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Abstract. We present three algorithms for Cholesky factorization us-
ing minimum block storage for a distributed memory (DM) environment.
One of the distributed square block packed (SBP) format algorithms per-
forms similar to ScaLAPACK PDPOTRF, and our algorithm with iteration
overlapping typically outperforms it by 15–50% for small and medium
sized matrices. By storing the blocks contiguously, we get better per-
forming BLAS operations. Our DM algorithms are not sensitive to cache
conflicts and thus give smooth and predictable performance. We also in-
vestigate the intricacies of using rectangular full packed (RFP) format
with ScaLAPACK routines and point out some advantages and draw-
backs.

1 Introduction

Dense linear algebra routines that are implemented in a distributed memory en-
vironment typically use a 2D block cyclic layout (BCL), with ScaLAPACK being
one example of a library that uses BCL for all routines [3]. A BCL can provide
effective load balance for many algorithms. The mapping of matrix elements to
processors does not prescribe how they are later stored on each processor. The
approach taken by the ScaLAPACK library is to store each elementary block as
a submatrix of a column major 2D array (standard Fortran array) [3]. Another
approach is to store each elementary block contiguously, for example as a column
major block 2D array.

Storing elementary blocks contiguously has at least three advantages. They
will map very well into L1 cache and level 3 operations involving such blocks
will therefore tend to achieve high performance and minimize memory traffic.
Another benefit is that moving a block can be done by one contiguous memory
transfer. In this contribution we use square elementary blocks (called a square
block, or SB) to store the local matrix. Furthermore, we store only the trian-
gular part of the block matrix to achieve minimum block storage for symmetric
matrices. We call this square block packed (SBP) format.
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We identify an inefficiency in straightforward data parallel implementations,
e.g., the implementation of the Cholesky factorization in ScaLAPACK (routine
PDPOTRF) and develop an iteration overlapping data parallel implementation
which removes much of the idling and thus decreases execution time.

2 Near Minimal Storage in a Serial Environment

A recently proposed format for storing triangular or symmetric matrices is called
rectangular full packed (RFP) (see [8] for details). This format takes many slightly
different forms. Figure 1 illustrates a lower triangular matrix. The matrix is

BT

B

A A

RFPFull Storage

Fig. 1. Illustration of rectangular full packed format

partitioned into two submatrices A and B. The triangular matrix BT is merged
along the diagonal with A. As can be seen, this new matrix can be stored as a
standard full format rectangular array with no waste of memory.

Another format for near minimal storage is a generalization of a standard
column major format. The matrix is divided into square blocks and the format
is based on storing each such block in a contiguous memory area. The blocks can
then be stored for example in either a row or column major ordering. Figure 2

SB layout

Fig. 2. Illustration of square block packed format

illustrates the square blocks. The elements above the diagonal of the diagonal
blocks are wasted storage. By picking the block size to one, we see that we get
either the standard row or column major format. For details on this format
see [7].
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3 Minimum Block Storage in a Distributed Environment

In this section we describe how RFP and SBP can be used in a distributed
memory environment. We show how both approaches give a nearly minimum
block storage.

3.1 A Distributed SBP Algorithm for Cholesky Factorization

In this contribution we consider the blocked algorithmic variant of Cholesky
factorization described in Algorithm 1. We note that this algorithmic variant is
used in ScaLAPACK [4]. In a distributed environment with a 2D block cyclic

Algorithm 1. Standard blocked Cholesky factorization
1: for each panel left to right do

2: Partition A =
[

A11

A21 A22

]
, where A11 is NB×NB

3: Factorize A11 = LLT using unblocked algorithm
4: Update panel A21 := A21L

−T using triangular solver
5: Update trailing matrix A22 := A22 − A21A

T
21 using symmetric rank-k update

6: Continue with A = A22

7: end for

layout with block size NB×NB, block A11 resides on one processor, block A21
on one processor column, and A22 generally resides on all processors. By using
parallel triangular solve and symmetric rank-k update routines Algorithm 1 will
achieve scalable performance due to good load balance and because most of the
computation is in step 5 which is easy to parallelize. However, steps 3 and 4 do
not utilize all processors effectively. One variant of this algorithm is to start the
next iteration before the current iteration has finished step 5 (see [7] for more
details). This is possible by noting that the first updated column panel of the
new pivot from step 5 will be used as the only input for step 3 and 4 of the next
iteration.

A major problem with a straightforward parallel implementation of Algo-
rithm 1 is the idle time introduced when processors implicitly synchronize after
each iteration. This idle time is caused both by slight load imbalances and the
work in steps 3 and 4 that are not performed on all processors. By using the
iteration overlapping algorithm this idle time will be eliminated if the communi-
cation of data between steps 3 and 4 can be carried out while still doing useful
work in updates.

The data dependencies in Algorithm 1 are simple. Output from step 3 is input
for step 4 whose output in turn is input for step 5. As for the first dependency a
column broadcast is all that is needed. The second dependency requires a some-
what more complicated communication pattern and is now described briefly. All
subblocks of A21 are broadcasted along the processor rows. Once a subblock of
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A21 reaches the processor holding the diagonal block of that row it is broad-
casted along its processor column. One can show that after this, each processor
holds the blocks of A21 and AT

21 that it needs for step 5. In our implementation
these blocks are stored in two block buffer vectors W and S, where W (for West
border vector) holds blocks of A21 and S (for South border vector) holds blocks
of AT

21.
We have studied how overlapping two successive pivot steps can affect the

performance of our parallel implementation. Our implementation is described
in Algorithm 2. The overlapping in Algorithm 2 happens during the execution

Algorithm 2. Cholesky with iteration overlap
1: for each panel left to right do

2: Partition global A =
[

A11

A21 A22

]
, where A11 is NB×NB

3: if process holds A11 then
4: Factorize A11 = LLT using serial algorithm
5: Column broadcast the block L
6: end if
7: if process column holds A21 then
8: Receive the block L
9: Partition S1 =

[
SA SB

]
, where SA is NB×NB

10: Update A21 := A21 − W1SA

11: Scale A21 := A21L
−T

12: Start communication of A21 using buffers W2 and S2 (sender)
13: Update A22 := A22 − W1SB

14: else {all other process columns}
15: Start communication of A21 using buffers W2 and S2 (receiver)
16: Update A := A − W1S1

17: end if
18: Move (symbolically) W1 := W2 and S1 := S2 {there is no data movement}
19: end for

of steps 10 to 13. Taken together, steps 10 and 13 perform a complete update.
The execution order of the straightforward algorithm would put steps 10 and
13 together, and step 11 after both. Executing step 11 before 13 allows the
communication needed for the subsequent update to take place during the update
in step 13 (and while the other processors execute step 16).

In Figure 3, we illustrate by example how our local matrices are stored in
practice. The blocks are stored columnwise in a one-dimensional block vector
indexed by a column pointer (CP) array. The entries in CP are pointers to the
first block of each block column.

Figure 4 shows how the two sets of buffers are used in Algorithm 2. The light
shaded blocks are those used for the update of iteration i. The darker shaded
blocks are those computed during iteration i for use in iteration i + 1. After the
panel factorization the communication algorithm is started and it will broadcast
the panel and its transpose to all processors with this data stored in the second
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Fig. 3. Illustration of how a 7×7 block global matrix is laid out on a 2×3 mesh in SBP
format and addressed with its column pointer (CP) array. The full size of the global
matrix is 7NB×7NB.
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Fig. 4. Data layout for the SBP with double sets of W and S border vectors

set of buffers. While this communication takes place, the first set of buffers is
used to finish the update of iteration i.

3.2 A Distributed RFP Algorithm for Cholesky Factorization

Because of the good performance achievable with RFP format in a serial envi-
ronment (see [9]) we investigated its extension to parallel environments via using
ScaLAPACK and PBLAS. Algorithm 3 gives the details of the RFP Cholesky
algorithm. The limitations of PBLAS and ScaLAPACK do not generally allow
matrices to begin inside an elementary block; each submatrix must be block
aligned. Therefore, we use the RFP format on the block level, introducing some
wasted storage and thus achieve minimum block storage while still being able to
use RFP with existing routines.

The RFP format could be used with an algorithm similar to the one we used
with SBP. Such an RFP algorithm would probably achieve similar performance
to the SBP algorithm so we did not develop any implementation of it.
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Algorithm 3. RFP Cholesky with ScaLAPACK/PBLAS routines

1: Matrix A is in RFP format: A =
[

A11\AT
22

A21

]

2: Factor A11 = LLT using ScaLAPACK routine PDPOTRF
3: Update panel A21 := A21L

−T using PBLAS routine PDTRSM
4: Update trailing matrix A22 := A22 − A21A

T
21 using PBLAS routine PDSYRK

5: Factor A22 = LLT using ScaLAPACK routine PDPOTRF

4 Related Work on DM Cholesky Factorization

We briefly discuss other packed storage schemes for DM environments.
D’Azevedo and Dongarra suggested in 1997 a storage scheme where the ele-

mentary blocks are mapped to the same processor as in the full storage case, but
only the non-redundant blocks are stored [6]. Each block column is stored as a
submatrix the same way as it would in full storage. The result is that each block
column is a regular ScaLAPACK matrix and can be used as such. Note that the
blocks will be mapped to the same processors as the SBP format, but the local
processor storage layout is different. Benefits include routine reuse via PBLAS
and ScaLAPACK routines. However, some new PBLAS routines seem to be re-
quired to handle the packed storage [6]. Furthermore, their results indicate that
the performance varies wildly with input, making performance extrapolation
difficult.

Recently, Marc Baboulin et al. presented a storage scheme which uses rela-
tively large square blocks consisting of at least LCM(p, q)1 elementary blocks [2].
This format also supports code reuse via PBLAS and ScaLAPACK. The gran-
ularity is limited to the distributed block size, which means less possibility to
save memory. For the Cholesky factorization routines, the chosen block sizes for
performance measurements were between 1024 and 10240. This resulted in a de-
parture from their minimum storage by as much as 7–13%. Using their minimum
allowed distributed block size would bring this percentage down to about 1–3%
but at the cost of longer execution times.

5 Performance Results and Comparison

In this section we give some performance related results. We compare RFP, SBP
and ScaLAPACK routines and analyze the differences that we observed.

All tests were performed on the Sarek cluster at HPC2N. It consists of 190
HP DL145 nodes, with dual AMD Opteron 248 (2.2GHz) processor and 8 GB
memory per node. The AMD Opteron 248 processor has a 64 kB instruction
and 64 kB data L1 Cache (2-way associative) and a 1024 kB unified L2 Cache
(16-way associative). The cluster’s operating system is Debian GNU/Linux 3.1
and we used Goto BLAS 0.94 throughout.
1 The least common multiple of the integers a and b (written LCM(a, b)) is the smallest

integer that is a multiple of both a and b.
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Table 1. Execution times for PDPOTRF and the SBP algorithm with iteration overlap
for various square grid sizes. The block size NB is set to 100.

N 2x2 3x3 4x4 5x5 6x6 7x7
4000 2.13/0.86 1.48/0.63 1.04/0.66 0.79/0.68 0.63/0.64 0.57/0.65
8000 14.80/0.92 8.29/0.80 5.33/0.79 3.97/0.77 3.15/0.71 2.64/0.73

12000 25.20/0.83 16.30/0.80 10.90/0.84 8.27/0.80 7.11/0.78
16000 57.30/0.84 34.50/0.85 24.00/0.85 18.30/0.80 13.90/0.85
20000 65.00/0.85 43.90/0.86 33.00/0.81 25.90/0.84
24000 53.90/0.84 42.30/0.85

Table 1 shows selected times for both PDPOTRF and the SBP algorithm with
iteration overlap. Each cell has the form X/y, where X is the time (in seconds)
of the PDPOTRF routine and y = Y/X, where Y is the time for the SBP algo-
rithm. The same block size was used for both implementations. We identify two
trends. First of all, the relative gain by overlapping increases with the number
of processors since the idle time is introduced on the entire mesh. The bigger
the mesh the more idle time we can remove by overlapping. Second, the relative
gain decreases with increasing problem sizes. This is expected because the dom-
inant operation is the trailing matrix update (with O

(
N3

)
flops) whereas the

operations causing idle time (the panel factorization) make up for only O
(
N2

)
flops.

Table 2. Execution time for PDPOTRF and the RFP algorithm using ScaLAPACK
routines for various grid sizes

N 2x2 3x3 4x4 5x5 6x6 7x7
4000 2.13/1.26 1.48/1.16 1.04/1.18 0.79/1.44 0.63/1.42 0.58/1.34
8000 14.80/1.48 8.29/1.25 5.33/1.23 3.97/1.37 3.15/1.33 2.64/1.33

12000 25.20/1.41 16.30/1.14 10.90/1.34 8.27/1.33 7.11/1.29
16000 57.30/1.16 34.50/1.34 24.00/1.28 18.30/1.20 13.90/1.34
20000 65.00/1.13 43.90/1.40 33.00/1.22 25.90/1.25

Table 2 is similar to Table 1 but shows selected times for PDPOTRF and our
RFP algorithm which uses four calls to ScaLAPACK/PBLAS routines. Each cell
has the form X/y, where X is the time (in seconds) of the PDPOTRF routine and
y = Y/X, where Y is the time for the RFP algorithm. As can be seen from
this table the RFP algorithm has typically a 10–30% longer execution time.
By tracing the execution of the algorithm we found two substantial causes for
this overhead. The performance of the BLAS operations issued by the RFP
algorithm was less efficient than was typical for the other algorithms we tested.
Moreover, there are more synchronization points in the RFP algorithm due to
the two ScaLAPACK and two PBLAS calls on problems half the size. This
amplifies the communication overhead and load imbalance. Taken together, this
would probably explain most of the time differences we observed. One interesting
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detail to note in Table 2 is that when the local matrix dimension is 4000 the RFP
algorithm experienced a dramatic loss in performance (emphasized by italics in
Table 2). This is caused by a cache effect because the leading dimension is
actually 4100 which is close to 212 = 4096; also the L1 cache on Sarek is only
2-way set associative.

The block size mainly affects performance of the BLAS operations and the
load balance. Larger blocks tend to give good BLAS performance but less load
balance. For the SBP algorithm the block size is intimately related to BLAS
performance because then all GEMM calls are on matrices of order NB. The ScaLA-
PACK algorithm is less dependent on the block size because of the fewer and
larger PBLAS operations. Table 3 gives an idea of how the block size relates to

Table 3. Impact of block size on performance (measured in Gflops/s per processor)
for ScaLAPACK PDPOTRF and our overlapping SBP algorithm

NB PDPOTRF Overlapping
25 2.08 1.91
50 2.12 2.57
75 2.09 2.75
100 2.15 3.04
125 2.24 3.06
150 2.13 3.04

performance for both of these algorithms. The processor mesh was 2×3 and the
order of the matrix was N=6000. On Sarek we see that when we approach a block
size of 100 we get close to optimal performance, whereas the block size does not
matter much for the ScaLAPACK routine. The gap in performance between the
two routines is mainly due to less idling in the overlapping routine.

Finally, we note that our overlapping SBP algorithm could be modified so
that it updates first and factorizes the next panel afterwards. This makes the
algorithm essentially equal to the straightforward implementation but with a dif-
ferent data format. We implemented this variant too and found that as expected
it gave performance nearly identical to the ScaLAPACK algorithm.

6 Future Work

We outline some future directions of development. Our overlapping algorithm
relies on the idea that the task of trailing matrix update can be divided into two
tasks: the first panel on the column of processors holding the pivot and the rest
of the panels on all processors. This allows us to have two iterations on the same
processor, but three is not possible. A solution is to further divide the tasks.
The trailing matrix update could for example be divided into one task for each
block column. Instead of waiting for data it now becomes attractive to do smaller
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tasks instead. The order of the tasks thus becomes non-deterministic because it
would depend on processor interactions. To get a clean implementation it might
be necessary to use a style reminiscent of a work pool.

The overlapping algorithm relies heavily on the interleaving of communica-
tion and updates. One consequence of the overlapping is that more workspace is
needed. In general each ongoing iteration will require its own W and S buffer. It is
preferable to have many iterations ongoing because in that way more work is kept
at each processor and chances for idling will get reduced. The concept of looka-
head in factorization algorithms has been addressed several times (cf. [1,5,7]) and
recently in [10]. The emphasis of the latter contribution is that a dynamic looka-
head is most appropriate. A large lookahead is not feasible in a DM environment
because of the large workspace required. Setting a fixed cap (or dynamic relative
to a fixed workspace) on the number of iterations may be a feasible solution.

Our work provides an argument for the inclusion of nonblocking collective com-
munication routines in communication libraries. The de-facto industry standard
MPI has substantial support for nonblocking point-to-point communication but
collectives are all blocking. Our implementation emulates nonblocking collectives
by repeatedly testing for individual completion of nonblocking point-to-point op-
erations. This complicates the code and probably comes at a higher cost than
would have been the case if nonblocking collectives existed as part of the library.

7 Conclusion

We have implemented and compared three algorithms and data formats for min-
imum block storage in distributed memory environments using a 2D block cyclic
data layout.

In a serial environment, the RFP format is an attractive choice [9]. However,
the straightforward generalization of serial RFP algorithms has some weaknesses.

The SBP format was implemented and tested with two algorithm variants.
One resembles ScaLAPACK’s PDPOTRF but makes no use of PBLAS or ScaLA-
PACK routines, and one overlaps iterations. We have demonstrated that per-
formance at least as good as the ScaLAPACK algorithm is attainable, and for
the overlapping variant far better performance, especially for small and medium
sized matrices, was achieved.

The ideas that we explored in this work can be applied to many other algo-
rithms as well. Two examples very similar to the Cholesky factorization are the
LU and QR factorizations.
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