
A
cc

ep
te

d
A

rt
ic

leINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING
Int. J. Numer. Meth. Engng 2017; 00:1–22
Published online in Wiley Online Library (www.onlinelibrary.wiley.com). DOI: 10.1002/nme.5621

Acoustic shape optimization using cut finite elements

Anders Bernland∗, Eddie Wadbro, and Martin Berggren

Department of Computing Science, Umeå University, SE-901 87 Umeå, Sweden.

SUMMARY

Fictitious-domain methods are attractive for shape optimization applications, since they do not require
deformed or re-generated meshes. A recently developed such method is the CutFEM approach, which
allows crisp boundary representations and for which uniformly well-conditioned system matrices can be
guaranteed. Here we investigate the use of the CutFEM approach for acoustic shape optimization, using
as test problem the design of an acoustic horn for favorable impedance-matching properties. The CutFEM
approach is used to solve the Helmholtz equation, and the geometry of the horn is implicitly described
by a level-set function. To promote smooth algorithmic updates of the geometry, we propose to use the
nodal values of the Laplacian of the level-set function as design variables. This strategy also improves
the algorithm’s convergence rate, counteracts mesh dependence, and, in combination with Tikhonov
regularization, controls small details in the optimized designs. An advantage with the proposed method
is that the exact derivatives of the discrete objective function can be expressed as boundary integrals, as
opposed to when using a traditional method that employs mesh deformations. The resulting horns possess
excellent impedance-matching properties and exhibit surprising sub-wavelength structures, not previously
seen, which are possible to capture due to the fixed-mesh approach. Copyright c⃝ 2017 John Wiley & Sons,
Ltd.

Received . . .

KEY WORDS: shape optimization; level set; CutFEM; sensitivity analysis; acoustic horn; Helmholtz
equation

∗Correspondence to: Anders Bernland, Department of Computing Science, Umeå University, SE-901 87 Umeå, Sweden.
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1. INTRODUCTION

Numerical shape optimization algorithms are increasingly applied to aid in the design of devices
in engineering fields such as elasticity, fluid mechanics, electromagnetics, and acoustics. Such
algorithms operate by iteratively updating the geometry of the device, typically by modifying
the shape of its boundary. At each iteration, the performance of the resulting device needs to be
determined. To do so, the finite element method is a common choice when partial differential
equations are involved. However, a traditional body-fitted finite element mesh needs to be updated
as the geometry changes, and, irregardless if this is done with a deformation of the mesh or by
a complete re-meshing, there is a computational cost, and the process is not always robust. Re-
meshing can also influence the optimization process negatively. An alternative is to use a fixed
mesh that does not need to conform to the geometry. Methods employing this strategy are usually
labeled fictitious domain, domain embedding, or immersed boundary methods. In this paper, we
consider shape optimization of an acoustic horn on a fixed finite element mesh. The horn has been
used as a model problem in a series of previous studies [1–7].

Finite element methods on fixed meshes are commonly combined with a level-set description
of the geometry, where the boundary is implicitly defined as the zero-level contour of a function,
often referred to as the level-set function. Initially used for handling evolving boundaries by Osher
& Sethian [8], the level-set method was also adopted for structural optimization [9], as detailed
in several reviews [10–12]. In early studies of level-set-based optimization methods with finite
elements applied to cantilever beam model problems, the geometrical boundaries were blurred
by giving intersected elements average material properties, or by using approximate Heaviside
functions [13–15]. In contrast, Van Miegroet & Duysinx [16] used exact Heaviside functions to
achieve a crisp description of the boundary, effectively not integrating over the part of the finite
elements that were void. Similar strategies have been proposed and refined by Wei et al. [17],
Li et al. [18], Makhija & Maute [19], and Villanueva & Maute [20]. More recent studies have
concerned multiple materials and inclusions [21–23]. There are also publications covering other
fields of engineering, such as fluid flow [24, 25], electrostatics [26], and magnetic actuators [27].
However, to the authors’ best knowledge, there does not seem to be any previous study on level-set-
based optimization using finite element methods on fixed meshes for wave propagation problems.

Finite element approaches allowing crisp boundary descriptions on meshes that do not conform
to the geometry are, for example, XFEM [28] and CutFEM [29]. An undesired consequence of the
fixed mesh is that the condition numbers of the system matrices can become large when a boundary
cuts the mesh in a way that includes only a fraction of an element inside a domain of interest.
Countering this issue is essential, and the solution used here is to add a stabilization term (“ghost
penalty”) involving the jump in the fluxes over the edges (or faces in 3D) of intersected elements,
as proposed by Burman [30].

The choice of parametrization of the geometry to be optimized is crucial, since the optimization
algorithm can only explore the chosen parameter space. Therefore, instead of parametrizing the
design by a set of geometric primitives [16, 17, 23], or an explicit boundary representation [1], and
thus bias the optimization, we choose to discretize the level-set function and use its nodal values as
parameters [11,19,20]. Smoothing, or filtering, together with regularization is often applied to shape
and topology optimization problems to promote smooth designs, control the feature size, counteract
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mesh dependence, and improve the convergence rate [11]. We choose to employ a smoothing
algorithm that promotes smooth level-set functions. The approach has previously been employed to
acoustic horn optimization by Bängtsson et al. [1], but here we adapt it for level-set parametrization.
Furthermore, we find that Tikhonov regularization [31] works well to control the feature size in the
final design.

Since a large number of design variables are used, a gradient based optimization scheme is
suitable. Consequently, information about the change in performance due to changes in the design
variables are needed. A common approach is “differentiate then discretize”, where the derivatives in
the continuous optimization problem are discretized. However, to obtain accurate descent directions
and better convergence in the discrete optimization, it is often advantageous to “discretize then
differentiate”, that is, to compute the derivatives in the discrete setting. The latter approach is
employed here.

Sensitivity analysis for optimization using body-fitted finite elements is well studied, but there are
essential differences when using a fixed mesh. Noël et al. [32] derive expressions for the derivatives
of the system matrices in a bimaterial linear elasticity optimization problem. Sharma et al. [33]
derive similar expressions in a general setting, and propose, due to their complexity, a semi-
analytical approach, partly using finite differences, or reverting to the differentiate-then-discretize
approach. Najafi et al. [34] perform similar shape sensitivity analysis for IGFEM, a finite element
method on fixed meshes where additional nodes are introduced at the interface. Finally, Barthold
& Materna [35] introduce additional, boundary-conforming basis functions inside the intersected
elements in the YFEM method to make the sensitivity analysis more similar to the well-studied case
with a body-fitted mesh. We adopt a different approach for our optimization problem; we derive an
exact expression for the discrete derivative in terms of an integral over the design boundary. That
this is possible is an unexpected benefit of the fixed mesh, as opposed to a body-fitted mesh. In the
latter case, the boundary integral needs to be exchanged for a domain integral involving the mesh
deformation to avoid consistency errors [36].

2. PROBLEM STATEMENT

A planar symmetric acoustic horn is considered, see Figure 1. This geometry corresponds to a horn
extending infinitely in the direction perpendicular to the plane and models a wide planar horn. A
model of a rotationally symmetric horn can be obtained with a change to polar coordinates. The
waveguide is assumed infinite to the left. The purpose of the horn is to convert incoming plane
waves from the waveguide to outgoing cylindrical waves, and the optimization problem, described
in more detail later in this section, is to minimize the amount of power being reflected back to the
waveguide. The horn has been used as a model problem for acoustic design optimization in a series
of papers [1–7].

2.1. The acoustical problem

The horn is assumed symmetric, and thus only half the horn needs to be modelled, see Figure 2, and
the walls of the horn are assumed to be sound hard. A perfectly matched layer (PML) [37] absorbs
the outgoing waves where the computational domain is truncated, and therefore the boundary

This article is protected by copyright. All rights reserved.
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Figure 1. The considered planar symmetric horn.

Figure 2. The computational domain Ω.

conditions at the outer boundaries have negligible influence on the solution and are set to be sound
hard as well. An incoming plane wave of unit amplitude is imposed by the boundary condition on
Γin.

We assume that the acoustic pressure P (x, t) satisfies the linear wave equation. Here x denotes
the spatial coordinate and t denotes time. For time harmonic solutions P (x, t) = Re(p(x)ei2πft),
the complex amplitude function p satisfies the system of equations

∇ · (G∇p) + k2γp = 0 in Ω, (2.1a)

ikp+
∂p

∂n
= 2ik on Γin, (2.1b)

∂p

∂n
= 0 on Γ \ Γin, (2.1c)

where k = 2πf/c is the wavenumber, f is the frequency, c is the speed of sound, i is the imaginary
unit, ∂/∂n = n̂ · ∇ is the normal derivative, and n̂ is the outwards directed unit normal. The
complex diagonal matrix G and complex constant γ perform the damping of the outgoing waves in
the PML, and reduce to the identity matrix I and 1, respectively, outside the PML [37]. For more
details on the acoustic modelling, see Bängtsson et al. [1].

This article is protected by copyright. All rights reserved.
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Figure 3. The design domain Ωd covers the area where the design boundary Γd is allowed to take its path.
Note that the domain Ω is the same as in Figure 2.

2.2. Level-set parametrization

To specify the geometry of the horn, we choose a level-set parametrization, where the design
boundary Γd is defined as the points where a level-set function ϕ : Ωd → R vanishes, that is,

Γd = {x : ϕ(x) = 0},

where x = (x1, x2), and ϕ(x) < 0 implies that x is in the interior ofΩ. We assume that the level-set
function ϕ is defined in a neighborhood Ωd around the design boundary, see Figure 3. The initial
level-set function gives the initial design, which here is chosen as the straight, solid line Γd in
Figure 3. The level-set function ϕ is in the set Uad of admissible functions if ϕ is sufficiently regular
and if 

ϕ > 0 on the upper and left side of ∂Ωd,

ϕ < 0 on the lower and right side of ∂Ωd, and

ϕ = 0 on the lower left and upper right corners of ∂Ωd.

(2.2)

These conditions force the design boundary to start at the lower left corner of Ωd and end at the
upper right corner, but allows it to take any path strictly inside Ωd between those two points.

2.3. Optimization problem

Our goal is to optimize the impedance-matching properties of the horn by minimizing the reflection
coefficient R, as defined below. The boundary condition on the input boundary Γin in problem
(2.1) excites a plane wave of unit amplitude and zero phase, and at the same time absorbs reflected
plane waves [1]. Thus, the acoustic pressure at Γin is simply the sum of the unit input pressure and
the reflected pressure. Non-planar modes have negligible influence at frequencies below the cutoff
frequency for the first non-planar mode, and are neglected. Consequently, the complex reflection
coefficient is defined as

R =
1

|Γin|

∫
Γin

(p− 1) dΓ, (2.3)

and it depends on the wavenumber k as well as on the shape of the design boundary Γd, given
implicitly by the level-set function ϕ, through the acoustic pressure p at Γin. In order to evaluate the

This article is protected by copyright. All rights reserved.
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reflection properties in a wavenumber interval [k1, kNk
], we introduce the objective function

JR(ϕ) =
1

2Nk

Nk∑
n=1

|R(ϕ, kn)|2 , (2.4)

which will be minimized for a discrete set of wavenumbers kn ∈ [k1, kNk
].

2.4. Smoothing and regularization

Smoothing, or filtering, combined with regularization, is routinely applied in shape optimization to
promote smooth designs and counteract mesh dependence, see for example Bängtson et al. [1, § 3]
and van Dijk et al. [11, § 6]. Smoothing and regularization may also improve the convergence rate,
and can be used to control the feature size of the design [11, 19]. There are several ways to apply
smoothing and regularization.

Here, we use an elliptic PDE to promote smooth level-set functions. The approach is similar to
the one used in Bängtson et al. [1], but here it is adopted for level-set parametrization. An auxiliary
function ϕ̂ is introduced to indirectly specify the level-set function ϕ. More precisely, ϕ is defined
as the solution to the equation −ν∆ϕ+ µϕ = ϕ̂ in Ωd,

ϕ = ϕ0 on ∂Ωd,
(2.5)

with ν ≥ 0 and µ ≥ 0. The set Ûad of admissible functions ϕ̂ is chosen as the space of square-
integrable functions. The set of admissible level-set functions Uad is thus the solutions ϕ to
system (2.5) with the boundary values ϕ0 satisfying requirement (2.2). For non-zero µ, the quotient
ν/µ determines the amount of smoothing. The choice ν = 0 leads to no smoothing, and the choice
ν > 0 implies that ϕ by elliptic regularity is in H2(Ωd) ⊂ C0(Ωd) for smooth or convex Ωd.

To further control the feature size of the design boundary, we combine the smoothing algorithm
with Tikhonov regularization by adding a penalty term to promote solutions with smaller norms.
More precisely,

Jϵ(ϕ̂) =
1

2

∫
Ωd

ϕ̂2 dΩ (2.6)

is added to objective function (2.4). This gives the total objective function

J(ϕ̂) = JR(ϕ(ϕ̂)) + ϵrJϵ(ϕ̂), (2.7)

where ϕ(ϕ̂) is the solution of system (2.5). The parameter ϵr ≥ 0 determines the amount of
regularization. Note that, with ϕ̂ of the same dimension as one over length, the regularization term
Jϵ is dimensionless.

The optimization problem reads:

Find ϕ̂∗ ∈ Ûad such that

J(ϕ̂∗) ≤ J(ϕ̂) ∀ϕ̂ ∈ Ûad,

with the objective function J given by expression (2.7).

This article is protected by copyright. All rights reserved.
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Figure 4. An illustration of the mesh, which is structured, fixed, and independent of the design boundary
Γd, allowed to cut through the elements. The domain Ωh equals Ω ∪Ωd, so that it covers the computational

domain Ω for all admissible designs. Note that the domains Ω and Ωd are the same as in Figure 3.

3. DISCRETIZATION

3.1. Finite element discretization with cut elements

The finite element method is used to solve problem (2.1) for the acoustic pressure p, which is needed
to determine reflection coefficient (2.3). The geometry is partitioned into a set of square elements,
such that the union of elements Ωh equals the union of Ω and Ωd; in other words, the domain
Ωh covers the computational domain Ω for all admissible designs, see Figure 4. The boundary is
allowed to cut through the elements, so that the mesh is fixed and independent of the design. Thus
there is no need for re-meshing or mesh deformation.

Lagrangian elements of first and second order l are used in this paper. The standard nodal basis
functions are denoted wi(x), and the space of discrete solutions is Vh = span{wi}Ni=1, where N is
the number of nodes. The discretized variational formulation of the governing equations (2.1) is:

Find ph ∈ Vh such that

A(ph, qh) + ϵsSh(ph, qh) = L(qh) ∀qh ∈ Vh,
(3.1)

where
A(ph, qh) =

∫
Ω

∇qh · (G∇ph) dΩ − k2
∫
Ω

qhγph dΩ + ik

∫
Γin

qhph dΓ,

L(qh) = 2ik

∫
Γin

qh dΓ,

and Sh is a stabilization term defined and explained in the next section, and the parameter ϵs ≥ 0

determines the amount of stabilization. The solution ph can be expanded in the basis functions wi,

ph(x) =

N∑
i=1

piwi(x), (3.2)

where pi = ph(xi) and xi is the location of node i. Equation (3.1) uniquely defines the restriction
of ph to Ω, and sets the nodal values pi for nodes with any neighboring element at least partly inside
Ω. For nodes i with all neighboring elements completely outside Ω, the corresponding equation in
(3.1) is changed to pi = 0. In this way, the size of the system of equations is independent of the
design.

This article is protected by copyright. All rights reserved.
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Figure 5. The solution pi at the node marked with a circle contributes only marginally to the solution inside
Ω, since only a fraction of neighboring elements are inside Ω. The stabilization term (3.4) has contributions

from the fat, solid edges.

The matrix form of the discretized variational formulation (3.1) is(
K− k2M+ ikMΓin + ϵsS

)
p = ikMΓine,

gTp = 0
(3.3)

where the matrices have elements

Ki,j =

∫
Ω

∇wj · (G∇wi) dΩ, Mi,j =

∫
Ω

wjγwi dΩ,

MΓin

i,j =

∫
Γin

wjwi dΓ, Si,j = Sh(wj , wi),

and the vectors of length N are p = [p1, p2, . . . , pN ], e = [1, 1, . . . , 1]T, and g = [g1, g2, . . . , gN ].
Here gi = 1 if all elements neighboring node i are completely outside Ω, and gi = 0 otherwise.

3.2. Stabilization

It is evident that all nodes i belonging to elements that are at least partly inside Ω affect the solution
ph. However, the nodes outside Ω affect the solution very little when only a fraction of neighboring
elements are inside Ω, see Figure 5. This causes the system matrix to become ill-conditioned.

The remedy for the ill-conditioning chosen in this paper is the addition of the “ghost penalty”
stabilization term

Sh(ph, qh) =
∑

F∈FS

l∑
i=1

h2i−1
F

∫
F

s
∂iph
∂ni

{
F

s
∂iqh
∂ni

{
F

dΓ (3.4)

suggested by Burman [30]. Here, the set FS contains all edges F = T1 ∩ T2, shared by two elements
T1 and T2, such that both neighboring elements T1 and T2 are at least partly insideΩ, and at least one
of the elements is cut by the boundary, see the illustration in Figure 5. Furthermore, ∂/∂n = n̂ · ∇
is the normal derivative, n̂ is the unit normal to the edge (arbitrary but fixed direction), and hF is
the length of the edge. The jump of function values across the edge F is denoted J·KF , that is,s

∂iph
∂ni

{
F

=
∂ipT1 |F
∂ni

− ∂ipT2 |F
∂ni

,

This article is protected by copyright. All rights reserved.
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where pT1 and pT2 denotes the restriction of ph to the neighboring elements T1 and T2, respectively.
Note that the stabilized formulation (3.1) is consistent with problem (2.1) since the jump term
vanishes for the exact solution.

3.3. Discrete level set, smoothing, and regularization

The level-set function is discretized using bilinear elements on the mesh that is also used for
the finite element analysis. The discretized level-set function is denoted ϕh, and likewise the
discretization of the auxiliary function ϕ̂ is denoted ϕ̂h. Furthermore, the discretized design
boundary Γh

d is defined as a linear interpolant, whose interpolation nodes are located at the points
where the zero contour of the level-set function ϕh intersects the mesh edges. This approximation
is convenient in the implementation of the cut finite element method [29].

The smoothing and regularization introduced previously for the continuous problem are
straightforward to transfer to the discrete setting. Discretization of equations (2.5) for the smoothing
yields the linear equations

(
νKd

II + µMd
II

)
ϕI = Md

IIϕ̂I −
(
νKd

IB + µMd
IB

)
ϕB , (3.5)

where ϕ = [ϕ1, ϕ2, . . . , ϕNd ] is the vector of level-set nodal values in Ωd and Nd is the number of
nodes in Ωd. The similar notation applies for ϕ̂. The matrices Kd and Md are defined as K and
M in system (3.3), with the exception that the integrals are taken over Ωd instead of Ω (and thus
there are no cut elements here). The index I denotes nodes in the interior of Ωd, while B denotes
nodes on ∂Ωd. The term with ϕB in the right hand side is due to the Dirichlet boundary conditions
in system (2.5). The discrete Tikhonov regularization follows directly from equation (2.6) and is

Jh
ϵ (ϕ̂I) =

1

2
ϕ̂T

I M
d
IIϕ̂I . (3.6)

3.4. Discrete optimization problem

Objective function (2.4) and reflection coefficient (2.3) are conveniently determined by evaluating
the solution ph at the input boundary Γin, which gives

Rh =
1

|Γin|

∫
Γin

(ph − 1) dΓ =
1

|Γin|
eTMΓinp− 1. (3.7)

The discrete optimization problem can then be formulated as follows:

Find ϕ̂∗
I ∈ RNd

I such that

Jh(ϕI(ϕ̂
∗
I)) ≤ Jh(ϕ̂I) ∀ϕ̂I ∈ RNd

I ,
(3.8)

where
Jh(ϕ̂I) = Jh

R(ϕI(ϕ̂I)) + ϵrJ
h
ϵ (ϕ̂I). (3.9)

Here Nd
I is the number of design nodes, that is, nodes in the interior of the design domain Ωd,

see Figure 6; the values ϕ̂i at those nodes are the design variables. Furthermore, Jh
ϵ is given by

This article is protected by copyright. All rights reserved.
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Figure 6. The inner nodes of the design domain Ωd, marked by circles, are design nodes: the values ϕ̂i at
these nodes are the design variables in optimization problem (3.8).

expression (3.6), and the discrete objective function Jh
R corresponding to JR is obtained by simply

exchanging R for Rh in definition (2.4).

4. SENSITIVITY ANALYSIS

We employ a gradient-based optimization method to solve problem (3.8) and will thus need to
calculate derivatives of the function ϕ̂I 7→ Jh. This function is a composite mapping: the design
variables ϕ̂I are mapped to the vector ϕI of level-set nodal values through the solution of
equation (3.5), which implicitly defines the design boundary Γh

d . The boundary, on the other hand,
affects the solution to state equation (3.1), which in turn determines the value of the objective
function. The conceptually central part of this mapping is the mapping of the level-set function
ϕh to the reflection coefficient Rh. The sensitivity analysis of this mapping can be worked out using
standard tools of shape sensitivity analysis, as shown in Appendix A. However, there are two aspects
of this analysis that are not entirely standard and therefore worth pointing out. First, by exploiting
the structure of the problem, the shape derivative can be expressed, as shown in Appendix A, solely
as a function of the solution to state equation (3.1), without the need of a separate solution of an
adjoint problem.

Second, the fact that the finite element solution ph is defined on a mesh that is fixed implies
that the shape derivative of the reflection coefficient Rh can be exactly expressed, up to round-
off, as a boundary integral over the design boundary. This is in contrast to the case when a mesh
deformation algorithm is employed. Then the exact shape derivative of Rh can only be expressed as
a domain integral that involves the mesh deformation mapping, and the use of the boundary-integral
expression will introduce a consistency error [36].

To see why this difference occur, consider a given level-set function ϕh and perturb its mth nodal
value to obtain the family

ϕh,t = ϕh + twm (4.1)

of level-set functions, parametrized by t ≥ 0†, which induces a family of perturbed domains Ωt.
Let ph,t denote the solution to state equation (3.1) where Ω has been replaced by Ωt. The shape
derivative of ph(= ph,0) is defined for each x ∈ Ωh as

δph(x) = lim
t→0+

ph,t(x)− ph(x)

t
. (4.2)

†The dependency of ϕh,t on m has been suppressed for simplicity of notation.

This article is protected by copyright. All rights reserved.
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Now, note that ph,t, for each t, can be written as in expression (3.2) as an expansion in a fixed
set of basis function that do not depend on the position of the design boundary. Consequently, the
shape derivative can likewise be written in the form δph(x) =

∑N
i=1 δpiwi(x). That is, the shape

derivative belongs to the same space Vh as ph.
Let us compare with the standard case of mesh deformation. Since the mesh moves with the

deformation, also the basis functions will depend on deformation parameter t. However, the shape
derivative (4.2) is defined as a limit in t for each fixed x, which means that ph,t(x) will sweep over
different parts of the basis functions as t is changed. As a consequence, the shape derivative does not
belong to Vh. The calculations carried out in Appendix A requires that the shape derivative belongs
to Vh, and the sensitivity analysis needs to be carried out in a different way in the case of mesh
deformations [36].

The expression for the derivative of the reflection coefficient Rh with respect to the level set ϕh,
derived in Appendix A, is

∂Rh

∂ϕm
=

1

2ik|Γin|

[
k2

∫
Γh
d

n̂ · V mp
2
h dΓ −

∫
Γh
d

n̂ · V m∇ph · ∇ph dΓ

]
, (4.3)

where n̂ is the outwards directed unit normal to Γh
d and V m is the velocity field associated with the

domain deformation due to perturbation (4.1) of the level-set function ϕh. The velocity field V m is
given by expression (A.6) and extended as described. In matrix form, the derivative is

∂Rh

∂ϕm
=

1

2ik|Γin|
pT

(
k2
∂MΓd

∂ϕm
− ∂KΓd

∂ϕm

)
p,

where the matrices have elements

∂KΓd

i,j

∂ϕm
=

∫
Γd

n̂ · V m∇wj · ∇wi dΓ,
∂MΓd

i,j

∂ϕm
=

∫
Γd

n̂ · V mwjwi dΓ.

The derivative of the objective function Jh with respect to the design variables ϕ̂I =

[ϕ̂1, ϕ̂2, . . . , ϕ̂Nd
I
] is given by

dJh

dϕ̂I

=
dϕI

dϕ̂I

dJh
R

dϕI

+ ϵr
dJh

ϵ

dϕ̂I

, (4.4)

where
dJh

R

dϕI

=
1

Nk

Nk∑
n=1

Re

[
Rh(ϕI , kn)

dRh(ϕI , kn)

dϕI

]
,

and dRh/dϕI is the vector with elements ∂Rh/∂ϕm. The matrix dϕI/ dϕ̂I and the vector
dJh

ϵ /dϕ̂I follow directly from formula (3.5) and formula (3.6), respectively.
The derivative expressions (4.3) and (4.4) have been compared to finite difference approximations

with excellent agreement. First we consider the case without smoothing or regularization. The
mth nodal value of the discrete level set function ϕh is perturbed by t according to equation
(4.1), and the acoustic problem is solved on the perturbed domain Ωt to compute the perturbed
reflection coefficient Rh,t and objective function Jh,t, respectively. Such perturbations are then
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Figure 7. Definitions of the horn dimensions.

used to compute the central finite difference approximations

∂Jh

∂ϕm
≈ Jh,t − Jh,−t

2t
,

∂Rh

∂ϕm
≈ Rh,t −Rh,−t

2t
.

The same procedure is repeated for all nodal values ϕm inside the design domain Ωd. With a
perturbation t ≈ 10−6, the maximum absolute relative difference between the finite difference
approximations and the derivatives computed from expressions (4.3) and (4.4) is approximately
5 · 10−8. The maximum is taken over all level set nodal values ϕm, and also over all wavenumbers
kn for ∂Rh/∂ϕm. This accuracy is as good as can be expected in the context of floating-point
numbers, since the errors are only slightly higher than the square root of the machine precision
√
eps ≈ 1.5 · 10−8. The same accuracy test is also carried out when including the smoothing

(2.5) and the regularization term (2.6), with no negative effect on the accuracy. Note that in the
discrete case, the smoothing operation is given by the solution of the linear equation (3.5), and that
the regularization term (3.6) is a quadratic form. Corresponding exact derivative expressions are
therefore straightforward to compute.

5. RESULTS

We consider an acoustic horn with dimensions as in Bängtsson et al. [1] and Wad-
bro and Berggren [2], so that the results can be compared, see Figure 7 and Table I. The lower
limit of the frequency interval is chosen to be 200Hz, since optimization below this frequency
does not seem feasible. This is not surprising, since the horn dimensions then are small compared
to the wavelength. With the speed of sound c = 340m/s, the wavelength at 200Hz is λ = 1.7m,
which gives horn length over wavelength d/λ ≈ 0.29 and horn width over wavelength 2b/λ ≈ 0.35.
The upper limit is chosen to be 1600Hz, which is three octaves above the lower limit, and at
the same time well below the cutoff frequency for non-planar modes in the waveguide. With
the width of the waveguide 2a = 0.1m, the cutoff frequency for the first non-planar mode is
c/(4a) = 1700Hz; at 1600Hz, this mode decays with a factor ≈ 8 · 10−3 over the length of the
waveguide dwg = 0.5m [1].

The mesh size is chosen fine enough to allow a detailed design boundary; recall that the mesh
used for the solution of discretized variational form (3.1) is also used for the level-set function,
which implicitly describes the design boundary Γh

d . Setting the side length of the square mesh cells
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a b d dwg dair dPML

0.05m 0.3m 0.5m 0.5m 1.0m 0.4m

Table I. Values for the horn dimensions, defined in Figure 7, used in the numerical examples.

to h = a/3 ≈ 0.0167m means that the design domain Ωd is discretized by 30× 15 elements, and
consequently that there are 29× 14 = 406 design variables (the auxiliary function nodal values ϕ̂i
at the inner nodes of the design domain Ωd). This mesh resolution should be more than enough
to accurately solve the acoustic problem, since the number of elements per wavelength is 12.75 at
1600Hz. Biquadratic elements are used for the solution of acoustic problem (3.1). The stabilization
parameter ϵs is set to 0.0025.

The parameters of the perfectly matched layer (PML) are tuned to create a low reflection. We
use a matrix G and a constant γ, which perform the damping of the outgoing waves in the PML,
according to formulas (6)–(8) in Heikkola et al. [37]. The choice of parameters σ0 = 20 and p = 2

in those formulas are found to work well for the frequency interval [200, 1600]Hz, when the depth
of the PML is dPML = 0.4m. To estimate the effect of the waves reflected back due to the truncated
computational domain, the reflection coefficient Rh of the original horn design is calculated with
varying distances to the PML (given by the side length dair of the surrounding air box, see Figure 7).
The reflections affect the complex reflection coefficient Rh differently depending on the distance,
but it is found that the magnitude of the maximum difference is below 10−5.

The implementation is carried out in Matlab. The system matrices are calculated using tensor
product Gaussian quadrature over the elements (or edges for MΓin), as is the line integral needed
for derivatives (4.3), and the integrals over the edges to compute stabilization term (3.4). The
Levenberg–Marquardt algorithm, as implemented in the Matlab function lsqnonlin, is employed to
solve the optimization problem. This algorithm utilizes the fact that problem (3.8) can be formulated
as a least squares problem with objective function

Jh(ϕ̂I) =
1

2Nk

Nk∑
n=1

[
(ReRh(ϕ̂I , kn))

2 + (ImRh(ϕ̂I , kn))
2
]
+

[√
ϵrJh

ϵ (ϕ̂I)

]2
,

where Nk is the number of frequencies fn = ckn/2π sampled in the interval [200, 1600]Hz.

5.1. Optimization results

The results presented here were obtained using Nk = 37 frequency points, logarithmically placed
in the frequency interval [200, 1600]Hz, for objective function (3.9). Figure 8 shows the original
and optimized horn designs, for optimization without smoothing, with smoothing, and with both
smoothing and regularization, and Figure 9 shows the magnitude of the reflection coefficient Rh in
the frequency interval [200, 1600]Hz for the horns.

The optimization without smoothing is successful in the sense that the magnitude of the reflection
coefficient Rh is small in the whole frequency interval. However, the resulting design is jagged
and not smooth (see the upper mid horn in Figure 8). Furthermore, as will be shown below,
the optimization result is mesh-dependent: changing the resolution of the mesh alters the design
significantly.
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Figure 8. The original and optimized horn designs, and the number of iterations needed. The parameters
µ and ν determines smoothing (2.5); recall that the choice ν = 0 leads to no smoothing. The parameter ϵr

determines the amount of regularization in objective function (3.9).

200 400 800 1600

Figure 9. The magnitude of the reflection coefficient Rh for the original and optimized horn designs in
Figure 8 (where the line styles can also be found). The 37 target frequencies in the optimization are marked

by ticks on the frequency axis.

The optimization using smoothing (2.5), with parameters ν = 1 and µ = 0, results in a horn that
looks similar to the horn optimized without smoothing, but which is less jagged and more rounded
(see the upper right horn in Figure 8). As shown later, it is also less affected by changing the mesh
resolution. Note that the magnitude of the reflection coefficient is comparable to that of the horn
optimized without smoothing. The optimization results for smoothing with parameters ν and µ

both different from zero are somewhere between the case ν = 1, µ = 0 and the other extreme case
ν = 0, µ = 1 (no smoothing), and are not shown here.

With Tikhonov regularization, the shape of the optimized horn depends strongly on the amount
of regularization, given by the parameter ϵr in objective function (3.9). Not surprisingly, using a
small value (ϵr = 10−5.5) gives a horn design similar in shape and reflection coefficient values to
the one obtained without regularization (see the lower right horn in Figure 8). Using a higher value
(ϵr = 10−2.5), on the other hand, gives a design similar to the original design (see the lower left
horn in Figure 8). Since the smoothing parameters ν = 1 and µ = 0 are used, the regularization
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penalizes designs with ϕ̂ = ∆ϕ ̸= 0 in the design domain Ωd. The original design, where the
design boundary Γh

d is a straight line, is given by a harmonic level-set function, with ∆ϕ = 0, and
consequently the regularization penalizes deviations from the starting design in this case. Finally,
using an intermediate value (ϵr = 10−4), the resulting horn design is radically different from the
design obtained without regularization, with slightly larger, albeit small, magnitude of the reflection
coefficient Rh (see the lower mid horn in Figure 8).

The results are somewhat surprising: optimization without or with little regularization leads to
horns with quasi-periodic sub-wavelength features that have not been seen in previous analyses [1].
It seems like the implicit level-set parametrization used here captures these features more easily
than the explicit boundary representation used before. The horn obtained with little regularization
(ϵr = 10−5.5) has less distinct sub-wavelength features, but almost identical reflection coefficient.
However, it seems disadvantageous to completely remove the features, since the horn obtained with
intermediate regularization (ϵr = 10−4), which lacks the features, has slightly higher reflection.

The number of iterations needed for the optimizations can also be found in Figure 8. We see that
only a few iterations are needed when using smoothing, and that more iterations are needed when
not using smoothing. The Levenberg–Marquardt algorithm is set to terminate when the infinity
norm of the discrete gradient, |dJh/ dϕ̂I |∞, is less than 10−8 times its initial value |dJh

0 /dϕ̂I |∞.
The algorithm terminates also if the absolute relative change in the objective function between two
iterations is less than 10−4.

To examine the effect of mesh resolution on the optimization results, the optimization procedure
has been carried out also on finer meshes. The results when the side lengths of the square mesh
cells are h = a/3 ≈ 0.0167m (first row, also included in Figure 8), h = a/4 = 0.0125m (second
row), and h = a/5 = 0.01m (third row), respectively are presented in Figure 10. The corresponding
number of design variables are 29× 14 = 406, 39× 19 = 741, and 49× 24 = 1176, respectively.
For the horns optimized without smoothing (first column), it is seen that finer details emerge as the
mesh is refined. The horn optimized with smoothing but without regularization (second column)
are similar on the two fine meshes, but the first horn is missing some details. The designs obtained
with smoothing and regularization using ϵr = 10−4 are very similar. In conclusion, it seems like the
optimization results using smoothing are similar if the mesh is fine enough to resolve the details in
the design, and adding regularization removes many small details.

For verification purposes, we import the optimized geometries into Comsol Multiphysics, create
a body-fitted, unstructured, triangular mesh, and calculate the reflection coefficient for the design
optimized using smoothing and no regularization (top right horn in Figure 8) and using smoothing
and intermediate regularization (bottom mid horn in Figure 8). In Comsol Multiphysics, the element
size setting is “Extremely fine”, and biquadratic elements are used. The absolute difference in the
magnitude of the refection coefficient Rh computed with the cut element code and Comsol can be
found in Figure 11. The difference for the horn optimized with regularization is below 10−4 in the
entire frequency band. For the horn optimized without regularization, however, the difference is a
bit higher, especially at higher frequencies; the maximum value is 4.6 · 10−3. The larger difference
can be explained by the small features in the design optimized without regularization, which are
better resolved by the finer mesh used in Comsol. These small features are not present in the design
optimized with regularization.
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Figure 10. The horn optimized using different mesh resolutions (h denotes the side length of the square
elements, and 2a is the width of the waveguide). The parameters µ and ν determines smoothing (2.5); recall
that the choice ν = 0 leads to no smoothing. The parameter ϵr determines the amount of regularization in

objective function (3.9).

200 400 800 1600

Figure 11. The absolute difference in the magnitude of the refection coefficient Rh for the solution with
Comsol Multiphysics and the cut finite element code for the top right and bottom mid horns in Figure 8

(where the line styles can be found).

6. CONCLUSIONS

We presented an approach, based on cut finite elements and a level-set description of the
geometry, to optimize the design of acoustic horns with regard to reflection. The cut finite element
method neither needs mesh deformation nor re-meshing. Moreover, the method is robust and
computationally inexpensive. The implicit level-set geometry description provides a vast design
freedom and allows for solutions with high curvature of the design boundary. The optimized horns
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contain surprising sub-wavelength features not seen in previous studies [1,2], and possess excellent
impedance-matching properties in the entire frequency band considered.

We found that the discrete shape sensitivity can be expressed exactly as a boundary integral
over the design boundary. This is possible thanks to the fact that, due to the fixed mesh, the shape
derivatives of the finite element basis functions belong to the same function space as the basis
functions themselves. This is in contrast to methods using body-fitted finite elements and mesh
deformation, where the shape derivatives of the basis functions are less regular, and the discrete
shape sensitivity must be expressed as a domain integral involving the mesh deformation. With
a fixed mesh, however, no domain integral or mesh deformation is needed for the discrete shape
sensitivity.

We propose smoothing the level-set function by solving Poisson’s equation on the design
domain, since this treatment was found to counteract mesh-dependent solutions and to improve
the convergence rate of the optimization. Furthermore, we propose combining this smoothing with
Tikhonov regularization, to penalize small features in the optimized designs.

A benefit of the method we propose is that there is no need to force the level-set function to
be a signed distance function. Many level-set methods suffer from slow convergence for highly
varying gradients of the level-set function around the design boundary, and one way commonly
employed to circumvent this problem is to use costly re-initialization procedures [11]. We observe
fast convergence without re-initialization, which is partly thanks to the smoothing of the level-set
function, especially when combined with Tikhonov regularization. The fast convergence is also
thanks to the Levenberg–Marquardt algorithm employed to update the design, since the algorithm
uses approximate second order derivatives and therefore is less sensitive to the scaling of the
problem.

However, the amount of regularization added to the objective function must be determined with
caution, since too much may result in performance degradation of the optimal solution. For the
horn, we noticed that adding enough regularization to completely remove the sub-wavelength
features decreased the performance of the optimized design. This observation agrees with previous
studies [1, 2] and the fact that the impedance-matching properties of acoustic horns are remarkably
sensitive to the exact shape. Even so, there are visually very different solutions with similar
performance, which suggests that the optimization problem is underdetermined. Hence, additional
constraints, such as on the far field characteristics, could be imposed without affecting the reflection
coefficient too much. Finally, it should be mentioned that the benefits of the method, such
as the absence of mesh deformation, and the straightforward and computationally inexpensive
regularization and gradient computation, can be expected to be even greater in three than in two
dimensions.

A. DETAILS ON THE SENSITIVITY ANALYSIS

Here, we show that the derivative of ϕh 7→ Rh, the mapping from the level-set function to the
reflection coefficient, can be expressed as a boundary-integral over the design boundary Γh

d . As
noted in Section 4, this expression will be exact for the present method, thanks to the fact that
the shape derivative conforms with the finite element space. That is, the shape derivatives of the
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finite element basis functions belong to the same function space as the basis functions themselves.
When a mesh deformation is used, however, the lack of regularity of the basis functions [38, Ch. 10,
Remark 2.3] implies that the exact derivative of the mapping ϕh 7→ Rh can only be given in terms
of a domain integral, whose integrand will depend on the mesh deformation [36].

Given a domainΩ, assume thatΩt, whereΩ0 = Ω, is a family of deformed domains parametrized
by t ≥ 0. The standard tools of shape sensitivity analysis require that each point x ∈ Ω can be
mapped into Ωt by a smooth invertible function t 7→ x(t), where x(0) = x. For each such family of
domain deformations, we may associate the “velocity” field

V (x) = lim
t→0+

x(t)− x

t

def
=

d+

dt
x(t)

∣∣
t=0

,

which is a quantity representing the domain deformation that will appear in the formulas below. Let
ψt be a family of functions defined on Ωt and let the shape derivative of ψ = ψ0 be defined by

δψ(x) =
d+

dt
ψt(x)

∣∣
t=0

(A.1)

for each x ∈ Ω. The shape derivative of the family of integrals It =
∫
Ωt
ψt dΩ is likewise defined

by

δI =
d+

dt
It
∣∣
t=0

. (A.2)

The classic formula for the shape derivative (A.2) is

δI (V ) =

∫
Ω

(
δψ +∇ · (V ψ)

)
dΩ. (A.3)

Delfour & Zolesio [38, Ch. 9, § 4.1] prove this formula under the assumption that ψ, δψ, and ∇ψ
are in L1(Ω), and that V is in C1(Ω).

Let us now see how formula (A.3) can be used in the present framework. We start by considering
how a vector field V can be constructed from perturbations of the level-set function ϕh. Recall that
the discretized design boundary Γh

d is defined as a linear interpolant, whose interpolation nodes
are located at the points where the zero contour of the level-set function ϕh intersects the mesh
edges. The location of such an interpolation node depends solely on the nodal values of the level-set
function on that edge.

Consider a point x0 where the zero contour of the level-set function ϕh intersects the mesh. Let
Fi,j denote an intersected edge such that x0 ∈ Fi,j , and where the values of ϕh at the end points
xi and xj of the edge satisfy ϕi ≥ 0 and ϕj < 0. Note that, in the case ϕi = 0, when the level-set
function crosses the mesh vertex xi, we have chosen to consider the edge associated with xi where
the level-set function is negative. Since the level-set function varies linearly along the edges of the
mesh, the point x0 is given by

x0(ϕi, ϕj) =
ϕixj − ϕjxi

ϕi − ϕj
, for ϕi ≥ 0 and ϕj < 0,
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Figure 12. Perturbation (A.5) of the level-set function ϕh (for m = i), in the limit as t → 0+ moves the
design boundary Γh

d , given by the zero contour ϕh = 0, by tV i.

which means that

∂

∂ϕj
x0(ϕi, ϕj) = − ϕi

(ϕi − ϕj)2
(xi − xj) , for ϕi ≥ 0 and ϕj < 0,

∂

∂ϕi
x0(ϕi, ϕj) =

ϕj
(ϕi − ϕj)2

(xi − xj) , for ϕi > 0 and ϕj < 0.

(A.4)

Note that these are vectors directed along the edge Fi,j . In the case ϕi = 0, the function ϕi 7→ x0

is only semi differentiable; the formula above gives the correct value for its right derivative, but the
left derivative will depend on the nodal value at the end of the other edge associated with the mesh
vertex xi.

Now let wm be a basis function for the level-set functions. Consider a family

ϕh,t = ϕh + twm (A.5)

of perturbed level-set functions parametrized by t ≥ 0. Letting t 7→ x(t) denote the corresponding
displacement of an arbitrary point x ∈ Γh

d , we may define the design boundary velocity function
V̂ m : Γh

d → R2 by

V̂ m(x) =
d+

dt
x(t)

∣∣
t=0

for each x ∈ Γh
d . At the intersection with the mesh edges, it holds that

V̂ m

(
x0(ϕi, ϕj)

)
=

∂+

∂ϕm
x0(ϕi, ϕj), (A.6)

where the right side vanishes except when m = i or m = j, in which case formulas (A.4) hold.
Since the discretized design boundary Γh

d is given by linear interpolation between the points where
the zero contour of the level-set function ϕh intersects the mesh, the values of V̂ m are also given
by linear interpoolation between the values at the points of intersection, given by expression (A.6),
see Figure 12. To utilize formula (A.3), we need to extend the function V̂ m into a function V m on
Ωh. Since V̂ m is continuous, piecewise linear on Γh

d , and always directed along the mesh edges,
this extension can be defined by linear interpolation between V̂ m and the function that vanishes at
all vertices not on Γh

d .
Consider solutions to variational problem (3.1) defined on the perturbed domains Ωt, associated

with the perturbed level-set functions ϕh,t, and define the shape derivative δph according to
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definition (A.1). A crucial observation is that ph,t ∈ Vh can be expanded, as in expression (3.2),
in a space of basis functions wi that do not depend on the perturbation. Thus, δph ∈ Vh, which is a
property that does not hold when mesh deformations are used, since the basis functions then will be
perturbed by the mesh deformation.

Since Γin is unaffected by the perturbation, the derivative of reflection coefficient (3.7) satisfies

δRh =
1

|Γin|

∫
Γin

δph dΓ =
1

2ik|Γin|
L(δph), (A.7)

where L is the right-hand side linear form in state equation (3.1). To determine how L(δph)

depends on the level-set perturbation, we differentiate state equation (3.1) and choose qh = ph. First,
consider ϵs = 0; the case ϵs > 0 will be covered later. We write all integrals in the state equation
as a sum over all mesh elements intersected with the domain. Differentiating this expression and
using formula (A.3), noting that the restriction of both ph and V m on each such intersection are
polynomials, we obtain

0 = δA(ph, ph)− δL(ph)

= 2
∑
T∈Th

[∫
T∩Ω

∇ph ·G∇δph dΩ − k2
∫
T∩Ω

phγ δph dΩ

]
− δL(ph)

+
∑
T∈Th

[∫
T∩Ω

∇ ·
(
V m(∇ph ·G∇ph)

)
dΩ − k2

∫
T∩Ω

∇ · (V mphγph) dΩ

]
,

(A.8)

where in the second equality, we have used the product rule and that shape differentiation commutes
with the gradient operator. Since δph ∈ Vh and ph satisfies variational problem (3.1), we find that
the first terms on the right side of expression (A.8) can be written

2
∑
T∈Th

[∫
T∩Ω

∇ph ·G∇δph dΩ − k2
∫
T∩Ω

phγ δph dΩ

]
− δL(ph)

= 2A(ph, δph)− L(δph) = L(δph).

(A.9)

Note that T ∩Ω is a polygon, whose boundary segments either belong to an edge of the mesh or to
Γh
d . Thus, the divergence theorem implies that the last two terms in expression (A.8) can be written

∑
T∈Th

[∫
T∩Ω

∇ ·
(
V m(∇ph ·G∇ph)

)
dΩ − k2

∫
T∩Ω

∇ · (V mphγph) dΩ

]
=

∫
Γh
d

n̂ · V m∇ph · ∇ph dΓ − k2
∫
Γh
d

n̂ · V mp
2
h dΓ,

(A.10)

where the contributions from the edges of the mesh that do not belong to Γh
d vanish, since the

velocity field is tangent to or vanish on each such mesh edge. In expression (A.10), we have also
used that γ = 1 and G = I on Γh

d .
By substituting expressions (A.9) and (A.10) into the differentiated state equation (A.8), we find

that
L(δph) +

∫
Γh
d

n̂ · V m∇ph · ∇ph dΓ − k2
∫
Γh
d

n̂ · V mp
2
h dΓ = 0,
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which by expression (A.7) implies that

δRh =
1

2ik|Γin|

[
k2

∫
Γh
d

n̂ · V mp
2
h dΓ −

∫
Γh
d

n̂ · V m∇ph · ∇ph dΓ

]
. (A.11)

As long as Γh
d does not cross any mesh node, the inclusion of a nonzero stabilization term

ϵsSh(ph, qh) in state equation (3.1) does not change expression (A.11). The reason is that the set
of edges FS in stabilization (3.4) in this case is unchanged by perturbation (A.5). Consequently,
the shape derivative of stabilization term (3.4) is δSh(ph, ph) = 2Sh(ph, δph), and since δph ∈ Vh it
follows that 2A(ph, δph) + 2ϵsSh(ph, δph)− L(δph) = L(δph) and (A.11) follows. If, however, Γh

d

crosses a mesh node xi, the function ϕi 7→ Sh(ph, ph) will not be continuous at zero, since mesh
edges will be added to the set of stabilization edges FS as ϕi is perturbed from zero. We expect
the effect of the nondifferentiability of Sh to be insignificant, and use equation (A.11) also in this
special case.
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