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1. Background
Data Intensive (DI) applications require higher degree of in-
tegration with the system-level scheduler [2] than High Per-
formance Computing (HPC) ones. Due to their dynamic na-
ture, running DI applications in HPC clusters either wastes
resources or limits their execution, as they are not always
deadline bound. Traditional HPC schedulers are commonly
used for coarse-grained resource allocation [2] and usually
require both a job geometry (e.g., number of nodes, cores
and memory) and a deadline. HPC users tend to make bad
estimations about both these parameters, but DI jobs cannot
be defined by such parameters due to their reactive charac-
teristics. Furthermore, a majority of DI jobs in cloud data
centers are long running jobs [1]. This is even more visible
for jobs in the scientific community that tend to have very
repeating patterns as researchers tend to focus on same prob-
lems for long periods of time. Long jobs give enough data in
their lifetime for making robust models to understand their
resource utilization.

2. Proposal
We propose to meet these differences in job requirements
by a hybrid resource management architecture that combines
schedulers for HPC and DI jobs. An Insight Engine (IE) will
be used to in real time analyze performance traces, model
these, and based on the derived models avoid interference
between collocated jobs. Figure 1 shows the proposal archi-
tecture where Mesos (DI job scheduler) runs on top of the
SLURM HPC scheduler to collocate HPC and DI jobs in
same nodes. The IE ensures the isolation needed to guar-
antee predictability and scalability of HPC jobs, while im-
proving resource utilization by collocating long HPC run-
ning jobs with DI tasks. The IE uses reactive sampling, i.e.,
each cluster node provides streamed data upon performance
interference or requests from the IE. Worker nodes retrieve
updated models of their running jobs to detect interference
and outliers. Each node enforces isolation autonomously, by
stopping DI jobs whenever needed.

3. Challenges
The herein proposed hybrid environment imposes research
challenges within data analytics as well as cluster manage-

Figure 1. Worker nodes producing traces to the IE master.

ment. In order to have an updated view of resources, IE sam-
pling must be performed real time and distributed in each
node. The overhead imposed by sampling can impact the
overall node performance, in particular if either the sampling
resolution or the number of monitored micro-architectural
metrics (cycles per instruction, cache misses, TLB misses,
etc.) are high. The former can be handled by reactive profil-
ing and streaming of task traces, and by controlled by using
the Bag of Little Bootstraps [3] method that can lower the
profiling overhead significantly. The latter depends on appli-
cation characteristics and on how accurately the model cap-
tures the resource usage. Techniques such as multi-variate
linear models, feature selection, and classification models
can be used to evaluate and characterize different models for
predictability of DI and HPC applications.

Other concerns lie on integrating two different resource
managers in the same cluster, as they have different objec-
tives and isolation must be guaranteed. Enforcing this isola-
tion can be the limiting factor since HPC clusters are usually
bigger and more scalable than normal DI cloud platforms.

Finally, the rate of additional failures that Mesos will see
compared to normal failures should be studied, as interfer-
ences may happen more frequently.
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