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1. Introduction

The paper is devoted to generalized limit spaces, Cauchy spaces and limit groups defined
by means of functors Φ from SET to SEMILAT. As a main application the case of a fuzzy
filter functor is investigated.

For constructing completions of generalized limit groups mainly four conditions, (P),
(Pr), (D) and (G), are required. They respectively concern the existence, preservation
and distributivity of Φ-products, as well as requirements related to group structures. Φ-
products generalize the usual notion of filter products F × G.

We show that under (P), (Pr) and (D) the categories of generalized limit spaces and of
generalized Cauchy spaces are cartesian closed. These conditions are fulfilled in the fuzzy
filter case.

The fourth condition (G) is, under some restrictions, shown to be fulfilled in the fuzzy
filter case. As a consequence, with these restrictions, a completion construction of fuzzy
filter limit groups can be given.

2. Functors from SET to SEMILAT

Let SET denote the category of sets and SEMILAT the category of join semilattices where
the morphisms are the mappings between join semilattices which preserve suprema of
pairs. Each covariant functor Φ : SET → SEMILAT assigns to each set X a join semilattice
ΦX = (ϕX,≤), given as a partially ordered, and to each mapping f : X → Y a mapping
ϕf : (ϕX,≤) → (ϕY,≤) which preserves suprema of pairs. ϕ : SET → SET is the
underlying set functor of Φ. Frequently Φ will be written (ϕ,≤). Concerning examples we
refer to [2,3]. In this paper we will only recall one of them, namely the example of fuzzy
filter functor. It will be considered in section 6.

In the following let Φ = (ϕ,≤) be a covariant functor from SET to SEMILAT.

Let X and Y be sets. For M∈ ϕX and N ∈ ϕY , the Φ-product of M and N is defined
as the greatest element L of ϕ(M×N), for which ϕπ1(L) = M and ϕπ2(L) = N , provided
it exists. Here π1 and π2 are the first and second projections of X × Y .

In this paper some conditions will play important roles. A basic condition is the fol-
lowing:

(P) For all sets X,Y and all M∈ ϕX,N ∈ ϕY , the Φ-product of M and N exists.

1 Proc. Hausdorff Conference, Berlin, March 23-28, 1992, to appear.
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Under the assumption of (P), the following two conditions4 are meaningful:

(Pr) If f : X → U and g : Y → V are any mappings and M ∈ ϕX and N ∈ ϕY , then
ϕ(f × g)(M×N ) = ϕf(M)× ϕf(N ).

(D) If X and Y are sets, and M1,M2 ∈ ϕX,N ∈ ϕY , then (M1 ∨M2)×N = (M1 ×
N ) ∨ (M2 ×N ).

3. Φ-Limit Spaces and Φ-Cauchy Spaces

Let Φ be a covariant functor from SET to SEMILAT, where ϕ is the underlying set functor
of Φ. Assume that ϕ is connected, i.e. ϕ1 is a singleton, say {A}. Hence there is a unique
natural transformation η : id → ϕ of the identity set functor id to ϕ (see [2]).

Let X be a set. A ϕ-convergence structure t on X, i. e. a subset t of ϕX×X, is called a
Φ-limit structure if the following conditions are satisfied, where M -

t
x means (M, x) ∈ t.

(L1) ηX(x) -
t

x for all x ∈ X.

(L2) M -
t

x and N ≤M imply N -
t

x.

(L3) If M -
t

x and N -
t

x, then M∨N -
t

x.

X equipped with a Φ-limit structure on X is called a Φ-limit space.

A mapping f : (X, t) → (Y, u) between Φ-limit spaces is said to be continuous, if
M -

t
x implies ϕf(M) -

u
f(x).

Let Φ-LIM denote the category of all Φ-limit spaces with all continuous mappings be-
tween these spaces as morphisms.

A Φ-Cauchy structure on a set X is a subset s of ϕX satisfying the following conditions:

(C1) ηX(x) ∈ s for all x ∈ X.

(C2) M∈ s and N ≤M imply N ∈ s.

(C3) If M,N ∈ s and {M,N} has a lower bound in (ϕX,≤), then M∨N ∈ s.

The pair (X, s) is called a Φ-Cauchy space.

Let (X, s) be a Φ-Cauchy space. The associated Φ-limit structure t consists of all pairs
(M, x) ∈ ϕX ×X such that M∨ ηX(x) ∈ s. t is indeed a Φ-limit structure on X as has
been shown in [2]. s is said to be complete if each Φ-Cauchy object of (X, s) converges,
with respect to the associated Φ-limit structure, to some element of X.

A mapping f : (X, s) → (Y, u) between Φ-Cauchy spaces is called Cauchy continuous
if from M∈ s it follows φf(M) ∈ u. Cauchy continuity implies continuity with respect to
the associated Φ-limit structures, as has been shown in [2].

Let Φ-CHY denote the category of all Φ-Cauchy spaces with all Cauchy continuous
mappings between these spaces as morphisms.

4 For these conditions in a more general case using lower Φ-products, see [5]. Note that (Pr) is denoted
(L) in [5].



4. Continuous Convergence and the Corresponding Cauchy Struc-
tures

In the following assume that the conditions (P), (Pr) and (D) are fulfilled. Let at first
A = (X, s) and B = (Y, t) be Φ-limit spaces and let Z denote the set of all continuous
mappings from A to B. Moreover, let ev : Z × X → Y be the evaluation mapping
(f, x) 7→ f(x) (f ∈ Z, x ∈ X).

The ϕ-convergence structure c on Z, defined by

K -
c

f ⇔ for each x ∈ X and M -
s

x we have ϕ ev(K ×M) -
t

f(x),

is called the continuous convergence on Z.

Proposition 1 c is a Φ-limit structure.

P r o o f . For each f ∈ Z we have f = ev◦(g×1X)◦ι where ι : X → 1×X and g : 1 → X
are the mappings x 7→ (0, x) and 0 7→ f , respectively. Noting that ηZ(f) = ϕg(A), where
A is the only element of ϕ1, from condition (Pr) we get ϕ ev(ηZ(f)×M) = ϕf(M) for all
M∈ ϕX and therefore ηZ(f) -

c
f . Hence (L1) is fulfilled.

Condition (L2) is obvious, and condition (L3) follows easily by means of condition (D)
taking into account that Φ is ranging in SEMILAT. 2

As in the filter case, continuous convergence is the coarsest Φ-limit structure on Z with
respect to which ev is continuous.

There is an analogous situation for Φ-Cauchy structures, which will be considered in
the following (see [1] for the filter case). Explicitely, let now A = (X, s) and B = (Y, t) be
Φ-Cauchy spaces and let Z denote the set of all Cauchy continuous mappings from A to
B. Let ev : Z ×X → Y be defined as above. Moreover, let d be the subset of ϕZ defined
as follows:

K ∈ d ⇔ for each M∈ s we have ϕ ev(K ×M) ∈ t.

Proposition 2 d is a Φ-Cauchy structure.

P r o o f . Analogous to that of Proposition 1. 2

5. Cartesian Closedness of Φ-LIM and Φ-CHY

Let A = (X, s), B = (Y, t) and C = (U, r) be Φ-limit spaces, and let f : C × A → B be a
continuous mapping.

Lemma 1. For each u ∈ U, f ∗(u) : x 7→ f(u, x) (x ∈ X) is a continuous mapping of A
into B.

P r o o f . We have f ∗(u) = f ◦ (g× 1X) ◦ ι where ι : X → 1×X and g : 1 → U are the
mappings x 7→ (0, x) and 0 7→ f , respectively. Proving analogously as in the first part of
the proof of Proposition 1, we obtain that ϕf(ηU(u)×M) = ϕf ∗(u)(M) for all M∈ ϕX.
Hence M -

s
x implies ϕf ∗(u)(M) -

t
f(u, x) and therefore f ∗(u) ∈ Z. 2

Clearly, f ∗ : u 7→ f ∗(u) is the only mapping of U into Z such that

ev ◦ (f ∗ × 1X) = f. (1)



Proposition 3 Φ-LIM is cartesian closed.

P r o o f . It remains to show that for each continuous mapping f : C × A → B,
f ∗ : C → (Z, c) is continuous. Fix U -

r
u. Because of the continuity of f , (1) and

condition (Pr) we have ϕ ev(ϕ∗(U) ×M) = ϕf(U ×M) -
u

f ∗(u)(x) for all M -
s

x and

therefore ϕf ∗(U) -
c

f ∗(u). Hence f ∗ is continuous. 2

Proposition 4 Φ-CHY is cartesian closed.

P r o o f . Analogous to that of Proposition 3. 2

6. The Fuzzy Filter Case

Let L be a completely distributive complete lattice. A mapping M : LX → L is an L-fuzzy
filter on X, if the following conditions are fulfilled:

(1) M(ᾱ) = α for all α ∈ L, where ᾱ : X → L is the constant mapping with value α,

(2) M(f ∧ g) = M(f) ∧M(g) for all f, g ∈ LX .

f ≤ g and f ∧ g are defined componentwise.

The fuzzy filter functor FL : SET → SET assigns to each set X the set FLX of all
L-fuzzy filters on X and to each mapping f : X → Y the mapping FLf : FLX → FLY
defined for each M∈ FLX and g ∈ LY by FLf(M)(g) = M(g ◦ f).

Endowing each set FLX with the inversion ≤ ≥ of the partial ordering ≤̇ defined by
M≤̇N ⇐⇒ M(f) ≤ N (f) for all f ∈ LX gives a covariant functor

Φ : SET → SEMILAT, written (FL, ≥̇) (see [3]).

Analogously to the notion of filter base there is a suitable notion of fuzzy filter base.

Let X be a set. By a fuzzy filter base on X we mean a non-empty subset B of LX

such that the following conditions are fulfilled, where for each f ∈ LX , sup f means
sup{f(x) | x ∈ X}:

(1) ᾱ ∈ B for each α ∈ L.

(2) For all f, g ∈ B there is a mapping h ∈ B such that h ≤ f ∧ g holds and sup h =
sup f ∧ sup g.

Each fuzzy filter base B on X generates a fuzzy filter M on X by

M(f) =
∨

g≤f, g∈B
sup g. (2)

On the other hand we have the following

Proposition 5 (see [4]) Each fuzzy filter M can be generated by a fuzzy filter base on X.
There even exists a greatest one, written baseM and called the large base of M, which is
given by baseM = {f ∈ LX | M(f) = sup f}.



Proposition 6 For each mapping f : X → Y , M ∈ FL and baseB of M, {g+ | g ∈ B}
with g+ ∈ LY , defined by g+(y) =

∨
x∈f−1(y)

g(x) for y ∈ f [X] and sup g otherwise, is a base

of FLf(M).

In the fuzzy filter case condition (P) is fulfilled. We namely have the following.

Proposition 7 For all L-fuzzy filters M and N on sets X and Y , respectively, there exists
the (FL, ≥̇)-product M×N of M and N , and B = {f ◦ π1 ∧ g ◦ π2 | f ∈ C, g ∈ D} is a
base of M×N , where C and D are bases of M and N , respectively, and π1 and π2 are
the first and second projections of X × Y .

P r o o f . Obviously, B is the base of some fuzzy filter L on X × Y . Representing L
according to (2) by means of B, shows that L = M×N . 2

For each set X andM∈ ϕX let dX(M) = {U ⊆ X | ϕιU(N ) = M for some N ∈ ϕU},
where ιU is the inclusion mapping of U into X.

Lemma 2. M ∈ dX(M) holds if and only if for all f, g ∈ LX with f |M = g |M we have
M(f) = M(g).

Lemma 3. From M ∈ dX(M) and N ∈ dX(N ) it follows M ×N ∈ dX×Y (M×N ).

Proposition 8 (FL, ≥̇) fulfills condition (Pr).

P r o o f . Follows by means of Propositions 6 and 7, Lemma 2 and Lemma 3. 2

Lemma 4. Let M and N be L-fuzzy filters on a set X. Then base (M∨N ) = baseM∩
baseN and f ∈ baseM and g ∈ baseN imply f ∧ g ∈ base (M∨N ) and sup (f ∧ g) =
sup f ∧ sup g.

Proposition 9 (FL, ≥̇) also fulfills condition (D).

P r o o f . Let M1,M2 ∈ FLX and N ∈ FLY . Representing M1 × N , M2 × N
and (M1 ∨M2) × N according to (2) by means of related bases as given in Proposition
7 and taking into account Lemma 4 and that L is completely distributive, shows that
(M1 ∨M2)×N = (M1 ×N ) ∨ (M2 ×N ). 2.

7. Completions of Φ-Limit Groups

The papers [2] and [4], respectively, contain the Wyler and Kowalsky completions of Φ-
Cauchy spaces. Whereas in [4] the fuzzy filter case is included, for the Wyler completion
of Φ-Cauchy spaces, the fuzzy filter case is considered separately in [3].

In [5] the Wyler completion of Φ-limit groups is presented according to the construction
given by G. Kneis in [6]. Clearly, a Φ-limit group is a Φ-limit space equipped with a group
structure such that the group operations are continuous mappings.

For this type of completion the conditions (P), (Pr) and (D) are needed. Moreover,
a further condition (G) is used, which, under the assumption that (P) is fulfilled, can be
formulated as follows:

(G) For each group (X, g) andM∈ ϕX, whenever there is a subset U of X and a G ∈ ϕU
with ϕν(M×M) ≤ ϕιU(G), then there exists a finite subset E of X and an N ∈ ϕV
with M ≤ ϕιV (N ). Here ν : X ×X → X denotes the mapping (x, y) 7→ x·y−1 and
V the algebraic closure of U ∪E, and ιU and ιV are the inclusion mappings of U and
V into X, respectively.



Proposition 10 Under the assumption

(∗) L is a complete chain and each α ∈ L, α > 0 has a predecessor,

condition (G) is fulfilled for the fuzzy filter functor (FL, ≥̇).

P r o o f . Let (X, g), M, U and G be given as in condition (G). Further let i :
X → L be the mapping which has the value 1 over U and the value 0 over X \ U . Then
ϕν(M×M)(i) = (M×M)(i ◦ ν) = 1 and therefore

1 =
∨

f,g∈baseM
f◦π1∧g◦π2≤i◦ν

sup f ∧ sup g =
∨

h∈baseM
x·y−1 6∈U ⇒h(x)=0 or h(x)=0

sup h .

Because of (∗), hence there exist h ∈ baseM and x0 ∈ X such that h(x0) = 1 and h(x) = 0
for all x ∈ X \ U ·x0. Then h(x) = 0 for all x ∈ X \ V , where V is the algebraic closure
of U ∪ {x0}. Now {g ∧ h | g ∈ baseM} ∪ {ᾱ | α ∈ L} is a fuzzy filter base, and because
of M(f) =

∨
g∧h≤f

g∈baseM

sup (g ∧ h) for all f ∈ LX , it is even a base of M. Thus, M(f) only

depends on f |U for all f ∈ LX . But this implies that there exists an N ∈ ϕV such that
M = ϕιV (N ). 2

As a consequence of this proposition we get that in the fuzzy filter case , under the
assumption (∗), the Wyler completion of Φ-limit spaces can be constructed. For more
details on this completion we refer to [5]. Note that the condition (∗) already is used in [4]
for constructing the Richardson compactification in the fuzzy filter case.
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