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Abstract—We address the problem of resource management
for large scale cloud data centers. We propose a Peer to
Peer (P2P) resource management framework, comprised of
a number of agents, overlayed as a scale-free network. The
structural properties of the overlay, along with dividing the
management responsibilities among the agents enables the
management framework to be scalable in terms of both the
number of physical servers and incoming Virtual Machine
(VM) requests, while it is computationally feasible. While our
framework is intended for use in different cloud management
functionalities, e.g. admission control or fault tolerance, we
focus on the problem of resource allocation in clouds. We
evaluate our approach by simulating a data center with 2500
servers, striving to allocate resources to 20000 incoming VM
placement requests. The simulation results indicate that by
maintaining an efficient request propagation, we can achieve
promising levels of performance and scalability when dealing
with large number of servers and placement requests.

Keywords-Cloud computing; Peer to Peer; Resource man-
agement;

I. INTRODUCTION

The explosive growth of data centers, in terms of both size

and number of servers, has greatly increased the complexity

of managing data center resources. The most recent type

of large scale data centers are cloud data centers, which

are typically used for on-demand service provisioning. One

key challenge in cloud data centers is to develop resource

management frameworks and mechanisms to provide effi-

cient resource utilization while they are also scalable and

computationally feasible, with respect to the size of the data

centers, the incoming load and their dynamic nature.

Most existing approaches to resource management [1],

[2], [3] are highly centralized and do not scale with the

number of servers in the data center. Typically, a centralized

manager is required to execute the necessary complex algo-

rithms and must also be aware of the state of all servers,

which can be challenging in large and highly dynamic data

centers [4].

In contrast, distributed approaches to resource manage-

ment can cope with large numbers of resources without

requiring centralized control. Within such approaches, the

management responsibilities are divided among identical

autonomic elements (nodes), helping the management struc-

ture to scale as the number of nodes increases. Global

management is achieved through co-operative interactions

between autonomic elements [5].

Peer to Peer (P2P) systems have proven to be scalable

and robust for distributed resource management. In such

systems, each peer performs a task based on locally-available

information, and goal-oriented coordination among the tasks

enables the system to achieve its global objective. The

system thus benefits from a high degree of concurrency and

decentralization of control with no central bottleneck.

However, P2P systems also face challenges due to the lack

of global view of the system and not having a centralized

point of reference. To compensate for this lack of global

view, attempts have been made to extract and discover the

required information via discovery algorithms that allow

individual elements to obtain sufficient information when

required.

In this paper, we address the issue of resource manage-

ment in large cloud data centers, approaching it as an infor-

mation discovery problem in a P2P structure. We propose

a P2P resource management framework consisting of an

agent community that interacts in a goal-oriented fashion.

The agent community is structured as a scale-free network,

enabling the agents to efficiently discover the information

required for their decisions, using a simple local search
algorithm. Our main objective is to identify a solution that is

scalable both in terms of the number of servers and incoming

VM requests while still being computationally feasible.

While our framework is intended to support different

cloud management functionalities, e.g. admission control

or fault tolerance, our primary focus is on the problem

of resource allocation in clouds. As part of the work,

we propose a resource allocation mechanism that aims to

maximize data center utilization and profitability by ensuring

high utilization of active nodes while minimizing overall

power consumption by putting the remaining nodes into

energy-saving mode.

We evaluated our approach by simulating a data center

that has 2500 servers and must allocate resources to 20000

incoming VM placement requests. We analyzed our ap-

proach with respect to diverse performance criteria including

data center utilization, profit, rejection ratio, request process-

ing time (in terms of the number of hops per request), and

scalability. We also investigated various factors that might

affect performance. Our approach is shown to maintain good

performance with respect to the examined criteria.

The remainder of the paper is organized as follows: Sec-

tion II introduces the framework by describing the P2P over-
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lay and the agent model. Section III presents the problem of

resource allocation, the main objectives and presents a local
search algorithm to solve the resource allocation problem.

Section IV and Section V discuss our experimental setup and

the results obtained in the simulations conducted to evaluate

the approach. Section VI provides a brief overview of related

studies, and concluding remarks are presented in Section

VII.

II. RESOURCE MANAGEMENT FRAMEWORK

Resource management problems are often formulated as

optimization problems. In order to solve them, we adopt

a P2P approach, using a distributed local search algorithm
on a population of peers, where each peer considered as

a potential solution checking its neighbors in the hope of

finding an improved solution.

In our design, the physical servers are structured as peers,

and peers that are connected to one-another are considered

neighbors. Each peer is associated with an agent that is

responsible for functional tasks and local managerial deci-

sions. Relevant information is exchanged among agents via

a gossip protocol exploiting the environment formed by the

peers. Each agent makes local decisions with respect to its

local view and policies, and the system as a whole progresses

towards the global objective via the emergent outcome of

these local decisions.

A. Overlay Construction

In P2P systems, the overlay specifies the logical inter-

connections between peers. The structural properties of the

overlay affect the efficiency of the discovery and propagation

of information within the system, so it must be designed

carefully. The problem of choosing an overlay can be

formulated as a graph theoretic problem, with the physical

servers (nodes) being the vertices, logical links being the

edges, and nodes that are connected to one-another via an

edge being neighbors that collectively form a neighborhood.

The goal is to find an overlay that is robust to failures

and capable of supporting fast discovery while having a low

maintenance cost (i.e. the cost of keeping nodes up-to-date

about their neighbors). In graph theoretic terms, such a graph

is characterized as being highly connected, sparse, with a

low diameter.

Scale-free networks are a family of graphs that are widely

used for structuring P2P overlays because they satisfy the

criteria listed above. Scale-free networks are scalable and

robust to random node failures. In addition to their robust-

ness, these graphs have short distances between any two

randomly chosen vertices and each vertex can be reached

within a limited number of steps. This enables fast resource

discovery, which is essential for our purposes.

In our method, the servers in the data center are structured

in the form of a scale-free network that is constructed

using the Barabsi Albert (BA) algorithm with a preferential

attachment mechanism [6].

Such a logical structure for the resource management

framework can be simply mapped into the future data cen-

ter’s network architectures [7], and can benefit from faster

communications, resulted from the compatibility between

the logical structure and the physical network structure [7].

B. Agent Model
On top of the P2P overlay, we build an agent community

that performs functional tasks while enabling goal-oriented

communication. Each agent is an autonomous entity that acts

on behalf of a physical server (peer) or an application.

We associate each physical server and each application

with an agent. These agents interact with each other to

perform their designated tasks.

1) Node agents process information received from their

neighbors to advance their local goal, e.g. increasing

their own resource utilization or that of their neigh-

borhood. They also direct relevant information to their

neighbors. Each agent tracks information on the state

of its associated physical server, including its utiliza-

tion and available capacity, as well as information on

its neighbors such as their state (e.g. whether they are

idle, crashed or active), utilization, and free capacity.

2) Application agents are responsible for monitoring
the application’s resource demand, generating requests

for more or fewer resources as the demand changes,

and interacting with nodeAgents to deploy the new
resources. The applicationAgent resides on one of
the physical machines on which the application is

deployed, and keeps track of the VMs allocated to

the application.

To solve a resource management problem, each nodeAgent
solves a local optimization problem by searching for a

locally optimal solution within its own local scope. The

search proceeds iteratively from one potential solution to

an improved alternative until no better solution can be

found among the nodeAgents. Relevant information is either
exchanged or distributed among agents via gossiping. The

nodeAgents use heuristics to identify the node that offers the
highest objective value.

III. RESOURCE ALLOCATION

We formulate the problem of placing VMs on a set of

physical servers as an optimization problem.

We model the data center as a set of n physical servers,
structured as a scale-free network, where each server has the

capacity Cserver. Using existing CPU/memory based capacity
tools, the capacity of a server is defined in terms of number

of available slots that can accommodate VMs. For clarity

we assume that the servers are homogeneous, although

the formulation can easily be extended for heterogeneous

servers.
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The data center offers k VM types, where VM-typei (i =
1,.., k) has capacity Ci compute units (Ci< Ci+1 and Ck ≤
Cserver) whose price is proportional to its size.

Moreover, assume that there are m VM placement re-

quests, where each request j, j = 1,..,m demands capacity

Demandj. The capacity that is actually allocated to request

j is denoted as Resj. The problem is to allocate resources

(slots) on the physical servers to the VMs in order to

optimally fulfill a data center management objective, e.g.

to maximize resource utilization and overall profit.

We define the data center utilization as the total resources

allocated at time t to all VM placement requests divided by

the total available capacity of the data center. The resulting

optimization problem is formulated as:

Maximize Udc(t) =

∑m
j=1 Resj(t)

n× Cserver
(1)

subject to:

m∑

j=1

Resj(t) ≤ n× Cserver (2)

Where m is the number of placement requests, Resj(t) is
the allocated capacity for requestj at time t, n is the total
number of servers (considering both idle and active servers),

and Cserver is the capacity of each server.

We can also formulate the resource allocation problem

to optimize profit. As shown in Equation (3), we define
the profit as the revenue earned from allocating the VMs

minus the associated operational cost, which is formulated

in terms of the cost of the servers’ power consumption. The

power consumption is modeled using a linear function that

is shown in Equation(4), with a fixed consumption for the

idle state and additional power usage proportional to the

server’s utilization [8]. The profit optimization problem is

thus formulated as maximization of the following function:

Profit(t) =
m∑

j=1

Resj(t)×priceResj−
n∑

i=1

(Pi(t)/Pmax)×costi

(3)

This objective is also subject to constraint (2). Pi(t) is
the power consumption of the server at time t, which is
calculated as:

Pi(t) = (Pmax − Pidle)× Unodei(t) + Pidle (4)

Here, priceResj is the price of renting Resj(t) from the data
center (i.e. the data center’s income), costi is the power
consumption cost for a fully utilized server, Pi(t) is the
power consumption of the server at time t when its processor
utilization is Unodei(t), Pmax is the power consumption

at maximum utilization, and Pidle is the server’s power

consumption when idle.

The objective function is maximized when the aggregated

power consumption of all active servers is minimized. In a

homogeneous datacenter, this happens if the demand of the

VMs is consolidated over the minimum servers [9].

A. Resource Allocation Algorithm

We propose a resource allocation algorithm, based on

local search heuristics. This algorithm is, intrinsically, a

discovery algorithm that searches for nodes according to

a set of rules and specifications. A VM placement request
traverses the network looking for a set of nodes that satisfy

its resource demands. We use the term request as an
abbreviation for VM placement request in the remainder of
the paper.

The nodeAgent receiving a request selects the best poten-
tial node with sufficient capacity that can host the VM based

on its locally stored information about its neighborhood. If

the selected node is one of the neighbors rather than the

node that received the request, the nodeAgent will forward
the request to that neighbor so that the search for the desired

resource can continue. NodeAgents iteratively forward the
request from one potential solution to a better one until the

visited nodeAgent is not able to find any better solution than
itself or the request is expired. There are multiple heuristics

that could potentially be used by the nodeAgents to select
the best neighbor, including:

1) Most-Utilized: Selects the most-utilized node with

sufficient capacity from among its neighbors (includ-

ing itself). The utilization of a node is the ratio of its

utilized resources to its total capacity.

2) Least-Utilized: Selects the least-utilized node with

sufficient capacity from among its neighbors (includ-

ing itself).

3) First-Fit: Selects the first node with sufficient capacity
from among its neighbors (including itself).

If the nodeAgent and one of its neighbors both offer equal
objective values, the algorithm chooses the neighbor over

the processing nodeAgent, to increase the chance of finding
a better solution in the future visits and possibly skips the

local optima. If none of the neighbors or the nodeAgent itself
have sufficient capacity, the nodeAgent forwards the request
to a random neighbor. Hence, if a request is stocked in a

neighborhood with no available resources, random selection

helps the request to bounce between the nodes and find a

way out of the saturated neighborhood so that the search can

continue.

Whenever a request is forwarded to a next nodeAgent, it
is considered to have taken one hop. The total number of
hops required to successfully locate a node represents the

time required to process the request. We limit the request

processing time using a maximum Hops To Live (HTL)
threshold. The request is rejected if the required number

of hops exceeds the HTL. Limiting the number of hops
reduces the quality of the resulting solution and increases the
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(a) Most-Utilized heuristic
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(b) Least-Utilized heuristic
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(c) First-Fit heuristic

Figure 1: The selection of a node for further processing of a request based on three different heuristics

Algorithm 1 Allocation
Input: Request [Demand, HTL, DecisionFlag]
Output: The location to place the request, DecisionFlag

On receiving a request :

if DecisionFlag = false then
if HTL > 0 then
t = identify the node w.r.t the heuristic policy and

local view

if t != Me then
if t =-1 then
t = random neighbor from the neighborhood

end if
HTL = HTL - 1

forward the request to t

else
location = t

DecisionFlag = true (decision is made)

end if
else
location = -1 (Location not found)

DecisionFlag= true (Decision is made)

end if
end if
return location and DecisionFlag

number of rejections. However, it also prevents the indefinite

propagation of requests.

We also assume that requests can either reach the system

from a unique entry point (which is referred to as "central
entry") or from multiple entry points ("distributed entry"). In
both cases, they propagate from their entry points according

to the same rules.

There are thus six possible combinations of heuristics and

entry policies, as shown in Table I.

B. Characterization of the Resource Allocation Protocol

The efficiency of the resource allocation protocol is

defined with respect to our two main objectives, i.e. the

Policies Request entry Heuristics
Central-FF Central First-Fit
Central-Min Central Min Utilization
Central-Max Central Max Utilization
Dist-FF Distributed First-Fit
Dist-Min Distributed Min Utilization
Dist-Max Distributed Max Utilization

Table I: Resource allocation policies based on different entry

policies and heuristics

maximization of data center utilization and high profit. It

depends on the efficiency of request propagation and the

distribution of the allocated resources.

1) Request propagation: An efficient allocation algo-
rithm should efficiently propagate the VM placement
requests within the environment in a way that max-
imizes the likelihood of an effective visit. Effective

visits are those that increase the chance of finding a

node that offers a higher objective value within the

HTL limit.
2) Allocation distribution: The second major factor

that affects the efficiency of a resource allocation

protocol is the distribution of the allocated resources.

When allocated resources are sparsely distributed, it

is probable that a large number of servers will have

low utilization. This leads to high power consumption,

increased operational costs and reduced profit. These

consequences can be mitigated by distributing the

allocation of resources such that a few servers are

highly utilized and the rest can be put into energy

saving mode.

A sparse resource distribution also leads to fragmen-

tation of the resources over the data center’s resource

pool such that the available resources on each node

may be too small to place a VM even though the ag-

gregate available capacity is still large. This can cause

increased request rejection and decreased utilization.

C. Optimal Re-consolidation
As discussed in Section III-B, the distribution of the

allocated resources directly affects the performance of the
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allocation algorithm. The ultimate allocation is an emergent

consequence of the heuristic adopted by the nodeAgents. In
addition to the nodeAgent’s heuristic decisions, the frequent
arrivals and terminations of VMs can also lead to a highly

sub-optimal distribution of allocated resources over time.

Therefore, it can sometimes be advantageous to migrate a

previously allocated VM from one node to another, either to

switch off a server or to optimize the allocation distribution

to open up space for larger VMs.

Algorithm 2 Re-consolidation
if MyLoad < Re-consolidationThreshold then
for i:=1 to NumberVMsDeployedOnMe do
request = initiate a request for VMi [Demandi, HTL,
false]

newHost = Allocation (request)

if newHost != - 1 then
Migrate VMi to newHost

end if
end for

end if
Recalculate MyLoad
if MyLoad = 0 then
Set Me into energy saving mode

end if

This process is also known as re-consolidation of

currently deployed VMs with the goal of increasing a

node’s utilization and potentially reducing the incidence

of rejections due to resource fragmentation. To perform

re-consolidation, nodeAgents representing lightly loaded

servers autonomously or regularly migrate their loads to

more heavily loaded nodes by initiating a request, similar

to the initial placement request, for each of their deployed

VMs. This request searches for the most highly utilized node

with sufficient capacity to be the new host for the VM. If

all the node’s VMs are migrated successfully to other nodes,

the node can be switched into a power saving mode. Re-

consolidation also makes it easier to accommodate larger

VMs and reduces the likelihood of rejection.

During re-consolidation often a performance impact can

be expected. This impact can be modeled [10] and be taken

into consideration before deciding on the re-consolidation.

However, it has been shown that advancements in virtual-

ization techniques [11] and technologies effectively reduce

the performance overheads and its associated impacts [12].

Modeling this impact is not the main focus of this study,

however we can simply extend our model to perform a

cost-benefit analysis before re-consolidation, considering the

overhead costs.

IV. EXPERIMENTAL SETUP

This section describes an evaluation of the performance of

the proposed approach through a simulation of a data center

with 2500 physical nodes. We simulated our framework in

the Netlogo environment and built our P2P overlay using

the scale-free network model as implemented by [13].

Each physical node was associated with a nodeAgent and
assumed to be capable of serving VMs of different types.

The maximum capacity of each physical node was set to 10

compute units and the provider was assumed to offer 10 VM

types with capacities ranging from 1 to 10 compute units.

The price of a VM providing 1 compute unit was 0.01$ per

time unit, similar to that for a Linux micro reserved-instance

in Amazon’s EC2 system. The prices of larger VMs were

proportional to their capacity.

We assumed a total of around 20000 incoming VM

placement requests, arriving the system following a Poisson

arrival rate. Each request had a capacity demand (in compute

units) that was selected at random from the set {1,...,10}

and was mapped to a VM type. The VMs were deployed

and terminated over the course of each simulation. Services

running in clouds usually have an indefinite lifetime, so we

modeled VM lifetime using a normally distributed random

variable in order to eliminate the potential for systematic bias

associated with specific application types and to represent

the diversity of applications that may be deployed in a cloud

data center.

In order to avoid infinite request forwarding in the envi-

ronment, we constrained the number of hops per request to

HTL = 20 hops.
The re-consolidation threshold, i.e. the load at which a

node’s resources are considered for re-consolidation, was

set to 40% of the node’s total capacity. Simulations were

allowed to run for 20000 time units with each time unit

representing 0.1 sec of simulation time and one hour of

resource usage.

A. Performance Parameters

We evaluated our approach with respect to the following

performance parameters:

1) Data center utilization (Udc(t)): This variable rep-
resents the utilization of the data center. It is defined

as the total capacity used by the allocated VMs at

time t relative to the total available capacity in the
data center. Data center utilization is calculated using

Equation (1), which was introduced in Section III.

2) Average node utilization (Unode(t)):

Unodes(t) =

∑m
j=1 Resj(t)

nactive × Cserver
(5)

where nactive is the number of active nodes in the

environment. This metric provides insight into the

distribution of allocations and how efficiently the

currently active servers are being utilized. It is directly

proportional to the system’s power consumption and

the associated costs.
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3) Number of hops: This is the number of steps required
to locate a node that has the capacity required by the

VM request. This metric measures how quickly the

algorithm can locate a suitable node and respond to a

request, and can be compared to the computation time

in centralized approaches.

4) Rejection ratio: This is the proportion of request
demands that are not satisfied.

RR(t) =

∑m
j=1 Demandj(t) −

∑m
j=1 Resj(t)∑m

j=1 Demandj(t)
(6)

Rejections may occur for various reasons, including:

• A failure to locate a suitable resource within the

HTL limit.
• A lack of sufficient resources to serve the request.

• Fragmentation of the resource pool.

5) Profit: This represents the revenue of the data center
with respect to the service provided and its operational

costs. The profit is calculated using Equation (3),

introduced in Section III.

V. RESULTS AND DISCUSSION

This section describes how the performance is influenced

by two key properties, namely request propagation and

allocation distribution, and their impact on allocation poli-

cies. We evaluate performance in terms of the five metrics

introduced above, Data center utilization, Node utilization,
Number of hops, Rejection ratio and Profit. Finally, we study
the scalability of the approach when each of the 6 allocation

policies is adopted.

A. Impact of Request Propagation on Performance
In the first series of experiments, we studied the impact

of request propagation on the performance of the resource

allocation mechanism. Request propagation can be affected

by the entry of requests to the system, the constraints

imposed by HTL threshold, and modifications of the overlay
topology. Due to paper limits, we only discuss the impact

of requests’ entry on the performance.

To determine how entry policy affects system perfor-

mance, we compared the impact of adopting central and dis-
tributed entry policies (see Section III-A) for VM requests

on system performance.

Figure 2 shows the number of hops, rejection ratio, data

center utilization, node utilization, and profit for each of

the policies listed in Table I. In general, distributed entry
provides better request propagation, requiring fewer hops

to place the VM. This is because distributed entry of

requests automatically increases the probability of request

propagation to a ‘better’ node and thus reduces the number

of hops. The lower the number of hops, the lower the

likelihood of exceeding the HTL and thus the lower the

likelihood of request rejection. Reducing rejection ratios

also increases data center utilization and profits. However,

distributed entry generally produces lower node utilization
(Unode(t)) than centralized entry because it results in a more
sparse placement of VMs.

Central entry requires more hops to place a VM, leading
to a higher rejection ratio and reduced data center utilization.

That is to say, such policies suffer from weak request
propagation in comparison to distributed entry alternatives.
When requests are bound by a central entry policy, a small
proportion of nodes experience a large number of visits

(especially those in the vicinity of the entry node) while

others are never visited. Consequently, the VMs tend to

cluster in the neighborhood of the entry node. After a

while, these nodes become fully loaded because they are

so frequently visited, and become unable to accept new

VMs. Subsequent requests must therefore travel beyond the

saturated neighborhood, reducing the likelihood of success-

ful allocation within the HTL. This in turn increases the
rejection ratio. Because some fraction of the nodes can never

be reached within the HTL, data center utilization is reduced
and profit decreases.

B. Impact of Allocation Distribution on Performance
The distribution of allocated resources over the data center

resource pool is the second major factor that affects the

performance. It is determined by the local heuristic decisions

of each nodeAgent in conjunction with the system’s request
entry policy. To determine the impact of allocation distribu-

tion on performance, we compared the 6 policies presented

in Table I when used in conjunction with 3 heuristics: Least
Utilization, Most Utilization and First-Fit.
The average node utilization, Unode(t), is a useful metric

for analyzing the distribution of allocated resources. For a

given amount of allocated capacity, we can either distribute

the allocations sparsely to provide a large number of lightly-

loaded nodes, or we can consolidate them across a small

number of nodes with high Unode(t) values.
Figures 2a and 2b show the number of hops and the

rejection ratios for each allocation policy. Of the six policies

Central-FF requires the highest average number of hops

to find a resource and place the VM, and it also has the

highest rejection ratio. This can be explained by the fact

that the weak request propagation of the central entry policy
along with the saturation of the entry node’s neighborhood

caused by the First-Fit heuristic forces requests to make
extra ineffective hops. This increases the required number

of hops needed to locate a resource, causing requests to

exceed the HTL and be rejected. The consequence of this

is clearly shown in Figures 2b and 2c: the rejection ratio

increases and data center utilization decreases. However,

because allocated VMs are densely distributed over a small

number of nodes within the vicinity of the entry node, this

policy achieves high utilization values Unode(t) for the active
nodes, although the number of active nodes is limited. It

is important to point out that data center utilization and
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Figure 2: The effects of different allocation policies in a data center with 2500 nodes

node utilization Unode(t) are not necessarily correlated. For

example, as shown in Figure 2, while the overall data center

utilization rate when using the Central-FF algorithm is only

20%, the 20% of active nodes have an average utilization

level of 80% (i.e. Udc(t1) = 20%, Unode(t1) = 80%). Due

to the high rejection ratio, this policy produces the lowest

data center utilization and thus generates the lowest profit

of all the policies evaluated.

On the other hand, we can see that the Dist-FF policy

requires the fewest hops because it generates no saturation

and the allocated VMs are distributed across the entire data

center. The number of hops in this case is low because the

First-fit heuristic merely selects the first node with available

capacity and does not search further. The low number of

hops results in a low rejection ratio and a fairly high data

center utilization and profit.

Central-Min has the second highest number of hops and

rejections. This is because the Least-utilized heuristic gener-

ates a lot of lightly loaded nodes due to its policy of placing

VMs on loads with low utilization. In this situation, the

resources are fragmented over the data center’s resource pool

and it becomes harder to place large requests. Consequently,

the number of rejections increases because each available

fraction is too small to place a large request, even though

the total available capacity remains high. The central-entry

of the requests is also another reason for the high rejection

ratio under the Central-Min policy due to its weak request

propagation. As shown in Figure 2d, this policy has a

low node utilization Unode(t) value because it frequently

starts idle nodes and generates a large number of lightly

utilized active nodes. The low data center utilization and

high number of active nodes makes this policy one of the

least profitable options.

Dist-Min policy provides better request propagation due

to the distributed entry of requests, and thus increases the

data center utilization relative to its Central-Min counterpart.

However, the Least-utilized heuristic, which is common to

both the Dist-Min and the Central-Min policies, causes re-

source fragmentation and increases the number of rejections.

As shown in Figure 2, Dist-Max achieves the best per-

formance of the tested policies. The Most-utilized function

selectively places VMs on nodes with sufficient capacity and

the highest overall utilization. This heuristic automatically

avoids the fragmentation of the resources by consolidating

as many VMs as possible onto each active node, and can

therefore accommodate more demand than the Least-utilized
approach. It also avoids activating idle nodes because it tries

to place the VMs onto currently active nodes to increase

their utilization. This is why Dist-Max is the most profitable

policy: it achieves the greatest possible data center utilization
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with the lowest possible number of active physical servers.

In summary, policies based on the distributed entry of
requests offer better request propagation, yielding better

performance and higher profits. The heuristic that offers the

best performance and profitability is Most-utilized, followed
by First-fit. Policies based on the Least-utilized heuristic has
the lowest performance when the main objective is profit

and having high consolidation. However, policies adopting

the Least-utilized heuristics can be effective when other

objectives such as load balancing is the main concern.

C. The Impact of Re-consolidation on Performance
In the previous section we showed that Least-utilized

heuristics generate lightly loaded servers, causing fragmen-

tation of the resource pool that leads to low data center

utilization and reduces profits. In addition, the frequent

arrival and termination of VMs can also lead to a far

from optimal allocation distribution that may affect the

performance of the resource allocation mechanism over time.

In this section, we study how the re-consolidation of VMs

can improve performance in such situations.

Table II shows the total number of servers put into power

saving mode after re-consolidation during the simulation

time when the allocation algorithm used in the simulation

follows each of the six above-mentioned policies. The num-

ber of servers that undergo re-consolidation under central
entry policies is low relative to that for distributed entry
policies. This is because in central entry policies, most
of the allocations are densely populated within the entry

node’s vicinity and resources are not sparsely allocated.

Consequently, the number of nodes that are lightly loaded

enough to trigger the re-consolidation process is much lower

than under distributed entry policies.

Policies # nodes hibernated due to re-consolidation
Central-FF 35
Central-Max 202
Central-Min 2693

Dist-Max 1030
Dist-FF 2147
Dist-Min 3679

Table II: Number of nodes put into hibernation after re-

consolidation

Both Table II and Figure 3 show that Least-utilized poli-
cies benefit the most from the re-consolidation process. It is

also clear that the resource distributions generated by Most-
utilized policies are those that change the least following re-
consolidation. This is because these policies preferentially

deploy VMs onto highly loaded nodes in the first place.

The most significant impact of re-consolidation is on the

node utilization, Unode(t), because it packs the allocations
onto a smaller number of servers and thus reduces the

number of active servers while increasing their utilization.

We should however note that not all re-consolidations lead to
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Figure 3: Impact of re-consolidation on node utilization

servers being powered down. The nodeAgent may look for
potential hosts to migrate its deployed VMs one by one, but

this does not necessarily mean that appropriate new locations

will be found for all of them.

D. Scalability Analysis
To study the scalability of our approach, we performed

simulations for data centers with 500, 1000, 2500 and 5000

servers, with 800, 1750, 4500, and 9000 VM requests, re-

spectively. In this experiment, VMs were not re-consolidated

and also not terminated so that we could study the scalability

in an extreme case where all of the resources in the data

center are saturated.

Figure 4 shows the performance of each policy with

respect to server count. It is clear that the performance

does not depend on system size provided that the allo-

cation policies maintain adequate request propagation. For

allocation policies based on distributed entry, performance
metrics such as the number of hops, rejection ratio and data
center utilization remain constant as the number of servers
increases. This is because in systems with large numbers

of servers, the main concern is to ensure that all nodes can

be reached efficiently within an acceptable number of hops.

This is straightforward when using distributed entry poli-
cies due to their favorable request propagation properties.

Because requests are propagated efficiently, increasing the

number of servers does not increase the number of hops or

the frequency of VM rejection. As discussed above, data

center utilization is highly dependent on the rejection ratio;

because the rejection ratio is independent of the server count

in this case, the data center utilization is as well.

However, this approach is not scalable when it is applied

in conjunction with an allocation policy that has weak re-

quest propagation such as Central-FF. This is because such
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policies prevent requests from reaching most of the servers

in the system. Therefore, as the number of servers increases,

more requests are rejected and more servers remain un-

utilized.

The Node utilization metric does not capture the dynamics
of the system when the size is increased because it just

expresses the utilization of active nodes.
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Figure 4: Scalability of the approach with respect to increas-

ing numbers of servers

VI. RELATED WORK

There are a number of researches that are related to our

study.

The first group of studies focused on the problem of

VM placement adopting a centralized approaches, tackling

the problem by formulating it as a knapsack or constraint

satisfaction problem and generating solutions using integer

programming methods [2], [14], [15]. These methods pro-

vide high quality solutions for limited numbers of servers

and applications but must compromise on solution quality

when applied to large scale data centers in order to achieve

computational tractability.

The second group of related research includes studies

that examined P2P approaches for resource management

in cloud environments. Barabagallo et al. [16] modeled a

data center as a P2P network of self-organizing nodes that

collaborate with one-another using bio-inspired algorithms.

This collaboration allows the nodes to redistribute the load

among servers in order to increase the system’s energy effi-

ciency. Their idea is to have a number of entities known as

scouts that investigate and gather information about virtual

machines in the data center. This information is then used

by other virtual machines to initiate migrations in order to

redistribute the overall load. Their approach is related to our

work on optimal re-consolidation. However, we have shown

that a P2P approach can be adopted for wider problems such

as resource allocation, and that re-consolidation is just one

component of the broader resource allocation problem. Our

work also deals with business goals such as utilization and

profit, and yields improvements in energy efficiency as a

consequence of achieving these goals.

Wuhib et al. [17] used a gossip protocol for dynamic

resource management in clouds. In their protocol, the nodes

interact with a subset of other nodes via small messages.

These messages allow nodes to exchange state information

and then compute a new configuration with the goal of max-

imizing cloud utility. If the gain from a new configuration

outweighs the cost of change, they adopt the change and

update their local state. This approach differs from ours in

terms of the type, the purpose of the interactions and gossip:

the authors’ main focus is on the fairness of their allocations

whereas we focused primarily on data center utilization and

profit.

Marzolla et al. [18] also adopted gossiping for server

consolidation in order to decrease power consumption. Their

main focus is on the migration of arbitrary placed applica-

tions as a way of decreasing power consumption. As men-

tioned above, we approach the migration (re-consolidation)

process as part of a larger solution to optimal resource

allocation.

VII. CONCLUSIONS

In this paper we discussed a novel approach to perform

VM placements in cloud data centers. Our approach benefits

from high degree of concurrency and decentralization of

control with no central bottleneck. Our main contributions

are:

1) A new formulation of resource management problem

through a P2P framework.

2) Proposing a P2P overlay based on scale-free network

for robust and efficient discovery of the most suitable

potential server for VM placement.

3) A resource allocation algorithm based on local search,

designed to maximize data center utilization and prof-

itability. The algorithm ensures high utilization of
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active nodes while minimizing overall power con-

sumption by putting the remaining nodes into energy

saving mode.

We investigated the impact of different heuristics on the

quality of the resulting allocations, with respect to the spec-

ified objectives of maximizing data center utilization and

profitability. We also studied the scalability of our approach

by evaluating its performance with different numbers of

servers. Our approach was shown to be scalable up to at

least systems of 5000 nodes with 9000 incoming placement

requests arriving during the simulation time when using

policies that allow for efficient request propagation.

We also present a re-consolidation process as a component

of the broader resource allocation process. This enables the

optimal re-allocation of currently running VMs. The re-

consolidation process is designed to redistribute allocations

among the servers in a data center in order to utilize the

active nodes more efficiently in cases where the existing al-

location has become sub-optimal. Efficient utilization makes

it possible to switch off lightly loaded servers and reduce

the center’s overall power consumption, thereby increasing

profits.
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