EDITED BY
RONALD R. YAGER = LOFTI A. ZADEH

R Computer Library

Artificial Intelligence

FUZZY SETS, NEURAL NETWORKS.

A N D S OF T
This book brings together the
outstanding experts involved in a
new area of research that is based
on the confluence of genetic algo-
rithms, fuzzy systems, and neural
Chapters by these
researchers will give the reader a
look into the future of a rapidly
developing technology.

networks.

Included are these important
topics:
* Fuzzy logic control
» Neural fuzzy systems
» Genetic fuzzy systems
® Process control
¢ Adaptive systems

These technologies will have an important
influence on products and applications that
are being developed today, and may become
the basis of a new generation of intelligent
computers that mimic the human ability to
reason. No other book available combines
these technologies to provide the most up-
to-the-minute information on this subject.

Cover art by Ronald R. Yager
Cover design by Angelo Papadopoulos

VAN NOSTRAND REINHOLD
115 Fifth Avenue, New York, NY 10003

ComMPUTII

N G

The international experts con-
tributing to this volume include:

D. Pileve, George Vachtsevanos,
Benjamin Kuipers, Karl Astrom,
Julie Dickerson, Bart Kosko, Gail
Carpenter, Stephen Grossberg,
James Buckley, Yoichi Hayaski,
Patrick Eklund, John Joon Park, and

others.

Lofti Zadeh is the originator of
fuzzy set theory. He is currently
Professor of Electrical Engineering
and Computer Science at the
University of California at
Berkeley. A holder of many fel-
lowships and awards, Dr. Zadeh is inter-
nationally known for his work in fuzzy sys-
tems. Dr. Ronald Yager is Professor of
Information Systems at lona College in New
Rochelle, New York. He is an active
researcher, a well-known conference orga-
nizer, and an international scholar. Dr.
Yager holds the Meritorious Award for
Scientific Research from the International
Congress on Applied Systems.

LEBN O=hhp=[]hd L=

Il 90000

9'780442"016210

Contents

1. On a Flexible Structure for Fuzzy Systems Models
Ronald R. Yager and Dimitar P. Filev................. 1

2. A Systematic Approach to Fuzzy Logic Control Design
George Vachtsevanoso i i i 29

3. The Composition of Heterogeneous Control Laws
Benjamin Kuipers and Karl Astrém

4. Ellipsoidal Learning and Fuzzy Throttle Control for
Platoons of Smart Cars

Julie A. Dickerson and Bart Kosko. i i, 63

5. Supervised and Unsupervised Learning with Fuzzy
Similarity for Neural Network-Based Fuzzy Logic
Control Systems

C.I Linand &8 Ceorge LeBus sssvswsinmusmusmasemeswas somvs 85

6. Fuzzy ARTMAP: A Synthesis of Neural Networks
and Fuzzy Logic for Supervised Categorization and
Nonstationary Prediction

Gail A. Carpenter and Stephen Grossberg 126

7. Propagation and Satisfaction of Flexible Constraints
Didier Dubois, Héléne Fargier, and Henri Prade. 166

8. Multifold Fuzzy Reasoning as Interpolative Reasoning
MLB. MIZUBROLD. .. con v sommsmn e me s s BEFRES MRS M I3 B 63 Am s mdy3me 188

vi Contents

9. Measures of Fuzziness: A Review and Several

New Classes

Nikhil R. Pal and James C. Rezkek it 194
10. Fuzzy Decision Models in Computer Vision

James M. Keller and Raghu Krishnapuram. 213
11. Fuzzy Neural Networks

James J. Buckley and Yoichi Hayashi 233
12. Network Size versus Preprocessing

Patrick EKIUND & ..o oottt ee e it enne e 250
13. Neural Network Processing of Linguistic Symbois

Jong Joon Park, Abraham Kandel, Gideon Langholz, and

LoiS HAWKINS « + o v v o te et ieees et nnassaaasaeeanassns 265
14. Specifying Soft Requirements of

Knowledge-Based Systems

Jonathan Lee and John Yen.o 285
15. A Knowledge-Based System View of Fuzzy

Logic Controllers :

Piero P. Bonissone and Kenneth H. Chiang 296
16. Hierarchical Fuzzy Modeling for Heterogeneous

Information Processing

Witold PedryCz. . .« -« cvvvninenraane i 311
17. Context Sensitive Knowledge Processing Based on

Conceptual Fuzzy Sets

TOMORAED TRRAGH & ¢ s v ow s smes wmr mmwnmn s o 57 BEE B S B @ R38N w s 331
18. Adaptive Control with Fuzzy Logic and

Genetic Algorithms

UK RET, « o v e w mox e v nonomno mwo s 6053 50§08 5 8 8 B § 0% % 90w o x =i e 345
19. Imprecise Data Management and Flexible Querying

in Databases

Patrick Bosc and Olivier Pivert. 368
20. On Software and Hardware Applications of Fuzzy Logic

Mo Jamshidi e 376

12

Network Size versus
Preprocessing

Patrick Eklund

Abo Akademi University
Department of Computer Science
SF-20520 Abo, Finland

12.1 INTRODUCTION

In his plenary talk at the 3rd IFSA meeting [13], Lotfi Zadeh predicted a strong
development toward neuralism and suggested research on fuzzy logic to be placed
somewhere between crisp logic and neural nets. Zadeh'’s talk can indeed be seen
as a starting point for the development of neural fuzzy systems (NFSs), with the
inevitable need for developing and invoking more sophisticated learning and
tuning capabilities, even on silicon (second generation fuzzy controllers).

Neural fuzzyness today is a marriage between neural computing and fuzzy logic,
with engineering activities ranging from diagnostics to control. A unifying NFSs
paradigm is, however, still to be developed, where neuralism, logic, and control
are understood in a common framework. An appropriate foundational under-
standing must accompany this search for engineering platforms. Today’s purely
mathematical discipline of fuzzy set foundations leans much on algebraic founda-
tions [1], and are, from an application point of view, still rather sterile formal
descriptions. Approaches to first order fuzzy logic [9] are promising for the
development of fuzzy logic programming, but as a support for the construction
of serious applications, work remains to be done.

Classic neuralists, fuzzy logicians, and control engineers show an obvious
tendency to join forces, as we already witness in several conference organizations.
From this we cannot but predict a bright future for NFSs, and a development
toward establishing NFS as a well-founded discipline.

250

Patrick Eklund 251

In this chapter we recommend going deep into case studies in order to achieve
virtuosity in handling and combining available NFSs techniques and technologies.
We emphasize preprocessing (or fuzzification) of data. By this we mean extraction
of cut-off values and “softening,” or fuzzifying, the cut-off barrier. In general, we
are specifying system parameters, as informative ingredients in the decision support
environment. When parameters, and thereby knowledge, have been extracted, our
raw data are transformed into a corresponding logical form. Transformed data
can (and should) be further used in more traditional neural network environments
in order to optimize diagnostic performance. Note that for resulting networks and
computations, code can often be generated.

We show how preprocessed data from single layer networks lead to faster
convergence and better diagnostic performance in backpropagation networks. It
is remarkable that single layer networks together with preprocessing can compete
with multilayer networks that rely on mere linear transformations.

The chapter is organized as follows. Section 12.2 compares neural computa-

-tional and fuzzy inferential viewpoints. In Section 12.3 we pinpoint the conven-
tional use of neural networks. Section 12.4 initiates our search for a unifying NFSs
paradigm with an identification of the logical nature of neural nets. Section 12.5
introduces basic learning rules for NFSs parameters, with supporting case studies
in Section 12.6. In Section 12.7 we discuss problems related to tuning the inference
mechanism.,

Throughout the chapter we prefer to use the medical diagnostic paradigm of
pattern recognition problems. We thus speak of “patients” for the input pattern,
“diagnosis” for the output classification, and “diagnostic engine” for the network.

12.2 ENLIGHTENING THE BLACK BOX

A typical application of neural networks consists of “throwing in numbers” and
experimenting with different network structures. Partial success is acknowledged
as a discovery and unlocking of secrets of nature. The fact that resulting networks
are huge and impossible to interpret or explain remains as a sign of complexity,
and that “this shows we must have solved something really difficult.”

We claim that network size can be drastically reduced by paying attention to
preprocessing of raw numerical data. We can see that even specifying cut-off values
instead of using raw data will not just reduce network size, but also give a better
diagnostic performance than that of a multilayered network (Fig. 12.1).

Strategically, our suggestion is to preprocess before enlarging networks. In
doing so, network structures are kept small and explainable. The possibility of
explaining networks and its parameters is of utmost importance to practitioners
both in medical and technical diagnostics.

Explanations and interpretations of the network are logical in nature. In many
applications, such as diagnostic tasks, network summations are to be interpreted
as incremence of evidence. We are asked to deliver inputs simultaneously, with
data not available classified as “missing data.” All inputs (also in hidden units)
are used to calculate the weighted sum, which is activated and thereafter is fit to
act as an input in further feedforward. Note that partial evidence cannot be

[R]
n
[89]

Network Size versus Preprocessing

single layer network multi-layer network
& linear transformation & linear transformation
neural
fuzzy computing
inference view
view

single layer network multi-layer network
& preprocessing & preprocess

FIGURE 12.1. Fuzzy inference vs neural computing

estimated and saved for a separate incremental procedure. Formally, of course,
this is possible. In this case we would activate partial sums and have to choose
some function to aggregate all separate activations. From a (fuzzy) logical point
of view, some properties should then be satisfied. One such is associativity of the
incremence procedure, which is difficult to achieve with activations. Another aspect
concerns the linearity of the weighted sum. Independent evidence will add to the
result always with a static quantity regardless of the current measure of belief.
When dealing with values in the unit interval we expect the speed of incremence
to slow down the closer we come to maximal belief.

12.3 CONVENTIONAL USE OF NEURAL
NETS

Neural networks provide an environment for classifying patterns without having
to design and organize sophisticated knowledge-based architectures for the classi-
fying machinery. Numbers are used as such in experiments with different network
types/sizes, and diagnostic performance is evaluated with respect to choices of
system parameters.

The schema for “walking through™ an application is as follows [7]:

1, Collect data and transform into network input.
2. Separate data into training and test sets.
3. Select, train, and test the network.

[terate (1) to (3) as appropriate.
4. Deploy the network in your application.

For neuralists, the first step is the most “magic.” (A fuzzy practitioner considers
this step to be “logic.”) In this step, transformations like “ 1-of-N Codes” is applied
to handle symbolic data, and “Histogram Equalization™ overcomes difficulties
with out-of-normal-range values. For the second step there are few rules concern-
ing splitting of the data file into pieces for, respectively, training and testing. The
third step is experimental, and is a generate-and-test approach to finding (what

Patrick Eklund 253

disease . ;
description raw network diagnostic
(physical dxts optimizer engine

FIGURE 12.2. Traditional use of neural networks.

in the end is believed to be) near-optimal networks. The fourth phase is often nicely
supported by code generating modules in software packages.

According to the neural computing view, raw data are to be collected from a
physical description of the disease. Data are inserted and used as such by the
network. Preprocessing of data is a postactivity after the final network has been
extracted. By preprocessing, the diagnostic performance might be further improv-
able (Fig. 12.2).

The fuzzy inference view is the opposite: Preprocess first, and organize your
system based on knowledge extracted from the preprocessing phase. The pre-
processing phase includes a reorganization (often symptom combinations) of the
physical disease description. Data are pushed through (nonlinear) transformation
functions, and resulting transformed data are used instead of raw data (Fig. 12.3).
In subsequent sections we will see examples of the power of using transformed data.

12.4 THE LOGICAL NATURE OF NEURAL
NETS

In diagnostics, a pattern (measurements or symptoms from patient) acts as
antecedents from which we infer a classification (diagnosis) of the pattern (patient).
This logical view calls for analyzing the neural computing mechanisms as a
parameterized inference mechanism including uncertainty factors. Specifying and
tuning parameters, such as transformation function cut-offs and slopes, constituted
a numerical platform for knowledge extraction and description.

Referring to the discussion in the previous section, we can compare the neural
computing and fuzzy inference views as follows:

Neural computing view Fuzzy inference view
Parameters to explore Parameters to learn
In learning rules and learning rates, in In preprocessing (or fuzzification) functions, in the
transfer and error functions inference mechanism, in the defuzzification
function
Network type Inference mechanism type

How many hidden layers?

Preprocessing objective Preprocessing objective

Convert a data record to numbers in a way Transform data into a logical form, thereby extract-
that is easy for the network to do its job, ing transformation function parameters as a basis
usually only in the form of scaling and for knowledge generation; consider the neural pre-
normalization processing as a prepreprocessing, usually per-

formed by the expert, outside the logical apparatus

254 Network Size versus Preprocessing

i re- trans-
description P formed
(physical processor data

code § organize
generator § & data
(data) £ combine

extraction

; program data

FIGURE 12.3. Preprocessing schema.

Our case studies on both Nephropathia epidemica and the Arenaria interpres will
clarify the distinction.

The fuzzy inference view can architecturally be specified according to Figure
12.4.

1241 Input

In any classification task we have a measurement space from which we receive
physical input data. If and when organized (or prepreprocessed) into appropriate
raw numerical form, data are linearly transformed into values in, say, the unit
interval. We thus have normalized physical input as an initial data representation
appropriate for our logical explorer.

physical output Decision Space

reformation
logical output
defuzzification
network output

network

inference

logical input
preprocessing (or fuzzificatio
normalized physical input
linear transformation

physical input

fre

Measurement Space

FIGURE 124, Logical activities in feedforward.

Patrick Eklund 255

FIGURE 12.5. Typical stigmoid preprocessing functions.

The preprocessing (or fuzzification) functions transform unit interval physical
input into unit interval logical input. The problem of using physical data is obvious.
In medical applications, the significance of, i.e., the general symptom “fever” is
related to the diagnosis under consideration. For the flu, just above 37°C already
is very significant, whereas a patient with pneumonia usually has a higher fever.
For specific symptoms, this fact is even more unavoidable. Further, a slope at a
cut-off point specifies the speed by which a measurement around the cut-off
changes significance. Using sigmoid transformation functions, Figure 12.5 de-
scribes almost linear transformation (Fig. 12.5a) lower significant values and (Fig.
12.5b) higher values significant with a steep slope at the cut-off (Fig. 12.5¢).

Note that functions shapes as such are very informative for the expert. Thus,
much of the knowledge extracted already resides in function parameters.

12.4.2 Inference

The logical input now is fed into the network. Here we are tempted to immediately
shift to the neural computing style, and proceed to experiment with different
network types. However, our recommendation is to start simply with a single
layer. Again, simplicity results in fewer parameters, and thereby to a better defined
knowledge extraction process. Moreover, several examples show that a perceptron
together with preprocessing can perform as good as backpropagation using only
normalized physical input. Only when simpler networks have been investigated,
weights adapted and interpreted, and knowledge extracted, we should complete
out task by using more conventional neural techniques (recall Fig. 12.1).

So far we have only a dangling logical nature in preprocessing functions. These
functions, however, obtain a well-defined logical interpretation in describing the
network as an inference schema. To begin with, note the almost religious nature
of the weighted sum

net =Y w;s;
i

which, with data in the unit interval, typically is activated by a sigmoid

|
fiet) = ——

1+te ~ ¢(net —9)

256 Network Size versus Preprocessing

where 0 is the threshold value and ¢ represents the slope at the threshold in the
activation function. Here we have almost an alogical schema where intermediate
values shift back and forth between the unit and real lines, respectively. Input
values start off at the unit interval. The weighted sum 1s in the real line, and
therefore the sum must be activated back to the unit interval.

In Eklund et al [5] we have a framework where input aggregation and
activations are lumped together into a logical notion of incremental evidence. The
activated weighted sum is rewritten in a more logical form according to

(Diefgof(w" s;)

121

where ¢(w;, s;) denotes the semantics of implication, and @ calculates an in-
cremence of evidence. Typically, @ has a generator function, and is an assembly
of co-t-norms. This opens up a wide spectrum of parameterizations of the weighted
sum, together with interpretations of activation functions in terms of co-t-norms
and/or OWA-operators [12]. On the other hand, well-established activation
functions, like the tanh function used in the [—1, 1] interval case, correspond to
co-t-norms hardly ever appearing in the fuzzy literature.

Note that both ®,_; and ¢, can be transformed to range in the unit interval. In
fact, rewriting and parameterizing the activated sum in this fashion provide the
basic elements for presenting neural feedforward in a logic framework. Learning
algorithms also carry over. See Eklund et al. [5] for details. Syntactic schemas to

conjoin fuzzy logic and neural network computational paradigms have been
described [4].

12.4.3 Output

The network output 1s now defuzzified by some activation-type function. The
resulting logical output is passed through a reformation process, and we obtain
the final physical output in the decision space.

The decision space can be binary, in the sense of classifying patients with respect
to a diagnosis according to yes or no. The space can be “quasiternary” in the
sense of a diagnosis “maybe,” where a patient remains under observation, and
the yes/no decision 1s postponed. Nonbinary, finite decision spaces exist, i.e., for
the thyroedea, where we have a typical 5-value space in diagnostic classifications

according to {hypo, subhypo, normal, subhyper, hyper}. In diagnostics, continuum
decision spaces are rare.

12.5 TUNING SYSTEM PARAMETERS

The delta rule can be derived in a general feedforwarding framework, as has been
emphasized by many authors.

In general, for inputs s,,...,s,, and outputs o,,...,0,, a parameterized
input—output function can be written as

(Bigsin5 5 Bl = wll Ty 5 5 00,8 P 4 0 ondP,)

where .#[a,,..., 2] represents the parameterized system function.

Patrick Eklund 257

Given a pattern p = (ry,...,r,), a parameter «;, j = 1,...,k, is updated
according to

o= o @ A

and

J0E
Ao, = £

pJ aaj

where E, is a function measuring the error of the output with respect to some
target (expected) values ¢,, ..., t,. Typically, E, is the mean square sum

Eloay,...,0q] = i (t; — 0)*

i=1

Of course, several error functions are available, and update expressions are derived
accordingly.

The parameters o, ..., &, reside, respectively, in the fuzzification, inference, and
defuzzification modules of the system (or mechanism) .#. We shall denote physical
normalized input by r; (raw data) and logical preprocessed inputs by s; (symptoms).

Let now f be a differentiable activation function. For

Opzji[wla"'swk](sls"'asn):f(i wisi)

i=1

we obtain
pri = nf’(op)(tp - Op)si

Considering the weighted sum as a (pseudo)logical disjunction, this rule should
be seen as adjusting parameters in the inference part of the network. Since weights
appear all over the real line, the operation @ can be taken to be the ordinary sum.

Parameters in fuzzification (preprocessing) relate to specification of membership
functions (or transformations of inputs). As an example, suppose we are tuning
sigmoids

1
1 _|_ eiﬂ(rﬁa},

gle, B1(r) = f>0

Then

0, = =/iz[wla-“awkafxls ey Oy, ABI,"" IBk:l(Sl""HSn) :f(i Wig[ai’ﬁi](ri))

i=1

258 Network Size versus Preprocessing

and the corresponding delta rules become

Byl = = OcEj = —(t, — 0o, (1 — o wigley, BArN1 — gley, Bil(r))B;
and

Af =~ iﬁ = 1(t, — 0,)0,(1 — 0 Jwiglo, B — Lo, BN —)
respectively.

Note that we must update s and fis according to
aft + 1) = a,(t) D A,at)
and
Bt + 1) = Bi(0) @, A, Bi(1)
where @, and @, are corresponding (homeomorphic) operations in the unit

interval and positive real line, respectively.
For the defuzzification module, with the sigmoid activation function, ¢ = f§

aclL?

0 = a,., corresponding update rules are
% .
Ap‘:“(act =T S L= _H{tp - Op)g[:xactz ﬁacl](”el‘){l - g[:’iuclﬂ ﬁaml](”{)r))ﬁnct
“Yact
and
cE, .
Apﬁact == €ﬁ = ;]({p - Op)gl:gtactv ﬁact](”e{)(l - g[’xacn ﬁacl](m)r))(”ef - xacl)
‘Hact
respectively.

Defuzzification in diagnostics has pragmatic aspects such as choosing the
output either to indicate decision support, or to conclude an expert judgment. In
control, defuzzification is always a signal, and the defuzzification schema tends to
be bound to the application.

12.6 CASE STUDIES AND DEVELOPMENTS

Several simulations show that parameter tuning is both fast and reliable.

For real applications in medical diagnostics, we will describe results for
diagnosing hemorrhagic fever with renal syndrome. A similar analysis (described
elsewhere) has been carried out for urinary tract infections, thyroedea, and
infarctus cordis.

Patrick Eklund 259

The generality of the medical diagnostic paradigm is further exemplified with
an ornithological case study in “diagnosing” whether the turnstone breeds on a
certain island in the Aland archipelago (situated between the Finnish and Swedish
mainlands).

We also briefly mention technical diagnostics, and, in particular, refer to diesel
engine monitoring and fault avoidance.

Finally, we describe a product development program aimed at design and
implementation of a clinician’s workstation for doing NFSs analysis, together with
related application building.

12.6.1 Nephropathia Epidemica

The clinical course of the NE has been described [8].

The differential diagnosis between NE and other infectious diseases and renal
diseases is often difficult. The syndrome has 27 signs and symptoms, which are
sufficient for drawing diagnostic conclusions, but none of them is diagnostic alone.
For more details, see Eklund et al. [2, 3].

For the NE we carried out the following tuning experiment. First, we started
off measuring diagnostic performance with cut-offs fixed at « = 0.5 as compared
to cut-offs suggested by the best expert. Here we fixed slope values at § = 10.
The expert version wins. Second, we tuned cut-offs from the « = 0.5 points, and
compared the success of tuning slopes with, respectively, cut-offs tuned from
a = 0.5 and cut-offs fixed by the expert. Now it turns out the completely tuned
version shows highest diagnostic rates (see Table 12.1).

Note that we do not draw the conclusion that the expert can be deleted from
the knowledge acquisition process. The expert still provides information about
transformation function types (i.e., sigmoids or bell shapes, sigmoids being increas-
ing or decreasing), and is in the end the evaluator of the usefulness of constructed
decision support systems (rnot expert systems).

Figure 12.6 shows a sample of tuned transformation functions for the NE.

From the above we see how parameter tuning is successful even without starting
off at some expert information about cut-offs and/or slopes. Moreover, when using
preprocessed data, instead of physical normalized input, we can increase con-
vergence speed for the learning phase also in traditional neural computing (see
Fig. 12.7). For the NE, we used a backpropagation network with 5 nodes in the
hidden layer, together with 28,000 patterns (100 iterations of 280 patients) for
training.

TABLE 12.1 Tuning with and without Expert

Correctness Mean Absolute
Rate (%) Error Rate
Cut-offs fixed at 0.5 85.36 0.27
Cut-offs given by expert 87.86 0.25
Slopes tuned, expert cut-offs 88.57 0.22

Slopes tuned, cut-offs tuned 89.29 0.21

260 Network Size versus Preprocessing

CRP ESR creatlinine thrembocytes
«=029 p=17.9 «=050 p=1008 a=0.14 [=26.46 « =022 f=3890
w=0.24 w=-0.15 w=121 w=1.78
1 447 2 145 26 1322 10 659

o expertcut-off e tuned cut-off

FIGURE 12.6. Sample transformation functions (NE).

raw data
l‘t-a Act. value
'N-:';lﬂ'd{ il
S A0 e fo| 0.8580
U 0.9015
transformed data

FIGURE 12.7. Convergence of learning (NE).

12.6.3 Arenaria Interpres

The turnstone (Arenaria interpres) breeds on islands in the Aland archipelago, and
is quite particular concerning island characteristics. Typically, the favorite island
is small and rocky, has a higher maritimity value (PCA gradient), and is already
a breeding place for pairs of small gulls.

The landtype symptom is a good example how preprocessing relates to the
neural “1-of-N Codes™ approach. We used a 5-scale according to the following:
1 = bare rock, 2 = rocky islet, 3 = bare rock surrounded by reed, 4 = partially
forested, and 5 = completely forested. The turnstone accepts types 1 and 2, and
rejects types 3, 4, and 5. According to the expert ornithologist, the rejection of 4
and 5 is clear, whereas type 3 might be acceptable. In a corresponding transforma-
tion function, using {0, 0.25, 0.5, 0.75, 1} as normalized physical input, the slope
should be steep, and the cut-off between type 2 and 3, but somewhat closer to 3.
In our tuning, the slope became f# = 20.07 and the cut-off value converged to
o = 0.40, perfectly corresponding to reality.

Figure 12.8 shows transformation functions for all eight symptoms.

The correctness rate for the single-layer preprocessing network was just above
80%. Interestingly enough, a backpropagation network (5 nodes in the hidden
layer) using logical inputs from the preprocessing network showed a correctness
rate just under 80%. The same network using physical normalized input performed
even worse.

Patrick Eklund 261

area forest (%) exposition landtype

« = 0.50 B= 981 =092 p=1265 =061 (=800 a=040 p=20.07
w=0.28 w=-0.64 w=0.98 w=182
1 984 0O 100 i 4 1 [
maritimity (PCA) proximity (PCA) pairs of gulls small gulls
«=073 p=16.19 «=028 p=1293 a=0850 f=991 «=0.16 (= 26.10
w=1.06 w=0.45 w=-0.01 w=255
-3.39 422 206 3.47 0 31 1] S0

FIGURE 12.8. Transformation functions (turnstone).

12.6.3 Technical Diagnostics

Heuristic cut-off values are widely used also in technical systems. Taking measur-
ings like temperatures, and transforming numerical values respectively to high,
normal, or low values depending on cut-off points, has been taken as a self-evident
initial step in a straightforward attribute-value approach. However, this extraction
means a severe loss of information in the diagnostic process. Referring to our
discussion above, we can easily see how similar input shape techniques can be
used also in these contexts. Contrary to medical applications, the number of
symptoms is usually smaller for particular conclusions, although the number of
measurement points might be very large.

We have applied out techniques for diagnostics and monitoring of medium
speed diesel engines, using in power generation in ships and power plants. The
diagnostic system FAKS is operational on a train ferry sailing between Hango
(Finland) and Travemiinde (Germany).

12.6.4 The DiagiaD Architecture

The DiagiaD workplan is part of the research program GeDeMeDeS, which aims
at developing generic NFSs software. Apart from diagnostics, also control applica-
tions and packages are being developed.

The DiagaiD architecture is described in Figure 12.9.

The workplan has three distinct submodules. Initially, the diagnostic problem
must be specified, and corresponding data extracted from hospital databases. The
key engineering task here is to create the code generator for MUMPS programs,
thereby giving straightforward access to databases. When raw data are available,
the preprocessing machinery takes over, the principles of which are described in

262 Network Size versus Preprocessing

gy Yes

3
disease "]
Liescription networ diagnostic DSs
(logical) sptimizer engine module
A 4 Y
A
alsease . . ‘
{escription pre ftrmsf’ application
b ELE ormed .
(physical) RrOcessor data builder
3
1
i Foninnns,
code organize code i
generator I data generator MoC e
(data) combine (dg engine) files
o<
4
extraction
program raw
(MUMPS) data i .)
1 = = =3 S
baspetal database(s) *h% Tuformation Baxk

FIGURE 12.9. DiagainD architecture.

preceding sections. Finally, the application builder typically uses generated C
coded include files in its application builder environment (ranging from pro-
graph™ for the Macintosh™, to independent XVT™ platforms with portabilities

for free), and aims at minimizing engineering time and effort in creating final DSS
modules.

12.7 TUNING THE INFERENCE MECHANISM

In the preprocessing module we have seen how the choice of function type still
remains to be specified by the expert. For the inference mechanism, we also have
to select appropriate types that correspond to actual inference procedures.

In NE, symptoms like “fever” and “myopia” exemplify the situation. Fever
occurs in almost every NE patient. It is not a very significant symptom, not even
if the fever value is high. However, if a patient does not have fever, we might
initially suspect that the patient does not suffer from any infectious disease. In the
case of myopia, the symptom is very characteristic for NE. However, very few NE
patients have myopia. Thus, myopia not being present gives very little information
in diagnosing the NE.

Only some very general observations can be done. A positive value on a weight
together with an almost yes indication on the corresponding symptom almost
always results in a diagnostic indication in favor of the disease (see Fig. 12.10).

Patrick Eklund 263

negative |— { positive WEIGHT
N | Kx\\\ i 1 ves SYMPTOM
against | | in favour DG INDICATION

FIGURE 12.10. Inference type.

For a symptom not being indicated, the diagnostic indication can either directly
react on the magnitude of the weight, or else stay neutrally at “cannot say”
regardless of the weight value.

Thus, the choice of the inference function is much more elaborate than as for
the preprocessing functions. Table 12.2 presents a summarizing (incomplete)
framework for the type selection.

Note also how the weighted sum inferencewise behaves differently depending
on the domain of normalized values being [0, 1] or [-1, 1]. For the [0, 1] interval,
we get @+, —) = 0, whereas for the [—1,1] interval we would have
q)i(+= _) = -

A complete examination of different inference function types, together with their

diagnostic performance in real applications, is outside the scope of this chapter,
but will be described in forthcoming papers.

12.8 CONCLUSIONS

The topic of NFSs is diagnostics and control through neural interpretations of
fuzzy sets. The focus is, and should be, on applications. We emphasize integration
of learning and acquisition techniques as key engineering tasks. Openness and
curiosity for supporting foundational aspects are, however, also required from the
engineering side.

In this chapter we specifically propose an architecture for a generic tool that
supports both data analysis and development of diagnostic modules. The archi-
tecture provides a computerized environment for (semi)automatically creating
diagnostic software packages, starting from data collecting phases through data

TABLE 12.2 Inference Function

Characteristics

Wi Xi Qiw;, 5;)
+ - -

S — 0or —
—_ _l_ —

0or +

264 Network Size versus Preprocessing

analysis and knowledge acquisition phases all the way to the final engineering of
the module under consideration.

ACKNOWLEDGMENTS

Work is carried out within the GeDeMeDeS-project, supported by the Technology e
Development Centre (TEKES), Helsinki.

References

1. C. C. Change. Algebraic analysis of many-valued logic. Trans. Am. Math. Soc. 88,
467-490, 1958.

2. P. Eklund and J. Forsstrom. Diagnosis of nephropathia epidemica by adaptation
through Eukasiewicz inference. In COMPUTATIONAL INTELLIGENCE, III—The
International Conference on Computational Intelligence 90, Milan, Italy. N. Cercone, F.
Gardin, and G. Valle, eds. Amsterdam: Elsevier Science Publishers B.V. (North-
Holland), 237-246, 1991.

3. P. Eklund and J. Forsstrém. A generic neuro-fuzzy tool for developing medical decision
support. Manuscript, 1992.

4. P. Eklund and F. Klawonn. Neural fuzzy logic programming. /[EEE Trans. Neural
Networks, special issue of the FUZZ-IEEE '92, San Diego, March 1992, 3(5), 815-818,
1992,

5. P. Eklund, T. Riissanen, and H. Virtanen. On the fuzzy logic nature of neural nets.
Proc. Neuro-Nimes '91, Nimes, November 4-8, 293-300, 1991.

6. 1.-S. R. Jang. Self-learning fuzzy controllers based on temporal back propagation. /[EEE
Trans. Neural Networks, special issue of the FUZZ-IEEE 92, San Diego, March 1992,
3(5) 714-723, 1992.

7. C. C. Klimasauskas. Neural networks: Application walkthrough. Tutorial, Neuro-
Nimes 91, Nimes, November 4-8, 1991. (Contains: Applying neural networks, Parts
I-V, reprinted from PC/AI Magazine.)

8. J. Lihdevirta. Nephropathia epidemica in Finland: A clinical, histological and epidemio-
logical study. Ann. Clin. Res. 3 (Suppl 8), 1-154, 1971,

9. V. Novak. On the syntacto-semantical completeness of first order logic, I, II. Kyberneti-
ca 26, 47-66, 134-154, 1990.

10. D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations
by error propagation. In Parallel Distributed Processing, Vol 1. J. L. McClelland and
D. E. Rumelhart, eds. Cambridge, MA: MIT Press, 1986, 318-364.

11. L. Wang and J. M. Mendel. Back-propagation fuzzy systems as nonlinear dynamic
system identifiers. Proc. FUZZ-IEEE, March, 1992.

12. R. R. Yager. On ordered weighted averaging aggregation operators in multicriteria
decisionmaking. IEEE Trans. Syst. Man Cybernet. 18, 183-190, 1988.

13. L. Zadeh. The coming age of fuzzy logic. Plenary talk at 3rd IFSA, Seattle, August
6-11, 1989.

A e, iz sl

