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Overview

m [earning in robotics

e What and why

e (Case study: Image based visual servoing
m [earning in sensing

e Bayesian decision theory 7

e What is a classifier

e Some classifiers . .
. . + Pattern classification
e Combining classifiers

e What makes a
classification task hard?
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What is Learning?

m Webster’s Dictionary: ““...modification of a
behavioral tendency by experience”

m For arobot - and also human:

e Behavior = Actions
e Experience = Sensed data
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Robot learning

b

m In all closed loop control, sensing influences actions -

but that 1s not viewed as learning!

Reference -+
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m [earning 1s about modifying the “behavioral tendency”
— the mapping from sensing to action

=

Sense

BN Plan -——% Act

m We have learning opportunities in all three parts
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Robot learning in Sensing

m How to interpret sensor data

e Object localization ]' Focus for this presentation

e Object classification (eventually...)

e Scene understanding

e Maps of the world
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Robot learning in Planning

m How to act to reach a goal

e [carning from demonstration

« Sense the actions of a human teacher, and
learn to act the same way

e Reinforcement learning

» Act and receive feedback, and change the
way you act
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Robot learning in Acting

Visual Coordinates
z

m Relations between cause and effect

e How the robot works

Coordinate

 Kinematics, Dynamics Somtomon Cn;é\:gtl e Voo

e How the world works
« How humans act and react to robot actions
* How objects react to robot actions
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Why is learning important in robotics?

m Robots are too expensive to only know pre-
programmed skills

e Entirely new skills have to be learned
m Pre-programmed skills are not sufficient in an
open, non-deterministic world

e Task specifications and environmental conditions
vary and have to be learned on-line

m Sometimes we do not know how to pre-
program the skills!
e Lecarning applied off-line

e Perhaps the most common case of learning for
robotics
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Intertwined learning

m [earning can appear 1n all parts:
Sense, Plan, Act

m However, actions cause changes in
sensing, so learning sometimes 1s
intertwined

m One good example 1s Visual Servoing
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Image Based Visual Servoing (IBVS) u:

An established technique for vision guided control of robot
manipulators and grippers

Features s are extracted from the 2D image (in image coord.system)
e E.g.:location (X,Y) and area N of centroids for selected image regions
Target feature values s* are defined

e E.g.:(X,Y) at image center, and area N larger than a threshold

(s-s*) is used as error signal for a controller that drives the joints
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Example: Visual servoing for fruit picking

Servo feedback

s*= (X*, Y*, N¥) l

0 = 03" As 0 |Joint servo
controller

AS

s=(X,Y,N)
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Model-free Image Based Visual Servoing (IBVS) ;

m The controller maps this error to changes in joint angles 6

/s =F(0) "\ Fcombines the mapping from s to 3D
ds _0F 00 coordinates, and the mapping of 3D
ot 00 ot coordinates to 0
§=J(0)0
oF
As = J(O)AO J(0) = =9 is the visual-motor Jacobian

\ 0:=0-AJ"(s)As /
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Learning in model-free IBVS

m Fruit detection (which image area is of interest)
e For real: refer to Efi, Ehud, Ohad, Yael
e For the example:

e Place “fruit” in the gripper
e Learn the blob colors

m Target feature values

e Place “fruit” in the gripper s*= (X*, Y*, N*)
e Learn X*, Y*, and N* (size) for fruit in gripper

m The visual-motor Jacobian J

. 0X 00X 00X
e Learned by motor babbling 6. 96. 06
(Broyden's root-finding algorithm) : i 3
_ Y dY oY
e A case of Sensory-motor learning J =
. . 96, 00, 90,
. Leammg tf;le retliatlon between AN oN  oN
nsing an n
sensing and acting a6, 096, 96,
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Gene modified

Demo CROpr ||ght Christmas tree

Features s = (X, Y,N) |
for detected fruit .
Target features e
S*:(X*, Y*, N*)

Distracting object: Tomato

As=(s-s%)

oF
J(O)=—

00 Logitech web cam 40 euros
s=F(6) Lynx robot arm 250 euros
os O0F 00 % gk @

= 12
o090 o | l
.S.‘ _7 H 0 L 0= AT onoller : !
©) e
As = J(O)AO - [

0:=60-AJ"'(s)As
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Robot learning in Sensing

e Object localization Focus for the rest of
e Object classification ]' the presentation

o

°
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Learning for object localization/classification ‘@
m Usually based on image data | ' A
m [ocalization by sliding windows

e Multiple locations and scales

m Feature extraction
e Edges, Corners, Lines, Circles
e Histogram of gradients (HOG)
e Scale-invariant feature transform (SIFT)

m State-of-the-art
e Part-based methods [1,2]
e Bag-of-words methods [3,4,5,6]
m In most methods, Pattern classification
techniques are used to map features to class
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Pattern classification

m One (of a few) central problem statement:

Given a set of N instances consisting of features
X =(x,...,x;)and a class label o in {w,,...,0_},
construct a classifier that successfully predicts w
for new feature vectors

m Similar to regression, but w 1s discrete

m [earning!
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Example

Classification of fruit in images

r
2

&
‘e,

Feature Classification w
extraction |vector x
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Bayesian decision theory 7

m A fundamental statistical approach to pattern classification

® o and x are viewed as stochastic variables (s.v.)

m The unknown class w 1s a s.v. with prior probabilities
Plw)),..., P(w,)

m Fach feature vector x = (x,,...,x, ) 1s a s.v. with probability

density function p(x) = ( p(x;), ... p(x,) )

m More useful to look at each class separately:
Class conditional probability density functions defined as

plx;| w) = plx;, ©) / P(w))
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Example:

m The robot

e should decide i1f a detected fruit 1s a plum or tomato

e measures size (in reality a lot more features: colour, shape, ... )
m Two classes: @, (tomatoes) and w, (plums) with priors
P(tomato) =2/3 P(plum) =1/3

m One feature: x = size el

m Class conditional probability ®

density functions =»
m Possible interpretation:

e There are two types of tomatoes;
small and big. The size of plums
1S 1n between these two types

nmTmo 20 |
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Bayesian decision theory

L

m We want to predict o given x

m How about this decision rule:
“Choose the class that is most probable given observation x” 7

m This 1s expressed by the
posterior probability P(w, | x), Pl )
which 1s defined by 1

x) p(x,w,)

p(x)

and also related to the class

conditional probabilities

P(w,

by Bayes rule:
lw,)P(w. . DR

P(wl‘x)= p(x wl) (a)l) 9 10 11 12 13 14 15
p(x)

mnThY 21 |



Bayesian decision theory

m The decision rule can be written

@, p = arg melyx P(w;|x)

and 1s called Maximum a posteriori probabilities
(MAP) or Bayes decision rule

m [t can be shown that it minimizes the risk of miss
classification: P(Error | x)

m The 1dea can easily be extended to take different miss
classification costs into account
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Back to the example

m Given an observed size x, we predict the fruit o; with
maximum P(®,x) Pl

Ih-

m For observed size =10.6:
P(tomato|14)=0.62
P(plum|14)=0.38

The fruit is a tomato!!

9 10 11 12 13 14 15

m Simple principle, but we need to know all P(w,|x)
m Often they can be estimated from the data (LEARNING!)

m Some classifiers, like KNN and ANN, do exactly that!
TRLE=L®, 23 .




Other formulations of MAP

m Reformulation with Bayes rule:

_ p(xlw;,)P(w,)
p(x)
m p(x) 1s independent of i and does not affect the MAP
decision

P(w.

l

x)

Wy4p = arg max p(xjw;) P(w,)
i

m Same decision as for P(w; | x), but different methods for
the estimation

iNTRO . |
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Classifiers as discriminant functions

m The posterior probabilities can be seen as functions of x
gi(x) = P(w; | x) or
g (x) =p(x | w;) P(w,)
m A classifier can be described as a set of discriminant
functions g(x),i =1, ...,c.

m The classifier assigns a feature vector x to o, iff
gi(x)>g;(x) for all j#i
m “Lines” along which g;(x)=g;(x) are the decision boundaries

m Learning a classifier <> finding discriminant functions or
decision boundaries that optimize some chosen objective

iNTAO .-
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Decision boundaries and decision regions

m Decision boundaries separate input space in decision regions

m Decision regions R, i=1,...,c, are the set of points 1n feature space
where we decide o,
m The decision regions need not be simply connected

P(w;|x)
] A

R2 R] RZ R]
iNnTRO




Two ways of constructing classifiers

m Estimating discriminant functions
gi(x) = P(w; | x) or

g (x)=px|w) P(w,)
m Estimating optimal decision boundaries

TR

7



Constructing classifiers

by estimating discriminant functions
m Parametric methods

e Assume a parameterized form of p(x | w;) or P(w, | x)
and estimate the parameters from data

m Non-parametric methods
e Estimate from data
 Naive Bayes : g.(x) = p(xjw,) P(w,)
+ k-NN : g(x) = P(w, | %)

TR
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Constructing classifiers

by estimating optimal decision boundaries
m Parametric methods

1. Assume a parameterized form of decision boundary

2. Estimate parameters

e Perceptrons :.-°° (

o LDA " 0°.
e Support vector machines (SVM) 0 00 IO

m Non-parametric methods

e Necural networks

nmTmo 2o |
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k-nearest-neighbor classifier (k-NN)

m Estimates discriminant function g.(x) = P(w; | x)

e find the & nearest neighbors to x ’fz ) 283@
o P(w, | x) = #(neighbors with class=i)/k | * . * cr
m As before: o = arg max g(x) N . @ . e
1.e. predict the most frequent class Lot .
m Not always good probability S,
estimates, but the decision rule only L° . 1

the ordering of discriminant functions g.(x)

nmTmo 20 |



k-nearest-neighbor classifier (k-NN)

m Piecewise linear decision boundary

m Larger k gives smoother decision boundary

K=1 K=3 K=5 K=7

" Small k: all & neighbors are close to x =
#(.)/k 1s close to P(w, | x)

m Large k& : more data in the calculation =

the estimate #(.)/k 1s more reliable

m k can be determined by cross-validation

. i i .‘
Pictures from R. H. Lathrop Univ. of CallfornllnTao 31 -




Combining several classifiers (12

3 reasons why this may be a good idea

Statistical

H: All classifier hypotheses that can be learned with
the method

f: the correct hypothesis

Statistical argument

With limited data, we may find different hypotheses
hl, h2, h3,... by using different subsets of the data.
Averaging increases the chance of being close to f.

Computational argument

Learning, often a search, may get stuck 1n local
minima. Averaging the result from several starting
points increases the chance of being close to f.

Representational

F may be outside H. Averaging may expand H.
TRALEs(®, 22 |



Combining several classifiers

m Secveral approaches
e Voting for several classifiers (hypotheses)
e Modifying the training data
m AdaBoost (59
e Create a sequence of simple “weak’ classifiers

e Each new classifier

e 1s typically fast to train, e.g. a decision tree, “decision stump”,
or a linear classifier

* must be a bit better (or worse...) than random guessing
 focuses on the hard cases by weighting training data

e QOutput: a weighted sum of all created classifiers

nmTmo el |



- figures from Antonio Torralba@MIT

+1 (@ - _
Each data point x; has a class labely; ={ ® Weak classifiers hy(x):
-1 (©) Lines performs (at least)
slightly better than
® chance.
o ®o o ©
@ h, (x)=+1 for points on
@ @ o o e @ o one side of the line and
® © O o ® -1 on the other
e ® o O | J
® @ e ©© o © ® Learning means
° ©@° © @ @ Finding parameters
®@ @O O ® O defining the best h,
@
e o © © ® Each data point has an
e o o ® ® initial weight (size) w;=1
@
® Points with high
weights count more

Learn a weak classifier h, that maximizes the weighted performance



Example AdaBoost

h1
O
D o ©
O ° .
O O ® @
O 0.00.' O
e ® ol o© O
o .oo'.. o ©
O
O 0° % o o
@ o O ® o
O
o o P © O
O
e ol o ©
® ®

Update the weights: Increase w;if h(x,)#y, ,decrease if h(x;)=y;



Example AdaBoost

Each new classifier will focus
on the “hard” cases

Learn a new weak classifier h, that maximizes the weighted performance



Example AdaBoost

Each new classifier will focus
on the “hard” cases

Learn a new weak classifier h, that maximizes the weighted performance




Example AdaBoost

Update the weights: Increase w;if h(x,)#y, ,decrease if h(x;)=y;



‘Example AdaBoost

Learn new weak classifiers h; and h, that maximize the weighted performance



h, h,
o Po ® % h,
o P W
O o| © e
» 00 Jo e ©
® O
O S @ o
@ @) L ® O
o P © k‘o s
@ © ©
Weights are the ®
performance for each h;
l

\

Final classification: A weighted sum of all weak classifiers h4h,h; h,



AdaBoost
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m Very impressive (accurate and fast) performance
e Used 1n Viola-Jones face detector
m Simple
e “‘just 10 lines of code” [R. Schapire] (actually correct!)
m Solid theoretical foundation

m The inventors R. Schapire and Y. Freund won the 2003
Godel Prize for the algorithm

TR
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Just 10 lines of code

[
.

D = {(X1/Y1)rer (X0 ¥n)}r Kpaxr W = 1/n, j= 1,.,n
2. for k=1 to k.,

3. Train weak learner C, using D sampled according to w;
4. E, = training error of C, measured on D using w;
5. a, = 1/2 1n[(1l- E,)/ E,] (performance for classifier C,)
6. if £, (x;)= y; (correct classification)
7. w; = w;e % (increase weight)
8. else
9. w; = w,;e%(decrease weight)
10. end
kmax
Final classifier: jgaa(&(x)
k=1

TR




What makes a classification task hard?

%

m Overlapping posterior probabilities P(w, | x)
e The classes are not uniquely determined by the features
e [eads to inherent class ambiguityyii
e Even with training data covering all combinations of features,
classification errors will occur!

m Complexity of the decision boundary

e The optimal decision boundary needs a long description
(Kolmogorov complexity)

e Complexity typically grows with dimensionality

e Harder to predict the boundary with little data

e Extreme example:
The class labels are assigned randomly

* No generalization possible - no other way than to use training data
as a look-up table

 Is a problem even with infinite data and no class ambiguity

TR
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Class ambiguity

® The Bayes decision assumes full pw)Pw)
knowledge of all probabilities

Wy W>

m Assume we have a sub optimal

decision boundary x* separating
decision regions R, and R, /

reducible
error

m Two possible errors: = Xy 1t R -
e Predicting w, when real class 1s o, _[p(xlwz )P(es,) dx / K J' p(xlw,)P(w,) dx
e Predicting w, whenreal class1s w, =, R,

m P(error) = P(x € Ry, w;) + P(x € Ry, wz) = P(x € Ry|wy)P(w;) + P(x € Ry|ws) P(w,)
= / p(x|wy) P(w) dx + / p(x|ws) P(ws) dx.
R2

R1
m Minimum error achieved for x*=x; is called the Bayes error rate

e It depends on the class ambiguity
e It can not be reduced by ANY classifier or data set using the given features

TR 44




No Free Lunch Theorem

m “Any two algorithms are equivalent
when their performance is averaged
across all possible problems” (Wolpert)

m Without assumptions on the task, no
classifier is superior to any other
(including random guesses)!

Some assumptions — like continuity - are quite valid irl

Mainly a theoretical result, but gives valuable insight

There is no “best” classifier (SVM is not “better” than kNN)
Choose classifier that suits the task — just like you chose your lunch

But remember - there is always a price to pay
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