Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Department of Computing Science, Umeå University, Sweden, FB C Bergische Universität Wuppertal, D-42097 Wuppertal, Germany, Department of Electrical Enineering and Information Technology, Mikkeli University of Applied Sciences, Finland

Linz Seminar February 2014

Table of Contents

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction
Term conetrection in Set

Term construction in monoidal
iliclosed categortes
Goguen's category

Term construction in Set.

Term construction in monoidal biclosed categories.

Goguen's category $\operatorname{Set}(Q)$ and fuzzy terms.
Introduction.

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction
Term construction in Set

Term construction in monoidal
biclosed categories
Goguen's category $\operatorname{Set}(Q)$

Introduction.

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction
Term construction in Set

Term construction in monoidal
biclosed categories
Goguen's category $\operatorname{Set}(Q)$

- Morphisms between prequantales are structure preserving maps - i.e. $X \xrightarrow{h} Y$ is a homomorphisms iff h preserves
- arbitrary joins
- the binary operation - i.e. $h\left(x_{1} * x_{2}\right)=h\left(x_{1}\right) * h\left(x_{2}\right)$.

Introduction.

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction
Term construction in Set

Term construction in monoidal
biclosed categories
Gogutn's category $\operatorname{Set}(Q)$

- Morphisms between prequantales are structure preserving maps - i.e. $X \xrightarrow{h} Y$ is a homomorphisms iff h preserves
- arbitrary joins
- the binary operation - i.e. $h\left(x_{1} * x_{2}\right)=h\left(x_{1}\right) * h\left(x_{2}\right)$.
- Fact. Prequantales and homomorphisms form a category Pq.

Example.

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction

Term construction in Set

Term construction in monoidal
biclosed categories
Goguen's category $\operatorname{Set}(Q)$

Example.

- The unit interval provided with the geometric binary mean is a prequantale.

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction
Term construction in Set

Term construction in monoidal
biclosed categories
Goguen's category $\operatorname{Set}(Q)$

Example.

- The unit interval provided with the geometric binary mean is a prequantale.
- The unit interval provided with a left-continuous t-norm is a unital quantale and a fortiori a prequantale.

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction
Term construction in Set

Term construction in monoidal
biclosed categories
Goguen's cattegory $\operatorname{Set}(Q)$

Example.

- The unit interval provided with the geometric binary mean is a prequantale.
- The unit interval provided with a left-continuous t-norm is a unital quantale and a fortiori a prequantale.
- The lattice $L\left(\mathbb{R}^{3}\right)$ of all linear subspaces U of \mathbb{R}^{3} provided with the multiplication determined by the vector product

$$
U * V=\text { linear hull }\{u \times v \mid u \in U, v \in V\}
$$

is a prequantale.

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction
Term construction in Set

Term construction in monoidal
biclosed categories
Goguen's category $\operatorname{Set}(Q)$

Example.

- The unit interval provided with the geometric binary mean is a prequantale.
- The unit interval provided with a left-continuous t-norm is a unital quantale and a fortiori a prequantale.
- The lattice $L\left(\mathbb{R}^{3}\right)$ of all linear subspaces U of \mathbb{R}^{3} provided with the multiplication determined by the vector product

$$
U * V=\text { linear hull }\{u \times v \mid u \in U, v \in V\}
$$

is a prequantale.

- Any Lie algebra induces a prequantale.

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction
Term construction in Set

Term construction in monoidal
biclosed categories
Goguen's category $\operatorname{Set}(Q)$

Example.

- The unit interval provided with the geometric binary mean is a prequantale.
- The unit interval provided with a left-continuous t-norm is a unital quantale and a fortiori a prequantale.
- The lattice $L\left(\mathbb{R}^{3}\right)$ of all linear subspaces U of \mathbb{R}^{3} provided with the multiplication determined by the vector product

$$
U * V=\text { linear hull }\{u \times v \mid u \in U, v \in V\}
$$

is a prequantale.

- Any Lie algebra induces a prequantale.

Question:

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction

Term construction in Set

Term construction in monoidal
biclosed categeries
Goguen's category $\operatorname{Set}(\boldsymbol{Q})$

Example.

- The unit interval provided with the geometric binary mean is a prequantale.
- The unit interval provided with a left-continuous t-norm is a unital quantale and a fortiori a prequantale.
- The lattice $L\left(\mathbb{R}^{3}\right)$ of all linear subspaces U of \mathbb{R}^{3} provided with the multiplication determined by the vector product

$$
U * V=\text { linear hull }\{u \times v \mid u \in U, v \in V\}
$$

is a prequantale.

- Any Lie algebra induces a prequantale.

Question:

Does every complete lattice generate a prequantale ?

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction
Term construction in Set

Term construction in monoidal
biclosed categories
Goguen's category $\operatorname{Set}(\boldsymbol{Q})$

The category Sup consists of the following data:

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction
Term construction in Set

Term conetruction in monoidal
biclosed categories
Goguen's category $\operatorname{Set}(Q)$

The category Sup consists of the following data:

- objects are complete lattices,

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction
Term construction in Set

Term construction in monoidal
biclosed categories
Goguen's category $\operatorname{Set}(Q)$

The category Sup consists of the following data:

- objects are complete lattices,
- morphism are join preserving maps.

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction
Term construction in Set

Term construction in monoidal
biclosed categories
Goguen's category $\operatorname{Set}(\boldsymbol{Q})$

The category Sup consists of the following data:

- objects are complete lattices,
- morphism are join preserving maps.

Fact: There exists a forgetful functor \mathcal{F} from $\mathbf{P q}$ to Sup.

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction
Term construction in Set

Term construction in monoidal
biclosed categories
Goguen's category $\operatorname{Set}(\boldsymbol{Q})$

The category Sup consists of the following data:

- objects are complete lattices,
- morphism are join preserving maps.

Fact: There exists a forgetful functor \mathcal{F} from $\mathbf{P q}$ to Sup.
Question: Does \mathcal{F} have a right adjoint functor - i.e.

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction
Term construction

Term construction in monoidal
biclosed categories
Goguen's category $\operatorname{Set}(Q)$

The category Sup consists of the following data:

- objects are complete lattices,
- morphism are join preserving maps.

Fact: There exists a forgetful functor \mathcal{F} from $\mathbf{P q}$ to Sup.
Question: Does \mathcal{F} have a right adjoint functor - i.e.
Do free prequantales exist for any complete lattice?

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction
Term construction

The category Sup consists of the following data:

- objects are complete lattices,
- morphism are join preserving maps.

Fact: There exists a forgetful functor \mathcal{F} from $\mathbf{P q}$ to Sup.
Question: Does \mathcal{F} have a right adjoint functor - i.e.
Do free prequantales exist for any complete lattice?

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction
Term construction

- If we replace Sup by the category Set of sets and maps, then the previous question means the following:

The category Sup consists of the following data:

- objects are complete lattices,
- morphism are join preserving maps.

Fact: There exists a forgetful functor \mathcal{F} from $\mathbf{P q}$ to Sup.
Question: Does \mathcal{F} have a right adjoint functor - i.e.
Do free prequantales exist for any complete lattice?

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction
Term construction

- If we replace Sup by the category Set of sets and maps, then the previous question means the following:

Do free magma exist for any set?

The category Sup consists of the following data:

- objects are complete lattices,
- morphism are join preserving maps.

Fact: There exists a forgetful functor \mathcal{F} from $\mathbf{P q}$ to Sup.
Question: Does \mathcal{F} have a right adjoint functor - i.e.
Do free prequantales exist for any complete lattice?

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction
Term construction

- If we replace Sup by the category Set of sets and maps, then the previous question means the following:

Do free magma exist for any set?
The answer is yes.

The category Sup consists of the following data:

- objects are complete lattices,
- morphism are join preserving maps.

Fact: There exists a forgetful functor \mathcal{F} from $\mathbf{P q}$ to Sup.
Question: Does \mathcal{F} have a right adjoint functor - i.e.
Do free prequantales exist for any complete lattice?

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction
Term construction

- If we replace Sup by the category Set of sets and maps, then the previous question means the following:

Do free magma exist for any set?
The answer is yes.

The construction of free magmas is the typical term construction w.r.t. a signature consisting of a binary operator symbol only.

The category Sup consists of the following data:

- objects are complete lattices,
- morphism are join preserving maps.

Fact: There exists a forgetful functor \mathcal{F} from $\mathbf{P q}$ to Sup.
Question: Does \mathcal{F} have a right adjoint functor - i.e.
Do free prequantales exist for any complete lattice?

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction
Term construction

- If we replace Sup by the category Set of sets and maps, then the previous question means the following:

Do free magma exist for any set?
The answer is yes.

The construction of free magmas is the typical term construction w.r.t. a signature consisting of a binary operator symbol only.

Does there exists a generalization of the term construction to Sup ?

A categorical formulation of the term construction in Set.

A signature is a pair $\Sigma=(\Omega, \sigma)$ where Ω is a set and $\Omega \xrightarrow{\sigma} \mathbb{N}_{0}$.

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction

Term construction in Set

Term construction in monoidal
biclosed categories
Goguen's category $\operatorname{Set}(Q)$

A categorical formulation of the term construction in Set.

A signature is a pair $\Sigma=(\Omega, \sigma)$ where Ω is a set and $\Omega \xrightarrow{\sigma} \mathbb{N}_{0}$.
Patrik Eklund, Ulrich Höhle, Jari Kortelainen

- The universal property of the coproduct \bigsqcup in Set implies that every signature Σ can be identified with a sequence

$$
\left(\Omega_{n}\right)_{n \in \mathbb{N}_{0}} \text { of sets } \Omega_{n} \text { where }
$$

Introduction
Term construction in Set

Term construction in monoidal
biclosed categories
Goguen's category $\operatorname{Set}(Q)$

A categorical formulation of the term construction in Set.

A signature is a pair $\Sigma=(\Omega, \sigma)$ where Ω is a set and $\Omega \xrightarrow{\sigma} \mathbb{N}_{0}$.

- The universal property of the coproduct \bigsqcup in Set implies that every signature Σ can be identified with a sequence

$$
\left(\Omega_{n}\right)_{n \in \mathbb{N}_{0}} \text { of sets } \Omega_{n} \text { where }
$$

- $\Omega=\bigsqcup_{n \in \mathbb{N}_{0}} \Omega_{n} \quad$ and $\quad \sigma=\bigsqcup_{n \in \mathbb{N}_{0}} \sigma_{n} \quad$ with $\quad \sigma_{n}(\omega)=n, \quad \omega \in \Omega_{n}$.

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction

Term construction in Set

Term construction in monoidal
biclosed categories
Goguen's category $\operatorname{Set}(Q)$

A categorical formulation of the term construction in Set.

A signature is a pair $\Sigma=(\Omega, \sigma)$ where Ω is a set and $\Omega \xrightarrow{\sigma} \mathbb{N}_{0}$.

- The universal property of the coproduct \bigsqcup in Set implies that every signature Σ can be identified with a sequence

$$
\left(\Omega_{n}\right)_{n \in \mathbb{N}_{0}} \text { of sets } \Omega_{n} \text { where }
$$

- $\Omega=\bigsqcup_{n \in \mathbb{N}_{0}} \Omega_{n} \quad$ and $\quad \sigma=\bigsqcup_{n \in \mathbb{N}_{0}} \sigma_{n} \quad$ with $\quad \sigma_{n}(\omega)=n, \quad \omega \in \Omega_{n}$.

Let Σ be a signature. A Σ-algebra is a pair (X, δ) where

- X is a set,
- $\delta=\left(\delta_{\boldsymbol{n}}\right)_{\boldsymbol{n} \in \mathbb{N}_{\mathbf{0}}}$ is a sequence of maps $\Omega_{\boldsymbol{n}} \times X^{\boldsymbol{n}} \xrightarrow{\delta_{\boldsymbol{n}}} X$ where $X^{\boldsymbol{n}}$ denotes the n-th power of X w.r.t. the cartesian product and $X^{0}=\{\cdot\}$.

The universal property of the coproduct \bigsqcup in Set implies that the sequence $\left(\delta_{\boldsymbol{n}}\right)_{\boldsymbol{n} \in \mathbb{N}_{\mathbf{0}}}$ can be identified with the map

$$
\bigsqcup_{n \in \mathbb{N}_{0}} \Omega_{n} \times X^{n} \xrightarrow{\delta} x
$$

A map $X \xrightarrow{h} Y$ is a Σ-homomorphism from a Σ-algebra (X, δ) to (Y, ε) if the following diagram is commutative:

$$
\begin{aligned}
& \bigsqcup_{n \in \mathbb{N}_{0}} \Omega_{n} \times X^{n} \xrightarrow{\substack{\oplus \\
\mathbb{N}_{0}}} \mathbf{1}_{\Omega_{n}} \times h^{n} \bigsqcup_{n \in \mathbb{N}_{0}} \Omega_{n} \times Y^{n} \\
& \begin{array}{|l|l}
\\
\delta & \\
\\
& \\
X & h \\
X & \\
& \\
& \\
& \\
& \\
&
\end{array}
\end{aligned}
$$

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction

Term construction in Set

Term construction in monoidal
biclosed categeries
Goguen's category $\operatorname{Set}(Q)$

A map $X \xrightarrow{h} Y$ is a Σ-homomorphism from a Σ-algebra (X, δ) to (Y, ε) if the following diagram is commutative:

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Term construction in Set

Term construction in monoidal
biclosed categories
Goguen's category $\operatorname{Set}(Q)$
Σ-algebras and Σ-homomorphism form a category $\mathbf{A}(\Sigma)$.

A map $X \xrightarrow{h} Y$ is a Σ-homomorphism from a Σ-algebra (X, δ) to (Y, ε) if the following diagram is commutative:
Σ-algebras and Σ-homomorphism form a category $\mathbf{A}(\Sigma)$.

We show that the forgetful functor $\mathbf{A}(\Sigma) \xrightarrow{\mathcal{F}}$ Set has a left-adjoint - i.e.

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction

Term construction in Set

Term construction in monoidal
biclosed categories
Goguen's category $\operatorname{Set}(Q)$

A map $X \xrightarrow{h} Y$ is a Σ-homomorphism from a Σ-algebra (X, δ) to (Y, ε) if the following diagram is commutative:
Σ-algebras and Σ-homomorphism form a category $\mathbf{A}(\Sigma)$.

We show that the forgetful functor $\mathbf{A}(\Sigma) \xrightarrow{\mathcal{F}}$ Set has a left-adjoint - i.e.

Free \sum-algebras exist!!

Usual term construction:

$X=$ set of variables, $\Omega=$ set of operator symbol, $X \cap \Omega=\varnothing$.
Σ-terms generated by X are defined recursively as follows:

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Term construction in Set

Term construction in monoidal
biclosed categories
Goguen's category $\operatorname{Set}(Q)$

Usual term construction:
$X=$ set of variables, $\Omega=$ set of operator symbol, $X \cap \Omega=\varnothing$.
Σ-terms generated by X are defined recursively as follows:

- $x \in X$ and $\omega \in \Omega_{0}$ are terms.

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

```
Introduction
```

Term construction in Set

Term construction in monoidal
biclosed categories
Goguen's category $\operatorname{Set}(Q)$

Usual term construction:
$X=$ set of variables, $\Omega=$ set of operator symbol, $X \cap \Omega=\varnothing$.
Σ-terms generated by X are defined recursively as follows:

- $x \in X$ and $\omega \in \Omega_{0}$ are terms.
- If t_{1}, \ldots, t_{n} are terms and $\omega \in \Omega_{n}$, then $\omega\left(t_{1}, \ldots, t_{n}\right)$ is a term.

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

```
Introduction
```

Term construction in Set

Term construction in monoidal
biclosed categories
Goguen's category $\operatorname{Set}(Q)$

Usual term construction:
$X=$ set of variables, $\Omega=$ set of operator symbol, $X \cap \Omega=\varnothing$.
Σ-terms generated by X are defined recursively as follows:

- $x \in X$ and $\omega \in \Omega_{0}$ are terms.
- If t_{1}, \ldots, t_{n} are terms and $\omega \in \Omega_{n}$, then $\omega\left(t_{1}, \ldots, t_{n}\right)$ is a term.
- Requirement: $\omega\left(t_{1}, \ldots, t_{n}\right) \notin X$.

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

```
Introduction
```

Term construction in Set

Term construction in monoidal
biclosed categories
Goguen's category $\operatorname{Set}(Q)$

Usual term construction:
$X=$ set of variables, $\Omega=$ set of operator symbol, $X \cap \Omega=\varnothing$.
Σ-terms generated by X are defined recursively as follows:

- $x \in X$ and $\omega \in \Omega_{0}$ are terms.
- If t_{1}, \ldots, t_{n} are terms and $\omega \in \Omega_{n}$, then $\omega\left(t_{1}, \ldots, t_{n}\right)$ is a term.
- Requirement: $\omega\left(t_{1}, \ldots, t_{n}\right) \notin X$.

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

```
Introduction
```

Term construction in Set

Term construction in monoidal
biclosed categories
Goguen's category $\operatorname{Set}(Q)$

Commment:

Usual term construction:

$X=$ set of variables, $\Omega=$ set of operator symbol, $X \cap \Omega=\varnothing$.
Σ-terms generated by X are defined recursively as follows:

- $x \in X$ and $\omega \in \Omega_{0}$ are terms.
- If t_{1}, \ldots, t_{n} are terms and $\omega \in \Omega_{n}$, then $\omega\left(t_{1}, \ldots, t_{n}\right)$ is a term.
- Requirement: $\omega\left(t_{1}, \ldots, t_{n}\right) \notin X$.

Commment:

- (1) If we are not interested in the free term algebra generated by terms, then the previous requirement can be assume tacitly.

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction

Term construction in Set

Term construction in monoidal
biclosed categories
Goguen's category $\operatorname{Set}(Q)$

Usual term construction:

$X=$ set of variables, $\Omega=$ set of operator symbol, $X \cap \Omega=\varnothing$.
Σ-terms generated by X are defined recursively as follows:

- $x \in X$ and $\omega \in \Omega_{0}$ are terms.
- If t_{1}, \ldots, t_{n} are terms and $\omega \in \Omega_{n}$, then $\omega\left(t_{1}, \ldots, t_{n}\right)$ is a term.
- Requirement: $\omega\left(t_{1}, \ldots, t_{n}\right) \notin X$.

Commment:

- (1) If we are not interested in the free term algebra generated by terms, then the previous requirement can be assume tacitly.
- (2) If we are interested in the multiplication of the term monad, then the previous requirement is essential.

Term construction in Set

Usual term construction:

$X=$ set of variables, $\Omega=$ set of operator symbol, $X \cap \Omega=\varnothing$.
Σ-terms generated by X are defined recursively as follows:

- $x \in X$ and $\omega \in \Omega_{0}$ are terms.
- If t_{1}, \ldots, t_{n} are terms and $\omega \in \Omega_{n}$, then $\omega\left(t_{1}, \ldots, t_{n}\right)$ is a term.
- Requirement: $\omega\left(t_{1}, \ldots, t_{n}\right) \notin X$.

Commment:

- (1) If we are not interested in the free term algebra generated by terms, then the previous requirement can be assume tacitly.
- (2) If we are interested in the multiplication of the term monad, then the previous requirement is essential.
- (3) The previous term construction is called informal, because natural language is involved and categorical data of the category of sets do not appear explicitly!

```
Introduction
```

Term construction in Set

Term construction in monoidal
biclosed categories

Usual term construction:

$X=$ set of variables, $\Omega=$ set of operator symbol, $X \cap \Omega=\varnothing$.
Σ-terms generated by X are defined recursively as follows:

- $x \in X$ and $\omega \in \Omega_{0}$ are terms.
- If t_{1}, \ldots, t_{n} are terms and $\omega \in \Omega_{n}$, then $\omega\left(t_{1}, \ldots, t_{n}\right)$ is a term.
- Requirement: $\omega\left(t_{1}, \ldots, t_{n}\right) \notin X$.

Commment:

- (1) If we are not interested in the free term algebra generated by terms, then the previous requirement can be assume tacitly.
- (2) If we are interested in the multiplication of the term monad, then the previous requirement is essential.
- (3) The previous term construction is called informal, because natural language is involved and categorical data of the category of sets do not appear explicitly!

Aim: Formal term construction based on the data of Set.

```
Introduction
```

Term construction in Set

Formal term construction:

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction

Term construction in Set

Term construction in monoidal
biclosed categories
Goguen's category $\operatorname{Set}(Q)$

Formal term construction:

For any set X we define an increasing sequence $\left(Z_{k}(X)\right)_{k \in \mathbb{N}}$ of sets $Z_{k}(X)$ by

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction

Term construction in Set

Term construction in monoidal
biclosed categories
Goguen's category $\operatorname{Set}(Q)$

Formal term construction:

For any set X we define an increasing sequence $\left(Z_{k}(X)\right)_{k \in \mathbb{N}}$ of sets $Z_{k}(X)$ by

$$
Z_{1}(X)=\bigsqcup_{n \in \mathbb{N}_{0}} \Omega_{n} \times X^{n},
$$

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction

Term construction in Set

Term construction in monoidal
biclosed categories
Goguen's category $\operatorname{Set}(Q)$

Formal term construction:

For any set X we define an increasing sequence $\left(Z_{k}(X)\right)_{k \in \mathbb{N}}$ of sets $Z_{k}(X)$ by

$$
\begin{aligned}
& Z_{1}(X)=\bigsqcup_{n \in \mathbb{N}_{0}} \Omega_{n} \times X^{n}, \\
& Z_{k+1}(X)=\bigsqcup_{n \in \mathbb{N}_{0}} \Omega_{n} \times\left(Z_{k}(X) \sqcup X\right)^{n}, \quad k \in \mathbb{N} .
\end{aligned}
$$

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction

Term construction in Set

Term construction in monoidal
biclosed categories
Goguen's category $\operatorname{Set}(\boldsymbol{Q})$

Formal term construction:

For any set X we define an increasing sequence $\left(Z_{k}(X)\right)_{k \in \mathbb{N}}$ of sets $Z_{k}(X)$ by
$Z_{1}(X)=\bigsqcup_{n \in \mathbb{N}_{0}} \Omega_{n} \times X^{n}$,
$Z_{k+1}(X)=\bigsqcup_{n \in \mathbb{N}_{0}} \Omega_{n} \times\left(Z_{k}(X) \sqcup X\right)^{n}, \quad k \in \mathbb{N}$.

Embeddings $Z_{k}(X) \xrightarrow{e_{\boldsymbol{k}+\boldsymbol{1} \boldsymbol{k}}} Z_{k+1}(X)$ are given by:

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction

Term construction in Set

Term construction in monoidal
biclosed categeries
Goguen's category $\operatorname{Set}(Q)$

Formal term construction:

For any set X we define an increasing sequence $\left(Z_{k}(X)\right)_{k \in \mathbb{N}}$ of sets $Z_{k}(X)$ by
$Z_{1}(X)=\bigsqcup_{n \in \mathbb{N}_{0}} \Omega_{n} \times X^{n}$,
$Z_{k+1}(X)=\bigsqcup_{n \in \mathbb{N}_{0}} \Omega_{n} \times\left(Z_{k}(X) \sqcup X\right)^{n}, \quad k \in \mathbb{N}$.

Embeddings $Z_{k}(X) \xrightarrow{{ }^{\boldsymbol{e}} \boldsymbol{k + 1} \boldsymbol{k}} Z_{k+1}(X)$ are given by:
$-e_{21}=\underset{n \in \mathbb{N}_{0}}{\oplus}\left(1_{\Omega_{n}} \times(j x)^{n}\right)$,

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction

Term construction in Set

Term construction in monoidal
biclosed categories
Goguen's category $\operatorname{Set}(Q)$

Formal term construction:

For any set X we define an increasing sequence $\left(Z_{k}(X)\right)_{k \in \mathbb{N}}$ of sets $Z_{k}(X)$ by
$Z_{1}(X)=\bigsqcup_{n \in \mathbb{N}_{0}} \Omega_{n} \times X^{n}$,
$Z_{k+1}(X)=\bigsqcup_{n \in \mathbb{N}_{0}} \Omega_{n} \times\left(Z_{k}(X) \sqcup X\right)^{n}, \quad k \in \mathbb{N}$.

Embeddings $Z_{k}(X) \xrightarrow{{ }^{\boldsymbol{e}} \boldsymbol{k + 1} \boldsymbol{k}} Z_{k+1}(X)$ are given by:
$-e_{21}=\underset{n \in \mathbb{N}_{0}}{\oplus}\left(1_{\Omega_{n}} \times(j x)^{n}\right)$,
where j_{X} is the canonical embedding $X \xrightarrow{j_{x}} Z_{1}(X) \sqcup X$,

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction

Term construction in Set

Term construction in monoidal
biclosed categories
Goguen's category $\operatorname{Set}(Q)$

Formal term construction:

For any set X we define an increasing sequence $\left(Z_{k}(X)\right)_{k \in \mathbb{N}}$ of sets $Z_{k}(X)$ by
$Z_{1}(X)=\bigsqcup_{n \in \mathbb{N}_{0}} \Omega_{n} \times X^{n}$,
$Z_{k+1}(X)=\bigsqcup_{n \in \mathbb{N}_{0}} \Omega_{n} \times\left(Z_{k}(X) \sqcup X\right)^{n}, \quad k \in \mathbb{N}$.

Embeddings $Z_{k}(X) \xrightarrow{e_{\boldsymbol{k}+\boldsymbol{1} \boldsymbol{k}}} Z_{k+1}(X)$ are given by:

- $e_{21}=\underset{n \in \mathbb{N}_{0}}{\oplus}\left(1_{\Omega_{\boldsymbol{n}}} \times(j x)^{n}\right)$,
where j_{X} is the canonical embedding $X \xrightarrow{j_{X}} Z_{1}(X) \sqcup X$,
$-e_{k+1} k=\underset{n \in \mathbb{N}_{\mathbf{0}}}{\oplus}\left(1_{\Omega_{\boldsymbol{n}}} \times\left(e_{k k-\mathbf{1}} \oplus 1_{X}\right)^{n}\right), \quad 2 \leq k$.

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction

Term construction in Set

Term construction in monoidal
biclosed categories
Goguen's category $\operatorname{Set}(Q)$

Formal term construction:

For any set X we define an increasing sequence $\left(Z_{k}(X)\right)_{k \in \mathbb{N}}$ of sets $Z_{k}(X)$ by
$Z_{1}(X)=\bigsqcup_{n \in \mathbb{N}_{0}} \Omega_{n} \times X^{n}$,
$Z_{k+1}(X)=\bigsqcup_{n \in \mathbb{N}_{0}} \Omega_{n} \times\left(Z_{k}(X) \sqcup X\right)^{n}, \quad k \in \mathbb{N}$.

Embeddings $Z_{k}(X) \xrightarrow{e_{k+1} \boldsymbol{k}} Z_{k+1}(X)$ are given by:

- $e_{21}=\underset{n \in \mathbb{N}_{0}}{\oplus}\left(1_{\Omega_{\boldsymbol{n}}} \times(j x)^{n}\right)$,
where j_{X} is the canonical embedding $X \xrightarrow{j_{X}} Z_{1}(X) \sqcup X$,
- $e_{k+1} k=\underset{n \in \mathbb{N}_{\mathbf{0}}}{\oplus}\left(1_{\Omega_{\boldsymbol{n}}} \times\left(e_{k k-\mathbf{1}} \oplus 1_{X}\right)^{n}\right), \quad 2 \leq k$.
- $Z_{0}(X)=\bigcup_{k \in \mathbb{N}} Z_{k}(X)$ is the inductive limit of $\left(Z_{k}(X), e_{m k}\right)_{k \in \mathbb{N}}$.

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction

Term construction in Set

Term construction in monoidal
biclosed categories
$T(X)=Z_{0}(X) \sqcup X=$ set of terms.

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction

Term construction in Set

Term construction in monoidal
biclosed categories
Goguen's category $\operatorname{Set}(Q)$
$T(X)=Z_{0}(X) \sqcup X=$ set of terms.

Since the cartesian product in Set preserves colimits - in particular the n-th power of the cartesian product preserves directed unions, the following relation holds:

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction

Term construction in Set

Term construction in monoidal
biclosed categories
Goguen's category $\operatorname{Set}(Q)$
$T(X)=Z_{0}(X) \sqcup X=$ set of terms.

Since the cartesian product in Set preserves colimits - in particular the n-th power of the cartesian product preserves directed unions, the following relation holds:

$$
\begin{aligned}
\bigsqcup_{n \in \mathbb{N}_{\mathbf{0}}} \Omega_{n} \times(T(X))^{n} & =\bigsqcup_{n \in \mathbb{N}_{\mathbf{o}}} \Omega_{n} \times\left(\bigcup_{k \in \mathbb{N}} Z_{k}(X) \sqcup X\right)^{n} \\
& =\bigsqcup_{n \in \mathbb{N}_{\mathbf{0}}}\left(\bigcup_{k \in \mathbb{N}} \Omega_{n} \times\left(Z_{k}(X) \sqcup X\right)^{n}\right) \\
& =\bigcup_{k \in \mathbb{N}}\left(\bigsqcup_{n \in \mathbb{N}_{\mathbf{0}}} \Omega_{n} \times\left(Z_{k}(X) \sqcup X\right)^{n}\right) \\
& =\bigcup_{k \in \mathbb{N}} Z_{k+1}(X) \\
& =Z_{0}(X)
\end{aligned}
$$

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction

Term construction in Set

Term construction in monoidal
biclosed categories
Goguen's category $\operatorname{Set}(Q)$

Since colimts are unique up to an isomorphism, the previous relation can be formulated as follows.

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

```
Introduction
```

Term construction in Set

Term construction in monoidal
biclosed categeries
Goguen's category $\operatorname{Set}(Q)$

Since colimts are unique up to an isomorphism, the previous relation can be formulated as follows.

- Notation of maps:

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Term construction in Set

Term construction in monoidal
biclosed categeries
Goguen's category $\operatorname{Set}(Q)$

Since colimts are unique up to an isomorphism, the previous relation can be formulated as follows.

- Notation of maps:
- $X \xrightarrow{\eta_{\boldsymbol{X}}} T(X)$,

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction

Term construction in Set

Term construction in monoidal
biclosed categories
Goguen's category $\operatorname{Set}(Q)$

Since colimts are unique up to an isomorphism, the previous relation can be formulated as follows.

- Notation of maps:
- $X \xrightarrow{\eta_{X}} T(X)$,
$\mathrm{Z}_{0}(X) \xrightarrow{\mathrm{jo}} T(X)$,

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction

Term construction in Set

Term construction in monoidal
biclosed categories
Goguen's category $\operatorname{Set}(\boldsymbol{Q})$

Since colimts are unique up to an isomorphism, the previous relation can be formulated as follows.

- Notation of maps:
$-X \xrightarrow{\eta_{\boldsymbol{X}}} T(X)$,
$\mathrm{Z}_{0}(X) \xrightarrow{\mathrm{jo}_{0}} T(X)$,
$-Z_{k}(X) \xrightarrow{e_{k}} Z_{0}(X)$.

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

introduction

Term construction in Set

Term construction in monoidal
biclosed categories
Goguen's category $\operatorname{Set}(Q)$

Since colimts are unique up to an isomorphism, the previous relation can be formulated as follows.

- Notation of maps:
$-X \xrightarrow{\eta_{\boldsymbol{X}}} T(X)$,
$\mathrm{Z}_{0}(X) \xrightarrow{\mathrm{jo}_{0}} T(X)$,
$-Z_{k}(X) \xrightarrow{e_{k}} Z_{0}(X)$.

Theorem.

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction

Term construction in Set

Term construction in monoidal
biclosed categories
Goguen's category $\operatorname{Set}(Q)$

Since colimts are unique up to an isomorphism, the previous relation can be formulated as follows.

- Notation of maps:
- $X \xrightarrow{\eta_{X}} T(X)$,
$\mathrm{Z}_{0}(X) \xrightarrow{\mathrm{jo}_{0}} T(X)$,
$-Z_{k}(X) \xrightarrow{e_{k}} Z_{0}(X)$.

Theorem.

- There exists a bijective map $\bigsqcup_{n \in \mathbb{N}_{0}} \Omega_{n} \times T(X)^{n} \xrightarrow{\vartheta} Z_{0}(X)$ provided with the following properties

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

introduction

Term construction in Set

Term construction in monoidal
biclosed categories
Goguen's category $\operatorname{Set}(Q)$

Since colimts are unique up to an isomorphism, the previous relation can be formulated as follows.

- Notation of maps:
$\boldsymbol{X} \xrightarrow{\eta_{\boldsymbol{X}}} T(X)$,
$\mathrm{Z}_{0}(X) \xrightarrow{\mathrm{jo}} T(X)$,
$Z_{k}(X) \xrightarrow{e_{k}} Z_{0}(X)$.

Theorem.

- There exists a bijective map $\bigsqcup_{n \in \mathbb{N}_{0}} \Omega_{n} \times T(X)^{n} \xrightarrow{\vartheta} Z_{0}(X)$ provided with the following properties
- $e_{1}=\vartheta \circ\left(\underset{n \in \mathbb{N}_{0}}{\oplus} 1_{\Omega_{n}} \times(\eta X)^{n}\right)$,

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction

Term construction in Set

Term construction in monoidal
biclosed categories
Goguen's category $\operatorname{Set}(Q)$

Since colimts are unique up to an isomorphism, the previous relation can be formulated as follows.

- Notation of maps:
$\boldsymbol{X} \xrightarrow{\eta_{\boldsymbol{X}}} T(X)$,
$\mathrm{Z}_{0}(X) \xrightarrow{\mathrm{jo}} T(X)$,
$Z_{k}(X) \xrightarrow{e_{k}} Z_{0}(X)$.

Theorem.

- There exists a bijective map $\bigsqcup_{n \in \mathbb{N}_{0}} \Omega_{n} \times T(X)^{n} \xrightarrow{\vartheta} Z_{0}(X)$ provided with the following properties
- $e_{1}=\vartheta \circ\left(\underset{n \in \mathbb{N}_{0}}{\oplus} 1_{\Omega_{n}} \times(\eta X)^{n}\right)$,
$-e_{k+1}=\vartheta \circ\left(\underset{n \in \mathbb{N}_{0}}{\oplus} 1_{\Omega_{\boldsymbol{n}}} \times\left(e_{k} \oplus 1_{X}\right)^{n}\right), \quad k \in \mathbb{N}$.

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction

Term construction in Set

Term construction in monoidal
biclosed categories
Goguen's category $\operatorname{Set}(Q)$

Since colimts are unique up to an isomorphism, the previous relation can be formulated as follows.

- Notation of maps:
$\boldsymbol{X} \xrightarrow{\eta_{\boldsymbol{X}}} T(X)$,
$\mathrm{Z}_{0}(X) \xrightarrow{\mathrm{jo}_{0}} T(X)$,
$\Rightarrow Z_{k}(X) \xrightarrow{e_{k}} Z_{0}(X)$.

Theorem.

- There exists a bijective map $\bigsqcup_{n \in \mathbb{N}_{0}} \Omega_{n} \times T(X)^{n} \xrightarrow{\vartheta} Z_{0}(X)$ provided with the following properties
- $e_{1}=\vartheta \circ\left(\underset{n \in \mathbb{N}_{0}}{\oplus} 1_{\Omega_{n}} \times(\eta x)^{n}\right)$,
$-e_{k+1}=\vartheta \circ\left(\underset{n \in \mathbb{N}_{0}}{\oplus} 1_{\Omega_{n}} \times\left(e_{k} \oplus 1_{X}\right)^{n}\right), \quad k \in \mathbb{N}$.
$\left(T(X), j_{0} \circ \vartheta\right)$ is the term \sum-algebra.

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction

Term construction in Set

Term construction in monoidal
biclosed categories

Theorem

Let Σ be a signature, X be a set and $\left(T(X), j_{0} \circ \vartheta\right)$ be the term algebra. For every Σ-algebra (Y, δ) and for every map $X \xrightarrow{h} Y$ there exists a unique homomorphism $\left(T(X), j_{0} \circ \vartheta\right) \xrightarrow{h^{\sharp}}(Y, \delta)$ making the following diagram commutative:

(E)
(a) (Unicity). Let $\left(T(X), j_{0} \circ \vartheta\right) \xrightarrow{h^{\sharp}}(Y, \delta)$ be an extension of h.

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction

Term construction in Set

Term construction in monoidal
biclosed categories
Goguen's category $\operatorname{Set}(Q)$
(a) (Unicity). Let $\left(T(X), j_{0} \circ \vartheta\right) \xrightarrow{h^{\sharp}}(Y, \delta)$ be an extension of h.

$$
\begin{aligned}
& Z_{k}(X) \xrightarrow{\vartheta^{-1}{ }_{\circ e_{k}}} \bigsqcup_{n \in \mathbb{N}_{0}} \Omega_{n} \times(T(X))^{n} \xrightarrow{j_{0} \circ \vartheta} T(X)
\end{aligned}
$$

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction

Term construction in Set

Term construction in monoidal
biclosed categories
Goguen's category $\operatorname{Set}(Q)$
(a) (Unicity). Let $\left(T(X), j_{0} \circ \vartheta\right) \xrightarrow{h^{\sharp}}(Y, \delta)$ be an extension of h.

$$
\begin{aligned}
& Z_{k}(X) \xrightarrow{\vartheta^{-\mathbf{1}}{ }^{\circ} e_{k}} \bigsqcup_{n \in \mathbb{N}_{0}} \Omega_{n} \times(T(X))^{n} \xrightarrow{j_{0} \circ \vartheta} T(X)
\end{aligned}
$$

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction

Term construction in Set

Term construction in monoidal
biclosed categories
Goguen's category $\operatorname{Set}(Q)$

- Hence the relations follow:

$$
\begin{align*}
h^{\sharp} \circ j_{0} \circ e_{1} & =\delta \circ\left(\underset{n \in \mathbb{N}_{0}}{\oplus} 1_{\Omega_{n}} \times h^{n}\right), \\
h^{\sharp} \circ j_{0} \circ e_{k+1} & =\delta \circ\left(\underset{n \in \mathbb{N}_{0}}{\oplus} 1_{\Omega_{n}} \times\left(\left(h^{\sharp} \circ j_{0} \circ e_{k}\right) \sqcup h\right)^{n}\right), \quad k \geq 1 . \tag{1}
\end{align*}
$$

(a) (Unicity). Let $\left(T(X), j_{0} \circ \vartheta\right) \xrightarrow{h^{\sharp}}(Y, \delta)$ be an extension of h.

$$
\begin{aligned}
& Z_{k}(X) \xrightarrow{\vartheta^{-\mathbf{1}}{ }^{\circ} e_{k}} \bigsqcup_{n \in \mathbb{N}_{0}} \Omega_{n} \times(T(X))^{n} \xrightarrow{j_{0} \circ \vartheta} T(X)
\end{aligned}
$$

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction

Term construction in Set

Term construction in monoidal
biclosed categories
Goguen's category $\operatorname{Set}(Q)$

- Hence the relations follow:

$$
\begin{align*}
h^{\sharp} \circ j_{0} \circ e_{1} & =\delta \circ\left(\underset{n \in \mathbb{N}_{0}}{\oplus} 1_{\Omega_{n}} \times h^{n}\right), \\
h^{\sharp} \circ j_{0} \circ e_{k+1} & =\delta \circ\left(\underset{n \in \mathbb{N}_{0}}{\oplus} 1_{\Omega_{n}} \times\left(\left(h^{\sharp} \circ j_{0} \circ e_{k}\right) \sqcup h\right)^{n}\right), \quad k \geq 1 . \tag{1}
\end{align*}
$$

- The restriction of h^{\sharp} to $Z_{0}(X)$ - i.e. $h^{\sharp} \circ j_{0}$ - is uniquely determined by h.
(b) (Existence). The relation (1) motivates to define the following

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction

Term construction in Set

Term construction in monoidal
biclosed categories
Goguen's category $\operatorname{Set}(Q)$
(b) (Existence). The relation (1) motivates to define the following sequence $\left(f_{k}\right)_{k \in \mathbb{N}}$ of maps $Z_{k}(X) \xrightarrow{f_{k}} Y$ by

$$
\begin{aligned}
f_{1} & =\delta \circ\left(\underset{n \in \mathbb{N}_{\mathbf{0}}}{\oplus} 1_{\Omega_{\boldsymbol{n}}} \times h^{n}\right), \\
f_{k+1} & =\delta \circ\left(\underset{n \in \mathbb{N}_{\mathbf{0}}}{\oplus} 1_{\Omega_{\boldsymbol{n}}} \times\left(f_{k} \sqcup h\right)^{n}\right), \quad k \geq 1 .
\end{aligned}
$$

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction
Term construction in Set

Term construction in monoidal
biclosed categories
Goguen's category $\operatorname{Set}(\boldsymbol{Q})$
(b) (Existence). The relation (1) motivates to define the following sequence $\left(f_{k}\right)_{k \in \mathbb{N}}$ of maps $Z_{k}(X) \xrightarrow{f_{k}} Y$ by

$$
\begin{align*}
f_{1} & =\delta \circ\left(\underset{n \in \mathbb{N}_{\mathbf{o}}}{\oplus} 1_{\Omega_{\boldsymbol{n}}} \times h^{n}\right), \\
f_{k+1} & =\delta \circ\left(\underset{n \in \mathbb{N}_{\mathbf{o}}}{\oplus} 1_{\Omega_{\boldsymbol{n}}} \times\left(f_{k} \sqcup h\right)^{n}\right), \quad k \geq 1 . \tag{2}
\end{align*}
$$

- Because of $f_{k+1} \circ e_{k+1 k}=f_{k}$ there exists a unique map

$$
Z_{0}(X) \xrightarrow{f_{0}} Y \text { with } f_{0} \circ e_{k}=f_{k} \text {. }
$$

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Term construction in Set

Term construction in monoidal
biclosed categories
Goguen's category $\operatorname{Set}(Q)$
(b) (Existence). The relation (1) motivates to define the following

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

- Because of $f_{k+1} \circ e_{k+1 k}=f_{k}$ there exists a unique map

$$
Z_{0}(X) \xrightarrow{f_{0}} Y \text { with } f_{0} \circ e_{k}=f_{k} \text {. }
$$

- We put $h^{\sharp}=f_{0} \sqcup h$. Then $h^{\sharp} \circ j_{0} \circ e_{k}=f_{k}$ holds.
(b) (Existence). The relation (1) motivates to define the following sequence $\left(f_{k}\right)_{k \in \mathbb{N}}$ of maps $Z_{k}(X) \xrightarrow{f_{k}} Y$ by

$$
\begin{align*}
f_{1} & =\delta \circ\left(\underset{n \in \mathbb{N}_{\mathbf{0}}}{\oplus} 1_{\Omega_{\boldsymbol{n}}} \times h^{n}\right), \\
f_{k+1} & =\delta \circ\left(\underset{n \in \mathbb{N}_{\mathbf{0}}}{\oplus} 1_{\Omega_{\boldsymbol{n}}} \times\left(f_{k} \sqcup h\right)^{n}\right), \quad k \geq 1 . \tag{2}
\end{align*}
$$

- Because of $f_{k+1} \circ e_{k+1 k}=f_{k}$ there exists a unique map

$$
Z_{0}(X) \xrightarrow{f_{0}} Y \text { with } f_{0} \circ e_{k}=f_{k} \text {. }
$$

- We put $h^{\sharp}=f_{0} \sqcup h$. Then $h^{\sharp} \circ j_{0} \circ e_{k}=f_{k}$ holds.
- Because of

$$
\begin{aligned}
& \delta \circ\left(\underset{n \in \mathbb{N}_{0}}{\oplus} 1_{\Omega_{n}} \times\left(h^{\sharp}\right)^{n}\right) \circ\left(\vartheta^{-1} \circ e_{k+1}\right) \\
= & \delta \circ\left(\underset{n \in \mathbb{N}_{0}}{\oplus} 1_{\Omega_{n}} \times\left(f_{0} \sqcup h\right)^{n}\right) \circ\left(\underset{n \in \mathbb{N}_{0}}{\oplus} 1_{\Omega_{n}} \times\left(e_{k} \oplus 1_{X}\right)^{n}\right) \\
= & \delta \circ\left(\underset{n \in \mathbb{N}_{0}}{\oplus} 1_{\Omega_{n}} \times\left(f_{k} \sqcup h\right)^{n}\right) \\
= & f_{k+1} \\
= & h^{\sharp} \circ j \circ j_{0} \circ \vartheta \circ\left(\vartheta^{-1} \circ e_{k+1}\right)
\end{aligned}
$$

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction

Term construction in Set

Term construction
(b) (Existence). The relation (1) motivates to define the following sequence $\left(f_{k}\right)_{k \in \mathbb{N}}$ of maps $Z_{k}(X) \xrightarrow{f_{k}} Y$ by

$$
\begin{align*}
f_{1} & =\delta \circ\left(\underset{n \in \mathbb{N}_{\mathbf{0}}}{\oplus} 1_{\Omega_{\boldsymbol{n}}} \times h^{n}\right), \\
f_{k+1} & =\delta \circ\left(\underset{n \in \mathbb{N}_{\mathbf{0}}}{\oplus} 1_{\Omega_{\boldsymbol{n}}} \times\left(f_{k} \sqcup h\right)^{n}\right), \quad k \geq 1 . \tag{2}
\end{align*}
$$

- Because of $f_{k+1} \circ e_{k+1 k}=f_{k}$ there exists a unique map

$$
Z_{0}(X) \xrightarrow{f_{0}} Y \text { with } f_{0} \circ e_{k}=f_{k} \text {. }
$$

- We put $h^{\sharp}=f_{0} \sqcup h$. Then $h^{\sharp} \circ j_{0} \circ e_{k}=f_{k}$ holds.
- Because of

$$
\begin{aligned}
& \delta \circ\left(\underset{n \in \mathbb{N}_{0}}{\oplus} 1_{\Omega_{n}} \times\left(h^{\sharp}\right)^{n}\right) \circ\left(\vartheta^{-1} \circ e_{k+1}\right) \\
& =\delta \circ\left(\underset{n \in \mathbb{N}_{0}}{\oplus} 1_{\Omega_{n}} \times\left(f_{0} \sqcup h\right)^{n}\right) \circ\left(\underset{n \in \mathbb{N}_{\mathbf{0}}}{\oplus} 1_{\Omega_{n}} \times\left(e_{k} \oplus 1_{X}\right)^{n}\right) \\
& =\delta \circ\left(\bigoplus_{n \in \mathbb{N}_{0}} 1_{\Omega_{n}} \times\left(f_{k} \sqcup h\right)^{n}\right) \\
& =f_{k+1} \\
& =h^{\sharp} \circ j 0 \circ \vartheta \circ\left(\vartheta^{-1} \circ e_{k+1}\right)
\end{aligned}
$$

- h^{\sharp} is a homomorphism.

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction

Term construction in Set

Term construction

Term construction in monoidal biclosed categories.

An abstraction of the cartesian product in Set is the tensor product in monoidal categories.

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction
Term conserwetion in Set

Term construction in monoidal
biclosed categories
Goguen's category $\operatorname{Set}(Q)$

Term construction in monoidal biclosed categories.

An abstraction of the cartesian product in Set is the tensor product in monoidal categories.

- The previous construction requires only that the cartesian product preserves colimits.

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction
Term conserwetion in Set

Term construction in monoidal
biclosed categories
Goguen's category $\operatorname{Set}(Q)$

Term construction in monoidal biclosed categories.

An abstraction of the cartesian product in Set is the tensor product in monoidal categories.

- The previous construction requires only that the cartesian product preserves colimits.
- Requirement: The tensor product \otimes preserves colimits -

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction

Term ennetruction in Set

Term construction in monoidal
biclosed categories
Goguen's category $\operatorname{Set}(\boldsymbol{Q})$

Term construction in monoidal biclosed categories.

An abstraction of the cartesian product in Set is the tensor product in monoidal categories.

- The previous construction requires only that the cartesian product preserves colimits.
- Requirement: The tensor product \otimes preserves colimits -
- e.g. for all objects A the functors $\otimes_{-} A$ and $A \otimes_{-}$have right adjoint functors.

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction

Term conetrection in Set

Term construction in monoidal
biclosed categories
Goguen's category $\operatorname{Set}(Q)$

Term construction in monoidal biclosed categories.

An abstraction of the cartesian product in Set is the tensor product in monoidal categories.

- The previous construction requires only that the cartesian product preserves colimits.
- Requirement: The tensor product \otimes preserves colimits -
- e.g. for all objects A the functors \otimes_{A} and $A \otimes_{-}$have right adjoint functors.
- The term construction is possible in any monoidal biclosed category $\mathcal{C}=\left(\mathcal{C}_{\mathbf{0}}, \otimes, a, \mathbf{1}, \ell, r\right)$.

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction

Term conserrection in Set

Term construction in monoidal
biclosed categories
Goguen's category $\operatorname{Set}(Q)$

Term construction in monoidal biclosed categories.

An abstraction of the cartesian product in Set is the tensor product in monoidal categories.

- The previous construction requires only that the cartesian product preserves colimits.
- Requirement: The tensor product \otimes preserves colimits -
- e.g. for all objects A the functors $_\otimes A$ and $A \otimes_{_}$have right adjoint functors.
- The term construction is possible in any monoidal biclosed category $\mathcal{C}=\left(\mathcal{C}_{\mathbf{0}}, \otimes, a, \mathbf{1}, \ell, r\right)$.
- In this context:

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction

Term conserrection in Set

Term construction in monoidal
biclosed categories

Term construction in monoidal biclosed categories.

An abstraction of the cartesian product in Set is the tensor product in monoidal categories.

- The previous construction requires only that the cartesian product preserves colimits.
- Requirement: The tensor product \otimes preserves colimits -
- e.g. for all objects A the functors $\otimes_{-} A$ and $A \otimes_{-}$have right adjoint functors.
- The term construction is possible in any monoidal biclosed category $\mathcal{C}=\left(\mathcal{C}_{0}, \otimes, a, \mathbf{1}, \ell, r\right)$.
- In this context:
- A sequence $\Sigma=\left(\Omega_{n}\right)_{n \in \mathbb{N}_{0}}$ of objects Ω_{n} in \mathcal{C}_{0} is viewed as a signature.

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction

Term conserrection in Set

Term construction in monoidal
biclosed categories

Term construction in monoidal biclosed categories.

An abstraction of the cartesian product in Set is the tensor product in monoidal categories.

- The previous construction requires only that the cartesian product preserves colimits.
- Requirement: The tensor product \otimes preserves colimits -
- e.g. for all objects A the functors $_\otimes A$ and $A \otimes_{-}$have right adjoint functors.
- The term construction is possible in any monoidal biclosed category $\mathcal{C}=\left(\mathcal{C}_{\mathbf{0}}, \otimes, a, \mathbf{1}, \ell, r\right)$.
- In this context:
- A sequence $\Sigma=\left(\Omega_{n}\right)_{n \in \mathbb{N}_{0}}$ of objects Ω_{n} in \mathcal{C}_{0} is viewed as a signature.
- Theorem. The forgetful functor from the category of Σ-algebras in the monoidal biclosed category \mathcal{C} has a left adjoint functor.

Term construction in monoidal
biclosed categories

What happens in Sup ?

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction

Term conetruction in Set

Term construction in monoidal
biclosed categories
Goguen's category $\operatorname{Set}(Q)$

What happens in Sup ?

- Does Sup have a tensor product ?

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction

Term construction in Set

Term construction in monoidal
biclosed categories
Goguen's category $\operatorname{Set}(Q)$

What happens in Sup ?

- Does Sup have a tensor product ?
- Answer: YES.

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction

Term construction in Set

Term construction in monoidal
biclosed categories
Goguen's category $\operatorname{Set}(Q)$

What happens in Sup ?

- Does Sup have a tensor product?
- Answer: YES.
- The tensor product of a complete lattice X with a complete lattice Y is the complete lattice $X \otimes Y$ of all join reversing maps $X \xrightarrow{f} Y$ - i.e.

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Term construction in monoidal
biclosed categories
Goguen's category $\operatorname{Set}(Q)$

What happens in Sup ?

- Does Sup have a tensor product ?
- Answer: YES.
- The tensor product of a complete lattice X with a complete lattice Y is the complete lattice $X \otimes Y$ of all join reversing maps $X \xrightarrow{f} Y$ - i.e.
- $f(\bigvee A)=\bigwedge f(A), \quad A \subseteq X$.

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Term construction in monoidal
biclosed categories
Goguen's category $\operatorname{Set}(Q)$

What happens in Sup ?

- Does Sup have a tensor product?
- Answer: YES.
- The tensor product of a complete lattice X with a complete lattice Y is the complete lattice $X \otimes Y$ of all join reversing maps $X \xrightarrow{f} Y$ - i.e.
- $f(\bigvee A)=\bigwedge f(A), \quad A \subseteq X$.
- The tensor product has a universal property:

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Term construction in monoidal
biclosed categories
Goguen's category $\operatorname{Set}(Q)$

What happens in Sup ?

- Does Sup have a tensor product?
- Answer: YES.
- The tensor product of a complete lattice X with a complete lattice Y is the complete lattice $X \otimes Y$ of all join reversing maps $X \xrightarrow{f} Y$ - i.e.
- $f(\bigvee A)=\wedge f(A), \quad A \subseteq X$.
- The tensor product has a universal property:
- For every complete lattice Z and any bimorphism $X \times Y \xrightarrow{b} Z$ - i.e.

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction

Term ennetrenction in Set

Term construction in monoidal
biclosed categories
Goguen's category $\operatorname{Set}(Q)$

What happens in Sup ?

- Does Sup have a tensor product?
- Answer: YES.
- The tensor product of a complete lattice X with a complete lattice Y is the complete lattice $X \otimes Y$ of all join reversing maps $X \xrightarrow{f} Y$ - i.e.
- $f(\bigvee A)=\wedge f(A), \quad A \subseteq X$.
- The tensor product has a universal property:
- For every complete lattice Z and any bimorphism $X \times Y \xrightarrow{b} Z$ - i.e.
- for any map b preserving arbitrary joins in each variable separately

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction

Term conetrection in Set

Term construction in monoidal
biclosed categories
Goguen's category $\operatorname{Set}(Q)$

What happens in Sup ?

- Does Sup have a tensor product?
- Answer: YES.
- The tensor product of a complete lattice X with a complete lattice Y is the complete lattice $X \otimes Y$ of all join reversing maps $X \xrightarrow{f} Y$ - i.e.
- $f(\bigvee A)=\wedge f(A), \quad A \subseteq X$.
- The tensor product has a universal property:
- For every complete lattice Z and any bimorphism $X \times Y \xrightarrow{b} Z$ —i.e.
- for any map b preserving arbitrary joins in each variable separately
- there exists a unique join preserving map $X \otimes Y \xrightarrow{\ulcorner\boldsymbol{b}\urcorner} Z$ making the following diagram commutative:

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction

Term conservetion in Set

Term construction in monoidal
biclosed categories
Goguen's category $\operatorname{Set}(Q)$

What happens in Sup ?

- Does Sup have a tensor product?
- Answer: YES.
- The tensor product of a complete lattice X with a complete lattice Y is the complete lattice $X \otimes Y$ of all join reversing maps $X \xrightarrow{f} Y$ - i.e.
- $f(\bigvee A)=\wedge f(A), \quad A \subseteq X$.
- The tensor product has a universal property:
- For every complete lattice Z and any bimorphism $X \times Y \xrightarrow{b} Z$ —i.e.
- for any map b preserving arbitrary joins in each variable separately
- there exists a unique join preserving map $X \otimes Y \xrightarrow{\ulcorner\boldsymbol{b}\urcorner} Z$ making the following diagram commutative:

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction

Term conservetion in Set

Term construction in monoidal
biclosed categories
Goguen's category $\operatorname{Set}(Q)$
where \otimes denotes the universal bimorphism.

Moreover the tensor product is associative, commutative and has a unit object $\mathbf{1}=\{0,1\}$.

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction

Term construction in Set

Term construction in monoidal
biclosed categories
Goguen's category $\operatorname{Set}(Q)$

Moreover the tensor product is associative, commutative and has a unit object $\mathbf{1}=\{0,1\}$.

- For any complete lattice X the endofunctor $\quad \otimes X$ has a right adjoint functor.

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction

Ternt contitruction in Set

Term construction in monoidal
biclosed categories
Goguen's category $\operatorname{Set}(Q)$

Moreover the tensor product is associative, commutative and has a unit object $\mathbf{1}=\{0,1\}$.

- For any complete lattice X the endofunctor $\quad \otimes X$ has a right adjoint functor.
- Fact: (Sup, $\otimes, a, c, \mathbf{1}, \ell, r)$ is a monoidal closed category.

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction

Term conetrection in Set

Term construction in monoidal
biclosed categories
Goguen's category $\operatorname{Set}(Q)$

Moreover the tensor product is associative, commutative and has a unit object $\mathbf{1}=\{0,1\}$.

- For any complete lattice X the endofunctor $\quad \otimes X$ has a right adjoint functor.
- Fact: (Sup, $\otimes, a, c, \mathbf{1}, \ell, r)$ is a monoidal closed category.
- Fact: The term construction exists in (Sup, $\otimes, a, c, \mathbf{1}, \ell, r)$.

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction

Term ennetwection in Set

Term construction in monoidal
biclosed categories
Goguen's category $\operatorname{Set}(Q)$

Moreover the tensor product is associative, commutative and has a unit object $\mathbf{1}=\{0,1\}$.

- For any complete lattice X the endofunctor $_\otimes X$ has a right adjoint functor.
- Fact: (Sup, $\otimes, a, c, \mathbf{1}, \ell, r)$ is a monoidal closed category.
- Fact: The term construction exists in (Sup, $\otimes, a, c, \mathbf{1}, \ell, r)$.
- The signature of a prequantale has the following form:

Introduction

Term ennetruetion in Set

Term construction in monoidal
biclosed categories
Goguen's category $\operatorname{Set}(Q)$

Moreover the tensor product is associative, commutative and has a unit object $\mathbf{1}=\{0,1\}$.

- For any complete lattice X the endofunctor ${ }_{-} \otimes X$ has a right adjoint functor.
- Fact: (Sup, $\otimes, a, c, \mathbf{1}, \ell, r)$ is a monoidal closed category.
- Fact: The term construction exists in (Sup, $\otimes, a, c, \mathbf{1}, \ell, r)$.
- The signature of a prequantale has the following form:
- $\Omega_{2}=\mathbf{1}$ and $\Omega_{n}=\mathbf{0}, n \neq 2$ where $\mathbf{0}$ is the initial object in Sup.

Introduction

Tertn construction in Set

Term construction in monoidal
biclosed categories
Goguen's category $\operatorname{Set}(Q)$

Moreover the tensor product is associative, commutative and has a unit object $\mathbf{1}=\{0,1\}$.

- For any complete lattice X the endofunctor $\quad \otimes X$ has a right adjoint functor.
- Fact: (Sup, $\otimes, a, c, \mathbf{1}, \ell, r)$ is a monoidal closed category.
- Fact: The term construction exists in (Sup, $\otimes, a, c, \mathbf{1}, \ell, r)$.
- The signature of a prequantale has the following form:
- $\Omega_{2}=\mathbf{1}$ and $\Omega_{n}=\mathbf{0}, n \neq 2$ where $\mathbf{0}$ is the initial object in Sup.
- Result: Every complete lattice X generates a free prequantale.

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction

Term consertretion in Set

Term construction in monoidal
biclosed categories
Goguen's category

Goguen's category $\operatorname{Set}(Q)$ and fuzzy terms.

Let $(Q, *)$ be a unital quantale with unit e.

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction
Term conetruction in Set

Term construction in monoidal
biclosed categories

```
Goguen's category
``` Set \((Q)\)

\section*{Goguen's category \(\operatorname{Set}(Q)\) and fuzzy terms.}

Let \((Q, *)\) be a unital quantale with unit \(e\).
- Objects of \(\operatorname{Set}(Q)\) are pairs \(\left(X, f_{X}\right)\) where \(X\) is a set and \(X \xrightarrow{f_{X}} Q\) is a map.

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Term construction in monoidal
biclosed categories
Goguen's category \(\operatorname{Set}(Q)\)

\section*{Goguen's category \(\operatorname{Set}(Q)\) and fuzzy terms.}

Let \((Q, *)\) be a unital quantale with unit \(e\).
- Objects of \(\operatorname{Set}(Q)\) are pairs \(\left(X, f_{X}\right)\) where \(X\) is a set and \(X \xrightarrow{f_{X}} Q\) is a map.
- Morphisms of \(\operatorname{Set}(Q)\) are maps \(X \xrightarrow{\varphi} Y\) between the underlying sets satisfying the condition:
\[
f_{X}(x) \leq f_{Y}(\varphi(x)), \quad x \in X
\]

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

\section*{Introduction}

Term conetrenction in Set

Term construction in monoidal
biclosed categories
Goguen's category Set (Q)

\section*{Goguen's category \(\operatorname{Set}(Q)\) and fuzzy terms.}

Let \((Q, *)\) be a unital quantale with unit \(e\).
- Objects of \(\operatorname{Set}(Q)\) are pairs \(\left(X, f_{X}\right)\) where \(X\) is a set and \(X \xrightarrow{f_{X}} Q\) is a map.
- Morphisms of \(\operatorname{Set}(Q)\) are maps \(X \xrightarrow{\varphi} Y\) between the underlying sets satisfying the condition:
\[
f_{X}(x) \leq f_{Y}(\varphi(x)), \quad x \in X
\]
- The tensor product \(\left(X, f_{X}\right) \otimes\left(Y, f_{Y}\right)\) of \(\left(X, f_{Y}\right)\) with \(\left(Y, f_{Y}\right)\) is given by:
\[
\begin{aligned}
& \left(X, f_{X}\right) \otimes\left(Y, f_{Y}\right)=\left(X \times Y, f_{X} \otimes f_{Y}\right) \quad \text { where } \\
& f_{X} \otimes f_{Y}(x, y)=f_{X}(x) * f_{Y}(y), \quad(x, y) \in X \times Y
\end{aligned}
\]

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

\section*{Goguen's category \(\operatorname{Set}(Q)\) and fuzzy terms.}

Let \((Q, *)\) be a unital quantale with unit \(e\).
- Objects of \(\operatorname{Set}(Q)\) are pairs \(\left(X, f_{X}\right)\) where \(X\) is a set and \(X \xrightarrow{f_{X}} Q\) is a map.
- Morphisms of \(\operatorname{Set}(Q)\) are maps \(X \xrightarrow{\varphi} Y\) between the underlying sets satisfying the condition:
\[
f_{X}(x) \leq f_{Y}(\varphi(x)), \quad x \in X
\]

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen
- The tensor product \(\left(X, f_{X}\right) \otimes\left(Y, f_{Y}\right)\) of \(\left(X, f_{Y}\right)\) with \(\left(Y, f_{Y}\right)\) is given by:
\[
\begin{aligned}
& \left(X, f_{X}\right) \otimes\left(Y, f_{Y}\right)=\left(X \times Y, f_{X} \otimes f_{Y}\right) \quad \text { where } \\
& f_{X} \otimes f_{Y}(x, y)=f_{X}(x) * f_{Y}(y), \quad(x, y) \in X \times Y
\end{aligned}
\]
- The unit object \(\mathbf{1}\) has the form \(\mathbf{1}=\left(\{\cdot\}, f_{1}\right)\) where \(f_{1}(\cdot)=e\).

\section*{Goguen's category \(\operatorname{Set}(Q)\) and fuzzy terms.}

Let \((Q, *)\) be a unital quantale with unit \(e\).
- Objects of \(\operatorname{Set}(Q)\) are pairs \(\left(X, f_{X}\right)\) where \(X\) is a set and \(X \xrightarrow{f_{X}} Q\) is a map.
- Morphisms of \(\operatorname{Set}(Q)\) are maps \(X \xrightarrow{\varphi} Y\) between the underlying sets satisfying the condition:
\[
f_{X}(x) \leq f_{Y}(\varphi(x)), \quad x \in X
\]
- The tensor product \(\left(X, f_{X}\right) \otimes\left(Y, f_{Y}\right)\) of \(\left(X, f_{Y}\right)\) with \(\left(Y, f_{Y}\right)\) is given by:
\[
\begin{aligned}
& \left(X, f_{X}\right) \otimes\left(Y, f_{Y}\right)=\left(X \times Y, f_{X} \otimes f_{Y}\right) \quad \text { where } \\
& f_{X} \otimes f_{Y}(x, y)=f_{X}(x) * f_{Y}(y), \quad(x, y) \in X \times Y
\end{aligned}
\]
- The unit object \(\mathbf{1}\) has the form \(\mathbf{1}=\left(\{\cdot\}, f_{1}\right)\) where \(f_{1}(\cdot)=e\).
- Goguen's category \(\operatorname{Set}(Q)\) provided with the tensor product \(\otimes\) and the unit object \(\mathbf{1}\) is a monoidal biclosed category.

The internal hom-objects are given as follows:

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction
Term construction in Set

Term construction in monoidal
biclosed categories
Goguen's category \(\operatorname{Set}(\boldsymbol{Q})\)

The internal hom-objects are given as follows:
\(-\left[\left(X, f_{X}\right),\left(Z, f_{Z}\right)\right]_{r}=\left(Z^{X}, g_{r}\right), \quad\) where

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction
Term conetruetion in Set

Term construction in monoidal
ifctosed categoftes
Goguen's category \(\operatorname{Set}(Q)\)

The internal hom-objects are given as follows:
- \(\left[\left(X, f_{X}\right),\left(Z, f_{Z}\right)\right]_{r}=\left(Z^{X}, g_{r}\right), \quad\) where
\(g_{r}(\alpha)=\bigwedge_{x \in X} f_{X}(x) \searrow f_{Z}(\alpha(x)), \quad \alpha \in Z^{X}\).

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction
Term construction in Set

Term construction in monoidal
biclosed categories
```

Goguen's category

``` Set \((Q)\)

The internal hom-objects are given as follows:
- \(\left[\left(X, f_{X}\right),\left(Z, f_{Z}\right)\right]_{r}=\left(Z^{X}, g_{r}\right), \quad\) where
- \(g_{r}(\alpha)=\wedge_{x \in X} f_{X}(x) \searrow f_{Z}(\alpha(x)), \quad \alpha \in Z^{X}\).
- \(\left[\left(X, f_{X}\right),\left(Z, f_{Z}\right)\right]_{\ell}=\left(Z^{X}, g_{\ell}\right), \quad\) where

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

\section*{Introduction}

Term contruction in Set

Term construction in monoidal
biclosed categories
Goguen's category Set \((Q)\)

The internal hom-objects are given as follows:
- \(\left[\left(X, f_{X}\right),\left(Z, f_{Z}\right)\right]_{r}=\left(Z^{X}, g_{r}\right)\), where
- \(g_{r}(\alpha)=\wedge_{x \in X} f_{X}(x) \searrow f_{Z}(\alpha(x)), \quad \alpha \in Z^{X}\).
- \(\left[\left(X, f_{X}\right),\left(Z, f_{Z}\right)\right]_{\ell}=\left(Z^{X}, g_{\ell}\right)\), where
- \(g_{\ell}(\alpha)=\wedge_{x \in X} f_{Z}(\alpha(x)) \swarrow f_{X}(x), \quad \alpha \in Z^{X}\).

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Term contrtuction in Set

Term construction in monoidal
biclosed categories
Goguen's category Set \((Q)\)

The internal hom-objects are given as follows:
- \(\left[\left(X, f_{X}\right),\left(Z, f_{Z}\right)\right]_{r}=\left(Z^{X}, g_{r}\right), \quad\) where
- \(g_{r}(\alpha)=\bigwedge_{x \in X} f_{X}(x) \searrow f_{Z}(\alpha(x)), \quad \alpha \in Z^{X}\).
- \(\left[\left(X, f_{X}\right),\left(Z, f_{Z}\right)\right]_{\ell}=\left(Z^{X}, g_{\ell}\right)\), where
- \(g_{\ell}(\alpha)=\bigwedge_{x \in X} f_{Z}(\alpha(x)) \swarrow f_{X}(x), \quad \alpha \in Z^{X}\).

The following diagrams are commutative:

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Term cometruction in Set

Term construction in monoidal
biclosed categories
Goguen's category Set \((Q)\)

The internal hom-objects are given as follows:
- \(\left[\left(X, f_{X}\right),\left(Z, f_{Z}\right)\right]_{r}=\left(Z^{X}, g_{r}\right)\), where
- \(g_{r}(\alpha)=\bigwedge_{x \in X} f_{X}(x) \searrow f_{Z}(\alpha(x)), \quad \alpha \in Z^{X}\).
- \(\left[\left(X, f_{X}\right),\left(Z, f_{Z}\right)\right]_{\ell}=\left(Z^{X}, g_{\ell}\right)\), where
- \(g_{\ell}(\alpha)=\bigwedge_{x \in X} f_{Z}(\alpha(x)) \swarrow f_{X}(x), \quad \alpha \in Z^{X}\).

The following diagrams are commutative:

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

\section*{Introduction}

Term contritrction in Set

Term construction in monoidal
biclosed categories
Goguen's category Set \((Q)\)

The internal hom-objects are given as follows:
- \(\left[\left(X, f_{X}\right),\left(Z, f_{Z}\right)\right]_{r}=\left(Z^{X}, g_{r}\right)\), where
- \(g_{r}(\alpha)=\bigwedge_{x \in X} f_{X}(x) \searrow f_{Z}(\alpha(x)), \quad \alpha \in Z^{X}\).
- \(\left[\left(X, f_{X}\right),\left(Z, f_{Z}\right)\right]_{\ell}=\left(Z^{X}, g_{\ell}\right)\), where
- \(g_{\ell}(\alpha)=\bigwedge_{x \in X} f_{Z}(\alpha(x)) \swarrow f_{X}(x), \quad \alpha \in Z^{X}\).

The following diagrams are commutative:

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Result: The term construction exist in Goguen's category.
Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction
Term eanetruction in Set

Term construction in monoidal
if tosed categoftes
```

Goguen's category
Set(Q)

```

Result: The term construction exist in Goguen's category.
Comment:
Since Goguen's category can be viewed as a basis of Fuzzy set theory, terms in the sense of Goguen's category can be called fuzzy terms.

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Introduction
Term conetrection in Set

Term construction in monoidal
ticlosed categories
Goguen's category Set (Q)

Result: The term construction exist in Goguen's category.

\section*{Comment:}

Since Goguen's category can be viewed as a basis of Fuzzy set theory, terms in the sense of Goguen's category can be called fuzzy terms.

Example.
Construction of the free magma generated by \(\left(X, f_{X}\right)\) in the sense of Goguen's category \(\operatorname{Set}(Q)\).

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Result: The term construction exist in Goguen's category.
Comment:
Since Goguen's category can be viewed as a basis of Fuzzy set theory, terms in the sense of Goguen's category can be called fuzzy terms.

Example.
Construction of the free magma generated by \(\left(X, f_{X}\right)\) in the sense of Goguen's category \(\operatorname{Set}(Q)\).
- Signature: \(\Omega_{2}=\mathbf{1}, \Omega_{n}=\mathbf{0}, n \neq 2\).

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Term construction in Set

Term construction in monoidal
biclosed categories
Goguen's category \(\operatorname{Set}(Q)\)

Result: The term construction exist in Goguen's category.

Comment:
Since Goguen's category can be viewed as a basis of Fuzzy set theory, terms in the sense of Goguen's category can be called fuzzy terms.

Example.
Construction of the free magma generated by \(\left(X, f_{X}\right)\) in the sense of Goguen's category \(\operatorname{Set}(Q)\).
- Signature: \(\Omega_{2}=\mathbf{1}, \Omega_{n}=\mathbf{0}, n \neq 2\).
- Since the coproduct in \(\operatorname{Set}(Q)\) has the form
\[
\left(X, f_{X}\right) \sqcup\left(Y, f_{Y}\right)=\left(X \sqcup Y, f_{X} \sqcup f_{Y}\right)
\]
where \(X \sqcup Y\) is the disjoint union of \(X\) and \(Y\), the recursive construction of fuzzy terms can informally be described as follows:

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

\section*{Introduction}

Term conserrection in Set

Term construction in monoidal
biclosed categories
Goguen's category Set (Q)

Result: The term construction exist in Goguen's category.

\section*{Comment:}

Since Goguen's category can be viewed as a basis of Fuzzy set theory, terms in the sense of Goguen's category can be called fuzzy terms.

Example.
Construction of the free magma generated by \(\left(X, f_{X}\right)\) in the sense of Goguen's category \(\operatorname{Set}(Q)\).
- Signature: \(\Omega_{2}=\mathbf{1}, \Omega_{n}=\mathbf{0}, n \neq 2\).
- Since the coproduct in \(\operatorname{Set}(Q)\) has the form
\[
\left(X, f_{X}\right) \sqcup\left(Y, f_{Y}\right)=\left(X \sqcup Y, f_{X} \sqcup f_{Y}\right)
\]
where \(X \sqcup Y\) is the disjoint union of \(X\) and \(Y\), the recursive construction of fuzzy terms can informally be described as follows:
- \(\left(x, f_{X}(x)\right)\) with \(x \in X\) is a fuzzy term.

Result: The term construction exist in Goguen's category.

\section*{Comment:}

Since Goguen's category can be viewed as a basis of Fuzzy set theory, terms in the sense of Goguen's category can be called fuzzy terms.

Example.
Construction of the free magma generated by \(\left(X, f_{X}\right)\) in the sense of Goguen's category \(\operatorname{Set}(Q)\).
- Signature: \(\Omega_{2}=\mathbf{1}, \Omega_{n}=\mathbf{0}, n \neq 2\).
- Since the coproduct in \(\operatorname{Set}(Q)\) has the form
\[
\left(X, f_{X}\right) \sqcup\left(Y, f_{Y}\right)=\left(X \sqcup Y, f_{X} \sqcup f_{Y}\right)
\]
where \(X \sqcup Y\) is the disjoint union of \(X\) and \(Y\), the recursive construction of fuzzy terms can informally be described as follows:
- \(\left(x, f_{X}(x)\right)\) with \(x \in X\) is a fuzzy term.
- If \(\left(t_{1}, q_{1}\right)\) and \(\left(t_{2}, q_{2}\right)\) are fuzzy terms, then \(\left(\left(t_{1}, t_{2}\right), q_{1} * q_{2}\right)\) is a fuzzy term.

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Result: The term construction exist in Goguen's category.

\section*{Comment:}

Since Goguen's category can be viewed as a basis of Fuzzy set theory, terms in the sense of Goguen's category can be called fuzzy terms.

Example.
Construction of the free magma generated by \(\left(X, f_{X}\right)\) in the sense of Goguen's category \(\operatorname{Set}(Q)\).
- Signature: \(\Omega_{2}=\mathbf{1}, \Omega_{n}=\mathbf{0}, n \neq 2\).
- Since the coproduct in \(\operatorname{Set}(Q)\) has the form
\[
\left(X, f_{X}\right) \sqcup\left(Y, f_{Y}\right)=\left(X \sqcup Y, f_{X} \sqcup f_{Y}\right)
\]
where \(X \sqcup Y\) is the disjoint union of \(X\) and \(Y\), the recursive construction of fuzzy terms can informally be described as follows:
- \(\left(x, f_{X}(x)\right)\) with \(x \in X\) is a fuzzy term.
- If \(\left(t_{1}, q_{1}\right)\) and \(\left(t_{2}, q_{2}\right)\) are fuzzy terms, then \(\left(\left(t_{1}, t_{2}\right), q_{1} * q_{2}\right)\) is a fuzzy term.
- All fuzzy terms constitute an object \(\left(X^{\sharp},\left(f_{X}\right)^{\sharp}\right)\) of \(\operatorname{Set}(Q)\) where

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Result: The term construction exist in Goguen's category.

\section*{Comment:}

Since Goguen's category can be viewed as a basis of Fuzzy set theory, terms in the sense of Goguen's category can be called fuzzy terms.

Example.
Construction of the free magma generated by \(\left(X, f_{X}\right)\) in the sense of Goguen's category \(\operatorname{Set}(Q)\).
- Signature: \(\Omega_{2}=\mathbf{1}, \Omega_{n}=\mathbf{0}, n \neq 2\).
- Since the coproduct in \(\operatorname{Set}(Q)\) has the form
\[
\left(X, f_{X}\right) \sqcup\left(Y, f_{Y}\right)=\left(X \sqcup Y, f_{X} \sqcup f_{Y}\right)
\]
where \(X \sqcup Y\) is the disjoint union of \(X\) and \(Y\), the recursive construction of fuzzy terms can informally be described as follows:
- \(\left(x, f_{X}(x)\right)\) with \(x \in X\) is a fuzzy term.
- If \(\left(t_{1}, q_{1}\right)\) and \(\left(t_{2}, q_{2}\right)\) are fuzzy terms, then \(\left(\left(t_{1}, t_{2}\right), q_{1} * q_{2}\right)\) is a fuzzy term.
- All fuzzy terms constitute an object \(\left(X^{\sharp},\left(f_{X}\right)^{\sharp}\right)\) of \(\operatorname{Set}(Q)\) where
- \(X^{\sharp}\) is the free magma generated by \(X\) in the sense of Set and

Patrik Eklund, Ulrich Höhle, Jari Kortelainen

Result: The term construction exist in Goguen's category.

\section*{Comment:}

Since Goguen's category can be viewed as a basis of Fuzzy set theory, terms in the sense of Goguen's category can be called fuzzy terms.

Example.
Construction of the free magma generated by \(\left(X, f_{X}\right)\) in the sense of Goguen's category \(\operatorname{Set}(Q)\).
- Signature: \(\Omega_{2}=\mathbf{1}, \Omega_{n}=\mathbf{0}, n \neq 2\).
- Since the coproduct in \(\operatorname{Set}(Q)\) has the form
\[
\left(X, f_{X}\right) \sqcup\left(Y, f_{Y}\right)=\left(X \sqcup Y, f_{X} \sqcup f_{Y}\right)
\]
where \(X \sqcup Y\) is the disjoint union of \(X\) and \(Y\), the recursive construction of fuzzy terms can informally be described as follows:
- \(\left(x, f_{X}(x)\right)\) with \(x \in X\) is a fuzzy term.
- If \(\left(t_{1}, q_{1}\right)\) and \(\left(t_{2}, q_{2}\right)\) are fuzzy terms, then \(\left(\left(t_{1}, t_{2}\right), q_{1} * q_{2}\right)\) is a fuzzy term.
- All fuzzy terms constitute an object \(\left(X^{\sharp},\left(f_{X}\right)^{\sharp}\right)\) of \(\operatorname{Set}(Q)\) where
- \(X^{\sharp}\) is the free magma generated by \(X\) in the sense of Set and
- \(\left(f_{X}\right)^{\sharp}\) is the unique extension of \(X \xrightarrow{f_{X}}(Q, *)\) to a homomorphism.

Result: The term construction exist in Goguen's category.

\section*{Comment:}

Since Goguen's category can be viewed as a basis of Fuzzy set theory, terms in the sense of Goguen's category can be called fuzzy terms.

Example.
Construction of the free magma generated by \(\left(X, f_{X}\right)\) in the sense of Goguen's category \(\operatorname{Set}(Q)\).
- Signature: \(\Omega_{2}=1, \Omega_{n}=\mathbf{0}, n \neq 2\).
- Since the coproduct in \(\operatorname{Set}(Q)\) has the form
\[
\left(X, f_{X}\right) \sqcup\left(Y, f_{Y}\right)=\left(X \sqcup Y, f_{X} \sqcup f_{Y}\right)
\]
where \(X \sqcup Y\) is the disjoint union of \(X\) and \(Y\), the recursive construction of fuzzy terms can informally be described as follows:
- \(\left(x, f_{X}(x)\right)\) with \(x \in X\) is a fuzzy term.
- If \(\left(t_{1}, q_{1}\right)\) and \(\left(t_{2}, q_{2}\right)\) are fuzzy terms, then \(\left(\left(t_{1}, t_{2}\right), q_{1} * q_{2}\right)\) is a fuzzy term.
- All fuzzy terms constitute an object \(\left(X^{\sharp},\left(f_{X}\right)^{\sharp}\right)\) of \(\operatorname{Set}(Q)\) where
- \(X^{\sharp}\) is the free magma generated by \(X\) in the sense of Set and
- \(\left(f_{X}\right)^{\sharp}\) is the unique extension of \(X \xrightarrow{f_{X}}(Q, *)\) to a homomorphism.
- This construction turns the binary operation - of \(X^{\sharp}\) into the binary operation in the sense of Goguen's category:
\[
\left(X^{\sharp},\left(f_{X}\right)^{\sharp}\right) \otimes\left(X^{\sharp},\left(f_{X}\right)^{\sharp}\right) \longrightarrow\left(X^{\sharp},\left(f_{X}\right)^{\sharp}\right) .
\]

Term monad in monoidal biclosed categories

Patrik Eklund, Ulrich Höhle, Jari Kortelainen```

