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Department of Computing Science and HPC2N, Ume̊a University,
SE-901 87 Ume̊a, Sweden
{granat,bokg}@cs.umu.se

Abstract. We discuss parallel algorithms for solving eight common stan-
dard and generalized triangular Sylvester-type matrix equation. Our par-
allel algorithms are based on explicit blocking, 2D block-cyclic data
distribution of the matrices and wavefront-like traversal of the right
hand side matrices while solving small-sized matrix equations at different
nodes and updating the rest of the right hand side using level 3 opera-
tions. We apply the triangular solvers in condition estimation, developing
parallel sep−1-estimators. Some experimental results are presented.
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1 Introduction

We consider the following standard Sylvester-type matrix equations: the
continuous-time Sylvester equation (SYCT)

AX − XB = C, (1)

the discrete-time Sylvester equation (SYDT)

AXBT − X = C, (2)

the continuous-time Lyapunov equation (LYCT)

AX + XAT = C, (3)

and the discrete-time Lyapunov equation (LYDT)

AXAT − X = C, (4)

where A of size m×m, B of size n×n and C of size m×n or m×m are general
matrices with real entries.
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We also consider the following generalized Sylvester-type matrix equations:
the generalized coupled Sylvester equation (GCSY)

(AX − Y B, DX − Y E) = (C, F ), (5)

where A and D of size m × m, B and E of size n × n and C and F of size m × n
are general matrices with real entries, the generalized Sylvester equation (GSYL)

AXBT − CXDT = E, (6)

where A and C of size m × m, B and D of size n × n and E of size m × n
are general matrices with real entries, the continuous-time generalized Lyapunov
equation (GLYCT)

AXET + EXAT = C, (7)

where A, E and C of size m × m are general matrices with real entries, and the
discrete-time generalized Lyapunov equation (GLYDT)

AXAT − EXET = C, (8)

where A, E and C of size m × m are general matrices with real entries.
Solvability conditions for equations (1)-(8) can be formulated in terms of the

standard or generalized eigenvalues of the involved matrices or regular matrix
pairs, see, e.g., [15,16]. For (G)LYCT/(G)LYDT a symmetric right hand side C
implies a symmetric solution X .

SYCT, LYCT and GCSY are called one-sided because the undetermined X
(or X and Y ) is multiplied by another matrix from one side only. SYDT, LYDT,
GSYL, GLYCT and GLYDT are called two-sided [15,16].

In this contribution, we assume that all left hand side coefficient matrices or
matrix pairs are (quasi-)triangular, i.e, in real or generalized Schur form (see,
e.g., [5]). If this is not the case, we utilize Bartels–Stewart’s method [2] for
reducing the matrix equation to triangular form by orthogonal transformations:

1. Reduce the known left hand side matrices (or matrix pairs) of equations
(1)-(8) to real (generalized) Schur form.

2. Update the right hand side matrix (or matrix pair) with respect to the Schur
decompositions.

3. Solve the resulting triangular matrix equation.
4. Transform the computed solution matrix (or matrix pair) back to the original

coordinate system.

Based on our previous work with parallel solvers for triangular matrix equa-
tions (see, e.g., [8,9,10]), we now focus on developing a complete set of parallel
algorithms and library routines for solving the reduced matrix equations corre-
sponding to equations (1)-(8). Besides being an integral part in solving general
large scale matrix equations, these solvers are applied to condition estimation of
the matrix equations themselves as well as for different subspace problems with
applications in control theory. In this contribution, we present some of this work
in progress. The final goal is a complete library of ScaLAPACK-style routines
called SCASY for solving general as well as reduced (triangular) standard and
generalized Sylvester-type equations (1)-(8).
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2 Blocked Methods for Solving Reduced Matrix
Equations

We focus on step 3 above for solving the reduced matrix equations. Assuming
m = n, this is an O(n3) operation. We apply explicit blocking (see below) to
reformulate each matrix equation problem into as much level 3 BLAS operations
as possible. In the following, the (i, j)th block of a partitioned matrix, say X , is
denoted Xij .

Let mb and nb be block sizes used in an explicit block partitioning of the
matrices A and B in SYCT, respectively. In turn, this imposes a similar block
partitioning of C and X (which overwrites C). Then Da = �m/mb� and Db =
�n/nb� are the number of diagonal blocks in A and B, respectively. Now, SYCT
can be rewritten in block-partitioned form as

AiiXij − XijBjj = Cij − (
Da∑

k=i+1

AikXkj −
j−1∑

k=1

XikBkj), (9)

for i = 1, 2, . . . , Da and j = 1, 2, . . . , Db [10].
For LYCT we use a similar approach: Partition A and C by rows and columns

using a single block size mb and rewrite LYCT as

AiiXij + XijA
T
jj = Cij − (

Da∑

k=i+1

AikXkj +
Da∑

k=j+1

XikAT
jk), (10)

reformulating our single LYCT problem into smaller SYCT (i �= j) and LYCT
(i = j) problems and level 3 updates in the right hand side C. Moreover, if C is
symmetric, we rewrite (10) for the main diagonal blocks Cii as

AiiXii + XiiA
T
ii = Cii − (

Da∑

k=i+1

AikXT
ik + XikAT

ik), (11)

which defines a sum of SYR2K-operations, which are as fast as regular GEMM-
operations when implemented as a GEMM-based level 3 BLAS [18,19].

We block the two-sided standard equations SYDT and LYDT similarly:

AiiXijB
T
jj − Xij = Cij −

(Da,Db)∑

(k,l)=(i,j)

AikXklB
T
jl, (k, l) �= (i, j) (12)

and

AiiXijA
T
jj − Xij = Cij −

(Da,Da)∑

(k,l)=(i,j)

AikXklA
T
jl, (k, l) �= (i, j). (13)

Notice that the blocking of LYDT decomposes the problem into several smaller
SYDT (i �= j) and LYDT (i = j) equations.
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The same method of explicit blocking is applied to the generalized matrix
equations (5)-(8).

All linear matrix equations considered can be rewritten as an equivalent large
linear system of equations Zx = y, where Z is the Kronecker product repre-
sentation of the corresponding Sylvester-type operator. For example, SYCT (1)
corresponds to ZSYCT = In ⊗ A − BT ⊗ Im, x = vec(X), y = vec(C) (see also
Section 4). These formulations are only efficient to use explicitly when solving
small-sized problems in kernel solvers, see, e.g., LAPACK’s DLASY2 and DTGSY2
for solving SYCT and GCSY and the kernels of the RECSY library [15,16,17].

3 Parallel Algorithms for Triangular Matrix Equations

The parallel algorithms for SYCT presented in [24,10,8,9] were based on the
following basic ideas: Utilize explicit blocking and 2D block cyclic distribution
of the matrices over a rectangular Pr×Pc process grid, following the ScaLAPACK
conventions [3], and compute the solution by a wavefront-like traversal of the
block diagonals of the right hand side matrix where several solutions of diagonal
subsystems are computed in parallel, broadcasted along the corresponding block
rows and columns, and used in level 3 updates of the rest of the right hand side.
This is illustrated for SYCT in Figure 1. Notice that the solution X overwrites
the right hand side C blockwise.

The algorithms are adapted to the symmetric LYCT by wavefront-like traver-
sal of the anti-diagonals of the right hand side matrix while solving for the lower
(or upper) triangular part of the solution. The situation is described in Figure
2. However, our solvers must be able to solve non-symmetric LYCT problems as
well since symmetry cannot be assumed in condition estimation algorithms (see
Section 4).

For two-sided standard matrix equations SYDT/LYDT the main difference
from the SYCT/LYCT cases are the need for an extra buffer for storing interme-
diate sums of matrix products caused by a more complex data dependency (see
equations (12)-(13)) which will, assuming m = n, cause any trivially blocked
solver to use O(n4) flops. We illustrate with the following explicitly blocked
SYDT system:

⎧
⎪⎪⎨

⎪⎪⎩

A11X11B
T
11 − X11 = C11 − A11X12B

T
12 − A12(X21B

T
11 + X22B

T
12)

A11X12B
T
22 − X12 = C12 − A12X22B

T
22

A22X21B
T
11 − X21 = C21 − A22X22B

T
12

A22X22B
T
22 − X22 = C22.

(14)

From (14) we observe that by computing X21B
T
11 + X22B

T
12 before multiplying

with A12 and by computing X22B
T
12 only once we avoid redundant computations.

Consequently, for SYDT/LYDT we broadcast each subsolution Xij in the process
row corresponding to block row i and a sum of matrix products in the process
column corresponding to block column j.

The generalized matrix equations are solved as follows: for GCSY the SYCT
methodology is used except for the fact that we are now working with two
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Fig. 1. The SYCT wavefront: stan-
dard, one-sided, non-symmetric. Yel-
low blocks correspond to already solved
blocks, the blocks with bold borders
correspond to the current position of
the wavefront, blocks with the same
color are used together in subsys-
tems solves or GEMM-updates, stripe-
colored blocks are involved in several
rounds of GEMM-updates correspond-
ing to the same block diagonal. The
wavefront direction is indicated by the
arrow. Each subsolution is broadcasted
in the corresponding block row and col-
umn.

Fig. 2. The symmetric LYCT wave-
front: standard, one-sided, symmetric.
Each subsolution (i.e., a block of the
solution matrix X) located outside
the main block anti-diagonal is broad-
casted in the corresponding block row
and column and the block row corre-
sponding to its transposed position.

equations at the same time. The methods of SYDT and LYDT are generalized
for GSYL and GLYCT/GLYDT, respectively, in a similar fashion by using two
extra buffers for storing intermediate sums of matrix products.

We remark that in a trivially blocked solver for the two-sided Lyapunov equa-
tions, we may reformulate the updates of the main block diagonal of C in terms
of SYR2K-operation, as in the LYCT case. However, this is not possible when
we use the intermediate sums of matrix products to reduce the complexity.

4 Condition Estimators for Triangular Matrix Equations

We utilize a general method [11,12,20] for estimating ‖A−1‖1 for a square ma-
trix A using reverse communication of A−1x and A−T x, where ‖x‖2 = 1. In
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particular, for SYCT this approach is based on linear system ZSYCTx = y (see
Section 1 and Table 1) which is used to compute a lower bound of the inverse of
the separation between the matrices A and B [27]:

sep(A, B) = inf
‖X‖F =1

‖AX − XB‖F = σmin(ZSYCT) = ‖Z−1
SYCT‖−1

2 . (15)

The quantity (15) is used frequently in perturbation theory and error bounds
(see, e.g., [13]). The exact value can be computed at the cost O(m3n3) flops by
the SVD of ZSYCT but its inverse can be estimated much cheaper by solving a
few (normally around five) triangular SYCT equations to the cost O(m2n+mn2)
flops [20].

Table 1. The Kronecker product representations of Z� and ZT
� considered in condition

estimation of the standard and generalized matrix equations (1)-(8)

Acronym (ACRO) Z� ZT
�

SYCT In ⊗ A − BT ⊗ Im In ⊗ AT − B ⊗ Im

SYDT B ⊗ A − Im·n BT ⊗ AT − Im·n
LYCT Im ⊗ A + A ⊗ Im Im ⊗ AT − AT ⊗ Im

LYDT A ⊗ A − Im2 AT ⊗ AT − Im2

GCSY
[

In ⊗ A −BT ⊗ Im

In ⊗ D −ET ⊗ Im

] [
In ⊗ AT In ⊗ DT

−B ⊗ Im −E ⊗ Im

]

GSYL B ⊗ A − D ⊗ C BT ⊗ AT − DT ⊗ CT

GLYCT A ⊗ A − E ⊗ E AT ⊗ AT − ET ⊗ ET

GLYDT E ⊗ A + A ⊗ E ET ⊗ AT + AT ⊗ ET

This estimation method is applied to all matrix equations by considering the
corresponding Kronecker product representation of the associated Sylvester-type
operator (see Table 1). However, notice that condition estimation of GCSY is
not as straightforward as for the uncoupled equations, since transposing ZGCSY
is not just a matter of transposing all involved left hand side matrices (excluding
the solution), but requires a different algorithm (see, e.g., [21]).

The condition estimator in [20] was based on the serial LAPACK-routine
DLACON [1]. The parallel version we use is implemented in ScaLAPACK [3,26] as
the auxiliary routine PDLACON.

In our parallel estimators, we compute Pc different estimates independently
and concurrently, one for each process column by taking advantage of the fact
that PDLACON requires a column vector distributed over a single process column as
right hand side, and we form the global maximum by a scalar all-to-all reduction
[7] in each process row (which is negligible in terms of execution time). The
column vector y in each process column is constructed by performing an all-to-all
broadcast [7] of the local pieces of the right hand side matrix or matrices in each
process row, forming Pc different right hand side vectors. Altogether, we compute
Pc different estimates (lower bounds of the associated sep−1-function) and choose
the largest value at the same cost in time as computing only one estimate.
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5 Experimental Results

Our target machine is the 64-bit Opteron Linux Cluster sarek with 192 dual
AMD Opteron nodes (2.2 GHz), 8Gb RAM per node and a Myrinet-2000 high-
performance interconnect with 250 MB/sec bandwidth. All experiments where
conducted using the Portland Group’s pgf77 1.2.5 64-bit compiler, the com-
piler flag -fast and the following software: MPICH-GM 1.5.2 [23], LAPACK 3.0
[22], GOTO-BLAS r0.94 [6], ScaLAPACK 1.7.0 [26], BLACS 1.1patch3 [4] and
RECSY 0.01alpha [25] (used as node solvers). All experiments are conducted in
double precision arithmetic.

Table 2. Condition estimation of GSYL invoking PGSYLCON on sarek using the blocksize
64. All timings are in seconds. For this table, (A,C) and (B, D) are chosen as random
upper triangular matrices with specified eigenvalues as λ

(i)
(A,C) = i and λ

(i)
(B,D) = −i,

respectively. The known solution X is a random matrix with uniform distribution in
the interval [−1, 1].

m = n Pr × Pc Time iter est Ra Rr Ea Er

1024 1 × 1 12.7 5 0.6E-03 0.2E-06 0.1E+01 0.1E-11 0.2E-14
1024 2 × 2 7.4 5 0.6E-03 0.1E-06 0.1E+01 0.1E-11 0.2E-14
1024 4 × 4 3.9 5 0.6E-03 0.1E-06 0.1E+01 0.1E-11 0.2E-14
1024 8 × 8 2.1 5 0.6E-03 0.1E-06 0.1E+01 0.1E-11 0.2E-14
2048 1 × 1 86.6 5 0.3E-03 0.1E-05 0.1E+01 0.3E-11 0.2E-14
2048 2 × 2 48.3 5 0.3E-03 0.1E-05 0.1E+01 0.2E-11 0.2E-14
2048 4 × 4 21.9 5 0.3E-03 0.1E-05 0.1E+01 0.3E-11 0.2E-14
2048 8 × 8 9.7 5 0.3E-03 0.1E-05 0.1E+01 0.2E-11 0.2E-14
4096 1 × 1 923.9 7 0.2E-03 0.1E-04 0.1E+01 0.7E-11 0.3E-14
4096 2 × 2 503.3 7 0.2E-03 0.1E-04 0.1E+01 0.6E-11 0.2E-14
4096 4 × 4 193.8 7 0.2E-03 0.1E-04 0.1E+01 0.6E-11 0.2E-14
4096 8 × 8 77.5 7 0.2E-03 0.1E-04 0.1E+01 0.8E-11 0.3E-14
8192 1 × 1 5302.4 5 0.8E-04 0.1E-03 0.1E+01 0.1E-10 0.3E-14
8192 2 × 2 2625.9 5 0.8E-04 0.1E-03 0.1E+01 0.1E-10 0.3E-14
8192 4 × 4 904.5 5 0.8E-04 0.1E-03 0.1E+01 0.1E-10 0.3E-14
8192 8 × 8 331.4 5 0.8E-04 0.1E-03 0.1E+01 0.1E-10 0.3E-14

In Table 2, we present performance results for the parallel GSYL condition
estimator PGSYLCON solving well-conditioned problems using the corresponding
parallel triangular GSYL solver PTRGSYLD. For this table, iter is the number of
iterations and calls to the triangular solver PTRGSYLD, est is the lower bound
estimate of sep−1[GSYL], Ra, Rr, Ea and Er correspond to the absolute and
relative residual and error norms and are computed as follows:

Ra = ‖E − AX̃B + CX̃D‖, (16)
Rr = (ε−1

machRa)/((‖A‖‖B‖ + ‖C‖‖D‖)‖X̃‖ + ‖E‖), (17)

Ea = ‖X − X̃‖, (18)
Er = Ea/‖X‖. (19)
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Fig. 3. Execution time profile of PGSYLCON on sarek using the blocksize 64. The results
are typical for what we found using multiple (4 × 4) processors to solve the problem.
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Fig. 4. Parallel speedup of PTRGSYLD on sarek using the blocksize 64

Here, εmach(≈ 2.2 × 10−16) is the relative machine precision and X and X̃ are
the known and the computed solutions, respectively. The relative residual norm
is computed in the 1-norm and the absolute residual and the error norms are
computed in the Frobenius norm, respectively. Ideally, the relative residual norm
should be of O(1) [21], which is fulfilled remarkably well for this set of test
problems. The high absolute residual norm results emerge from the large norms
(O(n3/2)) of the known left hand side matrices. The stable value of est depends
on that exactly the same problem is generated and solved for every value of
m = n.
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An execution time profile of PGSYLCON is presented in Figure 3. The major
part of the work is spent in the triangular solver, which is called around five (5)
times (see Table 2). The influences of PDLACON and the all-to-all broadcast of the
right hand side in each process row on the total execution time are diminished as
the problem size grows. This implies that any effort on improving the condition
estimator should concentrate on the triangular solver.

A representative selection of parallel speedup results for the triangular GSYL
solver is presented in Figure 4. The algorithms for the other equations (see
Section 1) have similar good qualitative behavior.
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