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Introduction.

A pair (X , ∗) is a prequantale if X is a complete lattice and ∗ is binary
operation on X satisfying the following distributive law:(∨

i∈I
xi

)
∗ y =

∨
i∈I

xi ∗ y , x ∗
(∨
i∈I

yi

)
=
∨
i∈I

x ∗ yi .

I Morphisms between prequantales are structure preserving maps � i.e.

X Y-h
is a homomorphisms i� h preserves

I arbitrary joins
I the binary operation � i.e. h(x1 ∗ x2) = h(x1) ∗ h(x2).

I Fact. Prequantales and homomorphisms form a category Pq.
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Example.

I The unit interval provided with the geometric binary mean is a
prequantale.

I The unit interval provided with a left-continuous t-norm is a unital
quantale and a fortiori a prequantale.

I The lattice L(R3) of all linear subspaces U of R3 provided with the
multiplication determined by the vector product

U ∗ V = linear hull{u × v | u ∈ U, v ∈ V }

is a prequantale.

I Any Lie algebra induces a prequantale.

Question:

Does every complete lattice generate a prequantale ?
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The category Sup consists of the following data:

I objects are complete lattices,

I morphism are join preserving maps.

Fact: There exists a forgetful functor F from Pq to Sup.

Question: Does F have a right adjoint functor � i.e.

Do free prequantales exist for any complete lattice?

I If we replace Sup by the category Set of sets and maps, then the
previous question means the following:

Do free magma exist for any set?

The answer is yes.

The construction of free magmas is the typical term construction w.r.t. a
signature consisting of a binary operator symbol only.

Does there exists a generalization of the term construction to Sup ?
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A categorical formulation of the term construction in Set.

A signature is a pair Σ = (Ω, σ) where Ω is a set and Ω N0.-σ

I The universal property of the coproduct
⊔

in Set implies that
every signature Σ can be identi�ed with a sequence

(Ωn)n∈N0 of sets Ωn where

I Ω =
⊔

n∈N0
Ωn and σ =

⊔
n∈N0

σn with σn(ω) = n, ω ∈ Ωn.

Let Σ be a signature. A Σ-algebra is a pair (X , δ) where

I X is a set,

I δ = (δn)n∈N0 is a sequence of maps Ωn × X
n

X-δn
where Xn

denotes the n-th power of X w.r.t. the cartesian product and X
0 = {·}.

The universal property of the coproduct
⊔

in Set implies that
the sequence (δn)n∈N0 can be identi�ed with the map

⊔
n∈N0

Ωn × X
n

X .-δ

6 / 20
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A map X Y-h
is a Σ-homomorphism from a Σ-algebra (X , δ)

to (Y , ε) if the following diagram is commutative:

⊔
n∈N0

Ωn × Xn
⊔

n∈N0

Ωn × Y n

X Y

?

δ

-

⊕
n∈N0

1Ωn×h
n

?

ε

-h

Σ-algebras and Σ-homomorphism form a category A(Σ).

We show that the forgetful functor A(Σ) Set-F has a

left-adjoint � i.e.

Free Σ-algebras exist!!
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Usual term construction:

X = set of variables, Ω = set of operator symbol, X ∩ Ω = ∅.

Σ-terms generated by X are de�ned recursively as follows:

I x ∈ X and ω ∈ Ω0 are terms.

I If t1, . . . , tn are terms and ω ∈ Ωn, then ω(t1, . . . , tn) is a term.

I Requirement: ω(t1, . . . , tn) 6∈ X .

Commment:

I (1) If we are not interested in the free term algebra generated by terms,
then the previous requirement can be assume tacitly.

I (2) If we are interested in the multiplication of the term monad, then the
previous requirement is essential.

I (3) The previous term construction is called informal, because natural
language is involved and categorical data of the category of sets do not
appear explicitly!

Aim: Formal term construction based on the data of Set.
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Term construction
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Set(Q)

Formal term construction:

For any set X we de�ne an increasing sequence (Zk(X ))k∈N of sets
Zk(X ) by

Z1(X ) =
⊔

n∈N0
Ωn × Xn,

Zk+1(X ) =
⊔

n∈N0
Ωn × (Zk(X ) t X )n, k ∈ N.

Embeddings Zk(X ) Zk+1(X )-
ek+1 k

are given by:

I e2 1 = ⊕
n∈N0

(
1Ωn × (jX )n

)
,

where jX is the canonical embedding X Z1(X ) t X ,-jX

I ek+1 k = ⊕
n∈N0

(
1Ωn × (ek k−1 ⊕ 1X )n

)
, 2 ≤ k.

I Z0(X ) =
⋃

k∈N Zk(X ) is the inductive limit of (Zk(X ), em k)k∈N.
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T (X ) = Z0(X ) t X = set of terms.

Since the cartesian product in Set preserves colimits � in particular the
n-th power of the cartesian product preserves directed unions, the
following relation holds:

I ⊔
n∈N0

Ωn × (T (X ))n =
⊔

n∈N0

Ωn ×
( ⋃
k∈N

Zk(X ) t X
)n

=
⊔

n∈N0

( ⋃
k∈N

Ωn × (Zk(X ) t X )n
)

=
⋃
k∈N

( ⊔
n∈N0

Ωn × (Zk(X ) t X )n
)

=
⋃
k∈N

Zk+1(X )

= Z0(X )
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Since colimts are unique up to an isomorphism, the previous relation can
be formulated as follows.

I Notation of maps:

I X T (X ),-ηX

I Z0(X ) T (X ),-j0

I Zk(X ) Z0(X ).-
ek

Theorem.

I There exists a bijective map

⊔
n∈N0

Ωn × T (X )n Z0(X )-ϑ

provided with the following properties

I e1 = ϑ ◦
( ⊕
n∈N0

1Ωn × (ηX )n
)
,

I ek+1 = ϑ ◦
( ⊕
n∈N0

1Ωn × (ek ⊕ 1X )n
)
, k ∈ N.

(T (X ), j0 ◦ ϑ) is the term Σ-algebra.
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Theorem

Let Σ be a signature, X be a set and (T (X ), j0 ◦ ϑ) be the term algebra. For

every Σ-algebra (Y , δ) and for every map X Y-h
there exists a

unique homomorphism (T (X ), j0 ◦ ϑ) (Y , δ)-h]

making the

following diagram commutative:

X T (X )

Y

-ηX

@
@
@
@R

h

?

h] (E)
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(a) (Unicity). Let (T (X ), j0 ◦ ϑ) (Y , δ)-h]

be an extension of h.

I

Zk(X )

⊔
n∈N0

Ωn × (T (X ))n T (X )

⊔
n∈N0

Ωn × Y n

Y

-
ϑ−1◦ek

?

⊕
n∈N0

1Ωn×(h])n

-j0◦ϑ

?

h]

-
δ

I Hence the relations follow:

h] ◦ j0 ◦ e1 = δ ◦
( ⊕
n∈N0

1Ωn × hn
)
,

h] ◦ j0 ◦ ek+1 = δ ◦
( ⊕
n∈N0

1Ωn × ((h] ◦ j0 ◦ ek) t h)n
)
, k ≥ 1.

(1)

I The restriction of h] to Z0(X ) � i.e. h] ◦ j0 � is uniquely determined by
h.
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(b) (Existence). The relation (1) motivates to de�ne the following

sequence (fk)k∈N of maps Zk(X ) Y-
fk

by

I

f1 = δ ◦
( ⊕
n∈N0

1Ωn × hn
)
,

fk+1 = δ ◦
( ⊕
n∈N0

1Ωn × (fk t h)n
)
, k ≥ 1.

(2)

I Because of fk+1 ◦ ek+1 k = fk there exists a unique map

Z0(X ) Y-f0
with f0 ◦ ek = fk .

I We put h] = f0 t h. Then h] ◦ j0 ◦ ek = fk holds.
I Because of

δ ◦
( ⊕
n∈N0

1Ωn × (h])n
)
◦ (ϑ−1 ◦ ek+1)

= δ ◦
( ⊕
n∈N0

1Ωn × (f0 t h)n
)
◦
( ⊕
n∈N0

1Ωn × (ek ⊕ 1X )n
)

= δ ◦
( ⊕
n∈N0

1Ωn × (fk t h)n
)

= fk+1

= h] ◦ j0 ◦ ϑ ◦ (ϑ−1 ◦ ek+1)

I h] is a homomorphism.

14 / 20
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Term construction in monoidal biclosed categories.

An abstraction of the cartesian product in Set is the tensor product in
monoidal categories.

I The previous construction requires only that the cartesian product
preserves colimits.

I Requirement: The tensor product ⊗ preserves colimits �

I e.g. for all objects A the functors ⊗ A and A⊗ have right adjoint
functors.

I The term construction is possible in any monoidal biclosed category
C = (C0,⊗, a, 1, `, r).

I In this context:

I A sequence Σ = (Ωn)n∈N0 of objects Ωn in C0 is viewed as a signature.

I Theorem. The forgetful functor from the category of Σ-algebras in the
monoidal biclosed category C has a left adjoint functor.
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What happens in Sup ?

I Does Sup have a tensor product ?

I Answer: YES.

I The tensor product of a complete lattice X with a complete lattice Y is

the complete lattice X ⊗ Y of all join reversing maps X Y-f

� i.e.

I f (
∨

A) =
∧

f (A), A ⊆ X .

I The tensor product has a universal property:

I For every complete lattice Z and any bimorphism X × Y Z-b

� i.e.

I for any map b preserving arbitrary joins in each variable separately

I there exists a unique join preserving map X ⊗ Y Z-pbq
making

the following diagram commutative:

I

X × Y X ⊗ Y

Z

@
@
@
@
@R

b

-⊗

?

pbq

where ⊗ denotes the universal bimorphism.
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Moreover the tensor product is associative, commutative and has a unit
object 1 = {0, 1}.

I For any complete lattice X the endofunctor ⊗ X has a right adjoint
functor.

I Fact: (Sup,⊗, a, c, 1, `, r) is a monoidal closed category.

I Fact: The term construction exists in (Sup,⊗, a, c, 1, `, r).

I The signature of a prequantale has the following form:

I Ω2 = 1 and Ωn = 0, n 6= 2 where 0 is the initial object in Sup.

I Result: Every complete lattice X generates a free prequantale.
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Goguen's category Set(Q) and fuzzy terms.

Let (Q, ∗) be a unital quantale with unit e.

I Objects of Set(Q) are pairs (X , fX ) where X is a set and

X Q-fX
is a map.

I Morphisms of Set(Q) are maps X Y-ϕ between the underlying

sets satisfying the condition:

fX (x) ≤ fY (ϕ(x)), x ∈ X .

I The tensor product (X , fX )⊗ (Y , fY ) of (X , fY ) with (Y , fY ) is given by:

(X , fX )⊗ (Y , fY ) = (X × Y , fX ⊗ fY ) where

fX ⊗ fY (x , y) = fX (x) ∗ fY (y), (x , y) ∈ X × Y .

I The unit object 1 has the form 1 = ({·}, f1) where f1(·) = e.

I Goguen's category Set(Q) provided with the tensor product ⊗ and the
unit object 1 is a monoidal biclosed category.
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The internal hom-objects are given as follows:

I [(X , fX ), (Z , fZ )]r = (ZX , gr ), where

I gr (α) =
∧

x∈X
fX (x)↘ fZ (α(x)), α ∈ ZX .

I [(X , fX ), (Z , fZ )]` = (ZX , g`), where

I g`(α) =
∧

x∈X
fZ (α(x))↙ fX (x), α ∈ ZX .

The following diagrams are commutative:
I

(X , fX )⊗ (Y , fY ) (X , fX )⊗ (ZX , gr )

(Z , fZ )

HHH
HHHHj

b

-
1X×pbqr

?

ev [ pbqr (y) ](x) = b(x, y).

I

(X , fX )⊗ (Y , fY ) (ZY , g`)⊗ (Y , fY )

(Z , fZ )

HHH
HHHHj

b

-
pbq`×1Y

?

ev [ pbq`(x) ](y) = b(x, y).
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Goguen's category
Set(Q)

Result: The term construction exist in Goguen's category.

Comment:
Since Goguen's category can be viewed as a basis of Fuzzy set theory,
terms in the sense of Goguen's category can be called fuzzy terms.

Example.

Construction of the free magma generated by (X , fX ) in the sense of
Goguen's category Set(Q).

I Signature: Ω2 = 1, Ωn = 0, n 6= 2.

I Since the coproduct in Set(Q) has the form

(X , fX ) t (Y , fY ) = (X t Y , fX t fY )

where X t Y is the disjoint union of X and Y , the recursive construction
of fuzzy terms can informally be described as follows:

I (x , fX (x)) with x ∈ X is a fuzzy term.
I If (t1, q1) and (t2, q2) are fuzzy terms, then

(
(t1, t2), q1 ∗ q2

)
is a fuzzy

term.
I All fuzzy terms constitute an object (X ], (fX )]) of Set(Q) where

I X ] is the free magma generated by X in the sense of Set and

I (fX )] is the unique extension of X (Q, ∗)-fX to a homomorphism.

I This construction turns the binary operation • of X ] into the binary
operation in the sense of Goguen's category:

(X ], (fX )])⊗ (X ], (fX )]) (X ], (fX )]).-•
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Result: The term construction exist in Goguen's category.

Comment:
Since Goguen's category can be viewed as a basis of Fuzzy set theory,
terms in the sense of Goguen's category can be called fuzzy terms.

Example.

Construction of the free magma generated by (X , fX ) in the sense of
Goguen's category Set(Q).

I Signature: Ω2 = 1, Ωn = 0, n 6= 2.

I Since the coproduct in Set(Q) has the form

(X , fX ) t (Y , fY ) = (X t Y , fX t fY )

where X t Y is the disjoint union of X and Y , the recursive construction
of fuzzy terms can informally be described as follows:

I (x , fX (x)) with x ∈ X is a fuzzy term.
I If (t1, q1) and (t2, q2) are fuzzy terms, then

(
(t1, t2), q1 ∗ q2

)
is a fuzzy

term.
I All fuzzy terms constitute an object (X ], (fX )]) of Set(Q) where

I X ] is the free magma generated by X in the sense of Set and

I (fX )] is the unique extension of X (Q, ∗)-fX to a homomorphism.

I This construction turns the binary operation • of X ] into the binary
operation in the sense of Goguen's category:

(X ], (fX )])⊗ (X ], (fX )]) (X ], (fX )]).-•
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