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Abstract. Monads are used for various applications in computer sci-
ence, and well-known is e.g. the interpretation of morphisms in the Kleisli
category of the term monad as variable substitutions assigning variables
to terms. An application building upon this observation is the equiva-
lence between most general unifiers and co-equalizers in this category
[13]. In this paper we will use monads with additional structure, namely
partially ordered monads. We show how partially ordered monads can be
used in order to obtain a generalised notion of Kleene powerset algebras
building upon more general powerset functor settings beyond strings [11]
and relations [14].

1 Introduction

Monads equipped with order structures extends suitably to so called partially
ordered monads. In this paper we will show how these partially ordered monads,
together with their subconstructions, contribute to providing a generalised no-
tion of powerset Kleene algebras. This generalisation builds upon more general
powerset functor setting far beyond just strings [11] and relations [14].

Previous work on monadic instrumentation for various many-valued set func-
tors include investigations as initiated e.g. in [1, 2]. Monads were used in par-
ticular for compactifications of generalised convergence spaces based on double
powerset monads. Further work involving partially ordered monads are found in
[8, 9].

The present paper is organised as follows. Section 2 provides notations for
and examples of monads and corresponding Kleisli categories. Section 3 provides
extensions to partially ordered monads, and Section 4 introduces their subcon-
structions together with important examples for powerset Kleene algebras as
introduced in Section 5.

2 Monads

Let C be a category. A monad (or triple, or algebraic theory) over C is written
as F = (F, η, µ), where F : C → C is a (covariant) functor, and η : id → F
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and µ : F ◦ F → F are natural transformations for which µ ◦ Fµ = µ ◦ µF
and µ ◦ Fη = µ ◦ ηF = idF hold. A Kleisli category CF for a monad F over a
category C is given with objects in CF being the same as in C, and morphisms
being defined as homCF

(X, Y ) = homC(X,FY ). Morphisms f :X ⇁ Y in CF

are thus morphisms f : X → FY in C, with ηF
X : X → FX being the identity

morphism.
Composition of morphisms in CF is defined as

(X
f
⇁ Y ) ¦ (Y

g
⇁ Z) = X

µF
Z◦Fg◦f−→ FZ. (1)

2.1 The powerset monad

Let L be a completely distributive lattice. For L = {0, 1} we write L = 2.
The covariant powerset functor Lid is obtained by LidX = LX , i.e. the set of
mappings (or L-fuzzy sets) A : X → L, and following [10], for a morphism
f :X → Y in SET, by defining

Lidf(A)(y) =
∨

f(x)=y

A(x).

Further, define ηX : X → LidX by

ηX(x)(x′) =
{

1 if x = x′

0 otherwise
(2)

and µ : Lid ◦ Lid → Lid by

µX(M)(x) =
∨

A∈LidX

A(x) ∧M(A).

It was shown in [12] that Lid = (Lid, η, µ) indeed is a monad. Note that 2id

is the usual covariant powerset monad P = (P, η, µ), where PX is the set of
subsets of X, ηX(x) = {x} and µX(B) =

⋃B.
Further, note that the transitivity condition, relationally viewed as f ◦f ⊆ f ,

translates to
⋃

Pf(f(x)) ⊆ f(x) for all x ∈ X.

Remark 1. The category of ’sets and relations’, i.e. where objects are sets and
morphisms f : X → Y are ordinary relations f ⊆ X × Y with composition of
morphisms being relational composition, is isomorphic to the Kleisli category
SET2id

. Indeed, relations f ⊆ X × Y are morphisms f : X ⇁ Y in SET2id
, i.e.

morphisms f : X → PY in SET, and relational composition corresponds exactly
to composition according to (1).

Remark 2. Extending functors to monads is not trivial, and unexpected situa-
tions may arise. Let the id2 functor be extended to a monad with ηX(x) = (x, x)
and µX((x1, x2), (x3, x4)) = (x1, x4). Further, the proper powerset functor P0,
where P0X = PX \ {∅}, as well as id2 ◦ P0 can, respectively, be extended to
monads, even uniquely. However, as shown in [1], P0 ◦ id2 cannot be extended
to a monad.
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Remark 3. The interaction between monads and algebras is well-known. The
tutorial example is the isomorphism between the Kleisli category of the powerset
monad and the category of ’sets and relations’. The Eilenberg-Moore category
of the powerset monad is isomorphic to the category of complete lattices and
join-preserving maps. The Kleisli category of the term monad coincides with its
Eilenberg-Moore category and is isomorphic to the category of Ω-algebras. A
rather intrepid example, although still folklore, is the isomorphism between the
Eilenberg-Moore category of the ultrafilter monad and the category of compact
Hausdorff spaces. Here is where ”algebra and topology meet”.

2.2 The term monad

Notations in this part follow [6], which were adopted also in [1, 5].
Let Ω =

⋃∞
n=0 Ωn be an operator domain, where Ωn contains n-ary operators.

The term functor TΩ :SET → SET is given as TΩ(X) =
⋃∞

k=0 T k
Ω(X), where

T 0
Ω(X) = X,

T k+1
Ω (X) = {(n, ω, (mi)i≤n) | ω ∈ Ωn, n ∈ N,mi ∈ T k

Ω(X)}.

In our context, due to constructions related to generalised terms [3–5], it
is more convenient to write terms as (n, ω, (xi)i≤n) instead the more common
ω(x1, . . . , xn).

It is clear that (TΩX, (σω)ω∈Ω) is an Ω-algebra, if σω((mi)i≤n) = (n, ω, (mi)i≤n)

for ω ∈ Ωn and mi ∈ TΩX. Morphisms X
f→ Y in Set are extended in

the usual way to the corresponding Ω-homomorphisms (TΩX, (σω)ω∈Ω)
TΩf−→

(TΩY, (τω)ω∈Ω), where TΩf is given as the Ω-extension of X
f→ Y ↪→ TΩY

associated to (TΩY, (τnω)(n,ω)∈Ω).
To obtain the term monad, define ηTΩ

X (x) = x, and let µTΩ

X = id?
TΩX be the

Ω-extension of idTΩX with respect to (TΩX, (σnω)(n,ω)∈Ω).

Proposition 1 ([12]). TΩ = (TΩ , ηTΩ , µTΩ ) is a monad.

3 Basic triples and partially ordered monads

Let acSLAT be the category of almost complete semilattices, i.e. partially ordered
sets (X,≤) such that the suprema supM of all non-empty subsetsM of X exists.
Morphisms f : (X,≤) → (Y,≤) satisfy f(supM) = sup f [M] for non-empty
subsets M of X.

A basic triple ([7]) is a triple Φ = (ϕ,≤, η), where (ϕ,≤) : SET → acSLAT,
X 7→ (ϕX,≤) is a covariant functor, with ϕ : SET → SET as the underlying set
functor, and η : id → ϕ is a natural transformation.

If (ϕ,≤, ηϕ) and (ψ,≤, ηψ) are basic triples, then also (ϕ ◦ψ,≤, ηϕψ ◦ ηψ) is
a basic triple.
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Example 1. Consider Lid as a functor from SET to acSLAT with α ≤ β, α, β ∈
LidX, meaning α(x) ≤ β(x) for all x ∈ X. Then (Lid,≤, η) is a basic triple
where ηX : X → LidX is given by (2).

Example 2. Consider TΩ similarly as a functor from SET to acSLAT, with t1 ≤ t2
whenever t1 is a subterm of t2 in the usual sense. Then (TΩ ,≤, η) is a basic triple
where ηX : X → TΩX is given as in subsection 2.2.

A partially ordered monad is a quadruple Φ = (ϕ,≤, η, µ), such that

(i) (ϕ,≤, η) is a basic triple.
(ii) µ : ϕϕ → ϕ is a natural transformation such that (ϕ, η, µ) is a monad.
(iii) For all mappings f, g : Y → ϕX, f ≤ g implies µX ◦ ϕf ≤ µX ◦ ϕg,

where ≤ is defined argumentwise with respect to the partial ordering of ϕX.
(iv) For each set X, µX : (ϕϕX),≤) → (ϕX,≤) preserves non-empty

suprema.

Example 3. The basic triples (Lid,≤, ηLid) and (TΩ ,≤, ηTΩ ) can both be ex-
tended to partially ordered monads using multiplications µ as given in Section
2.

4 Partially ordered submonads

A basic subtriple of Φ is a basic triple Φ′ = (ϕ′,≤, η′) such that ϕ′ is a subfunctor3

of ϕ, (ϕ′X,≤) are almost complete subsemilattices of (ϕX,≤) and η′X(x) =
ηX(x) for each set X and each x ∈ X.

Let Φ = (ϕ,≤, η, µ) and Φ′ = (ϕ′,≤, η′, µ′) be partially ordered monads. Φ′

is a partially ordered submonad of Φ, if (ϕ′,≤, η′) is a basic subtriple of (ϕ,≤, η)
and e◦µ′ = µ◦ϕe◦eϕ′ , where e : ϕ′ → ϕ is the natural transformation consisting
of all inclusion mappings eX : ϕ′X → ϕX. Note that ϕe ◦ eϕ′ = eϕ ◦ϕ′e, that is,
for each set X we have ϕeX ◦ eϕ′X = eϕX ◦ ϕ′eX . Further, (ϕ′, η′, µ′) is in this
case also a submonad4 of the monad (ϕ, η, µ).

Example 4. Let K and L be completely distributive lattices. Assume K to be
a sublattice of L, with ι : K → L being the inclusion homomorphism. Further,
assume ι(0) = 0 and ι(1) = 1, and additionally, that ι(∨ixi) = ∨iι(xi) also in the
non-finite case. Define (ιid)X : KidX → LidX by (ιid)X(A) = ι ◦A, A : X → K.
Then ιid : Kid → Lid becomes a natural transformation, and Kid is a submonad
of Lid [4] that can be extended to being a partially ordered submonad.
3 A set functor F ′ is a subfunctor of F , written F ′ ≤ F , if there exists a natural

transformation e: F ′ → F , called the inclusion transformation, such that eX : F ′X →
FX are inclusion maps, i.e., F ′X ⊆ FX. The conditions on the subfunctor imply
that Ff |F ′X= F ′f for all mappings f : X → Y . Further, ≤ is a partial ordering.

4 Let F = (F, η, µ) be a monad over SET, and consider a subfunctor F ′ of F , with the
corresponding inclusion transformation e : F ′ → F , together with natural transfor-
mations η′ : id → F ′ and µ′ : F ′F ′ → F ′ satisfying the conditions e ◦ η′ = η and
e ◦ µ′ = µ ◦ Fe ◦ eF ′. Then F′ = (F ′, η′, µ′) is a monad, called the submonad of F,
written F′ ¹ F. Further, ¹ is a partial ordering.
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Example 5. Let Ω′ and Ω be operator domains with Ω′ ⊆ Ω, and let ε : Ω′ → Ω
be the inclusion mapping. Define νX : TΩ′X → TΩX by νX(x) = x, x ∈ X, and
νX((n, ω′, (t′i)i≤n)) = (n, ε(ω′), (νX(t′i))i≤n) for t′i ∈ TΩ′X. Then ν : TΩ′ → TΩX
is a natural transformation, in fact an inclusion, and TΩ′ is a submonad of TΩ

[4], which again can be extended to being a partially ordered submonad.

5 Powerset Kleene algebras

Let Φ = (ϕ,≤, η, µ) be a partially ordered monad such that always ∅ ∈ ϕX.
Denote by 0X , or 0 for short, the morphism 0 : X → ϕX satisfying 0(x) = ∅ for
all x ∈ X, and let 1 = ηX . Further, for f1, f2 ∈ Hom(X, ϕX), define

f1 + f2 = f1 ∨ f2,

i.e. pointwise according to (f1 + f2)(x) = f1(x) ∨ f2(x), and

f1 · f2 = f1 ¦ f2

where f1¦f2 = µX◦ϕf2◦f1 is the composition of morphisms in the corresponding
Kleisli category of Φ.

A partial order ≤ on Hom(X, ϕX) is defined pointwise, i.e. for f1, f2 ∈
Hom(X,ϕX) we say f1 ≤ f2 whenever f1(x) ≤ f2(x) for all x ∈ X. Note that
f1 ≤ f2 if and only if f1 + f2 = f2.

Definition 1. The partially ordered monad Φ = (ϕ,≤, η, µ) is said to be a
Kleene monad, if the following conditions are fulfilled:

ϕ0X = 0ϕX (3)
ϕf(∅) = ∅ (4)
µX(∅) = ∅ (5)

ϕ(∨ifi) = ∨iϕfi (6)
ϕf ◦ (∨igi) = ∨i(ϕf ◦ gi) (7)
µX ◦ (∨igi) = ∨i(µX ◦ gi) (8)

Proposition 2. Let Φ = (ϕ,≤, η, µ) be a Kleene monad.
Then (Hom(X, ϕX), +, ·, 0, 1) is an idempotent semiring.

Proof. We will prove the condition (f1 + f2) · f3 = f1 · f3 + f2 · f3. By naturality
of µ and (8) we obtain

(f1 + f2) · f3 = µX ◦ ϕf3 ◦ (f1 + f2)
= ϕϕf3 ◦ µϕX ◦ (f1 + f2)
= ϕϕf3 ◦ ([µϕX ◦ f1] + [µϕX ◦ f2])
= f1 · f3 + f2 · f3.

Other conditions are established similarly. ut
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The introduction of Kleene asterates is now obvious. For mappings f : X → ϕX,
define

f∗ =
∞∨

k=0

fk

where f0 = 1 and fk+1 = µX ◦ ϕfk ◦ f . Suprema of mappings g : X → Y is
given by (

∧
g)(x) =

∧
g(x).

Theorem 1. Let Φ = (ϕ,≤, η, µ) be a Kleene monad.
Then (Hom(X, ϕX), +, ·, ∗, 0, 1) is a Kleene algebra.

Proof. We will prove the condition 1 + ff∗ = f∗. We have

1 + ff∗ = 1 ∨ (µX ◦ ϕfast ◦ f)

= 1 ∨ (µX ◦ ϕ

∞∨

k=0

fk ◦ f)

= 1 ∨
∞∨

k=0

fk · f

= f0 ∨
∞∨

k=0

fk+1

=
∞∨

k=0

fk.

Again, other conditions are established similarly together with using conditions
for partially ordered monads and Kleene monads. ut

Example 6. Our main examples, the partially ordered monads (Lid,≤, ηLid , µLid)
and (TΩ ,≤, ηTΩ , µTΩ ), as well as their subconstructions as described in Examples
4 and 5, are all Kleene monads.
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