
Distributing Errors in Neural Fuzzy ControlP. EklundDepartment of Computer Science�Abo Akademi UniversitySF-20520 �Abo, Finland F. Klawonn D. NauckDepartment of Computer ScienceTechnical University of BraunschweigW-3300 Braunschweig, GermanyKey words: neural network, fuzzy control, membership function, backpropagation1 IntroductionThe purpose of this paper is to describe a procedure tointegrate techniques for the adaptation of membershipfunctions in a linguistic variable based fuzzy control en-vironment.One of the design problems of a fuzzy controller is thechoice of appropriate membership functions or the tun-ing of a priori membership functions in order to improvethe performance of the fuzzy controller. We propose tosolve this problem by adapting neural net learning tech-niques to an architecture of a fuzzy controller, but in-stead of integrating neural nets in certain parts of thearchitecture as black boxes, we show how an error inthe resulting control value can be distributed among thecontrol rules as well as between the antecedents and theconclusions of the corresponding rules.A standard approach is to add an extra module to thearchitecture taking care of the correction of errors forexample by weighting the rules according to the errorslike it is described in [4]. Our main e�ort here is to un-derstand adaptations as a reverse mechanism deducedfrom the forwarding inference machinery. We considerthe computation of the control value from given mea-sured input values as a feedforward procedure like inlayered neural nets [6], where the inputs are forwardedthrough the net resulting in some output values. If theactual output di�ers from the desired output value theerror has to be propagated back through the architec-ture changing parameters taking into account the feedforward propagation of inputs.Training a fuzzy controller with such a learning pro-cedure allows us to keep track of the changes and tointerpret the modi�ed rules.In: Proc. 2nd Int. Conf. on Fuzzy Logic and Neural NetworksIIZUKA'92, Iizuka, Jul. 17-22 (1992), 1139{1142

2 The inference schemeConsider measurements in a subinterval H = [h1; h2] ofthe real line. We will identify these measurements withcorresponding images through the linear transformationIH of H into [0; 1]. Thus, imprecision is modelled bymappings � : [0; 1]! [0; 1], in the sense of membershipfunctions (msf's, for short), with the obvious interpre-tation as representations of linguistic values. For predi-cates we will have variables associated with msf's.For the minMAX inference scheme we consider a vari-able together with a linguistic value to be considered asone predicate, i.e. we may hide the linguistic variablefrom the syntax. This is, of course, not to be taken asan argument against the use of linguistic variables.As msf's we consider the range from triangular ortrapezoidal forms to piecewise linear mappings, with cor-responding parametric representations. We also distin-guish between having the support of a msf either �xed oroating. For reasons of simplicity we restrict ourselvesto the above mentioned msf's. However the describedconcepts can be extended to more general functions.In the following we will set forward an architecture forthe modelling of our adaptation process. For simplicity,we will consider single layer rule basis. Further, we mayassume single outputs, since multiple outputs are repre-sented by corresponding networks. Thus, a typical rulecan be written asQ P1(x1); . . . ; P1(xn):To each variable xi we assign an msf �i.We now have the following molecules of the systemarchitecture: an msf-module for the fuzzi�cation, a T -module for the aggregation of inputs, an S-module forthe aggregation of outputs, and the DEFUZ-module forthe defuzzi�cation. The usual choice of T and S arethe min- and MAX-operations, respectively. Addition-ally, we may impose ad hoc learning strategies, i.e. formanaging weightings of rules [4].
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2Figure 1: The system architectureIn �g. 1 we have two inputs, x1 and x2, for �ve rules,where msf's are given as �(1)i ; . . . ; �(5)i , i = 1; 2.The well-known Zadeh-Mamdani procedure [9, 5] cannow be identi�ed within the architecture. Measurementsare handled by the msf-modules, and delivered to theT -modules, and further on through the S-module to thedefuzzi�cation. The output signal at � is compared withthe expected output at �t, and an error �� is obtained.The problem now is to generate adjustments on the in-put and output msf's, through some distribution of theerror in the architecture. This is described in the follow-ing section. Other inference schemes as related to neuraladaptations are developed in [1, 2, 8]. Consequences forthe backpropagation algorithm are described in [3].3 The learning procedureMsf's can be adjusted either by laterally moving the do-main or by bending segments of the function. The error�(i)� is considered to be a combination of errors resultingfrom lateral placement of domains, �(S;i)� , and speci�ca-tion of function shapes, �(T;i)� . These respective partialerrors are now distributed over the backpropagating pro-cedures in the S- and T -modules, respectively. We maywrite �(i)� = (�(S;i)� ; �(T;i)� )with �(S;i)� and �(T;i)� being delivered to the S- and T -modules, respectively.The subdivision of errors is related to the position ofthe output and target values. In a straightforward ap-proach we might emphasize errors of function shapes ifthe output and target values are closer to the boundariesof the unit interval. In this case targets and actuals be-ing more in the middle of the interval, would emphasizethe lateral positions of the domains.

The subdivision of errors over input and output nodesis done accordingly. Details about these distributionstrategies are described in an extended version of thispaper.We consider center of gravity (cog) and mean of max-ima (mom) as possible defuzzi�cation procedures. Afterwe have obtained the crisp output value � = DEFUZ(S)we are able to determine the error signal �� to the di�er-ence � � �t between the output value � and the targetvalue �t.We will now �rst consider the mom-procedure. Thereare four possibilities for our output value � to be wrong.1. The target value is located under the top of S butshifted to the left or to the right (see �g. 2(a)).2. The target value is a member of the support of thefuzzy set Ti, that has produced the top of S, but itis not located under the top of S (see �g. 2(b)).3. The target value is not a member of the support ofthe fuzzy set Ti, that has produced the top of S,but it is still inside the support of S (see �g. 3(a)).4. The target value is not a member of the support ofS (see �g. 3(b)).In the �rst two cases the top of S has been producedby the correct output fuzzy set T but it is displaced. Weassume that only Ti is responsible for the incorrect � andwe try to overcome this error by changing the form of Tiin such a way, that the mean of the top of Yi is �t (seethe dotted lines in �g. 2) by trying to keep the width ofthe top.In the third case the top of S has been produced bythe wrong output fuzzy set. This error is due to theinput fuzzy sets and so we �rst have to change themin order to assure that the top of S is produced by thecorrect Ti. Assuming that the top of S is produced by Tjand �t 2 support(Ti). So we have to raise the minimumproduced by the inputs �(j)k and lower the minimum ofthe inputs �(i)k . Then we have to change Ti in the sameway as in the �rst two cases.In the fourth case, when �t =2 support(S), we assumean error in our rulebase. There is either no rule thatcovers the area of the current �t or the respective rulehas not �red. In either case we have to introduce a newrule that copes with the situation. This cannot be doneautomatically by our learning procedure, but has to bedone by the user.The Error Propagation Algorithm (mom)1. After the unit DEFUZ has produced � it backprop-agates the correct value �t and its output value �to the S-unit.
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t (b)Figure 2: Adjusting � by changing the form of theT fuzzy sets (mom)2. Check if �t 2 support(S). If that is not true theuser has to add a new rule into the rulebase andthe current input has to be reevaluated before thelearning process can proceed. Else go on with thenext step.3. The S-unit backpropagates �; �t, the height of Sand the maximum height hmax each output fuzzyset not producing the top of S is allowed to have tothe T -units.4. Each T -unit checks(a) If height(Ti) = height(S) and�t =2 support(Ti)Then send hmax; height(Ti) and a lower sig-nal to all connected �-units.(b) If (height(Ti) = height(S)) and�t 2 support(Ti) and � 6= �tThen change the form of Ti such that �t in-stead of � will be obtained as the meanof maximum.(c) If (height(Ti) 6= height(S)) and�t 2 support(Ti)
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t (b)Figure 3: Adjusting � by changing the form of the� and T fuzzy sets (a) or by adding a newrule to the rule base (b) (mom)Then send height(S); height(Ti) and a raisesignal to all connected �-units, assumeheight(S) will be received as the min-imum of the �-units and change theform of Ti such that �t instead of �will be obtained as the mean of maxi-mum.(d) If (height(Ti) 6= height(S)) and�t =2 support(Ti)Then terminate the error propagation forthis unit.5. Each �-unit checks(a) If there is an incoming lower signal and�(j)i (xi) = height(Tj)Then change the form of �(j)i such that�(j)i (xi) = hmax(b) If there is an incoming raise signal and�(j)i (xi) < height(S)



Then change the form of �i(j) such that�(j)i (xi) = height(S)A similar algorithm can be derived for the cog-procedure and will be presented in an extended version ofthis paper. The main idea of this algorithm is to changethe center of gravity either by shifting the T fuzzy setsor by lowering and raising parts of the S fuzzy set bychanging the input fuzzy sets (see �g. 4).
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t(b)Figure 4: Adjusting � by raising/lowering all orchanging the form of one of the one Tfuzzy sets (cog).4 DiscussionWe have presented an algorithm for distributing errorsin a fuzzy control enviroment by adapting neural netlearning techniques. We have considered a fuzzy con-troller as a neural-like system where the characteristicsof the model are not determined by weighted connectionsbut by fuzzy sets stored in the nodes of the system. Thelearning algorithm identi�es the units responsible for the

error in the output signal and backpropagates informa-tion through the network that enables the units to mod-ify their fuzzy sets in a simple way. There is no needfor attaching weights to the rules, each rule is equallyimportant. By changing the fuzzy sets, the semanticsof each rule intended by the user keeps unchanged, butthe errors caused by an inaccurate modelling will be re-moved and the re�ned rules can be easily interpreted.We assume that the rules are given in at least a crudemanner. If one has no ideas about the rules at all, thereare clustering algorithms based on neural networks forthe generation of rules [7].References[1] P. Eklund, F. Klawonn: A Formal Frameworkfor Fuzzy Logic Based Diagnosis. In: R. Lowen,M. Roubens (eds.): Proc. 4th International FuzzySystems Association (IFSA) Congress: Mathemat-ics, Brussels (Belgium), 58{61 (1991)[2] P. Eklund, F. Klawonn: Neural Logic Program-ming. Manuscript, Dept. of Computer Science, �AboAkademi University, �Abo, Finland (1991)[3] P. Eklund, T. Riissanen, H. Virtanen: On the FuzzyLogic Nature of Neural Nets. Proc. NeuroNimes'91,293{300 (1991)[4] B. Kosko: Neural Networks and Fuzzy Systems.Prentice{Hall, Englewood Cli�s 1992[5] E.H. Mamdani: Applications of Fuzzy Algorithmsfor Simple Dynamic Plant. Proc. IEEE vol. 121,1585{1588 (1974)[6] D.E. Rumelhart, J. L. McClelland: Parallel Dis-tributed Processing, Vol. 1. MIT Press, Cambridge,Massachusetts (1986)[7] H. Takagi, I. Hayashi: NN{driven Fuzzy Reasoning.Int. J. Approximate Reasoning 5 no 3 (1991)[8] H. Virtanen: Combining and Incrementing FuzzyEvidence { Heuristic and Formal Approachesto Fuzzy Logic Programming. In: R. Lowen,M. Roubens: Proc. 4th International Fuzzy Sys-tems Association (IFSA) Congress: Arti�cial Intel-ligence, Brussels (Belgium), 200{203 (1991)[9] L.A. Zadeh: Outline of a New Approach to theAnanlysis of Complex Systems and Decision Pro-cesses. IEEE Trans. Syst. Man Cybern., vol. SMC{3, 28{44 (1973)


