
April 27, 2007 17:27 WSPC/INSTRUCTION FILE main

International Journal of Foundations of Computer Science
c© World Scientific Publishing Company

LINKS∗

FRANK DREWES

Department of Computing Science, Ume̊a University, S-90187 Ume̊a, Sweden
drewes@cs.umu.se

http://www.cs.umu.se/˜drewes

Received (Day Month Year)
Accepted (Day Month Year)

Communicated by (xxxxxxxxxx)

We define the notion of links, thus generalizing the chain-code, turtle geometry, and col-
lage formalisms. As links can be concatenated, link grammars can be defined in a similar
way as chain-code grammars. Context-free link grammars are shown to be strictly more
powerful than both context-free chain-code grammars and context-free collage gram-
mars. Moreover, we study the generalization obtained by extending the formalism with
the brackets known from the turtle geometry.

Keywords: chain-code grammar; collage grammar; picture concatenation.

1991 Mathematics Subject Classification: 68Q50, 68Q45

1. Introduction

Chain-code picture grammars and collage grammars are two well-studied formalisms

for generating pictures. The former were introduced in [10] and have intensively been

studied by Dassow et al., e.g., in [1, 2, 3]. A chain-code picture is a line drawing with

distinguished start and end points. The latter make it possible to concatenate pic-

tures. Thus, every string language over an alphabet of primitive chain-code pictures

yields a picture language. In contrast, collage grammars [9] are based on the idea

of transforming collages (i.e., finite sets of geometric objects) and taking unions.

These mechanisms are known to be incomparable with respect to generative

power. While this statement is trivial in one direction (as collages need not consist of

lines), the other direction is less trivial. Nevertheless, not even all linear context-free

chain-code picture languages are context-free collage languages (see Section 3.2.2

of [5]). Intuitively, the reason is that concatenation moves the second argument to

a place depending on the first – an ability which the collage formalism lacks.

A third formalism, quite similar to the chain code, is the well-known turtle

geometry. In this paper, the notion of links is proposed as a generalization of all

∗dedicated to Jürgen Dassow on the occasion of this 60th birthday

1

April 27, 2007 17:27 WSPC/INSTRUCTION FILE main

2 F. Drewes

three. Moreover, we study the addition of brackets to the formalism, a generalization

well known from the turtle geometry.

Our main results are that (a) link collage languages generalize chain-code, turtle,

and collage languages, (b) there are linear context-free link collage languages which

are not context-free collage languages, even if collages that can be transformed into

each other by some affine transformation are considered to be equivalent, and (c) if

branching grammars [6] are used to generate the underlying string languages, then

brackets can be avoided by increasing the nesting depth of tables by one. Moreover,

we give an example that supports the conjecture that, in the context-free case, the

requirement of well-formed right-hand sides (disallowing, e.g., A]B[A][as a right-

hand side) strictly reduces the generative power.

An implementation of the link formalism has been added to the system Tree-

bag, which can be downloaded from http://www.cs.umu.se/˜drewes/treebag.

2. Context-free link collage languages

We denote the sets of natural numbers (including 0) and real numbers by N and R,

resp. Given a function f : A→ B, we denote the canonical extension of f to subsets

of A by f as well, i.e., f : 2A → 2B is given by f(S) = {f(a) | a ∈ S} for all S ⊆ A.

For a set A, A∗ denotes the set of all strings over A. The empty string is denoted

by ǫ. If C is a class of string languages, then A-C denotes the class of all languages

in C which are subsets of A∗. We assume that the reader is familiar with some of

the most fundamental definitions and properties of affine geometry.

Let us fix some dimension d > 0. A collage is a finite set of nonempty bounded

subsets of the d-dimensional Euclidean space Rd. A link is a pair λ = 〈C, τ〉 con-

sisting of a collage C and a transformation τ ∈ AFF, where AFF denotes the set of

all injective affine transformations of Rd. These components may also be referred to

as Cλ and τλ, resp. The empty link is given by λe = 〈∅, id〉, where id is the identity.

The set of all links (in Rd) is denoted by Λ.

Two links λ = 〈C, τ〉 and λ′ = 〈C′, τ ′〉 are concatenated by transforming C′ by

means of τ and composing τ and τ ′. More precisely, λ · λ′ = 〈C ∪ τ(C′), τ ◦ τ ′〉,

where (τ ◦ τ ′)(x) = τ(τ ′(x)) for all x ∈ Rd. Clearly, concatenation of links is an

associative operation, and λe is its neutral element.

For a string w ∈ Λ∗, we let draw(w) be defined inductively, as follows: draw(ǫ) =

λe and, for w = uλ with u ∈ Λ∗ and λ ∈ Λ, draw(w) = draw(u) · λ. Thus, draw

is the unique monoid homomorphism from the free monoid over Λ to (Λ; ·, λe). For

w ∈ Λ∗, the collage Cdraw(w) is called the link collage drawn by w, denoted by lc(w).

Given any class C of string languages, such as the classes CF and ET0L of

context-free languages and ET0L languages, resp., we let LCC denote the class of

link collage languages obtained from languages in C; more precisely, LCC = lc(Λ-C).

Thus, e.g., LCCF is the class of context-free link collage languages, and LCET0L is

the class of ET0L link collage languages.

April 27, 2007 17:27 WSPC/INSTRUCTION FILE main

Links 3

Example 1. Let us have a look at an example in LCCF, where d = 2.

λ1 = λ2 =

λ′1 = λ′2 =

Consider the links to the right, where the

solid black objects are the parts, each having

its left and right ends at (0, 0) and (1, 0),

resp. The hollow arrows indicate the second

components of the links. Each arrow is the

image of the arrow (whose base line extends from (0, 0) to (1, 0)) under

the respective transformation. Whereas τλ1 and τλ2 include a scaling by a factor a

slightly larger than 1, τλ′

1
and τλ′

2
include a scaling by 1/a. (In particular, τλ1 6= τλ′

2

and τλ2 6= τλ′

1
, even though the difference is difficult to see.)

Thus, τλ1 and τλ2 are equal

except for their rotation direc-

tions, and τλ′

i
undoes the rota-

tion and scaling of τλi
(while

the translation vector is (1, 0)

in each). As a consequence, the

context-free grammar with the

initial nonterminal S and the

rules S → Aλ1 and A →

λ1Aλ
′
1 | λ2Aλ

′
2 | λe generates

symmetric pictures such as the

one shown to the right (which

has been scaled down as it is actually about 30,000 units wide).

3. Generating line drawings

Two well-known mechanisms for generating line drawings are the chain-code for-

malism and the turtle geometry.a Their definitions can easily be restated in terms of

links. More precisely, let d = 2 and define, for every point x ∈ R2, −→x to be the link

whose first component is (the singleton consisting of) the closed line segment whose

end points are the origin and x, and whose second component is the translation

that maps the origin to x.

Now, to obtain the chain-code formalism, let ΛCC = {u, l, d, r}, where

u =
−−−→
(0, 1), d =

−−−−→
(0,−1), l =

−−−−→
(−1, 0), and r =

−−−→
(1, 0).

A set of collages of the form lc(L), where L ⊆ Λ∗

CC, is commonly called a chain-

code picture language. Given any class C of string languages, we let CCC denote

the class of chain-code picture languages obtained from languages in L ∈ C, i.e.,

CCC = lc(ΛCC-C). The class CCC is usually named after C in the obvious way.

For instance, CCCF is the class of context-free chain-code picture languages, and

asee, e.g., [10, 1, 2, 3] and [11]; additional references can be found in [5]

April 27, 2007 17:27 WSPC/INSTRUCTION FILE main

4 F. Drewes

CCET0L is the class of ET0L chain-code picture languages. As indicated above, all

these definitions are obviously equivalent to the traditional ones. In particular, the

classes CCCF and CCET0L are those known from the literature.

Similarly, the turtle geometry (without brackets; cf. Section 5) can be defined

in terms of links. For this, choose some angles α0 and α, and let ρα denote the

rotation by α around the origin. Now, define ΛTG = {F, f,+,−}, where

F =
−−−−−−−−−−−−→
(cos(α0), sin(α0)), f = 〈∅, τF〉, + = 〈∅, ρα〉, and − = 〈∅, ρ−α〉.

Again, these definitions are obviously equivalent to those used traditionally used in

connection with the turtle geometry. For example, the languages in lc(ΛTG-ET0L)

are those generated by ET0L systems under the turtle geometry interpretation.

4. Collage languages are link collage languages

Let us, very briefly and informally, recall some of the definitions in connection with

collage grammars. For a more detailed and formal exposition of the subject, see [5].

For a ranked alphabet Σ, we let TΣ denote the set of all terms (or trees) over Σ.

Thus, TΣ is the smallest set of strings such that (a) every symbol of rank 0 in Σ is

in TΣ, and (b) f [t1, . . . , tk] ∈ TΣ for all f ∈ Σ of rank n > 0 and all t1, . . . , tn ∈ TΣ.

For a class C of tree languages (i.e., of sets of trees) and a ranked alphabet Σ, we

let Σ-C = {L ∈ C | L ⊆ TΣ}, similar to the string case.

In order to simplify and shorten the presentation, we restrict ourselves to the

so-called basic collage operations in order to generate collages (see [5], and, in par-

ticular, Theorem 3.1.7). Consider the ranked alphabet ΣCOL containing the symbol

∪ of rank 2, all elements of AFF, viewed as symbols of rank 1, and all collages

viewed as symbols of rank 0. Given a tree t ∈ TΣCOL , the collage drawn by t, col(t),

is obtained by interpreting the symbols in the obvious way:

col(t) =







C if t = C for a collage C

τ(col(t′)) if t = τ [t′] for some τ ∈ AFF and t′ ∈ TΣCOL

col(t′) ∪ col(t′′) if t = t′ ∪ t′′ for trees t′, t′′ ∈ TΣCOL .

Let REGT, ET0LT, and BST denote the classes of all regular, ET0L, and

branching synchronization tree languages, resp. Then COLCF = col(ΣCOL-REGT),

COLET0L = col(ΣCOL-ET0LT), and COLBS = col(ΣCOL-BST) are the classes

known in the literature as the context-free, ET0L, and BS collage languages, resp.

(Owing to lack of space, the reader is referred to [5] for definitions.)

The yield of a tree t, denoted by yield(t) is the string obtained by reading

its leaves (i.e., the symbols of rank 0) from left to right. Given a class C of

tree languages, we let yC denote the class of string languages obtained by taking

yields, i.e., yC = yield(C). We remark that, with these definitions, CF = yREGT,

ET0L = yET0LT, and BS = yBST, resp., where BS denotes the class of branching

synchronization (string) languages introduced and studied in [6]; see also Section 5.

For the next theorem, recall that a tree homomorphism h : TΣ → TΣ′ (defined

in the usual way) is called linear if it does not duplicate subtrees of its argument

April 27, 2007 17:27 WSPC/INSTRUCTION FILE main

Links 5

tree (e.g., h(f [t1, t2]) = f ′[h(t1), f
′[h(t2), h(t1)]] is not allowed because t1 is du-

plicated), and nondeleting if it does not delete any subtree of the argument tree

(e.g., h(g[t1, t2, t3]) = g′[h(t2), h(t1)] is not allowed because t3 is deleted). For exact

definitions see, e.g., [8].

Theorem 2. For every class C of tree languages which is closed under linear

nondeleting tree homomorphisms, it holds that COLC ⊆ LCyC. In particular,

COLCF ⊆ LCCF, COLET0L ⊆ LCET0L, and COLBS ⊆ LCBS.

Proof. Choose any linear nondeleting tree homomorphism h from TΣCOL to TΣ, for

some suitable ranked alphabet Σ, such that yh = yield ◦ h is as follows:

• yh(C) = 〈C, id〉 for every collage C,

• yh(τ [t]) = 〈∅, τ〉yh(t)〈∅, τ−1〉 for all τ ∈ AFF and t ∈ TΣCOL , and

• yh(∪[t, t′]) = yh(t)yh(t′) for all trees t, t′ ∈ TΣCOL .

By an obvious induction, draw(yh(t)) = 〈col(t), id〉 for all trees t ∈ TΣCOL . In

particular, lc(yh(t)) = col(t), and thus, as C is closed under h, col(L) = lc(yh(L)) ∈

LCyC for every tree language L ∈ C(ΣCOL). This completes the proof.

Since it is known that the classes CCCF and COLCF are incomparable (see

Section 3.2.2 of [5]), Section 3 and Theorem 2 show that the inclusion COLCF ⊆

LCCF is strict.b In fact, according to Theorem 3.2.3 of [5], there is a linear chain-

code picture language L that is not in COLCF – and this holds even if we identify

collages that are equal up to translation.

We shall now strengthen this result. First, let us recall a few things. A collage

replacement rule is a pair of collages (l, r). For a set R of collage replacement rules

and collages C,C′, we write C ⇒R C′ if C′ = (C \ τ(l)) ∪ τ(r) for some τ ∈ AFF

such that τ(l) ⊆ C. Now, by inspecting the proof of Lemma 3.2.1 of [5] (originally

from [7]), one can easily see that a minor modification proves the following.

Lemma 3. For every collage language L ∈ COLCF, there exist a finite set R of

collage replacement rules and a finite subset L0 of L such that the following holds:

For every collage C0 ∈ L, there are collages C1, . . . , Cn ∈ L (for

some n ∈ N) such that C0 ⇒R · · · ⇒R Cn and Cn ∈ L0.

Hence, R can be used to transform any collage in L in a stepwise manner into

one of a finite number of collages without ever leaving L.

Let us now return to the comparison of language classes. If the aim is to generate

a certain collage language, one may not necessarily be interested in, e.g., the exact

placement, size, or rotation of the generated collages. To take this into account, we

say that collages C and C′ are equivalent, C ∼ C′, if C′ = τ(C) for some τ ∈ AFF.

Clearly, ∼ is an equivalence relation. For a class C of collage languages, let C∼

bOf course, the strictness of the inclusion CCCF ⊆ LCCF is trivial.

April 27, 2007 17:27 WSPC/INSTRUCTION FILE main

6 F. Drewes

denote the class of all its quotient languages under ∼, i.e., C∼ = {L/∼ | L ∈ C}. We

prove the following, where LIN denotes the set of all linear context-free languages.

Theorem 4. LC∼

LIN 6⊆ COL∼

CF.

Proof. Consider the language L = {λλn
scλtr(λ

′
sc)

nλ | n ∈ N} ∈ LIN, where

λ, λsc, λ
′
sc, λtr are given as follows:

(1) λ = 〈{p}, id〉, where p is any part such that, for any other part p′, there is at

most one τ ∈ AFF such that p = τ(p′). (For example, the arrow shaped part

on p. 3 is of this kind.)

(2) λsc = 〈∅, σ〉 and λ′sc = 〈∅, σ−1〉, where σ is the scaling by the factor 2.

(3) λtr is the translation by (1, 0).

Thus, lc(L) is the set of all collages Ci = {p, pi}, i ∈ N, where pi is p translated by

(2i, 0). Note that the Ci are pairwise inequivalent.

Now, suppose that L′/∼ = lc(L)/∼ for some context-free collage language

L′, and let R be the finite set of collage replacement rules obtained by apply-

ing Lemma 3 to L′. By the definition of ⇒R, if C1 ⇒R C′
1 and C1 ∼ C2, then

C2 ⇒R C′
2 for some C′

2 such that C′
2 ∼ C′

1. In particular, we have the following:

For all but finitely i ∈ N, there exists j ∈ N \ {i} such that

Ci ⇒R C for some collage C ∼ Cj .
(4)

Without loss of generality, we may assume that the left-hand side l of every rule

(l, r) ∈ R contains p. This is because, if l does not contain any part of the form τ(p),

then the rule can be discarded; otherwise, it can be replaced with (τ−1(l), τ−1(r))

without affecting ⇒R.

Another simplification results from the observation that each rule (l, r) ∈ R

with |l| > 1 applies to at most one Ci. This is a direct consequence of the choice of

p. Therefore, (4) remains valid if we require that l = {p} for all (l, r) ∈ R, and thus

r = {τ(p)} for some translation τ . Looking at all pairs i, j ∈ N as in (4), we thus

find that the distance between pi and pj is bounded by some constant k (namely

the maximum of the lengths of the translation vectors underlying the translations

τ). Hence, no such j can exist for any i with 2i−1 > k – a contradiction.

5. Bracketed link collage languages

A widely used extension of the turtle geometry discussed in Section 3 adds square

brackets to the alphabet. Given a string u[v]w with a matching pair of parentheses

surrounding the substring v, the interpretation is that w is drawn using the trans-

formation that was in effect when u had been drawn. From an operational point of

view, upon encountering the ‘[’ the transformation component of draw(u) is pushed

onto a stack, and is restored later upon reading the ‘]’. In the following, we extend

the link formalism in a similar manner (but without explicitly introducing a stack).

April 27, 2007 17:27 WSPC/INSTRUCTION FILE main

Links 7

Let Λ[] = Λ∪{[,]}. In the following, we say that w ∈ Λ∗
[]

is well formed if each of

its opening brackets has a matching closing bracket, and vice versa. In other words,

every w ∈ Λ∗ is well formed, and if w,w′ are well formed, then so are ww′ and [w].

In order to extend draw from Λ∗ to Λ∗
[], let u ∈ Λ∗

[].

• If u ∈ Λ∗, then draw(u) is defined as in Section 2.

• If u = ww′ for well-formed w,w′ ∈ Λ∗
[]
, then draw(u) = draw(w)draw(w′).

• If u = [w], where w ∈ Λ∗
[]

is well formed, then draw(u) = 〈Cdraw(w), id〉.

• If u is not well-formed, then it can be written in the form waw′, where either w

is well formed and a =], or a = [and w′ is well formed. We define draw(u) =

draw([u) in the former case, and draw(u) = draw(u]) in the latter.

Note that draw(u) is uniquely defined even if u is not well formed. However, draw

is of course not a homomorphism any more. As before, we let lc(u) = Cdraw(u).

When generating link collage languages in this generalized formalism, we speak

of bracketed link collage languages. Similar to the notation introduced in Section 2,

for every class C of formal languages, we let bLCC = lc(Λ[]-C) denote the class of

bracketed link collage languages it defines.

It may be interesting to note that brackets can be used to simplify the simulation

of context-free collage grammars given in Section 4: yh may, instead of turning

τ [t] into 〈∅, τ〉yh(t)〈∅, τ−1〉, simply turn it into [〈∅, τ〉yh(t)]. In addition to being

more elegant, this construction remains valid in settings where a restricted class of

affine transformations (not closed under inverse) is considered, such as the set of all

contractions.

The issue of well-formedness seems to deserve more attention than it has re-

ceived. The definitions of the turtle geometry that can be found in the literature

are typically quite unclear in this respect – neither do they require well-formedness

explicitly, nor do they define how ill-formed strings are interpreted. In fact, in almost

all publications, there seems to be the implicit assumption that all right-hand sides

of the grammars (or L systems) considered are themselves well formed.c The author

is not aware of any example presented in the literature which is not of this kind. Un-

der the assumption that only well-formed right-hand sides are allowed, brackets are

equivalent to the unary encapsulation operation used in [5], where enc(λ) = 〈Cλ, id〉

(see [4], where this equivalence is proved, for a more formal statement).

For the case of the turtle geometry, it seems to be an open question whether, say,

context-free grammars with well-formed right-hand sides have the same generative

power as those without. Naturally, the question is open for bracketed link collage

languages. However, consider the linear context-free grammar whose rules are

S → [A, A→ λaAλa, A→ λbAλb, A→]λ.

It generates the language L0 consisting of all (well-formed!) strings of the form

[w]λwR, where w ∈ {λa, λb}
∗, and wR denotes the reverse of w. Now, let λa be

cWe extend the notion of well-formedness to strings containing nonterminals in the obvious way.

April 27, 2007 17:27 WSPC/INSTRUCTION FILE main

8 F. Drewes

the link consisting of the hollow unit square whose lower left corner is (0,−1/2),

and the translation by one unit to the right. Let λb be defined as λa, but with an

additional circle inside the square. Finally, let λ = 〈C, τ〉, where C is a triangle

placed half a unit over the origin, and τ is the rotation by 180 degrees. A typical

member of the language lc(L0) looks like this:

Seen from the left to the right, each picture consists of a left half which is an

arbitrary sequence of squares with and without circles, and a right half, being an

exact copy of the left half. Less importantly, a triangle is placed in the middle, i.e.,

on top of the edge between the last square of the left half and the first square of

the right half. Thus, lc(L0) is a pictorial variant of {w$w | w ∈ {a, b}∗}, which is

well-known not to be context free. We conjecture that lc(L0) cannot be generated

by a context-free grammar with well-formed right-hand sides. To make the example

work for the turtle geometry as well, we modify it slightly. Let α0 = 0◦, α = 90◦,

and use a linear context-free grammar similar to the one above to generate the

language L1 = {[w]+[F]+wR | w ∈ {F, f}∗}. Apart from using different pictorial

primitives, lc(L1) has structural properties similar to those of lc(L0).

Conjecture 5. Let WF0 denote the set of all languages in Λ[]-CF that can be

generated by context-free grammars whose right-hand sides are well formed. Then

lc(L1)/∼ /∈ bLC∼

WF0
.

In the rest of this section, we restrict our attention to the case where right-hand

sides are required to be well formed. The type of grammars we consider is given

by the branching synchronization (string) grammars with tables of nesting depth n

introduced in [6]. We show that every bracketed link collage language that can be

generated using tables of nesting depth n is an (unbracketed) link collage languages

that can be generated using nesting depth n+ 1.

Let us briefly (and somewhat informally) recall the definition of branching gram-

mars. These grammars generalize ET0L systems by turning the set of tables into

a tree structure of depth n whose leaves are the tables. Nonterminals can be syn-

chronized with each other at each of the levels n, . . . , 0, which restricts the choice

of tables allowed more or less strictly.

As in a context-free grammar, we have disjoint sets T and N of terminals and

nonterminals, including an initial nonterminal S. In a branching grammar of nesting

depth n, the rules are organized in tables R(tab), where tab ∈ Jn, J being the finite

set of so-called table symbols. This gives rise to a hierarchical structure of so-called

supertables: for tab′ ∈ Jm with m ∈ {0, . . . , n}, the set R(tab′) =
⋃

{R(tab) | tab ∈

Jn, tab′ is a prefix of tab} is a supertable at depth m.

Another ingredient of a branching grammar is the finite set I of synchroniza-

tion symbols. A synchronized nonterminal is a pair (A,ϕ) ∈ N × (In)∗. Its so-

called synchronization string ϕ may alternatively be viewed as an n-tuple of strings

April 27, 2007 17:27 WSPC/INSTRUCTION FILE main

Links 9

ϕ1, . . . , ϕn ∈ I∗ of equal length: if ϕ = (a1,1, . . . , an,1), . . . , (a1,m, . . . , an,m), then

ϕl = al,1 · · ·al,m for every l ∈ {1, . . . , n}.

Thus, a branching grammar is a system G = (N,T, I, J,R, S) consisting of

the components mentioned above. As in L systems, branching grammars work by

replacing every nonterminal in each step. The idea behind branching synchroniza-

tion is to let the nonterminals in the sentential forms accumulate synchronization

strings, i.e., after m derivation steps the sentential form consists of terminals and

synchronized nonterminals of length m. Now, if there are two synchronized non-

terminals (A,ϕ) and (A′, ϕ′) and l ∈ {0, . . . , n} is the maximum index such that

(ϕ1, . . . , ϕl) = (ϕ′
1, . . . , ϕ

′

l), then rules from the same supertable at depth l must

be applied to them in the next step. In particular, the same table has to be used

if l = n (i.e., if the synchronization strings are equal), and arbitrary tables can be

used if l = 0 (i.e., if n = 0 or ϕ1 6= ϕ′
1).

Every rule A → w has a nonterminal A as its left-hand side and a string w ∈

(T∪(N×In))∗ as its right-hand side. In a derivation step u→ u′, if the rule is applied

to an occurrence of a synchronized nonterminal (A,ϕ) in u, and w contains an

occurrence of (B,ψ), then the resulting synchronized nonterminal in u′ is (B,ϕψ).

The derivation starts with (S, ǫ). Naturally, the generated language consists of all

terminal strings that can be derived from (S, ǫ).

A branching grammar is deterministic if none of its tables contains two distinct

rules with the same left-hand side. The set of all languages over Λ[] that can be

generated by (deterministic) branching grammars of depth n with well-formed right-

hand sides is denoted by WFn (dWFn, resp.). This is consistent with the notation

used above because the branching grammars of depth 0 can be identified with

the context-free grammars in an obvious way. Note also that the (deterministic)

branching grammars of depth 1 generalize the (deterministic) ET0L systems. The

latter correspond to the case where J = 1.

We can now prove the main theorem of this section, whose proof also ends the

paper.

Theorem 6. For every n ∈ N, bLCdWFn
= LCdWFn

and bLCWFn
⊆ LCdWFn+1

.

Proof. By Lemma 4.5 of [6] (and the fact that the construction used in its proof

preserves well-formedness of right-hand sides), we have bLCWFn
⊆ bLCdWFn+1

.

Thus, the second part of the statement is a consequence of the first. Moreover,

the inclusion LCdWFn
⊆ bLCdWFn

is trivial. Thus, it remains to be proved that

bLCdWFn
⊆ LCdWFn

. For this, assume that we are given a deterministic branching

grammar G = (N,Λ[], I, J, R, S) of depth n with well-formed right-hand sides. It is

easy to see that we may assume that the right-hand sides of the rules in R do not

contain nested brackets. This assumption simplifies the construction of a branching

grammar G′ = (N ′,Λ, I, J, R′, S) of depth n such that lc(L(G′)) = lc(L(G)). We

let N ′ = N ∪{A′ | A ∈ N}, where A′ /∈ N for each A ∈ N . For every rule in a table

R(tab) of G, we let R′(tab) contain two rules, namely one whose left-hand side is A

April 27, 2007 17:27 WSPC/INSTRUCTION FILE main

10 F. Drewes

and one whose left-hand side isA′. Intuitively, ifA generates a (string yielding a) link

λ, then A′ generates 〈∅, τ−1
λ 〉. This is used to undo the transformation component

of λ, thus simulating a closing bracket.

To describe this formally, we need the following auxiliary construction: for a

string w ∈ (N ∪Λ)∗, let w′ be obtained from the reverse wR of w by replacing every

A ∈ N with A′, and every λ ∈ Λ with 〈∅, τ−1
λ 〉. Now, suppose a table R(τ) contains

the rule A→ u. Then R′(τ) contains

(1) the rule A→ v, where v is obtained from u by replacing every substring of the

form [w] (w ∈ (N ∪ Λ)∗) with ww′, and

(2) the rule A′ → u′0, where u0 is the string obtained from u by deleting all sub-

strings of the form [w] (w ∈ (N ∪ Λ)∗).

Since G′ is deterministic, it is not difficult to show that this construction serves

its purpose, i.e., lc(L(G′)) = lc(L(G)). Due to limitations of space, this part of the

proof is omitted.

Acknowledgments

I am very grateful to J. Engelfriet, who suggested the notion of links as a common

extension of chain-code pictures and collages during personal communication.

References

[1] Jürgen Dassow. Graph-theoretic properties and chain code picture languages. Journ.

Inform. Process. Cybern. EIK., 25:423–433, 1989.
[2] Jürgen Dassow. On the connectedness of pictures in chain code picture languages.

Theoretical Computer Science, 81:289–294, 1991.
[3] Jürgen Dassow and Friedhelm Hinz. Decision problems and regular chain code picture

languages. Discrete Applied Mathematics, 45:29–49, 1993.
[4] Frank Drewes. Tree-based picture generation. Theoretical Computer Science, 246:1–

51, 2000.
[5] Frank Drewes. Grammatical Picture Generation – A Tree-Based Approach. Texts in

Theoretical Computer Science. An EATCS Series. Springer, 2006.
[6] Frank Drewes and Joost Engelfriet. Branching synchronization grammars with nested

tables. Journal of Computer and System Sciences, 68:611–656, 2004.
[7] Frank Drewes, Hans-Jörg Kreowski, and Denis Lapoire. Criteria to disprove context-

freeness of collage languages. Theoretical Computer Science, 290:1445–1458, 2003.
[8] Joost Engelfriet. Bottom-up and top-down tree transformations – a comparison.

Mathematical Systems Theory, 9:198–231, 1975.
[9] Annegret Habel and Hans-Jörg Kreowski. Collage grammars. In H. Ehrig, H.-J. Kre-

owski, and G. Rozenberg, editors, Proceedings of the Fourth Intl. Workshop on Graph

Grammars and Their Application to Computer Science, volume 532 of Lecture Notes
in Computer Science, pages 411–429, Springer, 1991.

[10] Hermann A. Maurer, Grzegorz Rozenberg, and Emo Welzl. Using string languages
to describe picture languages. Information and Control, 54:155–185, 1982.

[11] Przemyslaw Prusinkiewicz and Aristid Lindenmayer. The Algorithmic Beauty of

Plants. Springer, 1990.

