DIRECT EIGENVALUE REORDERING IN A PRODUCT OF MATRICES IN EXTENDED PERIODIC REAL SCHUR FORM*

ROBERT GRANAT AND BO KÅGSTRÖM ${ }^{\dagger}$

Abstract

A direct method for eigenvalue reordering in a product of a K-periodic matrix sequence in periodic or extended periodic real Schur form is presented and analyzed. Each reordering of two adjacent sequences of diagonal blocks is performed tentatively to guarantee backward stability and involves solving a K-periodic Sylvester equation (PSE) and constructing a K-periodic sequence of orthogonal transformation matrices. An error analysis of the direct reordering method is presented and results from computational experiments confirm the stability and accuracy of the method for well-conditioned as well as ill-conditioned problems. These include matrix sequences with fixed and time-varying dimensions, and sequences of small and large periodicity.

Key words. Product of K-periodic matrix sequence, extended periodic real Schur form, eigenvalue reordering, K-periodic Sylvester equation, periodic eigenvalue problem.

AMS subject classifications. 65F15, 15A18, 93B60

1. Introduction. The Schur form of a matrix is a fundamental tool in Numerical Linear Algebra: given a real square matrix A, there is a real orthogonal matrix Z, and a real quasi-triangular matrix T such that

$$
Z^{T} A Z=T \equiv\left[\begin{array}{cc}
T_{11} & T_{12} \tag{1.1}\\
0 & T_{22}
\end{array}\right]
$$

The quasi-triangular T has 1×1 and 2×2 blocks on the main block diagonal corresponding to real and complex conjugate pairs of eigenvalues, respectively. If the 2×2 blocks are in standard form (see, e.g., [9]), the real Schur form T is essentially unique, except for the ordering of the eigenvalues, which can appear in any desired order along the block diagonal, and scaling of the transformation matrices. Moreover, the p first columns of Q span an invariant subspace of A corresponding to the p eigenvalues located in the upper-left part T_{11} [22]. The real Schur form is typically computed by means of a reduction to upper Hessenberg form followed by applying the QR-algorithm to the resulting Hessenberg matrix [9].

For a K-periodic (or K-cyclic) real matrix sequence, $A_{0}, A_{1}, \ldots, A_{K-1}$ with $A_{K}=A_{0}$, there exists a periodic counterpart of the real Schur form, called the periodic real Schur form (PRSF) [5, 11]: given the real matrix sequence $A_{k} \in R^{n \times n}$, for $k=0,1, \ldots, K-1$, there exists an orthogonal matrix sequence $Z_{k} \in R^{n \times n}$ such that the real sequence

$$
\begin{equation*}
Z_{k+1}^{T} A_{k} Z_{k}=T_{k}, k=0,1, \ldots, K-1, \tag{1.2}
\end{equation*}
$$

with $Z_{K}=Z_{0}$, consists of $K-1$ upper triangular matrices and one upper quasitriangular matrix. The products of conforming 1×1 and 2×2 diagonal blocks of the matrix sequence T_{k} give the eigenvalues of the matrix product $A_{K-1} \cdots A_{1} A_{0}$.

[^0]Similar to the standard case $(K=1)$, the periodic real Schur form is computed by means of a reduction to periodic Hessenberg form followed by applying a periodic QRalgorithm to the resulting sequence $[5,11]$. The PRSF is an important tool in several applications, including solving periodic Sylvester-type and Riccati matrix equations [11, 20, 23, 26]. The quasi-triangular matrix in the PRSF can occur anywhere in the sequence, but is usually chosen to be T_{0} or T_{K-1}. The extended periodic real Schur form (EPRSF) generalizes PRSF to the case when the dimensions of the matrices are time-variant [24]: given the real matrix sequence $A_{k} \in R^{n_{k+1} \times n_{k}}, k=0,1, \ldots, K-$ 1, with $n_{K}=n_{0}$, there exists an orthogonal matrix sequence $Z_{k} \in R^{n_{k} \times n_{k}}$, $k=$ $0,1, \ldots, K-1$, such that the real sequence

$$
Z_{k+1}^{T} A_{k} Z_{k}=T_{k} \equiv\left[\begin{array}{cc}
T_{11}^{(k)} & T_{12}^{(k)} \tag{1.3}\\
0 & T_{22}^{(k)}
\end{array}\right] \in R^{n_{k+1} \times n_{k}}
$$

for $k=0,1, \ldots, K-1$, with $Z_{K}=Z_{0}$, is block upper triangular and $T_{11}^{(k)} \in$ $R^{\min _{k}\left(n_{k}\right) \times \min _{k}\left(n_{k}\right)}, T_{22}^{(k)} \in R^{\left(n_{k+1}-\min _{k}\left(n_{k}\right)\right) \times\left(n_{k}-\min _{k}\left(n_{k}\right)\right)}$. Moreover, the subsequence $T_{11}^{(k)}, k=0,1, \ldots, K-1$, is in PRSF (1.2) with eigenvalues called the core characteristic values of the sequence A_{k} and the matrices in the subsequence $T_{22}^{(k)}, k=$ $0,1, \ldots, K-1$, are upper trapezoidal. For EPRSF, the quasi-triangular matrix can occur at any position in the sequence T_{k}. However, to simplify the reduction to extended periodic Hessenberg form it is normally placed at position j, where $n_{j+1}=\min _{k}\left(n_{k}\right)$, i.e., in the matrix T_{j} which has the smallest row dimension in the sequence [24]. For $T_{j}, j \in[0, K-1]$, to have a trapezoidal block $T_{22}^{(j)}$, it must hold that $n_{j}, n_{j+1}>\min _{k}\left(n_{k}\right)$. The EPRSF is motivated by the increasing interest in discrete-time periodic systems of the form

$$
\begin{align*}
x_{k+1} & =A_{k} x_{k}+B_{k} u_{k} \\
y_{k} & =C_{k} x_{k}+D_{k} u_{k}, \tag{1.4}
\end{align*}
$$

where the matrices $A_{k} \in R^{n_{k+1} \times n_{k}}, B_{k} \in R^{n_{k+1} \times m}, C_{k} \in R^{r \times n_{k}}$ and $D_{k} \in R^{r \times m}$ are periodic with periodicity $K \geq 1$. The state transition matrix of the system (1.4) is defined as the $n_{j} \times n_{i}$ matrix $\Phi_{A}(j, i)=A_{j-1} A_{j-2} \ldots A_{i}$, where $\Phi_{A}(i, i)=I_{n_{i}}$. The state transition matrix over one whole period $\Phi_{A}(j+K, j) \in R^{n_{j} \times n_{j}}$ is called the monodromy matrix of (1.4) at time j and its eigenvalues are called the characteristic multipliers at time j. All t nonzero and $\left(\min _{k}\left(n_{k}\right)-t\right)$ zero characteristic multipliers belong to the set of core characteristic values. One important issue is how to reorder the eigenvalues of the monodromy matrix without evaluating the corresponding product. Evaluating the product is both costly and may lead to a significant loss of accuracy [5], especially in the eigenvalues of small magnitude.

Eigenvalue reordering in the real Schur form was investigated in $[2,8,7]$, and for the generalized Schur form of a regular matrix pencil $A-\lambda B$ in $[14,16]$. Reordering of eigenvalues in PRSF and related problems have also been considered, see, e.g., [5] where the approach is based on applying Givens rotations on explicitly formed products of small $(2 \times 2,3 \times 3$ or $4 \times 4)$ matrix sequences, and [6] for a discussion on swapping 1×1 blocks by propagating orthogonal transformations through 2×2 sequences. In this paper, we present a direct swapping algorithm for doing eigenvalue reordering in a product of a K-periodic matrix sequence in EPRSF for $K \geq 2$ without evaluating any part of the matrix product. Our direct algorithm relies on orthogo-
nal transformations only and extends earlier work on direct eigenvalue reordering of matrices and matrix pencils to products of matrices.

The rest of this paper is organized as follows. In Section 2, we settle some important notation and definitions. In Section 3, we discuss reordering of two diagonal blocks (leaving the eigenvalues invariant) by periodic orthogonal transformations, and in Section 4, we present our direct periodic reordering algorithm. Next, we discuss the numerical solution of the associated periodic Sylvester equation (PSE) in Section 5. An error analysis of the direct periodic swapping algorithm is presented in Section 6. Some numerical examples are presented and discussed in Section 7, and finally, we give some concluding remarks in Section 8.
2. Notation and definitions. We introduce some notation to simplify the presentation that follows. Let I_{n} denote the identity matrix of order n. Let M^{+}denote the pseudo-inverse (see, e.g., [9]) of a matrix M. Let $\sigma(M)$ and $\lambda(M)$ denote the sets of the singular values and the eigenvalues of the matrix M, respectively. Let $A \otimes B$ denote the Kronecker product of two matrices, defined as the matrix with its (i, j)-block element as $a_{i j} B$. Let $\operatorname{vec}(A)$ denote a vector representation of an $m \times n$ matrix A with the columns of A stacked on top of each other in the order $1,2, \ldots, n$. Let $\|A\|_{F}$ denote the Frobenius matrix norm defined as $\|A\|_{F}=\sqrt{\operatorname{trace}\left(A^{T} A\right)}$. We define the periodic addition operator \oplus such that $a \oplus b=(a+b) \bmod K$, where K denotes the periodicity. We use the product operator $\prod_{k=i}^{j} B_{k}$ to denote a product $B_{i} B_{i-1} \cdots B_{j+1} B_{j}$, with the convention that $\prod_{k=i}^{j} B_{k}=I$ for $i<j$.

Each K-periodic matrix sequence A_{k} is associated with a matrix tuple $\bar{A}=$ $\left(A_{K-1}, A_{K-2}, \ldots, A_{1}, A_{0}\right)[4]$. The vector tuple $\bar{u}=\left(u_{K-1}, u_{K-2}, \cdots, u_{1}, u_{0}\right)$, with $u_{k} \neq 0$, is called a right eigenvector of the tuple \bar{A} corresponding to the eigenvalue λ if there exist scalars α_{k}, possibly complex, such that the relations

$$
\begin{align*}
& A_{k} u_{k}=\alpha_{k} u_{k \oplus 1}, k=0,1, \ldots, K-1, \\
& \lambda:=\prod_{k=K-1}^{0} \alpha_{k} \tag{2.1}
\end{align*}
$$

hold with $u_{K}=u_{0}$. A left eigenvector \bar{v} of the tuple \bar{A} corresponding to λ is defined similarly

$$
\begin{align*}
& v_{k \oplus 1}^{H} A_{k}=\beta_{k} v_{k}^{H}, k=0,1, \ldots, K-1, \tag{2.2}\\
& \lambda:=\prod_{k=K-1}^{0} \beta_{k},
\end{align*}
$$

where $v_{k} \neq 0$, and β_{k} are (possibly complex) scalars for $k=0,1, \ldots, K-1$. If \bar{u} and \bar{v} are unit-norm representations of the right and left eigenvectors corresponding to the simple eigenvalue λ of \bar{A}, respectively, the numbers

$$
\begin{equation*}
\kappa_{k} \equiv\left|v_{k}^{H} u_{k}\right|>0, \tag{2.3}
\end{equation*}
$$

are reciprocal condition numbers of the eigenvalue (characteristic multiplier at time $k) \lambda$ of $\Phi_{A}(K+k, k)$.

Without loss of generality, we assume that $p<\min _{k}\left(n_{k}\right)$ is specified such that no 2×2 block corresponding to a complex conjugate pair of eigenvalues is positioned at rows (and columns) p and $p+1$ of $\Phi_{T}(K, 0)$. Given such a p and with Z_{k} and T_{k} from (1.3), the leading p columns of each Z_{k} span an invariant subspace for $\Phi_{T}(K+k, k)$ for $k=0,1, \ldots, K-1$. As a whole, the space spanned by the first p columns of each matrix in the matrix tuple \bar{Z} is called a right periodic deflating subspace of the tuple \bar{A} corresponding to the p eigenvalues located in the upper-leftmost part of $\Phi_{T}(K, 0)$. In general, $\Phi_{T}(K, 0)_{i j}$ denotes the (i, j)-block of the matrix product $\Phi_{T}(K, 0)$.
3. Reordering diagonal blocks in a product of matrices in EPRSF by orthogonal transformations. Consider the K-periodic (or K-cyclic) matrix sequences $A_{k} \in R^{n_{k \oplus 1} \times n_{k}}, T_{k} \in R^{n_{k \oplus 1} \times n_{k}}$ and $Z_{k} \in R^{n_{k} \times n_{k}}, k=0,1, \ldots, K-1$, such that A_{k} is a general matrix, T_{k} is in EPRSF and Z_{k} is the corresponding orthogonal transformation, as in (1.3). Then the eigenvalues of the product $\Phi_{T}(K, 0)=$ $T_{K-1} T_{K-2} \ldots T_{1} T_{0} \in R^{n_{0} \times n_{0}}$ are diagonal blocks of size 1×1 (real) and 2×2 (complex conjugate pairs) of $\Phi_{T}(K, 0)$.

Assume that each $T_{k}, k=0,1, \ldots, K-1$ is partitioned as

$$
T_{k}=\left[\begin{array}{c|cc|c}
T_{11}^{(k)} & \star & \star & \star \tag{3.1}\\
\hline 0 & T_{22}^{(k)} & \star & \star \\
0 & 0 & T_{33}^{(k)} & \star \\
\hline 0 & 0 & 0 & T_{44}^{(k)}
\end{array}\right]
$$

where $T_{11}^{(k)} \in R^{p_{1} \times p_{1}}, T_{22}^{(k)} \in R^{p_{2} \times p_{2}}, T_{33}^{(k)} \in R^{p_{3} \times p_{3}}$ and $T_{44}^{(k)} \in R^{\left(n_{k \oplus 1}-p\right) \times\left(n_{k}-p\right)}$, $k=0,1, \ldots, K-1$ and $p=p_{1}+p_{2}+p_{3}$. Notice that $\Phi_{T}(K, 0)$ can be partitioned conformally such that

$$
\begin{equation*}
\Phi_{T}(K, 0)_{i i}=T_{i i}^{(K-1)} T_{i i}^{(K-2)} \ldots T_{i i}^{(1)} T_{i i}^{(0)}, i=1, \ldots, 4 \tag{3.2}
\end{equation*}
$$

Assume for a moment that there exists a K-cyclic orthogonal matrix sequence $Q_{k}, k=0,1, \ldots, K-1$, such that we can form the cyclic transformation

$$
Q_{k \oplus 1}^{T}\left[\begin{array}{cc}
T_{22}^{(k)} & \star \tag{3.3}\\
0 & T_{33}^{(k)}
\end{array}\right] Q_{k}=\left[\begin{array}{cc}
\hat{T}_{22}^{(k)} & \star \\
0 & \hat{T}_{33}^{(k)}
\end{array}\right]
$$

and $\lambda\left(\Phi_{\hat{T}}(K, 0)_{22}\right)=\lambda\left(\Phi_{T}(K, 0)_{33}\right), \lambda\left(\Phi_{\hat{T}}(K, 0)_{33}\right)=\lambda\left(\Phi_{T}(K, 0)_{22}\right)$. In other words, this cyclic transformation swaps the eigenvalues of the $(2,2)$-block and the $(3,3)$-block of the matrix product $\Phi_{T}(K, 0)$. Apparently, each matrix in the sequence Q_{k} has order $p_{2}+p_{3}$. Then the reordered EPRSF of the sequence A_{k} is the sequence \hat{T}_{k}, where

$$
\begin{align*}
\hat{T}_{k}= & \underbrace{\left[\begin{array}{c|c|c}
I_{p_{1}} & 0 & 0 \\
\hline 0 & Q_{k \oplus 1}^{T} & 0 \\
\hline 0 & 0 & I_{p_{4}}
\end{array}\right]}_{\hat{Q}_{k \oplus 1}^{T}}\left[\begin{array}{c|cc|c}
T_{11}^{(k)} & \star & \star & \star \\
\hline 0 & T_{22}^{(k)} & \star & \star \\
0 & 0 & T_{33}^{(k)} & \star \\
\hline 0 & 0 & 0 & T_{44}^{(k)}
\end{array}\right] \underbrace{\left[\begin{array}{c|c|c}
I_{p_{1}} & 0 & 0 \\
\hline 0 & Q_{k} & 0 \\
\hline 0 & 0 & I_{p_{4}}
\end{array}\right]}_{\hat{Q}_{k}} \\
& =\hat{Q}_{k \oplus 1}^{T} T_{k} \hat{Q}_{k}=\hat{Q}_{k \oplus 1}^{T} Z_{k \oplus 1}^{T} A_{k} Z_{k} \hat{Q}_{k}=\hat{Z}_{k \oplus 1}^{T} A_{k} \hat{Z}_{k}, \tag{3.4}
\end{align*}
$$

with the associated K-cyclic orthogonal sequence $\hat{Z}_{k}=Z_{k} \hat{Q}_{k}, k=0,1, \ldots, K-1$. The first $p_{1}+p_{3}$ columns of \hat{Z}_{0} span an orthonormal basis for the invariant subspace of $\Phi_{A}(K, 0)$ associated with the $p_{1}+p_{3}$ first eigenvalues in the upper left part of the product $\Phi_{\hat{T}}(K, 0)$. In addition, the first $p_{1}+p_{3}$ columns of each transformation matrix \hat{Z}_{k} in the tuple $\left(\hat{Z}_{K-1}, \hat{Z}_{K-2}, \ldots, \hat{Z}_{1}, \hat{Z}_{0}\right)$ span an orthonormal basis for the periodic deflating subspace of the tuple \bar{A} associated with the same $p_{1}+p_{3}$ first eigenvalues in $\Phi_{\hat{T}}(K, 0)$.
4. A direct algorithm for periodic diagonal block reordering. Without loss of generality, we assume that T_{k} in (3.1) is square, i.e., the sequence T_{k} is in PRSF, and partitioned as

$$
T_{k}=\left[\begin{array}{cc}
T_{11}^{(k)} & T_{12}^{(k)} \tag{4.1}\\
0 & T_{22}^{(k)}
\end{array}\right], k=0,1, \ldots, K-1,
$$

and that we want to swap the blocks $T_{11}^{(k)} \in R^{p_{1} \times p_{1}}$ and $T_{22}^{(k)} \in R^{p_{2} \times p_{2}}$. Throughout the paper we assume that $\Phi_{T}(K, 0)_{11}$ and $\Phi_{T}(K, 0)_{22}$ have no eigenvalues in common, otherwise, the diagonal blocks need not be swapped. Define the K-cyclic matrix sequence \mathbf{X}_{k} as

$$
\mathbf{X}_{k} \equiv\left[\begin{array}{cc}
I_{p_{1}} & X_{k} \tag{4.2}\\
0 & I_{p_{2}}
\end{array}\right]
$$

where $X_{k} \in R^{p_{1} \times p_{2}}, k=0,1, \ldots, K-1$. The key observation is that the cyclic transformation

$$
\mathbf{X}_{k \oplus 1}^{-1}\left[\begin{array}{cc}
T_{11}^{(k)} & T_{12}^{(k)} \tag{4.3}\\
0 & T_{22}^{(k)}
\end{array}\right] \mathbf{X}_{k}=\left[\begin{array}{cc}
T_{11}^{(k)} & T_{12}^{(k)}+T_{11}^{(k)} X_{k}-X_{k \oplus 1} T_{22}^{(k)} \\
0 & T_{22}^{(k)}
\end{array}\right]
$$

block-diagonalizes $T_{k}, k=0,1, \ldots, K-1$, if and only if the sequence X_{k} satisfies the periodic Sylvester equation (PSE)

$$
\begin{equation*}
T_{11}^{(k)} X_{k}-X_{k \oplus 1} T_{22}^{(k)}=-T_{12}^{(k)}, k=0,1, \ldots, K-1 . \tag{4.4}
\end{equation*}
$$

Replacing $I_{p_{2}}$ in \mathbf{X}_{0} (4.2) by a $p_{2} \times p_{2}$ zero block results in a spectral projector (e.g., see [22]) associated with the matrix product $\Phi_{T}(K, 0)$ that projects onto the spectrum of $\Phi_{T}(K, 0)_{11}$. We refer to the matrix X_{0} as the generator matrix for the periodic reordering of the product $\Phi_{T}(K, 0)$.

Define the permutation matrices

$$
P_{l}=\left[\begin{array}{cc}
0 & I_{p_{2}} \\
I_{p_{1}} & 0
\end{array}\right], \quad P_{r}=\left[\begin{array}{cc}
0 & I_{p_{1}} \\
I_{p_{2}} & 0
\end{array}\right],
$$

and observe that $P_{l} P_{r}=P_{r} P_{l}=I_{p_{1}+p_{2}}$. The similarity transformation

$$
\begin{aligned}
& P_{l} \mathbf{X}_{0}^{-1}\left(T_{K-1} T_{K-2} \ldots T_{1} T_{0}\right) \mathbf{X}_{0} P_{r} \\
& =\underbrace{P_{l} \mathbf{X}_{0}^{-1}}_{S_{0}^{-1}} T_{K-1} \underbrace{\mathbf{X}_{K-1} P_{r}}_{S_{K-1}} \underbrace{P_{l} \mathbf{X}_{K-1}^{-1}}_{S_{K-1}^{-1}} T_{K-2} \underbrace{\mathbf{X}_{K-2} P_{r}}_{S_{K-2}} \ldots \\
\cdots & \underbrace{P_{l} \mathbf{X}_{2}^{-1}}_{S_{2}^{-1}} T_{1} \underbrace{\mathbf{X}_{1} P_{r}}_{S_{1}} \underbrace{P_{l} \mathbf{X}_{1}^{-1}}_{S_{1}^{-1}} T_{0} \underbrace{\mathbf{X}_{0} P_{r}}_{S_{0}} \\
& =S_{0}^{-1} T_{K-1} S_{K-1} S_{K-1}^{-1} T_{K-2} S_{K-2} \ldots S_{2}^{-1} T_{1} S_{1} S_{1}^{-1} T_{0} S_{0} \\
& =\left[\begin{array}{cc}
T_{22}^{(K-1)} & 0 \\
0 & T_{11}^{(K-1)}
\end{array}\right] \cdots\left[\begin{array}{cc}
T_{22}^{(1)} & 0 \\
0 & T_{11}^{(1)}
\end{array}\right]\left[\begin{array}{cc}
T_{22}^{(0)} & 0 \\
0 & T_{11}^{(0)}
\end{array}\right],
\end{aligned}
$$

performs the wanted swapping of the diagonal blocks by the non-orthogonal sequence

$$
S_{k}=\mathbf{X}_{k} P_{r}=\left[\begin{array}{cc}
X_{k} & I_{p_{1}} \\
I_{p_{2}} & 0
\end{array}\right], k=0,1, \ldots, K-1 .
$$

Since the first p_{2} columns of each S_{k} are linearly independent there exist orthogonal matrices Q_{k} of order $p_{1}+p_{2}$ such that

$$
D_{k} \equiv\left[\begin{array}{c}
X_{k} \tag{4.5}\\
I_{p_{2}}
\end{array}\right]=Q_{k}\left[\begin{array}{c}
R_{k} \\
0
\end{array}\right]
$$

where R_{k} of size $p_{2} \times p_{2}$ is upper triangular and non-singular, $k=0,1, \ldots, K-1$. By partitioning Q_{k} conformally with S_{k}, we observe that

$$
Q_{k}^{T} S_{k}=\left[\begin{array}{cc}
R_{k} & Q_{11}^{(k)^{T}} \\
0 & Q_{12}^{(k)^{T}}
\end{array}\right], \quad S_{k}^{-1} Q_{k}=\left[\begin{array}{cc}
R_{k}^{-1} & -R_{k}^{-1} Q_{11}^{(k)^{T}} Q_{12}^{(k)^{-T}} \\
0 & Q_{12}^{(k)^{-T}}
\end{array}\right]
$$

An orthonormal similarity transformation of $\Phi_{T}(K, 0)$ can now be written as

$$
\begin{aligned}
& Q_{0}^{T}\left(T_{K-1} T_{K-2} \ldots T_{1} T_{0}\right) Q_{0}=Q_{0}^{T} T_{K-1} Q_{K-1} Q_{K-1}^{T} T_{K-2} Q_{K-2} \ldots Q_{2}^{T} T_{1} Q_{1} Q_{1}^{T} T_{0} Q_{0} \\
& =Q_{0}^{T} S_{0}\left[\begin{array}{cc}
T_{11}^{(K-1)} & 0 \\
0 & T_{22}^{(K-1)}
\end{array}\right] S_{K-1}^{-1} Q_{K-1} Q_{K-1}^{T} S_{K-1}\left[\begin{array}{cc}
T_{11}^{(K-2)} & 0 \\
0 & T_{22}^{(K-2)}
\end{array}\right] S_{K-1}^{-1} Q_{K-2} \ldots \\
& \ldots Q_{2}^{T} S_{2}\left[\begin{array}{cc}
T_{11}^{(1)} & 0 \\
0 & T_{22}^{(1)}
\end{array}\right] S_{1}^{-1} Q_{1} Q_{1}^{T} S_{1}\left[\begin{array}{cc}
T_{11}^{(0)} & 0 \\
0 & T_{22}^{(0)}
\end{array}\right] S_{0}^{-1} Q_{0}=\hat{T}_{K-1} \hat{T}_{K-2} \ldots \hat{T}_{1} \hat{T}_{0},
\end{aligned}
$$

where

$$
\hat{T}_{k}=\left[\begin{array}{cc}
\hat{T}_{11}^{(k)} & \hat{T}_{12}^{(k)} \\
0 & \hat{T}_{22}^{(k)}
\end{array}\right]
$$

and

$$
\left\{\begin{array}{l}
\hat{T}_{11}^{(k)}=R_{k \oplus 1} T_{22}^{(k)} R_{k}^{-1} \tag{4.6}\\
\hat{T}_{22}^{(k)}=Q_{12}^{(k \oplus 1)^{T}} T_{11}^{(k)} Q_{12}^{(k)^{-T}} \\
\hat{T}_{12}^{(k)}=-R_{k \oplus 1} T_{22}^{(k)} R_{k}^{-1} Q_{11}^{(k)^{T}} Q_{12}^{(k)^{-T}}+Q_{11}^{(k \oplus 1)^{T}} T_{11}^{(k)} Q_{12}^{(k)-T}
\end{array}\right.
$$

for $k=0,1, \ldots, K-1$. Thus, the orthogonal sequence Q_{k} from (4.5) performs the required reordering of the diagonal blocks. Observe that the sequences $\hat{T}_{11}^{(k)}$ and $\hat{T}_{22}^{(k)}$ in (4.6) may not be in PRSF and might have to be further transformed after periodic reordering by additional orthogonal transformations to get the sequence \hat{T}_{k} in PRSF.

We summarize our direct algorithm for periodic eigenvalue reordering as follows:
Step 1 Solve for the sequence $X_{k}, k=0,1, \ldots, K-1$, in the PSE

$$
T_{11}^{(k)} X_{k}-X_{k \oplus 1} T_{22}^{(k)}=-T_{12}^{(k)}, \quad k=0,1, \ldots, K-1
$$

Step 2 Compute K orthogonal matrices Q_{k} such that

$$
\left[\begin{array}{c}
X_{k} \\
I_{p_{2}}
\end{array}\right]=Q_{k}\left[\begin{array}{c}
R_{k} \\
0
\end{array}\right], k=0,1, \ldots, K-1
$$

Step 3 Perform reordering by the cyclic transformations

$$
\begin{equation*}
\hat{T}_{k}=Q_{k \oplus 1}^{T} T_{k} Q_{k}, k=0,1, \ldots, K-1 . \tag{4.7}
\end{equation*}
$$

Step 4 Restore the subsequences $\hat{T}_{11}^{(k)}$ and $\hat{T}_{22}^{(k)}$ to periodic real Schur form using K-cyclic orthogonal transformations.

Step 4 is conducted by computing PRSFs of the two K-periodic subsequences $\hat{T}_{11}^{(k)}$ and $\hat{T}_{22}^{(k)}$. Care must be taken to assure that each of the two quasi-triangular matrices in the PRSFs appear in the same position of the \hat{T}_{k} sequence, say \hat{T}_{i}.

In the presence of rounding errors, the most critical step in the reordering process is to solve the periodic Sylvester equation. In analogy to eigenvalue swapping in the real (generalized) Schur form, a small sep-function (defined in Equation (5.6) of the next section) may ruin backward stability and thus forces us to perform the swapping tentatively to guarantee backward stability $[2,14,16]$. See also Kressner [17] for a brief discussion on direct swapping methods for PRSF.

The direct algorithm extends directly to EPRSF by considering reordering of the core characteristic values (see Section 2) of the sequence T_{k}.
5. The periodic Sylvester equation. By basic algebraic manipulations the PSE in (4.4) can be reduced into K independent triangular continuous-time Sylvester equations (SYCT) of the form

$$
\begin{equation*}
F_{k} X_{k}-X_{k} G_{k}=C_{k}, k=0,1, \ldots, K-1, \tag{5.1}
\end{equation*}
$$

where

$$
F_{k}=\Phi_{T}(k, 0)_{11} \Phi_{T}(K, k)_{11}, G_{k}=\Phi_{T}(k, 0)_{22} \Phi_{T}(K, k)_{22}, k=0, \ldots, K-1,
$$

and C_{k} is a sum of combinations of blocks in the subsequences $T_{11}^{(i)}, T_{22}^{(i)}$ and $T_{12}^{(i)}$, $i=0,1, \ldots, K-1$. By applying the forward error bound for the standard Sylvester equation $[2,13]$ to the periodic case, we get the following norm-wise forward error bound for each matrix in the solution to the PSE (4.4), where \tilde{X}_{k} is the computed solution, X_{k} the exact, ρ_{k} is a small scalar and $\epsilon_{\text {mach }}$ is the relative machine precision:

$$
\begin{equation*}
\frac{\left\|X_{k}-\tilde{X}_{k}\right\|}{\left\|X_{k}\right\|} \leq \frac{\rho_{k} \epsilon_{\operatorname{mach}}\left(\left\|F_{k}\right\|_{F}+\left\|G_{k}\right\|_{F}\right)}{\operatorname{sep}\left(F_{k}, G_{k}\right)} \tag{5.2}
\end{equation*}
$$

where

$$
\begin{equation*}
\operatorname{sep}\left(F_{k}, G_{k}\right)=\inf _{\left\|X_{k}\right\|_{F}=1}\left\|F_{k} X_{k}-X_{k} G_{k}\right\|_{F}=\sigma_{\min }\left(I_{p_{2}} \otimes F_{k}-G_{k} \otimes I_{p_{1}}\right) . \tag{5.3}
\end{equation*}
$$

It is clear that all F_{k} have the same eigenvalues independently of k (this also holds for $\left.G_{k}\right)$, but $\operatorname{sep}\left(F_{k}, G_{k}\right)$ may differ for different values of k since matrix multiplication in general is not commutative. We conclude that the PSE (4.4) has a unique solution sequence $X_{k}, k=0,1, \ldots, K-1$, if and only if (5.1) has a unique solution for all $k=0,1, \ldots, K-1$, and it is well-known [3] that this holds when $\lambda\left(F_{k}\right) \neq \lambda\left(G_{k}\right)$ or equivalently $\operatorname{sep}\left(F_{k}, G_{k}\right)>0$, for all $k=0,1, \ldots, K-1$. See also Lemma 2.1 in [4] for a similar result.

Without going into details, the PSE in (4.4) can be solved in several ways. We can reduce it into K single continuous-time Sylvester equations by evaluating the products
F_{k} and G_{k} to compute X_{k} for all values of k. This may not be suitable for large periods or large dimensions from accuracy considerations. In analogy with solving the standard Sylvester equation (e.g., see [3]), we construct a matrix representation $Z_{\text {PSE }}$ of the periodic Sylvester operator defined by the PSE (4.4) in terms of Kronecker products, where

$$
\left[\begin{array}{ccccc}
Z_{\text {PSE }}^{(K-1)^{T}} \otimes I_{p_{1}} & & & & I_{p_{2}} \otimes T_{11}^{(K-1)} \\
I_{p_{2}} \otimes T_{11}^{(0)} & T_{22}^{(0)^{T}} \otimes I_{p_{1}} & & & \tag{5.4}\\
& & \ddots & \ddots & \\
& & & & I_{p_{2}} \otimes T_{11}^{(K-2)}
\end{array} T_{22}^{(K-2)^{T}} \otimes I_{p_{1}}\right] .
$$

Only the nonzero blocks of Z_{PSE} are displayed explicitly in (5.4). Then we solve the resulting linear system of equations $Z_{\mathrm{PSE}} x=c$, with x and c as stacked vector representations of the matrix sequences X_{k}, for $k=0,1, \ldots, K-1$, and $C_{k}, k=$ $K-1,0,1, \ldots, K-2$, respectively:

$$
x=\left[\begin{array}{l}
\operatorname{vec}\left(X_{0}\right) \tag{5.5}\\
\operatorname{vec}\left(X_{1}\right) \\
\cdots \\
\operatorname{vec}\left(X_{K-1}\right)
\end{array}\right], \quad c=\left[\begin{array}{l}
\operatorname{vec}\left(C_{K-1}\right) \\
\operatorname{vec}\left(C_{0}\right) \\
\cdots \\
\operatorname{vec}\left(C_{K-2}\right)
\end{array}\right] .
$$

Observe that the dimension of $Z_{\text {PSE }}$ grows linearly with K. To exploit the structure of the matrix $Z_{\text {PSE }}$, Gaussian elimination with partial pivoting (GEPP) should be used to the cost of $O\left(K\left(p_{1}^{2} p_{2}+p_{1} p_{2}^{2}\right)\right)$ flops, possibly combined with fixed precision iterative refinement for improved accuracy on badly scaled problems. By storing only the block main diagonal, the block subdiagonal and the rightmost block column vector, the storage requirement for Z_{PSE} can be kept at $3 K p_{1}^{2} p_{2}^{2}$. One could employ Gaussian elimination with complete pivoting (GECP) to solve this linear system (see, e.g., LAPACK's DTGSYL [16]), but that would make it difficult, if not impossible, to exploit the sparsity structure of the problem. The complete pivoting process causes fill-in elements, requires explicit storage of the whole matrix $Z_{\text {PSE }}$ and increases the number of flops to $O\left(\left(K p_{1} p_{2}\right)^{3}\right)$.

Also in analogy with the standard Sylvester equation (e.g., see $[12,15]$ and (5.3)), the conditioning of the periodic Sylvester equation is related to the sep-function

$$
\begin{align*}
\operatorname{sep}[\mathrm{PSE}] & =\inf _{\|x\|_{2}=1}\left\|Z_{\mathrm{PSE}} x\right\|_{2}=\left\|Z_{\mathrm{PSE}}^{-1}\right\|_{2}^{-1}=\sigma_{\min }\left(Z_{\mathrm{PSE}}\right) \tag{5.6}\\
& =\inf _{\left(\sum_{k=0}^{K-1}\left\|X_{k}\right\|_{F}^{2}\right)^{1 / 2}=1}\left(\sum_{k=0}^{K-1}\left\|T_{11}^{(k)} X_{k}-X_{k \oplus 1} T_{22}^{(k)}\right\|_{F}^{2}\right)^{1 / 2} .
\end{align*}
$$

The quantity sep[PSE] can be estimated at the cost of solving a few PSEs by exploiting the estimation technique for the 1-norm of the inverse of a matrix [10, 12, 15, 16].
6. Error Analysis. In this section, we present an error analysis of the direct reordering method presented in Section 4, where we extend the analysis from $[2,14]$ to the periodic case. First we investigate the impact of the cyclic transformations (3.3) on the individual matrices in the sequence $T_{k}(4.1)$, for $k=0,1, \ldots, K-1$. Secondly, we apply our findings to the diagonal blocks of the explicitly formed matrix product $\Phi_{\hat{T}}(K, 0)$.
6.1. Perturbation of individual matrices under periodic reordering. If Householder reflections are used to compute the orthogonal sequence $\tilde{Q}_{k}, k=$ $0,1, \ldots, K-1$, each matrix \tilde{Q}_{k} is orthogonal up to machine precision [27] and the stability of the direct reordering method is mainly affected by the conditioning and accuracy of the solution to the associated periodic Sylvester equation.

Without loss of generality, we assume that $p_{1}=p_{2}=2$. Let \tilde{X}_{k} be the computed solution sequence to the PSE (4.4), where $\tilde{X}_{k}=X_{k}+\Delta X_{k}, X_{k}$ is the exact and unique solution sequence and ΔX_{k} is the corresponding error matrix for $k=0,1, \ldots, K-1$. We let

$$
\begin{equation*}
Y_{k} \equiv T_{11}^{(k)} \tilde{X}_{k}-\tilde{X}_{k \oplus 1} T_{22}^{(k)}+T_{12}^{(k)}=T_{11}^{(k)} \Delta X_{k}-\Delta X_{k \oplus 1} T_{22}^{(k)} \tag{6.1}
\end{equation*}
$$

denote the residual sequence associated with the computed PSE solution sequence.
Under mild conditions (such as $\left\|D_{k}^{+}\right\|_{2}\left\|\Delta X_{k}\right\|_{F}<1$, where D_{k} is defined in (4.5)) the K QR-factorizations of $\left(\tilde{X}_{k}, I\right)^{T}$ can be written as

$$
\left[\begin{array}{c}
X_{k}+\Delta X_{k} \\
I
\end{array}\right]=D_{k}+\left[\begin{array}{c}
\Delta X_{k} \\
0
\end{array}\right]=\tilde{Q}_{k}\left[\begin{array}{c}
\tilde{R}_{k} \\
0
\end{array}\right]=\left(Q_{k}+\Delta Q_{k}\right)\left[\begin{array}{c}
R_{k}+\Delta R_{k} \\
0
\end{array}\right]
$$

where ΔQ_{k} and ΔR_{k} are perturbations of the orthogonal matrices Q_{k} and the triangular matrices R_{k}, and $\tilde{Q}_{k}=Q_{k}+\Delta Q_{k}$ is orthogonal [21]. Here, $\left\|\Delta Q_{k}\right\|_{F}$ and $\left\|\Delta R_{k}\right\|_{F}$ are essentially bounded by $\left\|D_{k}^{+}\right\|_{2}\left\|\Delta X_{k}\right\|_{F}, k=0,1, \ldots, K-1[21,2]$. We do not assume anything about the structure of these perturbation matrices.

Given the computed sequences \tilde{X}_{k} and \tilde{Q}_{k}, the following theorem shows how the errors in these quantities propagate to the results of the direct method for reordering two adjacent sequences of diagonal blocks in the periodic Schur form.

Theorem 6.1. Let $\tilde{X}_{k}=X_{k}+\Delta X_{k}$ with $\Delta X_{k} \neq 0$ nonsingular, \tilde{Q}_{k}, and the residual sequence Y_{k} (6.1) be given for $k=0,1, \ldots, K-1$. By applying the computed sequence of transformations \tilde{Q}_{k} from a periodic reordering of the $(1,1)$ and (2,2) blocks of T_{k} (4.1) in a cyclic transformation, we get

$$
\tilde{T}_{k} \equiv \tilde{Q}_{k \oplus 1}^{T}\left[\begin{array}{cc}
T_{11}^{(k)} & T_{12}^{(k)} \tag{6.2}\\
0 & T_{22}^{(k)}
\end{array}\right] \tilde{Q}_{k}=\hat{T}_{k}+E_{k}
$$

where

$$
\hat{T}_{k}=\left[\begin{array}{cc}
\hat{T}_{11}^{(k)} & \hat{T}_{12}^{(k)} \tag{6.3}\\
0 & \hat{T}_{22}^{(k)}
\end{array}\right], \quad E_{k}=\left[\begin{array}{cc}
E_{11}^{(k)} & E_{12}^{(k)} \\
E_{21}^{(k)} & E_{22}^{(k)}
\end{array}\right]
$$

for $k=0,1, \ldots, K-1$. Then the error matrices E_{k} satisfy the following norm bounds up to first order perturbations:

$$
\begin{align*}
\left\|E_{11}^{(k)}\right\|_{2} & \leq \frac{\sigma_{\max }\left(X_{k \oplus 1}\right)}{\left(1+\sigma_{\max }^{2}\left(X_{k \oplus 1}\right)\right)^{1 / 2}} \cdot \frac{1}{\left(1+\sigma_{\min }^{2}\left(X_{k}\right)\right)^{1 / 2}}\left\|Y_{k}\right\|_{F} \tag{6.4}\\
& +2\left\|\hat{T}_{11}^{(k)}\right\|_{2}\left(\left\|D_{k}^{+}\right\|_{2}\left\|\Delta X_{k}\right\|_{F}+\left\|D_{k \oplus 1}^{+}\right\|_{2}\left\|\Delta X_{k \oplus 1}\right\|_{F}\right) \\
\left\|E_{21}^{(k)}\right\|_{2} & \leq \frac{1}{\left(1+\sigma_{\min }^{2}\left(X_{k \oplus 1}\right)\right)^{1 / 2}} \cdot \frac{1}{\left(1+\sigma_{\min }^{2}\left(X_{k}\right)\right)^{1 / 2}}\left\|Y_{k}\right\|_{F} \tag{6.5}\\
\left\|E_{22}^{(k)}\right\|_{2} & \leq \frac{1}{\left(1+\sigma_{\min }^{2}\left(X_{k \oplus 1}\right)\right)^{1 / 2}} \cdot \frac{\sigma_{\max }\left(X_{k}\right)}{\left(1+\sigma_{\max }^{2}\left(X_{k}\right)\right)^{1 / 2}}\left\|Y_{k}\right\|_{F} \tag{6.6}
\end{align*}
$$

Proof. Transform the sequence T_{k} with \tilde{Q}_{k} in a cyclic transformation:

$$
\begin{aligned}
& \tilde{Q}_{k \oplus 1}^{T} T_{k} \tilde{Q}_{k}=\left(Q_{k \oplus 1}+\Delta Q_{k \oplus 1}\right)^{T} T_{k}\left(Q_{k}+\Delta Q_{k}\right) \\
& =\underbrace{Q_{k \oplus 1}^{T} T_{k} Q_{k}}_{\hat{T}_{k}}+\Delta Q_{k \oplus 1}^{T} T_{k} Q_{k}+Q_{k \oplus 1}^{T} T_{k} \Delta Q_{k}+\Delta Q_{k \oplus 1}^{T} T_{k} \Delta Q_{k}
\end{aligned}
$$

Let $Z_{k}=Q_{k}^{T} \Delta Q_{k}$. From $\left(Q_{k}+\Delta Q_{k}\right)^{T}\left(Q_{k}+\Delta Q_{k}\right)=I$ we have that $Q_{k}^{T} \Delta Q_{k}=$ $-\Delta Q_{k}^{T} Q_{k}$ up to first order and by dropping the second order term, we get

$$
\begin{aligned}
& \tilde{Q}_{k \oplus 1}^{T} T_{k} \tilde{Q}_{k}=\hat{T}_{k}+\Delta Q_{k \oplus 1}^{T} Q_{k \oplus 1} \underbrace{Q_{k \oplus 1}^{T} T_{k} Q_{k}}_{\hat{T}_{k}}+\underbrace{Q_{k \oplus 1}^{T} T_{k} Q_{k}}_{\hat{T}_{k}} Q_{k}^{T} \Delta Q_{k} \\
& =\hat{T}_{k}+\hat{T}_{k} Q_{k}^{T} \Delta Q_{k}-Q_{k \oplus 1}^{T} \Delta Q_{k \oplus 1} \hat{T}_{k}=\hat{T}_{k}+\hat{T}_{k} Z_{k}-Z_{k \oplus 1}
\end{aligned}
$$

for $k=0,1, \ldots, K-1$.
Let E_{k} denote the error matrix corresponding to the $k^{t h}$ cyclic transformation (4.7), i.e., $\tilde{T}_{k}=\hat{T}_{k}+E_{k}$. Partition $Z_{k}, k=0,1, \ldots, K-1$ conformally with \hat{T}_{k} and observe that

$$
\tilde{Q}_{k \oplus 1}^{T} T_{k} \tilde{Q}_{k}=\hat{T}_{k}+E_{k}=\left[\begin{array}{cc}
\hat{T}_{11}^{(k)} & \hat{T}_{12}^{(k)} \\
0 & \hat{T}_{22}^{(k)}
\end{array}\right]+\left[\begin{array}{cc}
E_{11}^{(k)} & E_{12}^{(k)} \\
E_{21}^{(k)} & E_{22}^{(k)}
\end{array}\right]
$$

where

$$
\begin{gathered}
{\left[\begin{array}{cc}
E_{11}^{(k)} & E_{12}^{(k)} \\
E_{21}^{(k)} & E_{22}^{(k)}
\end{array}\right]=\hat{T}_{k} Z_{k}-Z_{k \oplus 1} \hat{T}_{k}} \\
=\left[\begin{array}{cc}
\hat{T}_{11}^{(k)} & \hat{T}_{12}^{(k)} \\
0 & \hat{T}_{22}^{(k)}
\end{array}\right]\left[\begin{array}{cc}
Z_{11}^{(k)} & Z_{12}^{(k)} \\
Z_{21}^{(k)} & Z_{22}^{(k)}
\end{array}\right]-\left[\begin{array}{ll}
Z_{11}^{(k \oplus 1)} & Z_{12}^{(k \oplus 1)} \\
Z_{21}^{(k \oplus 1)} & Z_{22}^{(k \oplus 1)}
\end{array}\right]\left[\begin{array}{cc}
\hat{T}_{11}^{(k)} & \hat{T}_{12}^{(k)} \\
0 & \hat{T}_{22}^{(k)}
\end{array}\right]
\end{gathered}
$$

i.e.,

$$
\left\{\begin{array}{l}
E_{11}^{(k)}=\hat{T}_{11}^{(k)} Z_{11}^{(k)}+\hat{T}_{12}^{(k)} Z_{21}^{(k)}-Z_{11}^{(k \oplus 1)} \hat{T}_{11}^{(k)} \tag{6.7}\\
E_{12}^{(k)}=\hat{T}_{11}^{(k)} Z_{12}^{(k)}+\hat{T}_{12}^{(k)} Z_{22}^{(k)}-Z_{11}^{(k \oplus 1)} \hat{T}_{12}^{(k)}-Z_{12}^{(k \oplus 1)} \hat{T}_{22}^{(k)} \\
E_{21}^{(k)}=\hat{T}_{22}^{(k)} Z_{21}^{(k)}-Z_{21}^{(k \oplus 1)} \hat{T}_{11}^{(k)} \\
E_{22}^{(k)}=\hat{T}_{22}^{(k)} Z_{22}^{(k)}-Z_{22}^{(k \oplus 1)} \hat{T}_{22}^{(k)}-Z_{21}^{(k \oplus 1)} \hat{T}_{12}^{(k)} .
\end{array}\right.
$$

As we will show below, $E_{22}^{(k)}$ and $E_{11}^{(k)}$ perturb the eigenvalues of the matrix product $\Phi_{A}(K, 0)$ directly, but do not affect stability (the error in block $(2,1)$ in the matrix $\left.\tilde{Q}_{k \oplus 1}^{T} T_{k} \tilde{Q}_{k}\right) . E_{21}^{(k)}$ is critical since it affects both the stability of the reordering and the eigenvalues. $E_{12}^{(k)}$ is of minor interest since it does not perturb the eigenvalues explicitly nor affects the stability. The task is now to derive norm bounds for the error matrix blocks $E_{11}^{(k)}, E_{21}^{(k)}$ and $E_{22}^{(k)}$.

By assuming that $\Delta X_{k}, k=0,1, \ldots, K-1$, are non-singular and applying the analysis of the QR-factorization from [2] to each of our K independent QR factorizations, we get

$$
\begin{equation*}
Z_{11}^{(k)}=Q_{11}^{(k)^{T}} \Delta X_{k} R_{k}^{-1}-\Delta R_{k} R_{k}^{-1} \tag{6.8}
\end{equation*}
$$

$$
\begin{align*}
& Z_{21}^{(k)}=Q_{12}^{(k)^{T}} \Delta X_{k} R_{k}^{-1} \tag{6.9}\\
& Z_{22}^{(k)}=-Q_{12}^{(k)} \Delta X_{k} R_{k}^{-1} Q_{11}^{(k)^{T}} Q_{12}^{(k)} \tag{6.10}
\end{align*}
$$

Using Equations (6.8), (6.9), (6.10), and (4.6), the error matrix blocks $E_{11}^{(k)}, E_{21}^{(k)}$ and $E_{22}^{(k)}$ in (6.7) boil down to

$$
\begin{aligned}
E_{11}^{(k)} & =\hat{T}_{11}^{(k)} Z_{11}^{(k)}+\hat{T}_{12}^{(k)} Z_{21}^{(k)}-Z_{11}^{(k \oplus 1)} \hat{T}_{11}^{(k)} \\
& =Q_{11}^{(k \oplus 1)^{T}}\left(T_{11}^{(k)} \Delta X_{k}-\Delta X_{k \oplus 1} T_{22}^{(k)}\right) R_{k}^{-1}-\hat{T}_{11}^{(k)} \Delta R_{k} R_{k}^{-1}+\Delta R_{k \oplus 1} R_{k \oplus 1}^{-1} \hat{T}_{11}^{(k)}, \\
E_{21}^{(k)} & =\hat{T}_{22}^{(k)} Z_{21}^{(k)}-Z_{21}^{(k \oplus 1)} \hat{T}_{11}^{(k)} \\
& =Q_{12}^{(k \oplus 1)^{T}}\left(T_{11}^{(k)} \Delta X_{k}-\Delta X_{k \oplus 1} T_{22}^{(k)}\right) R_{k}^{-1}, \\
E_{22}^{(k)} & =\hat{T}_{22}^{(k)} Z_{22}^{(k)}-Z_{22}^{k \oplus 1} \hat{T}_{22}^{(k)}-Z_{21}^{(k \oplus 1)} \hat{T}_{12}^{(k)} \\
& =-Q_{12}^{(k \oplus 1)^{T}}\left(T_{11}^{(k)} \Delta X_{k}-\Delta X_{k \oplus 1} T_{22}^{(k)}\right) R_{k}^{-1} Q_{11}^{(k)}{ }^{T} Q_{12}^{(k)-T},
\end{aligned}
$$

as first order results. Since $Y_{k}=T_{11}^{(k)} \Delta X_{k}-\Delta X_{k \oplus 1} T_{22}^{(k)}$, the $E_{i j}^{(k)}$ blocks above can be expressed as

$$
\left\{\begin{array}{l}
E_{11}^{(k)}=Q_{11}^{(k \oplus 1)^{T}} Y_{k} R_{k}^{-1}-\hat{T}_{11}^{(k)} \Delta R_{k} R_{k}^{-1}+\Delta R_{k \oplus 1} R_{k \oplus 1}^{-1} \hat{T}_{11}^{(k)} \tag{6.11}\\
E_{21}^{(k)}=Q_{12}^{(k \oplus 1)^{T}} Y_{k} R_{k}^{-1} \\
E_{22}^{(k)}=-Q_{12}^{(k \oplus 1)^{T}} Y_{k} R_{k}^{-1} Q_{11}^{(k)^{T}} Q_{12}^{(k)^{-T}}
\end{array}\right.
$$

We see that $E_{22}^{(k)}, E_{21}^{(k)}$ and $E_{11}^{(k)}$ are essentially related to the K residual matrices Y_{k} of the associated periodic Sylvester equation and the blocks $R_{k}, Q_{11}^{(k)}$ and $Q_{12}^{(k)}$ from the K QR-factorizations.

From (4.5) we have that

$$
Q_{21}^{(k)}=R_{k}^{-1}
$$

and

$$
R_{k}^{T} R_{k}=I+X_{k}^{T} X_{k}
$$

which gives

$$
\sigma^{2}\left(R_{k}\right)=\lambda\left(R_{k}^{T} R_{k}\right)=\lambda\left(I+X_{k}^{T} X_{k}\right)=1+\lambda\left(X_{k}^{T} X_{k}\right)=1+\sigma^{2}\left(X_{k}\right)
$$

By the above argument we get

$$
\left\|Q_{21}^{(k)}\right\|_{2}=\left\|R_{k}^{-1}\right\|_{2}=\frac{1}{\sigma_{\min }\left(R_{k}\right)}=\frac{1}{\left(1+\sigma_{\min }^{2}\left(X_{k}\right)\right)^{1 / 2}}
$$

Further, from [21] we have

$$
\left\|\Delta R_{k} R_{k}^{-1}\right\|_{F} \leq 2\left\|D_{k}^{+}\right\|_{2}\left\|\Delta X_{k}\right\|_{F}
$$

and by the CS-decomposition of Q (see, e.g., [9, 22]) we get the following norm relations

$$
\left\|Q_{21}^{(k)}\right\|_{2}=\left\|Q_{12}^{(k)}\right\|_{2},\left\|Q_{11}^{(k)}\right\|_{2}=\left\|Q_{22}^{(k)}\right\|_{2}
$$

Now by combining these facts with (6.11) and applying the product and triangle inequalities for norms, we obtain the bounds of the theorem. \square

Remark 1: For $K=1$ and by the inequality $\left(1+\sigma_{\min }^{2}\left(X_{k}\right)\right)^{-1 / 2} \geq\left(1+\sigma_{\max }^{2}\left(X_{k}\right)\right)^{-1 / 2}$, the norm bounds of Theorem 6.1 can be further bounded from above to achieve

$$
\begin{align*}
& \left\|E_{11}\right\|_{2} \leq \frac{\sigma_{\max }(X)}{\left(1+\sigma_{\min }^{2}(X)\right)}\|Y\|_{F}+4\left\|\hat{T}_{11}\right\|_{2}\left\|D^{+}\right\|_{2}\|\Delta X\|_{F} \tag{6.12}\\
& \left\|E_{21}\right\|_{2} \leq \frac{1}{\left(1+\sigma_{\min }^{2}(X)\right)}\|Y\|_{F} \tag{6.13}\\
& \left\|E_{22}\right\|_{2} \leq \frac{\sigma_{\max }(X)}{\left(1+\sigma_{\min }^{2}(X)\right)}\|Y\|_{F} \tag{6.14}
\end{align*}
$$

which are the norm bounds from the main theorem of [2] on the perturbation of the eigenvalues under standard eigenvalue reordering in the real Schur form.

Remark 2: The second term of Equation (6.4) can be combined with Equations (5.1) and (5.2), and by using that $\left\|D_{k}^{+}\right\|_{2}=\sigma_{\min }\left(R_{k}\right)^{-1}=\left(1+\sigma_{\min }^{2}\left(X_{k}\right)\right)^{-1 / 2}$, we get

$$
\begin{align*}
& 2\left\|\hat{T}_{11}^{(k)}\right\|_{2}\left(\left\|D_{k}^{+}\right\|_{2}\left\|\Delta X_{k}\right\|_{F}+\left\|D_{k \oplus 1}^{+}\right\|_{2}\left\|\Delta X_{k \oplus 1}\right\|_{F}\right) \leq \\
\leq & 2\left\|\hat{T}_{11}^{(k)}\right\|_{2} \rho \epsilon_{\operatorname{mach}}\left(\frac{\left\|X_{k}\right\|_{F}\left(\left\|F_{k}\right\|_{F}+\left\|G_{k}\right\|_{F}\right)}{\left(1+\sigma_{\min }^{2}\left(X_{k}\right)\right)^{1 / 2} \operatorname{sep}\left(F_{k}, G_{k}\right)}+\right. \tag{6.15}\\
+ & \left.\frac{\left\|X_{k \oplus 1}\right\|_{F}\left(\left\|F_{k \oplus 1}\right\|_{F}+\left\|G_{k \oplus 1}\right\|_{F}\right)}{\left(1+\sigma_{\min }^{2}\left(X_{k \oplus 1}\right)\right)^{1 / 2} \operatorname{sep}\left(F_{k \oplus 1}, G_{k \oplus 1}\right)}\right)
\end{align*}
$$

where $\rho=\max \left(\rho_{k}, \rho_{k \oplus 1}\right)$. However, the upper bound (6.15) is mostly of theoretical interest since it calls for explicit calculation of F_{k} and G_{k} and $\operatorname{sep}\left(F_{k}, G_{k}\right)$.

Remark 3: Numerical experiments show that iterative refinement may improve on the computed solution X_{k}, especially for badly scaled problems, but may not improve on the residual sequence Y_{k}. See also [2] for a similar observation.
6.2. Perturbation of matrix products under periodic reordering. In this section, we investigate how the errors in the invidual matrices after a periodic reordering of two adjacent sequences of diagonal blocks in T_{k} propagate into the matrix product $\Phi_{T}(K, 0)=T_{K-1} T_{K-2} \ldots T_{1} T_{0}$.

We present a general result in the following theorem.
THEOREM 6.2. Let T_{k} be a matrix sequence in PRSF with periodicity K and partitioned as

$$
T_{k}=\left[\begin{array}{cc}
T_{11}^{(k)} & T_{12}^{(k)} \\
0 & T_{22}^{(k)}
\end{array}\right]
$$

Let the sequence $\tilde{Q}_{k}, k=0,1, \ldots, K-1$, be the computed orthogonal cyclic transformation matrices defining the periodic eigenvalue reordering of the product $\Phi_{T}(K, 0)$ as in (6.2). In addition, let the sequences $\tilde{T}_{k}, \hat{T}_{k}$, and E_{k} be defined as in (6.2)-(6.3) of Theorem 6.1. Then, we have

$$
\begin{equation*}
\Phi_{\tilde{T}}(K, 0)=\prod_{k=K-1}^{0} \tilde{Q}_{k \oplus 1}^{T} T_{k} \tilde{Q}_{k}=\Phi_{\hat{T}}(K, 0)+\mathbf{E} \tag{6.16}
\end{equation*}
$$

where $\Phi_{\hat{T}}(K, 0)=Q_{0}^{T} \Phi_{T}(K, 0) Q_{0}$ is the exact product of the reordered matrices and \mathbf{E} is the corresponding error matrix. Assuming that \mathbf{E} is partitioned conformally with T_{k}, we have the bounds

$$
\left\{\begin{align*}
\left\|\mathbf{E}_{11}\right\|_{2} \leq & \sum_{k=0}^{K-1}\left(\left(\prod_{j=K-1}^{k+1}\left\|\hat{T}_{11}^{(j)}\right\|_{2}\right)\left\|E_{11}^{(k)}\right\|_{2}\right. \tag{6.17}\\
& \left.+\left(\sum_{j=K-1}^{k+1}\left\|\varphi_{1}^{(k, j)}\right\|_{2}\right)\left\|E_{21}^{(k)}\right\|_{2}\right)\left(\prod_{j=k-1}^{0}\left\|\hat{T}_{11}^{(j)}\right\|_{2}\right) \\
\left\|\mathbf{E}_{21}\right\|_{2} \leq & \sum_{k=0}^{K-1}\left(\prod_{j=K-1}^{k+1}\left\|\hat{T}_{22}^{(j)}\right\|_{2}\right)\left\|E_{21}^{(k)}\right\|_{2}\left(\prod_{j=k-1}^{0}\left\|\hat{T}_{11}^{(j)}\right\|\right) \\
\left\|\mathbf{E}_{22}\right\|_{2} \leq & \sum_{k=0}^{K-1}\left(\prod_{j=K-1}^{k+1}\left\|\hat{T}_{22}^{(j)}\right\|_{2}\right)\left(\left\|E_{21}^{(k)}\right\|_{2} \sum_{j=k-1}^{0}\left\|\varphi_{2}^{(k, j)}\right\|_{2}\right. \\
& \left.+\left\|E_{22}^{(k)}\right\|_{2}\left(\prod_{j=k-1}^{0}\left\|\hat{T}_{22}^{(j)}\right\|_{2}\right)\right)
\end{align*}\right.
$$

where

$$
\begin{align*}
& \left.\left\|\varphi_{1}^{(k, j)}\right\|_{2} \leq\left\|\hat{T}_{12}^{(j)}\right\|_{2} \prod_{l=K-1}^{j+1}\left\|\hat{T}_{11}^{(l)}\right\|_{2} \prod_{l=j-1}^{k+1} \| \hat{T}_{22}^{(l)}\right) \|_{2} \tag{6.18}\\
& \left\|\varphi_{2}^{(k, j)}\right\|_{2} \leq\left\|\hat{T}_{12}^{(j)}\right\|_{2} \prod_{l=i-1}^{j+1}\left\|\hat{T}_{11}^{(l)}\right\|_{2} \prod_{l=j-1}^{0}\left\|\hat{T}_{22}^{(l)}\right\|_{2} \tag{6.19}
\end{align*}
$$

up to first order perturbations.
Proof. Up to first order perturbations, we have

$$
\begin{align*}
& \Phi_{\tilde{T}}(K, 0)=\prod_{k=K-1}^{0} \tilde{Q}_{k \oplus 1}^{T} T_{k} \tilde{Q}_{k} \tag{6.20}\\
& =\Phi_{\hat{T}}(K, 0)+\sum_{k=0}^{K-1} \Phi_{\hat{T}}(K, k+1) E_{k} \Phi_{\hat{T}}(k, 0)=\Phi_{\hat{T}}(K, 0)+\mathbf{E}
\end{align*}
$$

The error matrix \mathbf{E} can be expressed in block partitioned form:

$$
\begin{align*}
\mathbf{E}= & \sum_{k=0}^{K-1} \Phi_{\hat{T}}(K, k+1) E_{k} \Phi_{\hat{T}}(k, 0) \\
= & \sum_{k=0}^{K-1}\left[\begin{array}{cc}
\Phi_{\hat{T}}(K, k+1)_{11} & \sum_{j=K-1}^{k+1} \varphi_{1}^{(k, j)} \\
0 & \Phi_{\hat{T}}(K, k+1)_{22}
\end{array}\right] \cdot\left[\begin{array}{cc}
E_{11}^{(k)} & E_{12}^{(k)} \\
E_{21}^{(k)} & E_{22}^{(k)}
\end{array}\right] \tag{6.21}\\
& \cdot\left[\begin{array}{cc}
\Phi_{\hat{T}}(k, 0)_{11} & \sum_{j=k-1}^{0} \varphi_{2}^{(k, j)} \\
0 & \Phi_{\hat{T}}(k, 0)_{22}
\end{array}\right]=\sum_{i=0}^{K-1}\left[\begin{array}{ll}
\mathbf{E}_{11}^{(k)} & \mathbf{E}_{12}^{(k)} \\
\mathbf{E}_{21}^{(k)} & \mathbf{E}_{22}^{(k)}
\end{array}\right]
\end{align*}
$$

where

$$
\begin{aligned}
\mathbf{E}_{11}^{(k)} & =\left(\Phi_{\hat{T}}(K, k+1)_{11} E_{11}^{(k)}+\sum_{j=K-1}^{k+1} \varphi_{1}^{(k, j)} E_{21}^{(k)}\right) \Phi_{\hat{T}}(k, 0)_{11} \\
\mathbf{E}_{12}^{(k)} & =\left(\Phi_{\hat{T}}(K, k+1)_{11} E_{11}^{(k)}+\sum_{j=K-1}^{k+1} \varphi_{1}^{(k, j)} E_{21}^{(k)}\right) \sum_{j=k-1}^{0} \varphi_{2}^{(k, j)}+ \\
& +\left(\Phi_{\hat{T}}(K, k+1)_{11} E_{12}^{(k)}+\sum_{j=K-1}^{k+1} \varphi_{1}^{(k, j)} E_{22}^{(k)}\right) \Phi_{\hat{T}}(k, 0)_{22} \\
\mathbf{E}_{21}^{(k)} & =\Phi_{\hat{T}}(K, k+1)_{22} E_{21}^{(k)} \Phi_{\hat{T}}(k, 0)_{11} \\
\mathbf{E}_{22}^{(k)} & =\Phi_{\hat{T}}(K, k+1)_{22}\left(E_{21}^{(k)} \sum_{j=k-1}^{0} \varphi_{2}^{(k, j)}+E_{22}^{(k)} \Phi_{\hat{T}}(k, 0)_{22}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \varphi_{1}^{(k, j)}=\Phi_{\hat{T}}(K, j+1)_{11} \hat{T}_{12}^{(j)} \Phi_{\hat{T}}(j, k+1)_{22} \\
& \varphi_{2}^{(k, j)}=\Phi_{\hat{T}}(k, j+1)_{11} \hat{T}_{12}^{(j)} \Phi_{\hat{T}}(j, 0)_{22}
\end{aligned}
$$

By applying the triangle inequality and the submultiplicativity of norms to these results, the bounds in the theorem follow. \square

For illustration, we display the explicit results of Theorem 6.2 for two simple cases in the following Corollary.

COROLLARY 6.3. Under the assumptions of Theorem 6.2, and the periodicity $K=2$, norm bounds for blocks of the error matrix \mathbf{E} (6.16) can up to first order perturbations be expressed as

$$
\begin{aligned}
& \left\|\mathbf{E}_{11}\right\|_{2} \leq\left\|\hat{T}_{11}^{(1)}\right\|_{2}\left\|E_{11}^{(0)}\right\|_{2}+\left\|\hat{T}_{12}^{(1)}\right\|_{2}\left\|E_{21}^{(0)}\right\|_{2}+\left\|\hat{T}_{11}^{(0)}\right\|_{2}\left\|E_{11}^{(1)}\right\|_{2} \\
& \left\|\mathbf{E}_{21}\right\|_{2} \leq\left\|\hat{T}_{22}^{(1)}\right\|_{2}\left\|E_{21}^{(0)}\right\|_{2}+\left\|\hat{T}_{11}^{(0)}\right\|_{2}\left\|E_{21}^{(1)}\right\|_{2} \\
& \left\|\mathbf{E}_{22}\right\|_{2} \leq\left\|\hat{T}_{22}^{(1)}\right\|_{2}\left\|E_{22}^{(0)}\right\|_{2}+\left\|\hat{T}_{12}^{(0)}\right\|_{2}\left\|E_{21}^{(1)}\right\|_{2}+\left\|\hat{T}_{22}^{(0)}\right\|_{2}\left\|E_{22}^{(1)}\right\|_{2}
\end{aligned}
$$

For periodicity $K=3$, we have the bounds

$$
\begin{aligned}
\left\|\mathbf{E}_{11}\right\|_{2} \leq & \left\|\hat{T}_{11}^{(2)}\right\|_{2}\left\|\hat{T}_{11}^{(1)}\right\|_{2}\left\|E_{11}^{(0)}\right\|_{2}+\left(\left\|\hat{T}_{11}^{(2)}\right\|_{2}\left\|\hat{T}_{12}^{(1)}\right\|_{2}+\left\|\hat{T}_{12}^{(2)}\right\|_{2}\left\|\hat{T}_{22}^{(1)}\right\|_{2}\right)\left\|E_{21}^{(0)}\right\|_{2}+ \\
& +\left\|\hat{T}_{11}^{(2)}\right\|_{2}\left\|\hat{T}_{11}^{(0)}\right\|_{2}\left\|E_{11}^{(1)}\right\|_{2}+\left\|\hat{T}_{12}^{(2)}\right\|_{2}\left\|\hat{T}_{11}^{(0)}\right\|_{2}\left\|E_{21}^{(1)}\right\|_{2}+\left\|\hat{T}_{11}^{(1)}\right\|_{2}\left\|\hat{T}_{11}^{(0)}\right\|_{2}\left\|E_{11}^{(2)}\right\|_{2} \\
\left\|\mathbf{E}_{21}\right\|_{2} \leq & \left\|\hat{T}_{22}^{(2)}\right\|_{2}\left\|\hat{T}_{22}^{(1)}\right\|_{2}\left\|E_{21}^{(0)}\right\|_{2}+\left\|\hat{T}_{22}^{(2)}\right\|_{2}\left\|\hat{T}_{11}^{(0)}\right\|_{2}\left\|E_{21}^{(1)}\right\|_{2}+\left\|\hat{T}_{11}^{(1)}\right\|_{2}\left\|\hat{T}_{11}^{(0)}\right\|_{2}\left\|E_{21}^{(2)}\right\|_{2} \\
\left\|\mathbf{E}_{22}\right\|_{2} \leq & \left\|\hat{T}_{22}^{(2)}\right\|_{2}\left\|\hat{T}_{22}^{(1)}\right\|_{2}\left\|E_{22}^{(0)}\right\|_{2}+\left\|\hat{T}_{22}^{(2)}\right\|_{2}\left\|\hat{T}_{12}^{(0)}\right\|_{2}\left\|E_{21}^{(1)}\right\|_{2}+\left\|\hat{T}_{22}^{(2)}\right\|_{2}\left\|\hat{T}_{22}^{(0)}\right\|_{2}\left\|E_{22}^{(1)}\right\|_{2}+ \\
& +\left(\left\|\hat{T}_{11}^{(1)}\right\|_{2}\left\|\hat{T}_{12}^{(0)}\right\|_{2}+\left\|\hat{T}_{12}^{(1)}\right\|_{2}\left\|\hat{T}_{22}^{(0)}\right\|_{2}\right)\left\|E_{21}^{(2)}\right\|_{2}+\left\|\hat{T}_{22}^{(1)}\right\|_{2}\left\|\hat{T}_{22}^{(0)}\right\|_{2}\left\|E_{22}^{(2)}\right\|_{2}
\end{aligned}
$$

up to first order perturbations.
We remark that the analysis in Theorem 6.2 and Corollary 6.3 assumes that the involved matrix products and sums are computed exactly. For a rounding error analysis regarding matrix products and sums, see, e.g., [13].

Theorems 6.1 and 6.2 can be combined to produce computable bounds for the perturbations of the diagonal blocks of $\Phi_{\tilde{T}}(K, 0)$ under periodic eigenvalue reordering. We can also apply known perturbation results for the standard eigenvalue problem [22] and the periodic eigenvalue problem $[18,4]$ to the submatrix products $\Phi_{\tilde{T}}(K, 0)_{11}$ and $\Phi_{\tilde{T}}(K, 0)_{22}$. This is a matter of further investigation.
7. Computational Experiments. We demonstrate the stability and reliability of the direct reordering method by considering some numerical examples. The test examples span from well-conditioned to ill-conditioned problems, including matrix sequences with fixed and time-varying dimensions, and sequences of small and large periodicity. In the following, we present results for a representative selection of problems, where, except for one example, two complex conjugate eigenvalue pairs of a periodic real sequence A_{k} are reordered ($p_{1}=p_{2}=2$). The associated PSEs of our direct periodic reordering method are solved by applying Gaussian elimination with partial pivoting to $Z_{\mathrm{PSE}} x=c$ and utilizing the structure of Z_{PSE} in (5.4). All experiments are carried out in double precision ($\epsilon_{\text {mach }} \approx 2.2 \times 10^{-16}$) on an UltraSparc II (450 Mhz) workstation.

Examples $1-2$ below are constructed as follows. We first specify $K, n_{k}, k=$ $0,1, \ldots, K-1$, and $\min _{k}\left(n_{k}\right)$ eigenvalues or $K \cdot \min _{k}\left(n_{k}\right)$ diagonal and $\min _{k}\left(n_{k}\right)-1$ subdiagonal elements. Then a random sequence T_{k} as in (1.3) is generated with 1×1 and 2×2 diagonal blocks corresponding to specified eigenvalues or diagonal, suband superdiagonal entries. Finally, orthogonal matrices $Z_{k}, k=0,1, \ldots, K-1$, are constructed from QR-factorizing K uniformly distributed random $n_{k} \times n_{k}$ matrices, which are applied in a K-cyclic orthogonal transformation of T_{k} to get A_{k}. Optionally, the sequence A_{k} is scaled so that all $\left\|A_{k}\right\|_{F}$ are of the same size (within a factor 10). Examples 3 and 4 illustrate reordering of two periodic sequences already in PRSF. The last example, Example 5, is from a real application.

In Table 7.1, we display the periodicity K, problem dimensions n_{k} for $k=$ $0,1, \ldots, K-1$, the computed value of sep[PSE], and a reciprocal condition number s for the eigenvalues of $\Phi_{T}(K, 0)_{11}$

$$
s=1 / \sqrt{1+\left\|X_{0}\right\|_{F}^{2}}
$$

where X_{0} is the generator matrix for the periodic reordering of $\Phi_{T}(K, 0)$ (see Section 4). The last two quantities signal the conditioning of the problems considered.

Results from periodic reordering using our direct method are presented in Table 7.2. We display the maximum relative change of the eigenvalues under the periodic reordering

$$
e_{\lambda}=\max _{k} \frac{\left|\lambda_{k}-\tilde{\lambda}_{k}\right|}{\left|\lambda_{k}\right|}, \lambda_{k} \in \lambda\left(\Phi_{T}(K, 0)\right) .
$$

In addition, we display five residual quantities for the computed results. These include two stability tests used in our method, namely a weak stability test

$$
R_{\text {weak }}=\max _{k}\left\|\tilde{Q}_{11}^{(k)}-X_{k} \tilde{Q}_{21}^{(k)}\right\|_{F}
$$

and a strong stability test

$$
R_{\text {strong }}=\max _{k}\left(\left\|T_{k}-\tilde{Q}_{k \oplus 1} \tilde{T}_{k} \tilde{Q}_{k}^{T}\right\|_{F},\left\|\tilde{T}_{k}-\tilde{Q}_{k \oplus 1}^{T} T_{k} \tilde{Q}_{k}\right\|_{F}\right)
$$

which is the maximum residual norm associated with the cyclic transformations \tilde{Q}_{k} used in the reordering. Tolerances for these tests can optionally be specified. The last three are the maximum residual norms of the (extended) periodic Schur decomposition (1.3) before and after reordering, computed as

$$
R_{\mathrm{eprsf}}=\max _{k}\left(\left\|A_{k}-Z_{k \oplus 1} T_{k} Z_{k}^{T}\right\|_{F},\left\|T_{k}-Z_{k \oplus 1}^{T} A_{k} Z_{k}\right\|_{F}\right)
$$

and

$$
R_{\text {reord }}=\max _{k}\left(\left\|A_{k}-\tilde{Z}_{k \oplus 1} \tilde{T}_{k} \tilde{Z}_{k}^{T}\right\|_{F},\left\|\tilde{T}_{k}-\tilde{Z}_{k \oplus 1}^{T} A_{k} \tilde{Z}_{k}\right\|_{F}\right)
$$

and a relative orthogonality check over the whole period K after periodic reordering

$$
R_{\text {orth }}=\frac{\max _{k}\left(\left\|I_{n_{k}}-\tilde{Z}_{k}^{T} \tilde{Z}_{k}\right\|_{F},\left\|I_{n_{k}}-\tilde{Z}_{k}^{T} \tilde{Z}_{k}\right\|_{F}\right)}{\epsilon_{\text {mach }}}
$$

Table 7.1
Problem characteristics for the examples considered. $4 a$ and $4 b$ refer to Example 4 with period 2 and 100, respectively.

Example	K	n_{k}	sep[PSE]	s
1	3	$4+k$	$6.9 \mathrm{E}-01$	$7.2 \mathrm{E}-01$
2	120	4	$4.7 \mathrm{E}-03$	$5.5 \mathrm{E}-01$
3	10	2	$9.9 \mathrm{E}+00$	$1.0 \mathrm{E}+00$
4 a	2	4	$4.5 \mathrm{E}-15$	$1.1 \mathrm{E}-14$
4 b	100	4	$1.3 \mathrm{E}-16$	$1.3 \mathrm{E}-16$
5	2	4	$6.2 \mathrm{E}+03$	$6.6 \mathrm{E}-01$

For these three residual norms, the K-cyclic transformations Z_{k} and \tilde{Z}_{k} correspond to Z_{k} and \hat{Z}_{k} in (3.4), respectively.

The computed eigenvalues before and after the periodic reordering are presented to full machine accuracy under each example.

Example 1. We consider a time-varying sequence with $K=3$ and $n_{k}=4+$ $k, k=0,1,2$, and eigenvalues $1.0 \pm 2.0 i,-7.0 \pm 0.5 i$. The computed eigenvalues of the matrix product $\Phi_{T}(K, 0)=T_{2} T_{1} T_{0}$ are

$$
\begin{aligned}
& \lambda_{1}=1.000000000000000 \pm 2.000000000000000 i \\
& \lambda_{2}=-7.000000000000001 \pm 5.000000000000001 i .
\end{aligned}
$$

The spectrum is well separated. After the periodic reordering of the blocks we obtained $\tilde{\lambda}_{1}=\lambda_{2}$ and $\tilde{\lambda}_{2}=\lambda_{1}$ to full accuracy.

Example 2 - satellite control [25]. We consider reordering in a 4×4 periodic matrix sequence that describes a control system of a satellite on orbit around the earth. The periodicity is $K=120$. The eigenvalues of the sequence are

$$
\begin{aligned}
& \lambda_{1}=0.9941836588706161 \pm 0.1076979685723037 i \\
& \lambda_{2}=0.7625695885261465 \pm 0.6469061930874623 i .
\end{aligned}
$$

The reordered eigenvalues are

$$
\begin{aligned}
& \tilde{\lambda}_{1}=0.7625695885261450 \pm 0.6469061930874582 i \\
& \tilde{\lambda}_{2}=0.9941836588706161 \pm 0.1076979685723021 i .
\end{aligned}
$$

This application example shows that periodic reordering works fine for well-conditioned problems with large periods as well.

Example 3. We consider reordering a sequence with $K=10, p_{1}=p_{2}=1$, and the computed sequence in PRSF is

$$
T_{k}=\left[\begin{array}{cc}
10^{1} & t_{12}^{(k)} \\
0 & 10^{-1}
\end{array}\right], k=0,1, \ldots, K-1 .
$$

The computed eigenvalues of the product $\Phi_{T}(K, 0)$ are

$$
\begin{aligned}
& \lambda_{1}=9.999999999999987 \times 10^{9} \\
& \lambda_{2}=1.000000000000013 \times 10^{-10} .
\end{aligned}
$$

After the periodic reordering we obtain

$$
\begin{aligned}
& \tilde{\lambda}_{1}=1.000000000000015 \times 10^{-10} \\
& \tilde{\lambda}_{2}=9.999999999999989 \times 10^{9} .
\end{aligned}
$$

Reordering of 1×1 blocks in PRSF can be carried out by propagating a Givens rotation through the matrix product (in practice, a perfect shift periodic QR-step), but this process is not forward stable. For this example, the rotation approach does not deliver one single correct digit in the reordered eigenvalues, whereas the direct reordering method delivers an acceptable error in the eigenvalues.

Example 4. We consider a sequence already in PRSF with $K=2$ and $n_{k}=$ $4, k=0,1$, and eigenvalues $0.2 \pm\left(1.2+10^{-14}\right) i, 0.2 \pm 1.2 i$. The computed eigenvalues of the matrix $\Phi_{T}(K, 0)=T_{1} T_{0}$ are

$$
\begin{aligned}
& \lambda_{1}=0.200000000000000 \pm 1.200000000000001 i \\
& \lambda_{2}=0.200000000000000 \pm 1.200000000000000 i .
\end{aligned}
$$

The spectrum is not well separated. After the periodic reordering we obtained

$$
\begin{aligned}
& \tilde{\lambda}_{1}=0.200000000000000 \pm 1.200000000000000 i \\
& \tilde{\lambda}_{2}=0.200000000000000 \pm 1.200000000000001 i,
\end{aligned}
$$

so the periodic reordering was perfect even though the problem has very close eigenvalues. Indeed, we obtain reordered eigenvalues to full machine accuracy for periods up to 100 .

Example 5. First, we consider a problem already in PRSF with large separation and $K=2, n_{k}=4, k=0,1$, and the eigenvalues $\epsilon_{\text {mach }}^{1 / 2} \pm \epsilon_{\text {mach }}^{1 / 2}, \epsilon_{\text {mach }}^{-1 / 2} \pm \epsilon_{\text {mach }}^{-1 / 2}$. Moreover, the involved matrices have almost the same Frobenius norm ($\approx 1.8 \times$ 10^{4}) but the matrices in the subsequences $T_{11}^{(k)}$ and $T_{22}^{(k)}$ have very different norms: $\left\|T_{11}^{(1)}\right\|_{F} \approx 1.4 \times 10^{4},\left\|T_{11}^{(2)}\right\|_{F} \approx 1.4 \times 10^{4},\left\|T_{22}^{(1)}\right\|_{F} \approx 7.0 \times 10^{-12},\left\|T_{22}^{(2)}\right\|_{F} \approx 8.6 \times 10^{3}$. The computed eigenvalues of the product $\Phi_{T}(K, 0)$ are

$$
\begin{aligned}
& \lambda_{1}=6.710886400000000 \times 10^{7} \quad \pm 6.710886400000003 \times 10^{7} i \\
& \lambda_{2}=1.490116119384766 \times 10^{-8} \quad \pm 1.490116119384766 \times 10^{-8} i .
\end{aligned}
$$

After the periodic reordering without diagonal scaling we obtain

$$
\begin{aligned}
& \tilde{\lambda}_{1}=1.168840447839719 \times 10^{-8} \quad \pm 9.309493732240201 \times 10^{-9} i \\
& \tilde{\lambda}_{2}=6.710886400000001 \times 10^{7} \quad \pm 6.710886400000000 \times 10^{7} i .
\end{aligned}
$$

The problem is well-conditioned in the sense of sep[PSE], the norm of the generator matrix (see s in Table 7.2) and the reordering passes the stability tests, but since the eigenvalues differ almost 16 orders of magnitude the relative error in the smallest eigenvalues become very large due to the finite precision arithmetic.

Next, we consider the same problem as above, but now we perform diagonal scaling $T_{2} T_{1}=T_{2} D_{2} D_{2}^{-1} T_{1}$ before periodic reordering such that the blocks $T_{22}^{(1)}$ and $T_{22}^{(2)}$ have about the same norm. After the periodic reordering with diagonal scaling we obtain

$$
\begin{aligned}
& \tilde{\lambda}_{1}=1.490116120748016 \times 10^{-8} \pm 1.490116125160257 \times 10^{-8} i \\
& \tilde{\lambda}_{2}=6.710886400000000 \times 10^{7} \quad \pm 6.710886400000001 \times 10^{7} i .
\end{aligned}
$$

which is quite an improvement (8 orders of magnitude) compared to the results without scaling. Not surprisingly, periodic reordering is sensitive to large differences in the norms within the subsequences $T_{11}^{(k)}$ and $T_{22}^{(k)}$.

TABLE 7.2
Computational results for periodic reordering. $4 a$ and $4 b$ refer to Example 4 with period $K=2$ and 100 , respectively. $5 a$ and $5 b$ refer to Example 5 without scaling and with scaling.

Example	e_{λ}	$R_{\text {weak }}$	$R_{\text {strong }}$	$R_{\text {eprsf }}$	$R_{\text {reord }}$	$R_{\text {orth }}$
1	$4.6 \mathrm{E}-16$	$2.2 \mathrm{E}-16$	$1.6 \mathrm{E}-15$	$4.7 \mathrm{E}-15$	$5.6 \mathrm{E}-15$	$1.3 \mathrm{E}+01$
2	$1.6 \mathrm{E}-15$	$2.9 \mathrm{E}-16$	$1.8 \mathrm{E}-15$	$9.0 \mathrm{E}-15$	$9.8 \mathrm{E}-15$	$2.0 \mathrm{E}+01$
3	$1.4 \mathrm{E}-15$	$1.9 \mathrm{E}-16$	$8.4 \mathrm{E}-15$	$7.3 \mathrm{E}-15$	$1.0 \mathrm{E}-14$	$4.1 \mathrm{E}+00$
4 a	$3.6 \mathrm{E}-16$	$2.5 \mathrm{E}-16$	$1.4 \mathrm{E}-15$	0	$1.2 \mathrm{E}-15$	$2.1 \mathrm{E}+00$
4 b	$3.7 \mathrm{E}-16$	$2.3 \mathrm{E}-16$	$3.2 \mathrm{E}-18$	0	$1.9 \mathrm{E}-15$	$3.6 \mathrm{E}+00$
5 a	$2.2 \mathrm{E}-01$	$1.2 \mathrm{E}-16$	$6.6 \mathrm{E}-12$	0	$5.8 \mathrm{E}-12$	$3.3 \mathrm{E}+00$
5 b	$2.0 \mathrm{E}-09$	$2.3 \mathrm{E}-16$	$4.3 \mathrm{E}-12$	0	$5.6 \mathrm{E}-12$	$3.3 \mathrm{E}+00$

8. Some concluding remarks. In this paper, we have presented a direct method for eigenvalue reordering in the extended periodic real Schur form of a K-periodic matrix sequence. The basic building blocks in the direct reordering is the numerical solution of an associated periodic Sylvester equation and the construction of K orthogonal matrices that perform the required reordering by cyclic transformations. The presented error analysis shows that errors in the transformations are closely related to the accuracy and conditioning of the solution to the associated periodic Sylvester equation as well as the norms of the involved matrices in the periodic sequence. Therefore, we perform the reordering tentatively so that backward stability can be guaranteed.

Future research will focus on computing periodic eigenspaces with specified eigenvalues and associated error bounds based on condition estimation (see, e.g., [16]), as well as producing library-standard (LAPACK [1], SLICOT [19]) software for the eigenvalue reordering algorithm presented in this paper.

Acknowledgments. The authors are grateful to Daniel Kressner for constructive comments on the subject and earlier versions of this manuscript, and to Andras Varga for valuable comments on the subject and for providing us with software for computing the extended periodic Schur decomposition and data for the application example.

REFERENCES

[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. W. Demmel, J. J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. C. Sorensen. LAPACK Users' Guide. SIAM, Philadelphia, PA, third edition, 1999.
[2] Z. Bai and J. W. Demmel. On swapping diagonal blocks in real Schur form. Linear Algebra Appl., 186:73-95, 1993.
[3] R. H. Bartels and G. W. Stewart. Algorithm 432: The solution of the matrix equation $A X-$ $B X=C$. Communications of the ACM, 8:820-826, 1972.
[4] P. Benner, V. Mehrmann, and H. Xu. Perturbation analysis for the eigenvalue problem of a formal product of matrices. BIT, 42(1):1-43, 2002.
[5] A. Bojanczyk, G. H. Golub, and P. Van Dooren. The periodic Schur decomposition; algorithm and applications. In Proc. SPIE Conference, volume 1770, pages 31-42, 1992.
[6] A. Bojanczyk and P. Van Dooren. On propagating orthogonal transformations in a product of 2x2 triangular matrices, pages 1-9. de Gruyter, 1993.
[7] A. Bojanczyk and P. Van Dooren. Reordering diagonal blocks in the real schur form. In NATO ASI on Linear Algebra for Large Scale and Real-Time Applications, volume 1770, pages 351-356, 1993.
[8] J. J. Dongarra, S. Hammarling, and J. H. Wilkinson. Numerical considerations in computing invariant subspaces. SIAM J. Matrix Anal. Appl., 13(1):145-161, 1992.
[9] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins University Press, Baltimore, MD, third edition, 1996.
[10] W.W. Hager. Condition estimates. SIAM J. Sci. Statist. Comput., (3):311-316, 1984.
[11] J. J. Hench and A. J. Laub. Numerical solution of the discrete-time periodic Riccati equation. IEEE Trans. Automat. Control, 39(6):1197-1210, 1994.
[12] N. J. Higham. Fortran codes for estimating the one-norm of a real or complex matrix, with applications to condition estimation. ACM Trans. of Math. Software, 14(4):381-396, 1988.
[13] N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia, PA, second edition, 2002.
[14] B. Kågström. A direct method for reordering eigenvalues in the generalized real Schur form of a regular matrix pair (A, B). In Linear algebra for large scale and real-time applications (Leuven, 1992), volume 232 of NATO Adv. Sci. Inst. Ser. E Appl. Sci., pages 195-218. Kluwer Acad. Publ., Dordrecht, 1993.
[15] B. Kågström and P. Poromaa. Distributed and shared memory block algorithms for the triangular Sylvester equation with sep ${ }^{-1}$ estimators. SIAM J. Matrix Anal. Appl., 13(1):90-101, 1992.
[16] B. Kågström and P. Poromaa. Computing eigenspaces with specified eigenvalues of a regular matrix pair (A, B) and condition estimation: theory, algorithms and software. Numer. Algorithms, 12(3-4):369-407, 1996.
[17] D. Kressner. Numerical Methods and Software for General and Structured Eigenvalue Problems. PhD thesis, TU Berlin, Institut für Mathematik, Berlin, Germany, 2004.
[18] W.-W. Lin and J.-G. Sun. Perturbation analysis for the eigenproblem of periodic matrix pairs. Linear Algebra Appl., 337:157-187, 2001.
[19] Slicot library in the numerics in control network (niconet). See http://www.win.tue.nl/ niconet/index.html.
[20] J. Sreedhar and P. Van Dooren. A Schur approach for solving some periodic matrix equations. In U. Helmke, R. Mennicken, and J. Saurer, editors, Systems and Networks : Mathematical Theory and Applications, volume 77, pages 339-362. Akademie Verlag, Berlin, 1994.
[21] G. W. Stewart. Perturbation bounds for the QR factorization of a matrix. SIAM J. Num. Anal., pages 310-313, 1977.
[22] G. W. Stewart and J.-G. Sun. Matrix Perturbation Theory. Academic Press, New York, 1990.
[23] A. Varga. Periodic Lyapunov equations: some applications and new algorithms. Internat. J. Control, 67(1):69-87, 1997.
[24] A. Varga. Balancing related methods for minimal realization of periodic systems. Systems Control Lett., 36(5):339-349, 1999.
[25] A. Varga and S. Pieters. Gradient-based approach to solve optimal periodic output feedback control problems. Automatica, 45:477-481, 1998.
[26] A. Varga and P. Van Dooren. Computational methods for periodic systems - an overview. In Proc. of IFAC Workshop on Periodic Control Systems, Como, Italy, pages 171-176, 2001.
[27] J. H. Wilkinson. The Algebraic Eigenvalue Problem. Clarendon Press, Oxford, 1965.

[^0]: *Report UMINF 2005.05, ISSN-0348-0542 (submitted to SIMAX, February 21, 2005). This research was conducted using the resources of the High Performance Computing Center North (HPC2N). Financial support has been provided by the Swedish Research Council under grant VR 621-2001-3284 and by the Swedish Foundation for Strategic Research under the frame program grant A3 02:128.
 ${ }^{\dagger}$ Department of Computing Science and HPC2N, Umeå University, SE-901 87 UMEA (granat@cs.umu.se and bokg@cs.umu.se).

