not model
communication overhead or other overheads besides computation since we wish to
compare our performance with an ideal machine where overhead is not an issue.
This is one way to quantify the otherwise so elusive overhead component in parallel
algorithms.

6.4.2 Comparisons. In Figure 11, a comparison on 36 processors (6 x 6 mesh)
is presented. The measured performance for Static is very close to the simulated
performance for medium to large problems. However, Basic is not close to its simu-
lated performance showing that communication overhead is a significantly limiting
factor for this less efficient algorithm.

Let T denote the parallel execution time (assumed equal for all P, - P. processors
due to synchronization). The execution time can be partitioned into four compo-
nents for each processor k (0 < k < P, - P,):

T= Tckomputation +
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Fig. 11. Comparisons between the simulated performance and the measured performance for Basic
and Static on 36 processors arranged in a 6 X 6 mesh.

Typically, the components of T differ for separate processors (hence the super-
script k). All three variants (Basic, Static, and Dynamic) use the same kernels
and the same distribution of computational work. They are instances of a big-
ger class of algorithm variants with the same kernels and distribution of work. If

k _ k _ . . .
T mmunication = Loverhead = 0, @ lower bound for the execution time is

max TF
k

_ : k
computation — T - mkln Tidle'

This quantity can be accurately estimated by the Static model since these conditions
hold by design.

In Table III, we illustrate the minimum simulated idle times on a 4 x 4 mesh.
Similar negligible idle times for the Static model have been observed for other
meshes as well. These negligible simulated idle times show that the Static schedule

Basic Static
N T minTh | T  mingTF,
5000 1.0 0.1135 0.9 0.0012
10000 6.8 0.4409 6.4 0.0015
15000 | 21.9  0.9822 20.9  0.0012
20000 | 50.7 1.7380 48.9  0.0015
25000 | 97.5  2.7110 94.8  0.0012
30000 | 166.9  3.9000 163.0  0.0015

Table ITI. Simulated execution time and minimum simulated idle time (both in seconds) for the
Basic and Static variants.

is near-optimal in theory. We now discuss our empirical evidence.

6.4.3 FEmpirical Evidence of Negligible Idle Times. Simulations of execution
strongly indicated that with no communication or other overhead the minimum
idle time observed over all processors is close to zero. The comparisons presented
in Section 6.4.2 predict that this should be observable in practice. The code was
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instrumented to accumulate the time spent in synchronizing MPI calls. Table IV
shows that at least one processor has a small idle time component, i.e., it is active
almost all the time. A further reduction in parallel execution time would either re-
quire faster kernel execution, moving work between nodes, or reducing the number
of nodes and re-balancing the data layout. Such efficiencies are beyond the scope
of this paper.

P, X P, 4 x4 8 x 8 12 x 12
N T min Tyait T min Tyait T min Tait

10000 6.554  0.076 1.956 0.116 1.116 0.195
20000 49.719  0.289 13.354  0.092 6.520 0.155
30000 164.880  0.343 43.053 0.107 20.221 0.161
40000 392.612  0.923 100.500  0.109 45.948  0.160
50000 763.795  0.276 194.252  0.311 89.033  0.172
60000 1303.342  0.142 334.360 0.130 150.797 0.211
70000 521.126 0.138 237.592 0.266
80000 783.428  0.147 356.522  1.080
90000 1123.918 0.119 503.045 1.117
100000 692.181  0.400
110000 921.571 0.199

Table IV. Measured time in synchronizing code (e.g., MPI wait routines). The columns labeled
min 7Ty,is contain the smallest measured waiting time over all the processors.

7. SCALABILITY

Fixed size scaling (strong scalability) examines how performance degrades when
more processors are used to solve a problem of fixed size. The performance per
processor should ideally remain constant but in practice it will decrease as a conse-
quence of increased overhead. Based on Figure 12 we conclude that Static is more

Fixed Size Scaling Comparison with N = 10,000

35
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- Basic
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# of processors

Fig. 12. Performance on various mesh sizes for a fixed problem size.
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scalable than Basic. The advantage of overlapping iterations is more apparent when
a large number of processors solve a small problem.

Under memory constrained scaling the amount of available memory is assumed
to scale linearly with the number of processors and the problem size is scaled so
that the consumed memory is kept constant per processor. An algorithm has a
good memory constrained scalability if it can maintain a constant performance
per processor. For Cholesky factorization, which operates on O (N?) memory, the

Memory constrained scaling (~429 MB/process)

&

)

Gflops/s per processor
n

...... & Static
- Basic
ScalLAPACK

0 50 100 150
# of processors

Fig. 13. Memory constrained scaling (with full storage requiring /& 429 MB per process).

problem size N must be scaled with a factor v/p2/p; when the number of processors
scales from p; to ps (see Figure 13). The memory constrained scalability of all tested
algorithms was excellent.

The isoefficiency function [Grama et al. 1993] maps the number of processors to
problem size. It tells how much the problem size must be scaled up to maintain
a constant efficiency. In Figure 14, we show curves which are similar to the iso-
efficiency curves but instead of comparing parallel execution time with the best
serial implementation we measure efficiency as performance per processor. With
this metric, we conclude that Static is far more scalable than Basic.

8. CONCLUSIONS AND FUTURE WORK

We presented the Distributed SBP format and showed that it is possible to achieve
the same or better performance for packed storage Cholesky factorization compared
to full storage. The Static variant has a 5 —55% higher performance than the Basic
variant for matrices of size N between 5000 and 10000 on 4-49 processors. In
addition, the Static variant is significantly more scalable than the Basic algorithm
for fixed problem sizes and is also much better to maintain a constant FPU efficiency
as the number of processors increase.

Models of execution that assume no parallel overhead except processor idling
support that the Static variant is close to the optimum schedule on our target DM
machine. Based on these models we also conjecture that the Static variant is capable
of nearly completely overlapping the communication with computation. Important
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Fixed Performance Scaling with 2.7 Gflops/s per Processor
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Fig. 14. Problem size required to achieve a fixed performance per processor of 2.7 Gflops/s.

characteristics of our target machine include its ability to reach near peak perfor-
mance on small Level 3 BLAS operations and a low overhead MPI implementation
capable of asynchronous communication with independent progress. The presented
algorithms should perform well on other machines with similar characteristics.

Since the Static and Dynamic variants give similar performance, the simpler
Static variant is sufficient. A dynamic scheduling similar to the Dynamic variant
could provide efficient scheduling on hybrid systems with SMP or multi-core nodes.

There is frequent polling of the MPI layer in order for the communication al-
gorithm to detect the completion of requests. This overhead would be avoided if
the MPI interface and various MPI implementations supported callbacks when a
request completes.

The scheduling of tasks in the Basic variant is described by an outer control loop
and inner loops to traverse the blocks of the matrix. The Static variant is more
complicated with a necessary preamble (see lines 1-10 of Algorithm 3) before the
main control loop. The Dynamic variant is yet more complicated, with a dynamic
rearrangement of the control loop body of the Static variant. An optimal schedule
is likely to require a rearrangement across several iterations of the control loop. It
is difficult to imagine there is any practical way of coding such an optimal schedule
without using dynamic scheduling.
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