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Abstract. A direct method for eigenvalue reordering in a product of a K-periodic matrix
sequence in periodic or extended periodic real Schur form is presented and analyzed. Each reordering
of two adjacent sequences of diagonal blocks is performed tentatively to guarantee backward stability
and involves solving a K-periodic Sylvester equation (PSE) and constructing a K-periodic sequence
of orthogonal transformation matrices. An error analysis of the direct reordering method is presented
and results from computational experiments confirm the stability and accuracy of the method for
well-conditioned as well as ill-conditioned problems. These include matrix sequences with fixed and
time-varying dimensions, and sequences of small and large periodicity.
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1. Introduction. The Schur form of a matrix is a fundamental tool in Numerical
Linear Algebra: given a real square matrix A, there is a real orthogonal matrix Z,
and a real quasi-triangular matrix T such that

ZT AZ = T ≡
[

T11 T12

0 T22

]
.(1.1)

The quasi-triangular T has 1 × 1 and 2 × 2 blocks on the main block diagonal cor-
responding to real and complex conjugate pairs of eigenvalues, respectively. If the
2 × 2 blocks are in standard form (see, e.g., [9]), the real Schur form T is essentially
unique, except for the ordering of the eigenvalues, which can appear in any desired
order along the block diagonal, and scaling of the transformation matrices. More-
over, the p first columns of Q span an invariant subspace of A corresponding to the
p eigenvalues located in the upper-left part T11 [22]. The real Schur form is typically
computed by means of a reduction to upper Hessenberg form followed by applying
the QR-algorithm to the resulting Hessenberg matrix [9].

For a K-periodic (or K-cyclic) real matrix sequence, A0, A1, . . . , AK−1 with
AK = A0, there exists a periodic counterpart of the real Schur form, called the
periodic real Schur form (PRSF) [5, 11]: given the real matrix sequence Ak ∈ Rn×n,
for k = 0, 1, . . . , K − 1, there exists an orthogonal matrix sequence Zk ∈ Rn×n such
that the real sequence

ZT
k+1AkZk = Tk, k = 0, 1, . . . , K − 1,(1.2)

with ZK = Z0, consists of K − 1 upper triangular matrices and one upper quasi-
triangular matrix. The products of conforming 1 × 1 and 2 × 2 diagonal blocks of
the matrix sequence Tk give the eigenvalues of the matrix product AK−1 · · ·A1A0.
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Similar to the standard case (K = 1), the periodic real Schur form is computed by
means of a reduction to periodic Hessenberg form followed by applying a periodic QR-
algorithm to the resulting sequence [5, 11]. The PRSF is an important tool in several
applications, including solving periodic Sylvester-type and Riccati matrix equations
[11, 20, 23, 26]. The quasi-triangular matrix in the PRSF can occur anywhere in the
sequence, but is usually chosen to be T0 or TK−1. The extended periodic real Schur
form (EPRSF) generalizes PRSF to the case when the dimensions of the matrices are
time-variant [24]: given the real matrix sequence Ak ∈ Rnk+1×nk , k = 0, 1, . . . , K −
1, with nK = n0, there exists an orthogonal matrix sequence Zk ∈ Rnk×nk , k =
0, 1, . . . , K − 1, such that the real sequence

ZT
k+1AkZk = Tk ≡

[
T

(k)
11 T

(k)
12

0 T
(k)
22

]
∈ Rnk+1×nk ,(1.3)

for k = 0, 1, . . . , K − 1, with ZK = Z0, is block upper triangular and T
(k)
11 ∈

Rmink(nk)×mink(nk), T
(k)
22 ∈ R(nk+1−mink(nk))×(nk−mink(nk)). Moreover, the subsequence

T
(k)
11 , k = 0, 1, . . . , K − 1, is in PRSF (1.2) with eigenvalues called the core charac-

teristic values of the sequence Ak and the matrices in the subsequence T
(k)
22 , k =

0, 1, . . . , K − 1, are upper trapezoidal. For EPRSF, the quasi-triangular matrix
can occur at any position in the sequence Tk. However, to simplify the reduction
to extended periodic Hessenberg form it is normally placed at position j, where
nj+1 = mink(nk), i.e., in the matrix Tj which has the smallest row dimension in
the sequence [24]. For Tj, j ∈ [0, K − 1], to have a trapezoidal block T

(j)
22 , it must

hold that nj , nj+1 > mink(nk). The EPRSF is motivated by the increasing interest
in discrete-time periodic systems of the form

xk+1 = Akxk + Bkuk

yk = Ckxk + Dkuk,
(1.4)

where the matrices Ak ∈ Rnk+1×nk , Bk ∈ Rnk+1×m, Ck ∈ Rr×nk and Dk ∈ Rr×m are
periodic with periodicity K ≥ 1. The state transition matrix of the system (1.4) is
defined as the nj × ni matrix ΦA(j, i) = Aj−1Aj−2 . . . Ai, where ΦA(i, i) = Ini . The
state transition matrix over one whole period ΦA(j + K, j) ∈ Rnj×nj is called the
monodromy matrix of (1.4) at time j and its eigenvalues are called the characteristic
multipliers at time j. All t nonzero and (mink(nk)− t) zero characteristic multipliers
belong to the set of core characteristic values. One important issue is how to re-
order the eigenvalues of the monodromy matrix without evaluating the corresponding
product. Evaluating the product is both costly and may lead to a significant loss of
accuracy [5], especially in the eigenvalues of small magnitude.

Eigenvalue reordering in the real Schur form was investigated in [2, 8, 7], and
for the generalized Schur form of a regular matrix pencil A − λB in [14, 16]. Re-
ordering of eigenvalues in PRSF and related problems have also been considered, see,
e.g., [5] where the approach is based on applying Givens rotations on explicitly formed
products of small (2 × 2, 3 × 3 or 4 × 4) matrix sequences, and [6] for a discussion
on swapping 1 × 1 blocks by propagating orthogonal transformations through 2 × 2
sequences. In this paper, we present a direct swapping algorithm for doing eigenvalue
reordering in a product of a K-periodic matrix sequence in EPRSF for K ≥ 2 without
evaluating any part of the matrix product. Our direct algorithm relies on orthogo-
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nal transformations only and extends earlier work on direct eigenvalue reordering of
matrices and matrix pencils to products of matrices.

The rest of this paper is organized as follows. In Section 2, we settle some im-
portant notation and definitions. In Section 3, we discuss reordering of two diagonal
blocks (leaving the eigenvalues invariant) by periodic orthogonal transformations, and
in Section 4, we present our direct periodic reordering algorithm. Next, we discuss the
numerical solution of the associated periodic Sylvester equation (PSE) in Section 5.
An error analysis of the direct periodic swapping algorithm is presented in Section 6.
Some numerical examples are presented and discussed in Section 7, and finally, we
give some concluding remarks in Section 8.

2. Notation and definitions. We introduce some notation to simplify the pre-
sentation that follows. Let In denote the identity matrix of order n. Let M+ denote
the pseudo-inverse (see, e.g., [9]) of a matrix M . Let σ(M) and λ(M) denote the
sets of the singular values and the eigenvalues of the matrix M , respectively. Let
A ⊗ B denote the Kronecker product of two matrices, defined as the matrix with its
(i, j)-block element as aijB. Let vec(A) denote a vector representation of an m × n
matrix A with the columns of A stacked on top of each other in the order 1, 2, . . . , n.
Let ‖A‖F denote the Frobenius matrix norm defined as ‖A‖F =

√
trace(AT A). We

define the periodic addition operator ⊕ such that a ⊕ b = (a + b) mod K, where K

denotes the periodicity. We use the product operator
∏j

k=i Bk to denote a product
BiBi−1 · · ·Bj+1Bj , with the convention that

∏j
k=i Bk = I for i < j.

Each K-periodic matrix sequence Ak is associated with a matrix tuple Ā =
(AK−1, AK−2, . . . , A1, A0) [4]. The vector tuple ū = (uK−1, uK−2, · · · , u1, u0), with
uk �= 0, is called a right eigenvector of the tuple Ā corresponding to the eigenvalue λ
if there exist scalars αk, possibly complex, such that the relations

Akuk = αkuk⊕1, k = 0, 1, . . . , K − 1,

λ :=
∏0

k=K−1 αk
(2.1)

hold with uK = u0. A left eigenvector v̄ of the tuple Ā corresponding to λ is defined
similarly

vH
k⊕1Ak = βkvH

k , k = 0, 1, . . . , K − 1,

λ :=
∏0

k=K−1 βk,
(2.2)

where vk �= 0, and βk are (possibly complex) scalars for k = 0, 1, . . . , K−1. If ū and v̄
are unit-norm representations of the right and left eigenvectors corresponding to the
simple eigenvalue λ of Ā, respectively, the numbers

κk ≡ |vH
k uk| > 0,(2.3)

are reciprocal condition numbers of the eigenvalue (characteristic multiplier at time
k) λ of ΦA(K + k, k).

Without loss of generality, we assume that p < mink (nk) is specified such that no
2× 2 block corresponding to a complex conjugate pair of eigenvalues is positioned at
rows (and columns) p and p+1 of ΦT (K, 0). Given such a p and with Zk and Tk from
(1.3), the leading p columns of each Zk span an invariant subspace for ΦT (K + k, k)
for k = 0, 1, . . . , K − 1. As a whole, the space spanned by the first p columns of each
matrix in the matrix tuple Z̄ is called a right periodic deflating subspace of the tuple
Ā corresponding to the p eigenvalues located in the upper-leftmost part of ΦT (K, 0).
In general, ΦT (K, 0)ij denotes the (i, j)-block of the matrix product ΦT (K, 0).
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3. Reordering diagonal blocks in a product of matrices in EPRSF by
orthogonal transformations. Consider the K-periodic (or K-cyclic) matrix se-
quences Ak ∈ Rnk⊕1×nk , Tk ∈ Rnk⊕1×nk and Zk ∈ Rnk×nk , k = 0, 1, . . . , K − 1,
such that Ak is a general matrix, Tk is in EPRSF and Zk is the corresponding or-
thogonal transformation, as in (1.3). Then the eigenvalues of the product ΦT (K, 0) =
TK−1TK−2 . . . T1T0 ∈ Rn0×n0 are diagonal blocks of size 1×1 (real) and 2×2 (complex
conjugate pairs) of ΦT (K, 0).

Assume that each Tk, k = 0, 1, . . . , K − 1 is partitioned as

Tk =

⎡
⎢⎢⎢⎣

T
(k)
11 � � �

0 T
(k)
22 � �

0 0 T
(k)
33 �

0 0 0 T
(k)
44

⎤
⎥⎥⎥⎦ ,(3.1)

where T
(k)
11 ∈ Rp1×p1 , T

(k)
22 ∈ Rp2×p2 , T

(k)
33 ∈ Rp3×p3 and T

(k)
44 ∈ R(nk⊕1−p)×(nk−p),

k = 0, 1, . . . , K − 1 and p = p1 + p2 + p3. Notice that ΦT (K, 0) can be partitioned
conformally such that

ΦT (K, 0)ii = T
(K−1)
ii T

(K−2)
ii . . . T

(1)
ii T

(0)
ii , i = 1, . . . , 4.(3.2)

Assume for a moment that there exists a K-cyclic orthogonal matrix sequence
Qk, k = 0, 1, . . . , K − 1, such that we can form the cyclic transformation

QT
k⊕1

[
T

(k)
22 �

0 T
(k)
33

]
Qk =

[
T̂

(k)
22 �

0 T̂
(k)
33

]
(3.3)

and λ(ΦT̂ (K, 0)22) = λ(ΦT (K, 0)33), λ(ΦT̂ (K, 0)33) = λ(ΦT (K, 0)22). In other words,
this cyclic transformation swaps the eigenvalues of the (2, 2)-block and the (3, 3)-block
of the matrix product ΦT (K, 0). Apparently, each matrix in the sequence Qk has order
p2 + p3. Then the reordered EPRSF of the sequence Ak is the sequence T̂k, where

T̂k =

⎡
⎣ Ip1 0 0

0 QT
k⊕1 0

0 0 Ip4

⎤
⎦

︸ ︷︷ ︸
Q̂T

k⊕1

⎡
⎢⎢⎢⎣

T
(k)
11 � � �

0 T
(k)
22 � �

0 0 T
(k)
33 �

0 0 0 T
(k)
44

⎤
⎥⎥⎥⎦

⎡
⎣ Ip1 0 0

0 Qk 0
0 0 Ip4

⎤
⎦

︸ ︷︷ ︸
Q̂k

(3.4)
= Q̂T

k⊕1TkQ̂k = Q̂T
k⊕1Z

T
k⊕1AkZkQ̂k = ẐT

k⊕1AkẐk,

with the associated K-cyclic orthogonal sequence Ẑk = ZkQ̂k, k = 0, 1, . . . , K − 1.
The first p1 + p3 columns of Ẑ0 span an orthonormal basis for the invariant subspace
of ΦA(K, 0) associated with the p1 + p3 first eigenvalues in the upper left part of the
product ΦT̂ (K, 0). In addition, the first p1+p3 columns of each transformation matrix
Ẑk in the tuple (ẐK−1, ẐK−2, . . . , Ẑ1, Ẑ0) span an orthonormal basis for the periodic
deflating subspace of the tuple Ā associated with the same p1 + p3 first eigenvalues in
ΦT̂ (K, 0).
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4. A direct algorithm for periodic diagonal block reordering. Without
loss of generality, we assume that Tk in (3.1) is square, i.e., the sequence Tk is in
PRSF, and partitioned as

Tk =

[
T

(k)
11 T

(k)
12

0 T
(k)
22

]
, k = 0, 1, . . . , K − 1,(4.1)

and that we want to swap the blocks T
(k)
11 ∈ Rp1×p1 and T

(k)
22 ∈ Rp2×p2 . Throughout

the paper we assume that ΦT (K, 0)11 and ΦT (K, 0)22 have no eigenvalues in common,
otherwise, the diagonal blocks need not be swapped. Define the K-cyclic matrix
sequence Xk as

Xk ≡
[

Ip1 Xk

0 Ip2

]
,(4.2)

where Xk ∈ Rp1×p2 , k = 0, 1, . . . , K − 1. The key observation is that the cyclic
transformation

X−1
k⊕1

[
T

(k)
11 T

(k)
12

0 T
(k)
22

]
Xk =

[
T

(k)
11 T

(k)
12 + T

(k)
11 Xk − Xk⊕1T

(k)
22

0 T
(k)
22

]
(4.3)

block-diagonalizes Tk, k = 0, 1, . . . , K − 1, if and only if the sequence Xk satisfies the
periodic Sylvester equation (PSE)

T
(k)
11 Xk − Xk⊕1T

(k)
22 = −T

(k)
12 , k = 0, 1, . . . , K − 1.(4.4)

Replacing Ip2 in X0 (4.2) by a p2 × p2 zero block results in a spectral projector
(e.g., see [22]) associated with the matrix product ΦT (K, 0) that projects onto the
spectrum of ΦT (K, 0)11. We refer to the matrix X0 as the generator matrix for the
periodic reordering of the product ΦT (K, 0).

Define the permutation matrices

Pl =
[

0 Ip2

Ip1 0

]
, Pr =

[
0 Ip1

Ip2 0

]
,

and observe that PlPr = PrPl = Ip1+p2 . The similarity transformation

PlX−1
0 (TK−1TK−2 . . . T1T0)X0Pr

= PlX−1
0︸ ︷︷ ︸

S−1
0

TK−1 XK−1Pr︸ ︷︷ ︸
SK−1

PlX−1
K−1︸ ︷︷ ︸

S−1
K−1

TK−2 XK−2Pr︸ ︷︷ ︸
SK−2

. . .

. . .PlX−1
2︸ ︷︷ ︸

S−1
2

T1 X1Pr︸ ︷︷ ︸
S1

PlX−1
1︸ ︷︷ ︸

S−1
1

T0 X0Pr︸ ︷︷ ︸
S0

= S−1
0 TK−1SK−1S

−1
K−1TK−2SK−2 . . . S−1

2 T1S1S
−1
1 T0S0

=

[
T

(K−1)
22 0

0 T
(K−1)
11

]
. . .

[
T

(1)
22 0
0 T

(1)
11

][
T

(0)
22 0
0 T

(0)
11

]
,
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performs the wanted swapping of the diagonal blocks by the non-orthogonal sequence

Sk = XkPr =
[

Xk Ip1

Ip2 0

]
, k = 0, 1, . . . , K − 1.

Since the first p2 columns of each Sk are linearly independent there exist orthog-
onal matrices Qk of order p1 + p2 such that

Dk ≡
[

Xk

Ip2

]
= Qk

[
Rk

0

]
,(4.5)

where Rk of size p2 × p2 is upper triangular and non-singular, k = 0, 1, . . . , K − 1. By
partitioning Qk conformally with Sk, we observe that

QT
k Sk =

[
Rk Q

(k)
11

T

0 Q
(k)
12

T

]
, S−1

k Qk =

[
R−1

k −R−1
k Q

(k)
11

T
Q

(k)
12

−T

0 Q
(k)
12

−T

]
.

An orthonormal similarity transformation of ΦT (K, 0) can now be written as

QT
0 (TK−1TK−2 . . . T1T0)Q0 = QT

0 TK−1QK−1Q
T
K−1TK−2QK−2 . . . QT

2 T1Q1Q
T
1 T0Q0

= QT
0 S0

[
T

(K−1)
11 0

0 T
(K−1)
22

]
S−1

K−1QK−1Q
T
K−1SK−1

[
T

(K−2)
11 0

0 T
(K−2)
22

]
S−1

K−1QK−2 . . .

. . .QT
2 S2

[
T

(1)
11 0
0 T

(1)
22

]
S−1

1 Q1Q
T
1 S1

[
T

(0)
11 0
0 T

(0)
22

]
S−1

0 Q0 = T̂K−1T̂K−2 . . . T̂1T̂0,

where

T̂k =

[
T̂

(k)
11 T̂

(k)
12

0 T̂
(k)
22

]

and ⎧⎪⎪⎨
⎪⎪⎩

T̂
(k)
11 = Rk⊕1T

(k)
22 R−1

k

T̂
(k)
22 = Q

(k⊕1)
12

T
T

(k)
11 Q

(k)
12

−T

T̂
(k)
12 = −Rk⊕1T

(k)
22 R−1

k Q
(k)
11

T
Q

(k)
12

−T
+ Q

(k⊕1)
11

T
T

(k)
11 Q

(k)
12

−T

,(4.6)

for k = 0, 1, . . . , K − 1. Thus, the orthogonal sequence Qk from (4.5) performs the
required reordering of the diagonal blocks. Observe that the sequences T̂

(k)
11 and T̂

(k)
22

in (4.6) may not be in PRSF and might have to be further transformed after periodic
reordering by additional orthogonal transformations to get the sequence T̂k in PRSF.

We summarize our direct algorithm for periodic eigenvalue reordering as follows:
Step 1 Solve for the sequence Xk, k = 0, 1, . . . , K − 1, in the PSE

T
(k)
11 Xk − Xk⊕1T

(k)
22 = −T

(k)
12 , k = 0, 1, . . . , K − 1.

Step 2 Compute K orthogonal matrices Qk such that[
Xk

Ip2

]
= Qk

[
Rk

0

]
, k = 0, 1, . . . , K − 1.
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Step 3 Perform reordering by the cyclic transformations

T̂k = QT
k⊕1TkQk, k = 0, 1, . . . , K − 1.(4.7)

Step 4 Restore the subsequences T̂
(k)
11 and T̂

(k)
22 to periodic real Schur form using

K-cyclic orthogonal transformations.

Step 4 is conducted by computing PRSFs of the two K-periodic subsequences T̂
(k)
11

and T̂
(k)
22 . Care must be taken to assure that each of the two quasi-triangular matrices

in the PRSFs appear in the same position of the T̂k sequence, say T̂i.
In the presence of rounding errors, the most critical step in the reordering process

is to solve the periodic Sylvester equation. In analogy to eigenvalue swapping in the
real (generalized) Schur form, a small sep-function (defined in Equation (5.6) of the
next section) may ruin backward stability and thus forces us to perform the swapping
tentatively to guarantee backward stability [2, 14, 16]. See also Kressner [17] for a
brief discussion on direct swapping methods for PRSF.

The direct algorithm extends directly to EPRSF by considering reordering of the
core characteristic values (see Section 2) of the sequence Tk.

5. The periodic Sylvester equation. By basic algebraic manipulations the
PSE in (4.4) can be reduced into K independent triangular continuous-time Sylvester
equations (SYCT) of the form

FkXk − XkGk = Ck, k = 0, 1, . . . , K − 1,(5.1)

where

Fk = ΦT (k, 0)11ΦT (K, k)11, Gk = ΦT (k, 0)22ΦT (K, k)22, k = 0, . . . , K − 1,

and Ck is a sum of combinations of blocks in the subsequences T
(i)
11 , T

(i)
22 and T

(i)
12 ,

i = 0, 1, . . . , K − 1. By applying the forward error bound for the standard Sylvester
equation [2, 13] to the periodic case, we get the following norm-wise forward error
bound for each matrix in the solution to the PSE (4.4), where X̃k is the computed
solution, Xk the exact, ρk is a small scalar and εmach is the relative machine precision:

‖Xk − X̃k‖
‖Xk‖ ≤ ρkεmach(‖Fk‖F + ‖Gk‖F )

sep(Fk, Gk)
,(5.2)

where

sep(Fk, Gk) = inf
‖Xk‖F =1

‖FkXk − XkGk‖F = σmin(Ip2 ⊗ Fk − Gk ⊗ Ip1 ).(5.3)

It is clear that all Fk have the same eigenvalues independently of k (this also holds for
Gk), but sep(Fk, Gk) may differ for different values of k since matrix multiplication
in general is not commutative. We conclude that the PSE (4.4) has a unique solution
sequence Xk, k = 0, 1, . . . , K − 1, if and only if (5.1) has a unique solution for all
k = 0, 1, . . . , K − 1, and it is well-known [3] that this holds when λ(Fk) �= λ(Gk) or
equivalently sep(Fk, Gk) > 0, for all k = 0, 1, . . . , K − 1. See also Lemma 2.1 in [4]
for a similar result.

Without going into details, the PSE in (4.4) can be solved in several ways. We can
reduce it into K single continuous-time Sylvester equations by evaluating the products
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Fk and Gk to compute Xk for all values of k. This may not be suitable for large
periods or large dimensions from accuracy considerations. In analogy with solving
the standard Sylvester equation (e.g., see [3]), we construct a matrix representation
ZPSE of the periodic Sylvester operator defined by the PSE (4.4) in terms of Kronecker
products, where

ZPSE =⎡
⎢⎢⎢⎢⎣

T
(K−1)
22

T ⊗ Ip1 Ip2 ⊗ T
(K−1)
11

Ip2 ⊗ T
(0)
11 T

(0)
22

T ⊗ Ip1

. . .
. . .

Ip2 ⊗ T
(K−2)
11 T

(K−2)
22

T ⊗ Ip1

⎤
⎥⎥⎥⎥⎦ .

(5.4)

Only the nonzero blocks of ZPSE are displayed explicitly in (5.4). Then we solve
the resulting linear system of equations ZPSEx = c, with x and c as stacked vector
representations of the matrix sequences Xk, for k = 0, 1, . . . , K − 1, and Ck, k =
K − 1, 0, 1, . . . , K − 2, respectively:

x =

⎡
⎢⎢⎣

vec(X0)
vec(X1)
· · ·
vec(XK−1)

⎤
⎥⎥⎦ , c =

⎡
⎢⎢⎣

vec(CK−1)
vec(C0)
· · ·
vec(CK−2)

⎤
⎥⎥⎦ .(5.5)

Observe that the dimension of ZPSE grows linearly with K. To exploit the structure
of the matrix ZPSE, Gaussian elimination with partial pivoting (GEPP) should be
used to the cost of O(K(p2

1p2 + p1p
2
2)) flops, possibly combined with fixed precision

iterative refinement for improved accuracy on badly scaled problems. By storing
only the block main diagonal, the block subdiagonal and the rightmost block column
vector, the storage requirement for ZPSE can be kept at 3Kp2

1p
2
2. One could employ

Gaussian elimination with complete pivoting (GECP) to solve this linear system (see,
e.g., LAPACK’s DTGSYL [16]), but that would make it difficult, if not impossible, to
exploit the sparsity structure of the problem. The complete pivoting process causes
fill-in elements, requires explicit storage of the whole matrix ZPSE and increases the
number of flops to O((Kp1p2)3).

Also in analogy with the standard Sylvester equation (e.g., see [12, 15] and (5.3)),
the conditioning of the periodic Sylvester equation is related to the sep-function

sep[PSE] = inf
‖x‖2=1

‖ZPSEx‖2 = ‖Z−1
PSE‖−1

2 = σmin(ZPSE)(5.6)

= inf
(
∑

K−1

k=0
‖Xk‖2

F
)1/2=1

(
K−1∑
k=0

‖T (k)
11 Xk − Xk⊕1T

(k)
22 ‖2

F )1/2.

The quantity sep[PSE] can be estimated at the cost of solving a few PSEs by exploiting
the estimation technique for the 1-norm of the inverse of a matrix [10, 12, 15, 16].

6. Error Analysis. In this section, we present an error analysis of the direct
reordering method presented in Section 4, where we extend the analysis from [2, 14] to
the periodic case. First we investigate the impact of the cyclic transformations (3.3)
on the individual matrices in the sequence Tk (4.1), for k = 0, 1, . . . , K − 1. Secondly,
we apply our findings to the diagonal blocks of the explicitly formed matrix product
ΦT̂ (K, 0).
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6.1. Perturbation of individual matrices under periodic reordering.
If Householder reflections are used to compute the orthogonal sequence Q̃k, k =
0, 1, . . . , K − 1, each matrix Q̃k is orthogonal up to machine precision [27] and the
stability of the direct reordering method is mainly affected by the conditioning and
accuracy of the solution to the associated periodic Sylvester equation.

Without loss of generality, we assume that p1 = p2 = 2 . Let X̃k be the computed
solution sequence to the PSE (4.4), where X̃k = Xk+∆Xk, Xk is the exact and unique
solution sequence and ∆Xk is the corresponding error matrix for k = 0, 1, . . . , K − 1.
We let

Yk ≡ T
(k)
11 X̃k − X̃k⊕1T

(k)
22 + T

(k)
12 = T

(k)
11 ∆Xk − ∆Xk⊕1T

(k)
22(6.1)

denote the residual sequence associated with the computed PSE solution sequence.
Under mild conditions (such as ‖D+

k ‖2‖∆Xk‖F < 1, where Dk is defined in (4.5))
the K QR-factorizations of (X̃k, I)T can be written as[

Xk + ∆Xk

I

]
= Dk +

[
∆Xk

0

]
= Q̃k

[
R̃k

0

]
= (Qk + ∆Qk)

[
Rk + ∆Rk

0

]
,

where ∆Qk and ∆Rk are perturbations of the orthogonal matrices Qk and the tri-
angular matrices Rk, and Q̃k = Qk + ∆Qk is orthogonal [21]. Here, ‖∆Qk‖F and
‖∆Rk‖F are essentially bounded by ‖D+

k ‖2‖∆Xk‖F , k = 0, 1, . . . , K − 1 [21, 2]. We
do not assume anything about the structure of these perturbation matrices.

Given the computed sequences X̃k and Q̃k, the following theorem shows how the
errors in these quantities propagate to the results of the direct method for reordering
two adjacent sequences of diagonal blocks in the periodic Schur form.

Theorem 6.1. Let X̃k = Xk + ∆Xk with ∆Xk �= 0 nonsingular, Q̃k, and the
residual sequence Yk (6.1) be given for k = 0, 1, . . . , K − 1. By applying the computed
sequence of transformations Q̃k from a periodic reordering of the (1,1) and (2,2) blocks
of Tk (4.1) in a cyclic transformation, we get

T̃k ≡ Q̃T
k⊕1

[
T

(k)
11 T

(k)
12

0 T
(k)
22

]
Q̃k = T̂k + Ek,(6.2)

where

T̂k =

[
T̂

(k)
11 T̂

(k)
12

0 T̂
(k)
22

]
, Ek =

[
E

(k)
11 E

(k)
12

E
(k)
21 E

(k)
22

]
,(6.3)

for k = 0, 1, . . . , K −1. Then the error matrices Ek satisfy the following norm bounds
up to first order perturbations:

‖E(k)
11 ‖2 ≤ σmax(Xk⊕1)

(1 + σ2
max(Xk⊕1))1/2

· 1
(1 + σ2

min(Xk))1/2
‖Yk‖F(6.4)

+ 2‖T̂ (k)
11 ‖2(‖D+

k ‖2‖∆Xk‖F + ‖D+
k⊕1‖2‖∆Xk⊕1‖F ),

‖E(k)
21 ‖2 ≤ 1

(1 + σ2
min(Xk⊕1))1/2

· 1
(1 + σ2

min(Xk))1/2
‖Yk‖F ,(6.5)

‖E(k)
22 ‖2 ≤ 1

(1 + σ2
min(Xk⊕1))1/2

· σmax(Xk)
(1 + σ2

max(Xk))1/2
‖Yk‖F .(6.6)
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Proof. Transform the sequence Tk with Q̃k in a cyclic transformation:

Q̃T
k⊕1TkQ̃k = (Qk⊕1 + ∆Qk⊕1)T Tk(Qk + ∆Qk)

= QT
k⊕1TkQk︸ ︷︷ ︸

T̂k

+∆QT
k⊕1TkQk + QT

k⊕1Tk∆Qk + ∆QT
k⊕1Tk∆Qk.

Let Zk = QT
k ∆Qk. From (Qk + ∆Qk)T (Qk + ∆Qk) = I we have that QT

k ∆Qk =
−∆QT

k Qk up to first order and by dropping the second order term, we get

Q̃T
k⊕1TkQ̃k = T̂k + ∆QT

k⊕1Qk⊕1 QT
k⊕1TkQk︸ ︷︷ ︸

T̂k

+ QT
k⊕1TkQk︸ ︷︷ ︸

T̂k

QT
k ∆Qk

= T̂k + T̂kQT
k ∆Qk − QT

k⊕1∆Qk⊕1T̂k = T̂k + T̂kZk − Zk⊕1T̂k,

for k = 0, 1, . . . , K − 1.
Let Ek denote the error matrix corresponding to the kth cyclic transformation

(4.7), i.e., T̃k = T̂k + Ek. Partition Zk, k = 0, 1, . . . , K − 1 conformally with T̂k and
observe that

Q̃T
k⊕1TkQ̃k = T̂k + Ek =

[
T̂

(k)
11 T̂

(k)
12

0 T̂
(k)
22

]
+

[
E

(k)
11 E

(k)
12

E
(k)
21 E

(k)
22

]
,

where [
E

(k)
11 E

(k)
12

E
(k)
21 E

(k)
22

]
= T̂kZk − Zk⊕1T̂k

=

[
T̂

(k)
11 T̂

(k)
12

0 T̂
(k)
22

][
Z

(k)
11 Z

(k)
12

Z
(k)
21 Z

(k)
22

]
−

[
Z

(k⊕1)
11 Z

(k⊕1)
12

Z
(k⊕1)
21 Z

(k⊕1)
22

][
T̂

(k)
11 T̂

(k)
12

0 T̂
(k)
22

]

i.e.,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

E
(k)
11 = T̂

(k)
11 Z

(k)
11 + T̂

(k)
12 Z

(k)
21 − Z

(k⊕1)
11 T̂

(k)
11

E
(k)
12 = T̂

(k)
11 Z

(k)
12 + T̂

(k)
12 Z

(k)
22 − Z

(k⊕1)
11 T̂

(k)
12 − Z

(k⊕1)
12 T̂

(k)
22

E
(k)
21 = T̂

(k)
22 Z

(k)
21 − Z

(k⊕1)
21 T̂

(k)
11

E
(k)
22 = T̂

(k)
22 Z

(k)
22 − Z

(k⊕1)
22 T̂

(k)
22 − Z

(k⊕1)
21 T̂

(k)
12 .

(6.7)

As we will show below, E
(k)
22 and E

(k)
11 perturb the eigenvalues of the matrix product

ΦA(K, 0) directly, but do not affect stability (the error in block (2, 1) in the matrix
Q̃T

k⊕1TkQ̃k). E
(k)
21 is critical since it affects both the stability of the reordering and

the eigenvalues. E
(k)
12 is of minor interest since it does not perturb the eigenvalues

explicitly nor affects the stability. The task is now to derive norm bounds for the
error matrix blocks E

(k)
11 , E

(k)
21 and E

(k)
22 .

By assuming that ∆Xk, k = 0, 1, . . . , K − 1, are non-singular and applying
the analysis of the QR-factorization from [2] to each of our K independent QR-
factorizations, we get

Z
(k)
11 = Q

(k)
11

T
∆XkR−1

k − ∆RkR−1
k ,(6.8)
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Z
(k)
21 = Q

(k)
12

T
∆XkR−1

k ,(6.9)

Z
(k)
22 = −Q

(k)
12

T
∆XkR−1

k Q
(k)
11

T
Q

(k)
12

−T
.(6.10)

Using Equations (6.8), (6.9), (6.10), and (4.6), the error matrix blocks E
(k)
11 , E

(k)
21 and

E
(k)
22 in (6.7) boil down to

E
(k)
11 = T̂

(k)
11 Z

(k)
11 + T̂

(k)
12 Z

(k)
21 − Z

(k⊕1)
11 T̂

(k)
11

= Q
(k⊕1)
11

T
(T (k)

11 ∆Xk − ∆Xk⊕1T
(k)
22 )R−1

k − T̂
(k)
11 ∆RkR−1

k + ∆Rk⊕1R
−1
k⊕1T̂

(k)
11 ,

E
(k)
21 = T̂

(k)
22 Z

(k)
21 − Z

(k⊕1)
21 T̂

(k)
11

= Q
(k⊕1)
12

T
(T (k)

11 ∆Xk − ∆Xk⊕1T
(k)
22 )R−1

k ,

E
(k)
22 = T̂

(k)
22 Z

(k)
22 − Zk⊕1

22 T̂
(k)
22 − Z

(k⊕1)
21 T̂

(k)
12

= −Q
(k⊕1)
12

T
(T (k)

11 ∆Xk − ∆Xk⊕1T
(k)
22 )R−1

k Q
(k)
11

T
Q

(k)
12

−T
,

as first order results. Since Yk = T
(k)
11 ∆Xk − ∆Xk⊕1T

(k)
22 , the E

(k)
ij blocks above can

be expressed as⎧⎪⎪⎨
⎪⎪⎩

E
(k)
11 = Q

(k⊕1)
11

T
YkR−1

k − T̂
(k)
11 ∆RkR−1

k + ∆Rk⊕1R
−1
k⊕1T̂

(k)
11

E
(k)
21 = Q

(k⊕1)
12

T
YkR−1

k

E
(k)
22 = −Q

(k⊕1)
12

T
YkR−1

k Q
(k)
11

T
Q

(k)
12

−T
.

(6.11)

We see that E
(k)
22 , E

(k)
21 and E

(k)
11 are essentially related to the K residual matrices Yk

of the associated periodic Sylvester equation and the blocks Rk, Q
(k)
11 and Q

(k)
12 from

the K QR-factorizations.
From (4.5) we have that

Q
(k)
21 = R−1

k

and

RT
k Rk = I + XT

k Xk,

which gives

σ2(Rk) = λ(RT
k Rk) = λ(I + XT

k Xk) = 1 + λ(XT
k Xk) = 1 + σ2(Xk).

By the above argument we get

‖Q(k)
21 ‖2 = ‖R−1

k ‖2 =
1

σmin(Rk)
=

1
(1 + σ2

min(Xk))1/2
.

Further, from [21] we have

‖∆RkR−1
k ‖F ≤ 2‖D+

k ‖2‖∆Xk‖F ,

and by the CS-decomposition of Q (see, e.g., [9, 22]) we get the following norm
relations

‖Q(k)
21 ‖2 = ‖Q(k)

12 ‖2, ‖Q(k)
11 ‖2 = ‖Q(k)

22 ‖2.
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Now by combining these facts with (6.11) and applying the product and triangle
inequalities for norms, we obtain the bounds of the theorem.

Remark 1: For K = 1 and by the inequality (1+σ2
min(Xk))−1/2 ≥ (1+σ2

max(Xk))−1/2,
the norm bounds of Theorem 6.1 can be further bounded from above to achieve

‖E11‖2 ≤ σmax(X)
(1 + σ2

min(X))
‖Y ‖F + 4‖T̂11‖2‖D+‖2‖∆X‖F ,(6.12)

‖E21‖2 ≤ 1
(1 + σ2

min(X))
‖Y ‖F ,(6.13)

‖E22‖2 ≤ σmax(X)
(1 + σ2

min(X))
‖Y ‖F ,(6.14)

which are the norm bounds from the main theorem of [2] on the perturbation of the
eigenvalues under standard eigenvalue reordering in the real Schur form.

Remark 2: The second term of Equation (6.4) can be combined with Equations
(5.1) and (5.2), and by using that ‖D+

k ‖2 = σmin(Rk)−1 = (1 + σ2
min(Xk))−1/2, we

get

2‖T̂ (k)
11 ‖2(‖D+

k ‖2‖∆Xk‖F + ‖D+
k⊕1‖2‖∆Xk⊕1‖F ) ≤

≤ 2‖T̂ (k)
11 ‖2ρεmach(

‖Xk‖F (‖Fk‖F + ‖Gk‖F )
(1 + σ2

min(Xk))1/2sep(Fk, Gk)
+

+ ‖Xk⊕1‖F (‖Fk⊕1‖F + ‖Gk⊕1‖F )
(1 + σ2

min(Xk⊕1))1/2sep(Fk⊕1, Gk⊕1)
),

(6.15)

where ρ = max(ρk, ρk⊕1). However, the upper bound (6.15) is mostly of theoretical
interest since it calls for explicit calculation of Fk and Gk and sep(Fk, Gk).

Remark 3: Numerical experiments show that iterative refinement may improve on
the computed solution Xk, especially for badly scaled problems, but may not improve
on the residual sequence Yk. See also [2] for a similar observation.

6.2. Perturbation of matrix products under periodic reordering. In this
section, we investigate how the errors in the invidual matrices after a periodic re-
ordering of two adjacent sequences of diagonal blocks in Tk propagate into the matrix
product ΦT (K, 0) = TK−1TK−2 . . . T1T0.

We present a general result in the following theorem.
Theorem 6.2. Let Tk be a matrix sequence in PRSF with periodicity K and

partitioned as

Tk =

[
T

(k)
11 T

(k)
12

0 T
(k)
22

]
.

Let the sequence Q̃k, k = 0, 1, . . . , K − 1, be the computed orthogonal cyclic transfor-
mation matrices defining the periodic eigenvalue reordering of the product ΦT (K, 0)
as in (6.2). In addition, let the sequences T̃k, T̂k, and Ek be defined as in (6.2)–(6.3)
of Theorem 6.1. Then, we have

ΦT̃ (K, 0) =
0∏

k=K−1

Q̃T
k⊕1TkQ̃k = ΦT̂ (K, 0) + E,(6.16)
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where ΦT̂ (K, 0) = QT
0 ΦT (K, 0)Q0 is the exact product of the reordered matrices and

E is the corresponding error matrix. Assuming that E is partitioned conformally with
Tk, we have the bounds

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖E11‖2 ≤ ∑K−1
k=0 ((

∏k+1
j=K−1 ‖T̂ (j)

11 ‖2)‖E(k)
11 ‖2

+ (
∑k+1

j=K−1 ‖ϕ(k,j)
1 ‖2)‖E(k)

21 ‖2)(
∏0

j=k−1 ‖T̂ (j)
11 ‖2)

‖E21‖2 ≤ ∑K−1
k=0 (

∏k+1
j=K−1 ‖T̂ (j)

22 ‖2)‖E(k)
21 ‖2(

∏0
j=k−1 ‖T̂ (j)

11 ‖)

‖E22‖2 ≤ ∑K−1
k=0 (

∏k+1
j=K−1 ‖T̂ (j)

22 ‖2)(‖E(k)
21 ‖2

∑0
j=k−1 ‖ϕ(k,j)

2 ‖2

+ ‖E(k)
22 ‖2(

∏0
j=k−1 ‖T̂ (j)

22 ‖2))

,(6.17)

where

‖ϕ(k,j)
1 ‖2 ≤ ‖T̂ (j)

12 ‖2

j+1∏
l=K−1

‖T̂ (l)
11 ‖2

k+1∏
l=j−1

‖T̂ (l)
22 )‖2(6.18)

‖ϕ(k,j)
2 ‖2 ≤ ‖T̂ (j)

12 ‖2

j+1∏
l=i−1

‖T̂ (l)
11 ‖2

0∏
l=j−1

‖T̂ (l)
22 ‖2(6.19)

up to first order perturbations.
Proof. Up to first order perturbations, we have

ΦT̃ (K, 0) =
∏0

k=K−1 Q̃T
k⊕1TkQ̃k

= ΦT̂ (K, 0) +
∑K−1

k=0 ΦT̂ (K, k + 1)EkΦT̂ (k, 0) = ΦT̂ (K, 0) + E.

(6.20)

The error matrix E can be expressed in block partitioned form:

E =
∑K−1

k=0 ΦT̂ (K, k + 1)EkΦT̂ (k, 0)

=
∑K−1

k=0

[
ΦT̂ (K, k + 1)11

∑k+1
j=K−1 ϕ

(k,j)
1

0 ΦT̂ (K, k + 1)22

]
·
[

E
(k)
11 E

(k)
12

E
(k)
21 E

(k)
22

]

·
[

ΦT̂ (k, 0)11
∑0

j=k−1 ϕ
(k,j)
2

0 ΦT̂ (k, 0)22

]
=

∑K−1
i=0

[
E(k)

11 E(k)
12

E(k)
21 E(k)

22

]
,

(6.21)

where

E(k)
11 = (ΦT̂ (K, k + 1)11E

(k)
11 +

∑k+1
j=K−1 ϕ

(k,j)
1 E

(k)
21 )ΦT̂ (k, 0)11

E(k)
12 = (ΦT̂ (K, k + 1)11E

(k)
11 +

∑k+1
j=K−1 ϕ

(k,j)
1 E

(k)
21 )

∑0
j=k−1 ϕ

(k,j)
2 +

+ (ΦT̂ (K, k + 1)11E
(k)
12 +

∑k+1
j=K−1 ϕ

(k,j)
1 E

(k)
22 )ΦT̂ (k, 0)22

E(k)
21 = ΦT̂ (K, k + 1)22E

(k)
21 ΦT̂ (k, 0)11

E(k)
22 = ΦT̂ (K, k + 1)22(E

(k)
21

∑0
j=k−1 ϕ

(k,j)
2 + E

(k)
22 ΦT̂ (k, 0)22)



14 R. GRANAT AND B. KÅGSTRÖM

and

ϕ
(k,j)
1 = ΦT̂ (K, j + 1)11T̂

(j)
12 ΦT̂ (j, k + 1)22

ϕ
(k,j)
2 = ΦT̂ (k, j + 1)11T̂

(j)
12 ΦT̂ (j, 0)22.

By applying the triangle inequality and the submultiplicativity of norms to these
results, the bounds in the theorem follow.

For illustration, we display the explicit results of Theorem 6.2 for two simple cases
in the following Corollary.

Corollary 6.3. Under the assumptions of Theorem 6.2, and the periodicity
K = 2, norm bounds for blocks of the error matrix E (6.16) can up to first order
perturbations be expressed as

‖E11‖2 ≤ ‖T̂ (1)
11 ‖2‖E(0)

11 ‖2 + ‖T̂ (1)
12 ‖2‖E(0)

21 ‖2 + ‖T̂ (0)
11 ‖2‖E(1)

11 ‖2

‖E21‖2 ≤ ‖T̂ (1)
22 ‖2‖E(0)

21 ‖2 + ‖T̂ (0)
11 ‖2‖E(1)

21 ‖2

‖E22‖2 ≤ ‖T̂ (1)
22 ‖2‖E(0)

22 ‖2 + ‖T̂ (0)
12 ‖2‖E(1)

21 ‖2 + ‖T̂ (0)
22 ‖2‖E(1)

22 ‖2

.

For periodicity K = 3, we have the bounds

‖E11‖2 ≤ ‖T̂ (2)
11 ‖2‖T̂ (1)

11 ‖2‖E(0)
11 ‖2 + (‖T̂ (2)

11 ‖2‖T̂ (1)
12 ‖2 + ‖T̂ (2)

12 ‖2‖T̂ (1)
22 ‖2)‖E(0)

21 ‖2+
+‖T̂ (2)

11 ‖2‖T̂ (0)
11 ‖2‖E(1)

11 ‖2 + ‖T̂ (2)
12 ‖2‖T̂ (0)

11 ‖2‖E(1)
21 ‖2 + ‖T̂ (1)

11 ‖2‖T̂ (0)
11 ‖2‖E(2)

11 ‖2

‖E21‖2 ≤ ‖T̂ (2)
22 ‖2‖T̂ (1)

22 ‖2‖E(0)
21 ‖2 + ‖T̂ (2)

22 ‖2‖T̂ (0)
11 ‖2‖E(1)

21 ‖2 + ‖T̂ (1)
11 ‖2‖T̂ (0)

11 ‖2‖E(2)
21 ‖2

‖E22‖2 ≤ ‖T̂ (2)
22 ‖2‖T̂ (1)

22 ‖2‖E(0)
22 ‖2 + ‖T̂ (2)

22 ‖2‖T̂ (0)
12 ‖2‖E(1)

21 ‖2 + ‖T̂ (2)
22 ‖2‖T̂ (0)

22 ‖2‖E(1)
22 ‖2+

+(‖T̂ (1)
11 ‖2‖T̂ (0)

12 ‖2 + ‖T̂ (1)
12 ‖2‖T̂ (0)

22 ‖2)‖E(2)
21 ‖2 + ‖T̂ (1)

22 ‖2‖T̂ (0)
22 ‖2‖E(2)

22 ‖2

up to first order perturbations.
We remark that the analysis in Theorem 6.2 and Corollary 6.3 assumes that

the involved matrix products and sums are computed exactly. For a rounding error
analysis regarding matrix products and sums, see, e.g., [13].

Theorems 6.1 and 6.2 can be combined to produce computable bounds for the
perturbations of the diagonal blocks of ΦT̃ (K, 0) under periodic eigenvalue reordering.
We can also apply known perturbation results for the standard eigenvalue problem [22]
and the periodic eigenvalue problem [18, 4] to the submatrix products ΦT̃ (K, 0)11 and
ΦT̃ (K, 0)22. This is a matter of further investigation.

7. Computational Experiments. We demonstrate the stability and reliabil-
ity of the direct reordering method by considering some numerical examples. The
test examples span from well-conditioned to ill-conditioned problems, including ma-
trix sequences with fixed and time-varying dimensions, and sequences of small and
large periodicity. In the following, we present results for a representative selection of
problems, where, except for one example, two complex conjugate eigenvalue pairs of
a periodic real sequence Ak are reordered (p1 = p2 = 2). The associated PSEs of our
direct periodic reordering method are solved by applying Gaussian elimination with
partial pivoting to ZPSEx = c and utilizing the structure of ZPSE in (5.4). All exper-
iments are carried out in double precision (εmach ≈ 2.2 × 10−16) on an UltraSparc II
(450 Mhz) workstation.



DIRECT EIGENVALUE REORDERING IN A PRODUCT OF MATRICES IN EPRSF 15

Examples 1–2 below are constructed as follows. We first specify K, nk, k =
0, 1, . . . , K − 1, and mink(nk) eigenvalues or K ·mink(nk) diagonal and mink(nk)− 1
subdiagonal elements. Then a random sequence Tk as in (1.3) is generated with 1× 1
and 2 × 2 diagonal blocks corresponding to specified eigenvalues or diagonal, sub-
and superdiagonal entries. Finally, orthogonal matrices Zk, k = 0, 1, . . . , K − 1, are
constructed from QR-factorizing K uniformly distributed random nk × nk matrices,
which are applied in a K-cyclic orthogonal transformation of Tk to get Ak. Optionally,
the sequence Ak is scaled so that all ||Ak||F are of the same size (within a factor 10).
Examples 3 and 4 illustrate reordering of two periodic sequences already in PRSF.
The last example, Example 5, is from a real application.

In Table 7.1, we display the periodicity K, problem dimensions nk for k =
0, 1, . . . , K − 1, the computed value of sep[PSE], and a reciprocal condition number s
for the eigenvalues of ΦT (K, 0)11

s = 1/
√

1 + ‖X0‖2
F ,

where X0 is the generator matrix for the periodic reordering of ΦT (K, 0) (see Sec-
tion 4). The last two quantities signal the conditioning of the problems considered.

Results from periodic reordering using our direct method are presented in Table
7.2. We display the maximum relative change of the eigenvalues under the periodic
reordering

eλ = max
k

|λk − λ̃k|
|λk| , λk ∈ λ(ΦT (K, 0)).

In addition, we display five residual quantities for the computed results. These include
two stability tests used in our method, namely a weak stability test

Rweak = max
k

‖Q̃(k)
11 − XkQ̃

(k)
21 ‖F ,

and a strong stability test

Rstrong = max
k

(‖Tk − Q̃k⊕1T̃kQ̃T
k ‖F , ‖T̃k − Q̃T

k⊕1TkQ̃k‖F ),

which is the maximum residual norm associated with the cyclic transformations Q̃k

used in the reordering. Tolerances for these tests can optionally be specified. The last
three are the maximum residual norms of the (extended) periodic Schur decomposition
(1.3) before and after reordering, computed as

Reprsf = max
k

(‖Ak − Zk⊕1TkZT
k ‖F , ‖Tk − ZT

k⊕1AkZk‖F ),

and

Rreord = max
k

(‖Ak − Z̃k⊕1T̃kZ̃T
k ‖F , ‖T̃k − Z̃T

k⊕1AkZ̃k‖F ),

and a relative orthogonality check over the whole period K after periodic reordering

Rorth =
maxk(‖Ink

− Z̃T
k Z̃k‖F , ‖Ink

− Z̃T
k Z̃k‖F )

εmach
.
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Table 7.1
Problem characteristics for the examples considered. 4a and 4b refer to Example 4 with period

2 and 100, respectively.

Example K nk sep[PSE] s

1 3 4+k 6.9E-01 7.2E-01
2 120 4 4.7E-03 5.5E-01
3 10 2 9.9E+00 1.0E+00
4a 2 4 4.5E-15 1.1E-14
4b 100 4 1.3E-16 1.3E-16
5 2 4 6.2E+03 6.6E-01

For these three residual norms, the K-cyclic transformations Zk and Z̃k correspond
to Zk and Ẑk in (3.4), respectively.

The computed eigenvalues before and after the periodic reordering are presented
to full machine accuracy under each example.

Example 1. We consider a time-varying sequence with K = 3 and nk = 4 +
k, k = 0, 1, 2, and eigenvalues 1.0 ± 2.0i,−7.0 ± 0.5i. The computed eigenvalues of
the matrix product ΦT (K, 0) = T2T1T0 are

λ1 = 1.000000000000000 ± 2.000000000000000i
λ2 = −7.000000000000001 ± 5.000000000000001i.

The spectrum is well separated. After the periodic reordering of the blocks we ob-
tained λ̃1 = λ2 and λ̃2 = λ1 to full accuracy.

Example 2 – satellite control [25]. We consider reordering in a 4×4 periodic
matrix sequence that describes a control system of a satellite on orbit around the
earth. The periodicity is K = 120. The eigenvalues of the sequence are

λ1 = 0.9941836588706161 ± 0.1076979685723037i
λ2 = 0.7625695885261465 ± 0.6469061930874623i.

The reordered eigenvalues are

λ̃1 = 0.7625695885261450 ± 0.6469061930874582i

λ̃2 = 0.9941836588706161 ± 0.1076979685723021i.

This application example shows that periodic reordering works fine for well-conditioned
problems with large periods as well.

Example 3. We consider reordering a sequence with K = 10, p1 = p2 = 1, and
the computed sequence in PRSF is

Tk =
[

101 t
(k)
12

0 10−1

]
, k = 0, 1, . . . , K − 1.

The computed eigenvalues of the product ΦT (K, 0) are

λ1 = 9.999999999999987× 109

λ2 = 1.000000000000013× 10−10.

After the periodic reordering we obtain

λ̃1 = 1.000000000000015× 10−10

λ̃2 = 9.999999999999989× 109.
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Reordering of 1 × 1 blocks in PRSF can be carried out by propagating a Givens
rotation through the matrix product (in practice, a perfect shift periodic QR-step),
but this process is not forward stable. For this example, the rotation approach does
not deliver one single correct digit in the reordered eigenvalues, whereas the direct
reordering method delivers an acceptable error in the eigenvalues.

Example 4. We consider a sequence already in PRSF with K = 2 and nk =
4, k = 0, 1, and eigenvalues 0.2±(1.2+10−14)i, 0.2±1.2i. The computed eigenvalues
of the matrix ΦT (K, 0) = T1T0 are

λ1 = 0.200000000000000 ± 1.200000000000001i
λ2 = 0.200000000000000 ± 1.200000000000000i.

The spectrum is not well separated. After the periodic reordering we obtained

λ̃1 = 0.200000000000000 ± 1.200000000000000i
λ̃2 = 0.200000000000000 ± 1.200000000000001i,

so the periodic reordering was perfect even though the problem has very close eigen-
values. Indeed, we obtain reordered eigenvalues to full machine accuracy for periods
up to 100.

Example 5. First, we consider a problem already in PRSF with large separation
and K = 2, nk = 4, k = 0, 1, and the eigenvalues ε

1/2
mach ± ε

1/2
mach, ε

−1/2
mach ± ε

−1/2
mach.

Moreover, the involved matrices have almost the same Frobenius norm (≈ 1.8 ×
104) but the matrices in the subsequences T

(k)
11 and T

(k)
22 have very different norms:

‖T (1)
11 ‖F ≈ 1.4×104, ‖T (2)

11 ‖F ≈ 1.4×104, ‖T (1)
22 ‖F ≈ 7.0×10−12, ‖T (2)

22 ‖F ≈ 8.6×103.
The computed eigenvalues of the product ΦT (K, 0) are

λ1 = 6.710886400000000× 107 ± 6.710886400000003× 107i
λ2 = 1.490116119384766× 10−8 ± 1.490116119384766× 10−8i.

After the periodic reordering without diagonal scaling we obtain

λ̃1 = 1.168840447839719× 10−8 ± 9.309493732240201× 10−9i

λ̃2 = 6.710886400000001× 107 ± 6.710886400000000× 107i.

The problem is well-conditioned in the sense of sep[PSE], the norm of the generator
matrix (see s in Table 7.2) and the reordering passes the stability tests, but since
the eigenvalues differ almost 16 orders of magnitude the relative error in the smallest
eigenvalues become very large due to the finite precision arithmetic.

Next, we consider the same problem as above, but now we perform diagonal
scaling T2T1 = T2D2D

−1
2 T1 before periodic reordering such that the blocks T

(1)
22 and

T
(2)
22 have about the same norm. After the periodic reordering with diagonal scaling

we obtain

λ̃1 = 1.490116120748016× 10−8 ± 1.490116125160257× 10−8i

λ̃2 = 6.710886400000000× 107 ± 6.710886400000001× 107i.

which is quite an improvement (8 orders of magnitude) compared to the results with-
out scaling. Not surprisingly, periodic reordering is sensitive to large differences in
the norms within the subsequences T

(k)
11 and T

(k)
22 .
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Table 7.2
Computational results for periodic reordering. 4a and 4b refer to Example 4 with period K = 2

and 100, respectively. 5a and 5b refer to Example 5 without scaling and with scaling.

Example eλ Rweak Rstrong Reprsf Rreord Rorth

1 4.6E-16 2.2E-16 1.6E-15 4.7E-15 5.6E-15 1.3E+01
2 1.6E-15 2.9E-16 1.8E-15 9.0E-15 9.8E-15 2.0E+01
3 1.4E-15 1.9E-16 8.4E-15 7.3E-15 1.0E-14 4.1E+00
4a 3.6E-16 2.5E-16 1.4E-15 0 1.2E-15 2.1E+00
4b 3.7E-16 2.3E-16 3.2E-18 0 1.9E-15 3.6E+00
5a 2.2E-01 1.2E-16 6.6E-12 0 5.8E-12 3.3E+00
5b 2.0E-09 2.3E-16 4.3E-12 0 5.6E-12 3.3E+00

8. Some concluding remarks. In this paper, we have presented a direct method
for eigenvalue reordering in the extended periodic real Schur form of a K-periodic
matrix sequence. The basic building blocks in the direct reordering is the numeri-
cal solution of an associated periodic Sylvester equation and the construction of K
orthogonal matrices that perform the required reordering by cyclic transformations.
The presented error analysis shows that errors in the transformations are closely
related to the accuracy and conditioning of the solution to the associated periodic
Sylvester equation as well as the norms of the involved matrices in the periodic se-
quence. Therefore, we perform the reordering tentatively so that backward stability
can be guaranteed.

Future research will focus on computing periodic eigenspaces with specified eigen-
values and associated error bounds based on condition estimation (see, e.g., [16]),
as well as producing library-standard (LAPACK [1], SLICOT [19]) software for the
eigenvalue reordering algorithm presented in this paper.

Acknowledgments. The authors are grateful to Daniel Kressner for construc-
tive comments on the subject and earlier versions of this manuscript, and to Andras
Varga for valuable comments on the subject and for providing us with software for
computing the extended periodic Schur decomposition and data for the application
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