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Learning indistinguishability from data

F. Hoppner, F. Klawonn, P. Eklund

Abstract In this paper we revisit the idea of interpreting
fuzzy sets as representations of vague values. In this
context a fuzzy set is induced by a crisp value and the
membership degree of an element is understood as the
similarity degree between this element and the crisp value
that determines the fuzzy set. Similarity is assumed to be a
notion of distance. This means that fuzzy sets are induced
by crisp values and an appropriate distance function. This
distance function can be described in terms of scaling the
ordinary distance between real numbers. With this inter-
pretation in mind, the task of designing a fuzzy system
corresponds to determining suitable crisp values and ap-
propriate scaling functions for the distance. When we want
to generate a fuzzy model from data, the parameters have
to be fitted to the data. This leads to an optimisation
problem that is very similar to the optimisation task to be
solved in objective function based clustering. We borrow
ideas from the alternating optimisation schemes applied in
fuzzy clustering in order to develop a new technique to
determine our set of parameters from data, supporting the
interpretability of the fuzzy system.

Keywords Fuzzy systems, Equality relations, Function
approximation, Alternating optimisation
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Introduction

Fuzzy sets are often understood on a purely intuitive basis.
The role of the membership degrees is nothing more than
a weighting concept. As a consequence, learning from data
in the setting of fuzzy systems becomes a mere parameter
tuning task.

This is, of course, not always true, if we for instance
think of a possibilistic interpretation of fuzzy sets. How-
ever, a data driven possibilistic framework usually remains
in the general context of probability theory, although set
valued random variables might be considered.

There are evidently at least two meaningful interpreta-
tions of “indistinguishability”. Data objects might be in-
herently indistinguishable: due to a lack of attributes we
might be unable to distinguish one from the other. There
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is not much that we can do about this rather than seeking
more information about the objects. On the other hand,
sometimes we do not want to distinguish between two
objects, because they are so similar that we consider them
together as a single case. Following this interpretation of
intended indistinguishability, we perform a granularisa-
tion of the real line, which can be done, for example, by
means of fuzzy sets. In this paper we revisit the interpre-
tation of fuzzy sets on the basis of equality relations and
establish learning techniques that are based on this
interpretation.

Section 2 establishes the connection between equality
relations and fuzzy sets. The underlying fundamental
principle is a scaling of the ordinary distance between real
numbers. Section 3 discusses fuzzy systems and their
interpretation in the view of the previously introduced
concepts. The development of an algorithm to automati-
cally generate a fuzzy system from data in terms of the
provided interpretation of fuzzy sets is explained in
Section 4.

2

Equality relations
An equality relation (w.r.t. a t-norm *) on the set X is a
fuzzy relation E : X x X — [0, 1] satisfying

(B1) E(x,x) =1,
(E2) E(x,y) = E(y,x), (symmetry)
(E3) E(x.y) « E(y,2) < E(x,2) .

(reflexivity)

(transitivity)

Sometimes E is also called a similarity relation [9, 13],
indistinguishability operator [11], fuzzy equality (relation)
[2, 6], fuzzy equivalence relation [10] or proximity relation
[1], also depending on the chosen t-norm.

In this paper we concentrate on equality relations w.r.t.
the Lukasiewicz t-norm defined by o * § = max{o + f — 1,
0}. There is a duality between equality relations w.r.t. the
Yukasiewicz t-norm and pseudo-metrics bounded by one:
A pseudo-metric 6 bounded by one induces an equality
relation E by E =1 — ¢ and vice versa.

There are various connections between fuzzy sets and
equality relations starting from pioneering work like [11,
12]. Here we focus on the interpretation of fuzzy sets as
vague points induced by crisp points and an underlying
equality relation. The fuzzy set u, induced by the point
%o € X in the presence of the equality relation E is defined
as the (fuzzy) set of all elements that are (fuzzy) equal to
Xo, i.e. i, = E(x,%p). When X is an interval and the
equality relation E is defined in terms of the standard



metric on X by E(x,y) = 1 — min{|x — y|,1}, then x, is a
triangular fuzzy set.

Scaling [4] is an important concept in this view of fuzzy
sets. The idea behind scaling is to modify the standard
metric by scaling factors, stretching the distance (and
decreasing the associated equality degrees) in regions
where it is important to distinguish well between values
and contracting the distance (and increasing the associ-
ated equality degrees) in regions where the exact value
is not very important in the considered context or
application.

In this way, if the interval X = [a, b] is the underlying
domain, a scaling factor ¢(x) > 0 is associated to each
element x € X, indicating the importance of the exactness
of values in the neighbourhood of x. The scaled distance
between two points x;,x, € X is then

X2

/ c(x)dx

X1

This means that the scaling function ¢(x) induces a

transformation
X
X / c(s)ds
a

and the distance between two points x;,x; € X is not
measured in X but in the transformed (scaled) domain.

In fuzzy systems it is very popular to work with ‘fuzzy
partitions’ of a real interval [a, b] that use trapezoidal
membership functions at the boundaries and triangular
membership functions whose membership degrees add to
one. Such fuzzy partitions are uniquely determined by
points a < x; < x; < -+ < x, < b where the trapezoidal
membership functions are defined as

b

t:la,b] — 0,/c(x)dx ,

a

1 if a<x<x
(%) = e ifx <x<x

0 otherwise
and

1 ifx, <x<b
U, (x) = ol i X < x < Xy

0 otherwise

The triangular membership functions are given by

P if xi 1 <x<x;
(x) = Xip1 =X i . .
1i(x) P if x; <x < xiy1
0 otherwise

forie{2,...,n—1} .

(1)

When we choose the scaling function ¢(x) as

c(x):{ol

Xi—Xi-1

ifa<x<x; or x,<x<b
ifx, 1 <x<x;, (2)
we obtain an equality relation and the fuzzy sets y; are
exactly the fuzzy sets y,, that are induced by the points x;
in the context of the equality relation derived from the
scaling function ¢(x).

3

Fuzzy systems in the view of equality relations

So far we have considered a single interval endowed with
an equality relation so that single points induce fuzzy sets.
In applications as for instance in fuzzy control we have to
deal with various domains for input and output variables
simultaneously. Especially the rules of Mamdani fuzzy
controllers can be interpreted in the context of equality
relations where each fuzzy set can be seen as induced by a
single point in the presence of a suitable equality relation
[5]. Nevertheless, in such a case we have to build the
product space of the considered domains and must ag-
gregate the equality relations to a joint one on the
product space.

In principle, we could extend the concept of a scaling
function to product space ¢ : R" — [0, 00). However, this
would mean that we would have to define the distance
between two points x € R” and y € R" in the following
way:

inf /c(s)ds | P is a path from x to y
P

Unless c is a potential function and the value of the inte-
gral is independent of the path, it would in general not be
tractable to compute this distance.

When we consider equality relations on product spaces,
the crucial notions are aggregation and independence.

As long as we assume some kind of independence of the
equality relations, aggregation can be done in a straight-
forward way. It turns out that this seems to be the
underlying assumption behind many fuzzy controllers.
However, taking the concept of scaling seriously, the in-
dependence assumption seems not to be justified in typical
control applications. Consider a controller using the error
and the change of error as input variables. Usually it is not
very important to consider the change of error, when the
error is large, since then a strong control action has to be
carried out anyway. This means that we might use a small
scaling factor for the domain representing the change of
error. However, when the error is almost zero, it is very
important to know the value of the change of error almost
exactly, in order to take the right control action. This
would speak in favour for a large scaling factor for the
domain representing the change of error. The scaling or
the indistinguishability in these two domains does not
seem to be independent.

A detailed discussion of the independence concept in
the context of equality relations is outside the scope of this
paper. Nevertheless we would like to point out some facts.

Independence can be defined in different ways. One
possibility is to say a structure on a product space X x Y is
formed by two independent structures on X and Y, if we
can fix any element of X and always obtain the structure
on Y and vice versa. In probabilistic terms this indepen-
dence notion simply requires for two random variables
P(Zy = z1|Z, = z;) = P(Z; = z;). This would mean that Z;
is independent of Z,. In probability theory we immediately
have that this implies that Z, is also independent of Z;,
ie. P(Zz = 22|Zl = Zl) = P(Zz = Zz).



The following example illustrates that the situation is
different for equality relations. Consider the unit square
and the metric defined by the transformation
t(x,y) = (x,(1 — 0.5x)y) (see Fig. 1), i.e. the distance
between two points (x;,y;) and (x,, y;) is the distance
between the transformed points

(1, 1) = t(x2, 2)| -

We obviously have

lt(x1, 1) — t(xz, y1)|l = |x1 — x2|

so the distance on X is independent of the element y; € Y.
However, in this case the distance on Y strongly depends
on the choice of the element in X.

In the following we restrict our considerations to
equality relations on product spaces that are obtained by
applying an aggregation operation to scaling induced
equality relations on the single domains. A general
discussion on how equality relations can be aggregated
can be found in [7]. For reasons of simplicity we only
consider the aggregation operation minimum and
product.

There are various approaches to fuzzy systems on the
basis of equality relation. In the following we consider a
very simple type of fuzzy system. The domain of each
input variable is endowed with a piecewise constant
scaling function of the form (2) and the corresponding
reference points x; are given. The rules assign to each
combination of reference points of different input
domains a crisp output value. In this way we avoid the
problem of defuzzification. The specification of a fuzzy
controller reduces in the context to the choice of suitable
reference points and appropriate output values. The scal-
ing functions are implicitly given by the reference points.
In principle, we could choose the reference points and the
scaling functions more or less independently. But if we
assume that we try to minimise the number of reference
points, we only have to specify a new reference point,
when the previous reference point does not provide any
information, i.e. when the membership degree of the
corresponding fuzzy set reaches zero. In this view the
reference points and the scaling functions should not be
chosen independently.

X

Fig. 1. A transformation

4

Equality relations induced by data

Now that we have clarified the interpretation of fuzzy sets
in terms of scaling and indistinguishability, we can try to
design learning techniques for fuzzy systems that are
based on these ideas.

Fuzzy clustering (for an overview see for example [3]) is
very much in the spirit of our concepts. Clusters are
usually represented by single points and more sophisti-
cated algorithms can even incorporate a scaled distance
adapted to the data. However, the membership degrees
are derived in a different way from the distance function
and the scaling is always an individual scaling for
each cluster.

We will introduce a clustering-like alternating optimi-
sation technique that is devised to overcome these prob-
lems and is more in the spirit of the proposed
interpretation of fuzzy sets.

Let us consider a two-dimensional fuzzy system (two
input variables) which defines a functionf : X x Y — Z by
means of

e n fuzzy singletons y; : X — [0, 1] with core x;,
e m fuzzy singletons v; : Y — [0, 1] with core y; and
e n-m output values z;;

and thus n - m rules of the type
if x is about x; and y is about y; then z is z;;
Then, the output value f is given by
f(x,y) _ Z?:anjtlmT(ﬂi(x)a Vi) - zij
2oim1 2 (i), vi(v))

where T is a t-norm. The parameters of the fuzzy system
are the fuzzy set core values x = (x1,%;,...,%,),

y = (b1,)2,-.-,¥m) and the output values z = (z; 1,

212y -3 Z1ms 2215 - - - Znm). We assume that the input
space is bounded and fix x,/x, to the minimum/maximum
value (same for y;/y,,). Then the triangular fuzzy sets y;
are given by (analogously for v;):

,u(x)—{;zz_;l if x; <x<x;

1\x) = .

0 otherwise

,u(x):{ﬁ if x,01 < x < xy
" 0 otherwise

This means that we do not admit trapezoidal membership
functions at the boundaries of the interval. The fuzzy sets
u; for 1 < i < n are defined as in (1).

In this section we consider the automatic adaption of
fuzzy systems of this type to a given data set, where T is
either the minimum or the product. Given a set of samples
S C X x Y x Z drawn from a function f : X x Y — Z, that
is V(x,y,2z) € S: f(x,y) = z £ &, the minimisation of the
approximation error of a fuzzy system f

e(x, Y:Z; S) = Z (f(xv}/) - Z)Z

(xy,2)€8

(3)

is a nonlinear optimisation task. In the following, we
propose an alternating optimisation method that mini-
mises a locally scaled error function (3). The method



works for arbitrary dimensions piv € N and is not
restricted to the two-dimensional case, however, for the
sake of simplicity we present the method with pmm = 2.

4.1

Partitioning the input space

Due to the restrictions on our fuzzy sets y; and v;, we have
a natural partitioning of the input space X x Y into rect-
angular areas (or hyperboxes in arbitrary dimensions).
Figure 2 illustrates this in case of a fuzzy system with

n = 4 and m = 5. Within each rectangle R;; = {(x,y) €

X x Y|x; < x < xi11 Ayj <y < yj1} the output value
f(x,), (x,y) € Ry, is fixed by the adjacent 2°™ rules only,
because the other rules have a zero membership degree in
this area. In Fig. 2 the four rules for the shaded rectangle
R, are

if x is about x, and y is about y; then z is z; 3
if x is about x, and y is about y, then z is z, 4
if x is about x3 and y is about y; then z is z3 3
if x is about x3 and y is about y, then z is z3 4
The participating fuzzy sets are drawn with thick lines in
Fig. 2.
Within each rectangle Ry; the function f depends on
eight numbers (in general 2°™+! numbers): xx, X115 ¥i»

Yi41> Zkl> Zii+1> Zk+1,0 and Ziyp 1.
We define

gk,l(xvy) ZZﬂRk,(x y)
_ Y T, ) - 2
S Zm T(wi(x),vi(y)

Note that within the restriction f| &, the membersh1p
degrees y; and v; are linear functions and there is no need
for considering multiple cases as in the piecewise defini-
tion of y; and v;.

(4)

Y Y
i
Zo4| %34
Rz
Z23 %33
- .,x
o 1!
0 X

Fig. 2. The x and y vectors partition the input space X x Y into
rectangular regions. The z vector specifies the value of f at the
vertices of the rectangle

For every point (x, y) in the X x Y plane we define

L 1, if (x,y) € R,‘j
) ={ o i ) o 6
Note that for any (x,y) € X x Y there is only one pair (i, j)

such that 9;;(x,y) equals 1. Therefore, we can reformulate
the function f as

flx,y) = ZZ% (%,)8:(x,7)

i=1 j=1

(6)

and the error as
= > (fxy) -2’
(xy.2)€S
6 n m 2
: Z Zénygl]xy)
i=1 j=1

(xy,2)€S
>

e(x,y,z;S)

>

. 2
5111'(%)’) (gij(xvy) - Z)
(xy,2)€S i= 1
(7)

In the following two sections we examine the local defi-
nition of f (that is g;;) in dependency of T.

j=

4.2
Using the T,q-norm
In this section we consider the t-norm

T:XxY—2Z, (x,y)—x-y (8)

In this case the denominator of g, ; in (4) convemently
equals value 1, which simplifies the definition of g 81
considerably. We have

gk,l(xvy)

4
D (%) ) - 2+ 14 (®) - Vi1 () - 2z
=+ Mk+1(x) ) - Zkrrd + W (%) v () - Zkiina
)

= ((xk41 = %) 11 — ¥) 2kt

+ (Xk1 — %) (Y — Y1) zk 141

+ (x — %) Vir1 — ) Zks1,1 + (X — xx)

0 = yzean) /(Rk = x0) 0 —y)) - (9)

Figure 3 shows an example of g, ;, which defines f within
area R, 3 (cf. Fig. 2) with z,3 = 8, 234 =0,233=—2and
234 = 10.

The denominator Ax; := (xk11 — Xk) (Vi1 — y1) in (9)
is the size of the area of rectangle Ry ;. Instead of mini-
mising error (7) we locally scale the error within rectangle
Ri.j bY A,'JI

) 5i7j(x,)’)<|§iJ("’)’) e 'A”j)z

(xy,2)€S

_A2 Z Sii(x,y) (g,](x y) — )2

(xy,2)€S

—

which leads us to a modified error measure
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Cxy s = S SO byl dytnnz)  (10)
(

x,,2)€S i=1 j=1
where d;j : X X Y x Z — R is given by
dij(x,,2)
= (g,(xy) — 2’42,

)
= ((xir1 = )1 — ¥)zij + (X1 — %)y — ¥j)zij

+ (x = %) i1 — ¥)zivrj + (x = %) (Y — ¥j)ziv1jm
— 2z(xiy1 — xi)()’j+1 _)’j))2
For a fuzzy system specified by (x,y,z) to be a (local)

minimiser of the scaled error function (10), we have a zero
crossing in the first derivatives

Vi€ =0, Vye'=0, V,e=0.

—

Due to the multiplication with the area of the rectangle, the
zero gradient vectors yield a system of linear equations in
each case. We minimise the error ¢ by alternatingly
minimising with respect to z assuming x and y to be
constant, then with respect to x assuming y and z to be
constant, and then with respect to y assuming x and z to
be constant. The algorithm is depicted in Fig. 4.

Fig. 3. Function f|Rz_3 with T(a,b)=a-b

Figure 5a shows the function f(x, y) = sin(x) - x/(y + 2)
together with 200 samples on its surface, X = Y = [0, 2x].
This data set has been used to estimate a fuzzy systems
with n = m = 4 as described above and the result after 12
iteration steps is shown in Fig. 5b. The original function f
is approximated very well. Of course, since we minimise €’
we cannot guarantee that the conventional least-squares
error e is also minimised, however, in this example we
recognised a decrease in the sum of squared error with
each step.

The local error scaling seems to have no dramatic
effect in Fig. 5, because the size of the rectangular regions
does not differ that much. Figure 6 shows another ex-
ample f(x,y) = exp(—(s — %)2) + atan(—5 - (¢ — 5)) where
we can expect a greater variety in the area size. Note that
the uniform initialisation is really poor in this example
(still n = m = 4). Initially, we have y, ~ 2.1 and y; ~ 4.2
and the best solution is y, ~ 4.4 and y; ~ 5.3. Thus, the
algorithm has to “replace” y; by y,. As we can see from
Fig. 6b, the algorithm has done very well after 20 itera-
tions. The final result is remarkable, because in terms of
the error function e there is a strong local minimum near
the initial solution (adjust y; ~ 5 but leave y, half
way between y; and y;). During the iterations, the algo-
rithm shortened the distance |y; — y,| which leads to
smaller, long-stretched rectangles. The errors within these
rectangles are not weighted that much so that these
patches become “more flexible”. It seems that in this
example, the local error scaling helped to find the best
solution.

initialise x and y uniformly
update z by means of linear equation system V,e¢' = 0
repeat
update x by means of linear equation system Vye' =0
update y by means of linear equation system Vye' =0
update z by means of linear equation system Ve’ =0
until maximum number of iterations reached or
error change drops below threshold

Fig. 4. Algorithm for estimating a fuzzy system

Fig. 5. The original function

f(x,y) = sin(x) - x/(y + 2) is drawn in
both images in light gray, the learned
fuzzy system (after 12 iteration steps) is
drawn in black



4.3
Using the T ,i,-norm
In this section we consider the t-norm
T:XxY—Z, (x,y)—min(x,y) (11)
Due to the definition of our membership functions (1), all
; and v; within Ry are linear functions. When aggregating
two membership functions using the T;,-norm, we still
have piecewise linear functions. The X x Y plane is
once more subdivided, every rectangle consists of four
triangular subregions, as shown in Fig. 7. In each of the
subregions the term T (u;(x),vj(y)) is a linear function,
i€ {k,k+1} andj € {l,1+ 1}. However, the denomina-
tor of g, ; does not evaluate to 1 but lies in the interval [1,
2], as shown in Fig. 8. But at least, within the triangular
subregions the denominator is also a linear function. Thus,
for each subregion we have g ,(x,y) = E(x, y)/F(x,y),
where E and F are linear functions. .
Figure 9 shows an example of g, ;, which defines f within
area R, ; (cf. Figs. 3and 7) with z,3 = 8,254 = 0,233 = —2
and z3 4 = 10. At a quick glance ¢ seems to be linear within
the triangular subregions, but not perfectly: The linear
function in each subregion is divided by a term that is 1
along the edge of the triangle that is shared with the rect-
angle Ry and 2 at the centre of the rectangle (cf. Fig. 8).
Proceeding in a similar way as in Sect. 4.2, we minimise a
locally scaled error function € instead of (3). This time, the
scaling factor has been chosen to be Ay; - F(x, y), where F
denotes the denominator of g, ;. Besides the multiplication
by the size of the region Ry, we additionally multiply by a
factor between 1 near the border and 2 in the centre. This
means, that the resulting fuzzy systems will approximate
the data especially well in the centre of the regions Ry
whereas it will tolerate larger errors at the border of Ry .
This may cause some undesired effect on the resulting
fuzzy system. From the examples seen so far we can
already conclude that the triples (x;, yj, z;;j) - from which
the fuzzy rules are created - are in general not very good
approximations of the function. In order to approximate
the data inside the patches Ry the z;; values are almost
always slightly above or below f(x;,y;). (Usually there are

Fig. 6. The original function f(x, y)
=exp(—(s — %)2 + atan(—5- (t —5)) is
drawn in both images in light gray, the
learned fuzzy system (after 20 iteration
steps) is drawn in black

Zo4| %34

Zy3

Fig. 7. Further subdivision of Ry, in case of T (a, b) = min(a, b)
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Fig. 8. Denominator of g, ; with T(a, b) = min(a, b)
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more data vectors inside a patch Ry, than near the border.
Therefore it is better to tolerate larger errors near the
border to minimise the total sum of squared errors.) If we
use a scaling factor that emphasises the interior of the
patches and does not care that much about the border,
we expect that this effect becomes even more evident.

We therefore consider a second variant to optimise the
fuzzy system, where we assume that the output f is a
piecewise linear function - that is, we assume that the
denominator F(x, y) of g, is always 1. This is not true, of
course, but we have already seen in Fig. 9 that the effect of
the denominator influences the curvature of f not that
much. Figure 10 shows the results for both cases. The
original function is the same as in Fig. 5. The figures
confirm our conjecture, the deviations from the original
values at the knot points have become smaller.

For these reasons, we slightly prefer the second variant
(Fig. 10b), although the total sum of squared errors e does
not differ significantly. Compared to the results of Fig. 5,
where we used T o4, the total error is slightly higher when
using T, (at least in our examples). Using T, instead
of Tproq increases the computational cost by a factor of
almost 4, since each of the regions Ry is subdivided in
four subregions (factor 2™ in arbitrary dimensions).

------- 77
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Conclusions

The most prominent reason for using fuzzy systems in
function approximation is interpretability. However, it is
of course not true, that an approximator is easily under-
standable, just because it uses linguistic rules. To be
intuitive, the number of rules as well as the number of
linguistic terms should be small, the membership degrees
should add up to one and have an overlap of 1, etc. Such a
set of linguistic rules is often called a fuzzy partition.
When interpreting the linguistic terms in a fuzzy system as
vague values induced by an equality relation, we have a
well-defined semantics of the system and easily obtain
rules that fulfil the requirements for intuitive under-
standing. Optimisation of a fuzzy system then corresponds
to selecting appropriate parameters of our equality
relation, that is the scaling function. Whatever scaling
function we might obtain, the resulting system remains
interpretable. This is a strong point for this approach,
because most of the methods usually used for parameter
tuning violate the semantic constraints or have to consider
them explicitly during optimisation [8]. In this paper, we
have presented an algorithm for the optimisation of a
fuzzy system that learns a piecewise constant scaling
function, which corresponds to a fuzzy system with tri-
angular memberships. Besides good approximation results
(we have considered the case of a minimum and product
t-norm for aggregation), the resulting fuzzy system
preserves semantics and thus interpretability.

It is common practice to select the linguistic terms as a
fuzzy partition for each input variable separately (and so
does our proposed algorithm). We have illustrated, how-
ever, that this corresponds to an implicit independence
assumption of the scaling functions for each variable,
which is not necessarily fulfilled in applications. Due to the
fact that multivariate scaling functions are computation-
ally not tractable, it remains an open question how we can
model the dependency between scaling functions effi-
ciently, which is further complicated by the fact that this
notion of independence is usually not symmetric. Since it
is know from other fields, that independence assumptions

Fig. 10. The original function is the
same as in Fig. 5 and is drawn in light
gray, the black functions correspond to
the learned fuzzy system after 12 iteration
steps



can lead to powerful methods even if these assumptions do
not hold in most applications (consider the naive Bayes
classifier for example), another open question is whether
the additional complexity will be justified by a significant
improvement of the performance - without loosing too
much in terms of intuitive understandability.
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