
Modeling arguments and uncertain information

— A non-monotonic reasoning approach

Juan Carlos Nieves Sánchez
Advisors:

Ulises Cortés Ph. D.
Mauricio Osorio Ph. D.

Software Department (LSI)
Artificial Intelligence Ph D Program

Technical University of Catalonia

A thesis submitted for the degree of

Ph. D. in Artificial Intelligence

November 17th, 2008

mailto:jcnieves@lsi.upc.edu
mailto:jcnieves@lsi.upc.edu
mailto:jcnieves@lsi.upc.edu
mailto:jcnieves@lsi.upc.edu
http://www.lsi.upc.edu/
http://www.lsi.upc.edu/
http://www.upc.edu/

2

I would like to dedicate this thesis to my mother Cristina and to the
memory of my father Tomás.

Acknowledgements

Quiero agradecer muy especialmente a los Doctores Ulises Cortés
y Mauricio Osorio por todo el apoyo brindado en el desarrollo de
este trabajo. Aśı también agradecer les, me hayan compartido de su
experiencia y perspicacia en mi formación académica. Gracias Dr.
Mauricio por motivar me a emprender esta gran aventura en mi vida
académica.

De igual forma, quiero agradecer el apoyo de mi madre, mi hermana,
mi hermano, mis sobrinos y por su puesto a Paty por dejarme sentir
su cariño aún estando lejos de casa.

Por otra parte, me gustaŕıa agradecer a cada uno de mis incondi-
cionales amigos que me han brindado su apoyo a lo largo de estos
últimos años. Como a mis compañeros de despacho quienes me han
apoyado en la edición de algunos de mis trabajos. También me gus-
taŕıa agradecer a todos mis amigos de la UPC con quienes he com-
partido grandes momentos en nuestras múltiples reuniones. Ustedes
bien saben que formamos una gran familia.

Aprovecho la ocasión para agradecer a mis grandes amigos externos a
la UPC, como mis amigos de salsa, quienes me han hecho sentir como
en casa aún estando muy lejos de ella.

Finalmente quiero expresar mi gratitud al Concejo Nacional de Cien-
cia y Tecnoloǵıa de México (CONACyT) por la beca brindada al
apoyo de mi formación académica. Aśı como también a los revisores
anónimos de este documento y de los art́ıculos publicados que con-
tribuyen a este documento, por sus invaluables comentarios que en
suma contribuyeron a esta tesis.

Modeling arguments and uncertain information

— A non-monotonic reasoning approach

Juan Carlos Nieves Sánchez
Advisors:

Ulises Cortés Ph. D.
Mauricio Osorio Ph. D.

Software Department (LSI)
Artificial Intelligence Ph D Program

Technical University of Catalonia

A thesis submitted for the degree of

Ph. D. in Artificial Intelligence

November 17th, 2008

In this thesis, we define a possibilistic disjunctive logic programming approach
for modeling uncertain, incomplete and inconsistent information. This approach
introduces the use of possibilistic disjunctive clauses which are able to capture
incomplete information and incomplete states of a knowledge base at the same
time. This approach is computable and moreover allows encoding uncertain in-
formation by using either numerical values or relative likelihoods. In order to
define the semantics of the possibilistic disjunctive programs, three approaches
are defined:

1. The first is strictly close to the proof theory of possibilistic logic and answer
set models;

2. The second is based on partial evaluation, a fix-point operator and answer
set models; and

3. The last is also based on the proof theory of possibilistic logic and pstable
semantics.

In order to manage inconsistent possibilistic logic programs, a preference crite-
rion between inconsistent possibilistic models is defined; in addition, the approach
of cuts for restoring consistency of an inconsistent possibilistic knowledge base is
adopted.

Argumentation theory is also explored in this work. In particular, we ex-
plore how to model abstract argumentation semantics from a point of view of
non-monotonic logic programming semantics. Based on a suitable mapping of an
argumentation framework into a normal logic program, we define a direct relation-
ship between argumentation semantics (e.g., the preferred semantics) and logic

mailto:jcnieves@lsi.upc.edu
mailto:jcnieves@lsi.upc.edu
mailto:jcnieves@lsi.upc.edu
mailto:jcnieves@lsi.upc.edu
http://www.lsi.upc.edu/
http://www.lsi.upc.edu/
http://www.upc.edu/

programming with answer sets models (which is one of the most successful ap-
proaches of non-monotonic reasoning of the last two decades). As a consequence
of this result, we are able to suggest an easy-to-use method for implementing
argumentation systems under the platform of answer set solvers. In fact, we
point out that we can use answer sets solvers as DLV-system for implementing
argumentations systems under the preferred semantics.

Another interesting point of exploring argumentation semantics, from the
point of view of logic programming semantics, is that one can deal with part
of the problems of the argumentation semantics e.g., emptiness, non-existence.
Hence, by considering the idea that argumentation semantics can be viewed as
a special form of logic programming semantics with negation as failure, we show
that any logic programming semantics as the answer set semantics, the minimal
models, the pstable semantics etc., can define candidate argumentation semantics.
These candidate argumentation semantics will overcome some of the problems of
the Dung’s argumentation semantics that have been discussed in the literature.
The new argumentation semantics are based on a new recursive framework for
logic programming semantics. This framework generalizes any logic programming
semantics in order to build logic programming semantics which are always de-
fined, satisfy the property of relevance and agree with the answer set semantics
for the class of stratified programs.

As an extension of our possibilistic logic programming approach, we also
present a possibilistic argumentation approach which is based on our possibilis-
tic logic programming approach. This approach offers some natural mechanisms
for dealing with reasoning under inconsistent information. In fact, this approach
does not requite to apply cuts to an inconsistent possibilistic knowledge base, as
it is done in possibilistic logic programming, in order to manage the non-existence
of possibilistic models.

Contents

1 Introduction 1
1.1 Modeling uncertain information 1
1.2 Modeling rational criteria . 3
1.3 Contribution of this thesis . 5
1.4 Thesis overview . 7

2 Background 9
2.1 Logic programs: Syntaxis . 9
2.2 Interpretations and models . 11
2.3 Rewriting systems . 12
2.4 Logic programming semantics . 14

2.4.1 Answer set semantics . 15
2.4.2 Pstable semantics . 16
2.4.3 Well-Founded Semantics 17

2.5 Possibilistic Logic . 19
2.6 Abstract Argumentation Theory 20
2.7 Lattices and order . 24

3 Possibilistic Disjunctive Logic programs 27
3.1 Introduction . 27
3.2 Syntax . 31
3.3 Semantics . 34

3.3.1 A possibilistic semantics based on answer set models . . . 35
3.3.2 Possibilistic answer sets based on partial evaluation 42
3.3.3 A possibilistic semantics based on pstable models 45

3.4 Inconsistency in possibilistic logic programs 50
3.4.1 Relevance of inconsistent possibilistic logic programs . . . 50
3.4.2 Inconsistency degrees of possibilistic sets 53
3.4.3 Restoring inconsistent possibilistic knowledge bases 54

3.5 Related Work . 55
3.6 Concluding remarks . 57

v

CONTENTS

4 Studying abstract argumentation semantics based on logic pro-
gramming semantics 59
4.1 Introduction . 59
4.2 Suitable codifications for arguing under admissible sets 62
4.3 Mapping an argumentation framework into a normal program . . 64
4.4 A suitable codification for arguing under admissible sets 65
4.5 Preferred semantics . 68

4.5.1 Preferred semantics and minimal models 68
4.5.2 Preferred semantics and answer set semantics 71
4.5.3 DLV System: Sceptical and Credulous Reasoning 74

4.6 Grounded semantics (GEAF) . 76
4.6.1 Extensions of GEAF based on rewriting systems 76
4.6.2 Rewriting systems and the interaction between arguments 83

4.7 Concluding remarks . 89

5 Beyond of admissible sets 93
5.1 Introduction . 93
5.2 Preliminaries . 97
5.3 Construction of new logic programming semantics 101

5.3.1 Semantics always defined 102
5.3.2 Constructing relevant semantics 104

5.4 Construction of abstract argumentation semantics 109
5.5 Related work . 113
5.6 Concluding remarks . 117

6 A non-monotonic possibilistic-based argumentation approach 119
6.1 Introduction . 119
6.2 Building possibilistic arguments 123
6.3 Conflicts between possibilistic arguments 125
6.4 Some Properties . 129
6.5 A Possibilistic Argumentation Engine 130
6.6 Related work . 132
6.7 Concluding remarks . 133

7 Discussion 135
7.1 Thesis overview . 135
7.2 Impact of the main contributions 138

7.2.1 Possibilistic Disjunctive Logic Programming 138
7.2.2 Study of the Dung’s argumentation semantics 139
7.2.3 Construction of argumentations semantics and logic pro-

gramming semantics . 140

vi

CONTENTS

7.2.4 A possibilistic-based argumentation approach 141
7.3 Future work . 142

A Proofs of Chapter 3 155

B Proofs of Chapter 4 161

vii

CONTENTS

viii

List of Figures

2.1 Graph representation of AF := 〈 {a, b, c}, {(a, b), (b, c)}〉. 21

2.2 A graphic representation of a lattice where the following relations
holds: {Open � Supported, Supported � Plausible, Supported �
Probable, Probable � Confirmed, Plausible � Confirmed ,
Confirmed � Certain}. 26

3.1 An automata of finite states and actions for considering infections
in kidney organ transplanting. 30

3.2 Possibilistic resolution: Search for an optimal refutation for the
atom a. 41

3.3 Possibilistic resolution: Search for an optimal refutation for the
atom b. 42

3.4 Possibilistic resolution: Search for an optimal refutation for the
atom e. 42

4.1 Graph representation of the argumentation framework AF := 〈
{a, b, c, d, e}, {(a, b), (b, a), (b, c), (c, d), (d, e), (e, c)}〉. 66

4.2 Graph representation of the argumentation framework AF := 〈
{a, b, c, d}, {(a, b), (b, a), (a, c), (b, c), (c, d)}〉. 74

4.3 Graph representation of the argumentation framework AF := 〈
{a, b, c}, {(a, a), (a, b), (b, c), (c, b)}〉. 78

4.4 Graph representation of the argumentation framework AF := 〈
{a, b, c, d}, {(a, b), (b, a), (a, c), (b, c), (c, d)}〉. 80

4.5 Graph representation of the argumentation framework AF := 〈
{a, b, c, d, e, f,m, n, p}, {(a, b), (b, c), (c, a), (a, d), (d, e),
(e, f), (m, e), (n,m), (n, p), (p,m), (p, n)} 〉 82

4.6 Graph representation of the argumentation framework AF := 〈
{a, b, c}, {(a, a), (a, b), (b, c), (c, b)}〉 with labeling. 85

4.7 A medical scenario where the decision about whether an organ from
a donor with endocarditis is viable or not for being transplanted
should be made. 86

ix

LIST OF FIGURES

4.8 Medical scenario — acceptable arguments: {c, f, g}, defeated ar-
guments: {a, d, e }, undecided arguments: {b}. 87

4.9 Medical scenario — acceptable arguments: {c, f, g}, defeated ar-
guments: {a, d, e, d }, undecided arguments: ∅. 88

5.1 Graph representation of the argumentation framework AF := 〈
{a, b}, {(a, a), (a, b)}〉. 94

5.2 Graph representation of the argumentation framework AF := 〈
{a, b, c, d, e}, {(a, c), (c, b), (b, a), (a, d), (c, d), (b, d), (d, e)}〉. 94

5.3 Graph representation of the argumentation frameworkAF = 〈{a, b, c},
{(a, a), (a, b), (b, c), (c, b)}〉. 95

5.4 Graph representation of the argumentation framework AF := 〈
{x, y, z, u, d}, {(x, z), (z, y), (y, x), (u, x), (z, d), (d, u)}〉. 112

5.5 Graph representation of the argumentation framework AF := 〈
{r, s, j, a, b}, {(r, j), (j, s), (s, r), (j, a), (a, b), (b, a)}〉. 113

6.1 A Possibilistic Argumentation Engine Architecture. 131

x

Chapter 1

Introduction

Since the very moment Artificial Intelligence (AI) emerged as an alternative
branch of the area of computer science, scientists have dreamed of creating intel-
ligent machines capable of solving our problems. In fact, the first systems devel-
oped by AI scientists were provided by knowledge bases derived from experts in
order to build intelligent systems which were able to perform problem analysis for
their users. These systems were called expert systems and now they are known
as knowledge-based systems. The success of these systems for supporting human
decision-making have extensively documented in literature (16; 47; 102; 105).
However, we cannot say that there is a magic system able to support all our
decisions in any situation.

In the design of knowledge-based systems for supporting decision-making, we
can identify two basic problematic issues:

• how to model knowledge, and

• how to model rational criteria for choosing one decision over other.

In the following subsection, we will identify some challenges w.r.t. these issues.

1.1 Modeling uncertain information

In computer science literature, we can find formal languages in order to give
answer to the issue of how to model knowledge. The most common forms for
modeling knowledge are based on symbolic logic. Even thought, the diversity of
formal languages is wide and the question of how to model uncertain information
has caused much heated debate. Maybe, the most common form of represent-
ing uncertain information is based on probability theory (56). In fact, we can
find successful approaches based on probability theory as Bayesian Networks.

1

1. INTRODUCTION

However, there are several authors which disagree with probability theory for
modeling uncertain information.

• McCarthy and Hayes in (73) pointed out that attaching probabilities to a
statement has objections. For example, they say that

The information necessary to assign numerical probabilities is not
ordinary available. Therefore, a formalism that required numeri-
cal probabilities would be epistemologically inadequate.

• Halpern has remarked in (56) that probability has its problems. For one
thing, the numbers are not always available. For another, the commitment
to numbers means that any two events must be comparable in terms of their
probabilities: either one event is more probable than the other, or they have
equal probability.

• Dubois and Prade in (43) have pointed that there are at least three worth
noticing difficulties when casting the probability calculus into a logic frame-
work for handling uncertain information:

1. Probabilities do not fit very well with logical entailment, in the sense
that a set of propositions true with a probability greater or equal to
some threshold, say α, is not deductively closed. Indeed, from the
constraints Prob(¬p ∨ q) ≥ α and Prob(p) ≥ α, one can only deduce
in general that Prob(q) ≥ max(0, 2α − 1), where max(0, 2α − 1) ≤ α
(except if α = 1 or 0). This means that probability reasoning does not
maintain probability bounds across inference steps.

2. The probabilistic counterpart of the resolution rule is not sufficient as
a local computation tool for computing the best lower bound of the
probability of a formula from a set of probabilistic constraints.

3. There is a strong discrepancy between the probability of a mate-
rial conditional Prob(¬p∨ q) and a conditional probability Prob(q|p),
which raises the question of the proper modeling of an uncertain rule:
if p then q.

Since probability has its problems for modeling uncertain information, it is
not surprising that many other approaches of uncertainty have been considered
in computer science literature.

In the mid-1980s, it was introduced a logic framework called Possibilistic Logic
(42). Possibilistic logic is a logic of uncertainty tailored for reasoning under in-
complete evidence and partially inconsistent knowledge. In this approach all the

2

1.2 Modeling rational criteria

formulæ are attached by degrees of uncertain. These degrees are quantifications
of necessity or possibility of the corresponding possibilistic formulæ. At the math-
ematical level, degrees of possibility and necessity are closely related to fuzzy set
and, possibilistic logic is especially well adapted to automated reasoning when
the available information is pervaded with vagueness. In general terms, we can
say that possibilistic logic is a tool for reasoning under uncertainty based on the
idea of ordering rather than counting, on the contrary to probabilistic logic (42).

An important feature of possibilistic logic is that the degrees of uncertainty
of a possibilistic formula do not belong necessarily to a totally ordered set. This
feature allows to explore a diversity of uncertain degrees e.g., non-numerical
uncertain degrees. In psychology literature, we can find significant observations
which are worth mentioning when we are designing an approach for modeling
uncertain information. Tversky and Kahneman have observed in (107) 1, that
many decisions that we make in our common life are based on beliefs concerning
the likelihood of uncertain events. In fact, we commonly use statements such as
“I think that . . . ”, “chances are . . . ”, “it is probable that . . . ”, “it is plausible
that . . . ”, etc., for supporting our decisions. In this kind of statements usually we
appeal to our experience or our commonsense. It is not surprising to think that
a reasoning based on these kind of statements could reach to biased conclusions.
However, these conclusions could reflect an expert’s experience or commonsense.
Pelletier and Elio pointed out in (96) that people simply have tendencies to ignore
certain information because of the (evolutionary) necessity to make decisions
quickly. This gives rise to biases in judgments concerning what they really want
to do.

Based on the flexibility of possibilistic logic for defining degrees of uncer-
tainty, we believe that when numerical information is not available for capturing
degrees of necessity or possibility of a statement, one can use adjectives/labels
like probable, plausible, etc., for capturing degrees of uncertain information. In
fact the handling of this kind of degrees of uncertainty will define a heuristic for
performing uncertain reasoning.

1.2 Modeling rational criteria

Nowadays, there have been proposed several decision-making approaches for sup-
porting decisions which are based on arguments. Argumentation theory has be-
come an increasingly important and exciting research topic in Artificial Intelli-
gence (AI), with research activities ranging from developing theoretical models,

1It is worth mentioning that Kahneman (an author of (59)) is the winner of the 2002 Nobel
Prize in Economics for having integrated insights from psychological research into economic
science, especially concerning human judgment and decision-making under uncertainty

3

1. INTRODUCTION

prototype implementations, and application studies (16). The main purpose of
argumentation theory is to study the fundamental mechanism, humans use in
argumentation, and to explore ways to implement this mechanism on computers.

Since humans currently use arguments for explaining choices which are already
made, or for evaluating potential choices where each potential choice has usually
pros and cons of various stretch, argumentation theory is also a suitable approach
for practical and uncertain reasoning, (6). The reasoning in argumentation theory
is not explained in terms of the interpretation of a defeasible condition. It is
explained by the interactions between conflicting arguments. Surveys of this
research field are (30; 99).

Although, several approaches have been proposed for modeling argumenta-
tion, Dung’s approach, presented in (44), is a unifying framework which has
played an influential role on argumentation research and AI. In fact, Dung’s
approach has been influencing subsequent proposals for argumentation systems,
e.g., (15; 18; 58; 111). Besides, Dung’s approach is mainly relevant in fields
where conflict management plays a central role. For instance, Dung showed that
his theory naturally captures the solutions of the theory of n-person games and
the well-known stable marriage problem (44).

The interaction of conflicting arguments in Dung’s approach is supported by
four abstract argumentation semantics: stable semantics, preferred semantics,
grounded semantics, and complete semantics. The central notion of these seman-
tics is the acceptability of the arguments. An argument is called acceptable if and
only if it belongs to a set of arguments which is called extension.

Since Dung introduced his abstract argumentation approach, he proved that
his approach can be regarded as a special form of logic programming with nega-
tion as failure. This result points out to the existence of a direct relationship
between abstract argumentation semantics and logic programming semantics. As
consequences of this relationship, we have that:

1. We can deploy argumentation systems based on logic programming systems.

2. We can study abstract augmentation semantics based on logic programming
semantics. This means that a proper logic programming semantics can
describe the interaction of conflicting arguments.

It is worth mentioning that Dung only characterizes the grounded and sta-
ble semantics by two logic programming semantics; however, Dung did not give
any characterization of the preferred semantics in terms of logic programming
semantics.

According to Bench-Capon and Dunne, the three principal abstract argu-
mentation semantics introduced in (44) are the grounded, preferred and stable
semantics. However, these semantics exhibit a variety of problems which have

4

1.3 Contribution of this thesis

illustrated in the literature (13; 16; 26; 27; 99). In (16), Bench-Capon and Dunne
summarize three main problems of these argumentation semantics:

(P1) Emptiness : this problem happens when even though an extension satisfying
the prescribed conditions always exists, there are argumentation frameworks
for which the only such extension is the empty set. This problem can arise
with both the grounded and preferred semantics.

(P2) Non-existence: there are argumentation semantics as the stable argumen-
tation semantics that when it exists is never empty, but there are argu-
mentation frameworks for which no extension meeting the required criteria
exist.

(P3) Multiplicity : in an argumentation framework AF there may be several
incompatible extensions, i.e. S1 and S2 which are well-defined extensions
of AF but with S1 ∪ S2 failing to be so. This problem does not happen
with Dung’s grounded semantics; however, argumentation frameworks are
easily constructed in which both the preferred and stable semantics exhibit
this phenomenon.

Based on the fact that non-monotonic reasoning is one of the most explored
areas of IA where actually there are many results w.r.t. logic programming se-
mantics properties and logic programming semantics implementations, we believe
that these problems can be confronted by identifying proper logic programming
semantics which overcome these problems w.r.t. non-monotonic reasoning side.
It is worth mentioning that the logic programming semantics implementations
could improve the implementation cycle of argumentation systems.

1.3 Contribution of this thesis

In the previous section, we have outlined the two main issues that are concerned
in this thesis: modeling uncertain information and modeling argumentation theory
under a non-monotonic approach. We will group the contributions of this work in
two main sections. More details about the impact of our results will be discussed
at the end of each chapter and also they are discussed as part of the general
conclusions of the thesis in the Chapter 7.

The first group, on our contributions w.r.t. the modeling of uncertain infor-
mation under a non-monotonic approach, includes:

• a definition of a possibilistic disjunctive logic programming approach which
is able to deal with reasoning under uncertainty, incomplete and inconsistent
information (Chapter 3). Some properties of our approach are:

5

1. INTRODUCTION

1. It permits to encode uncertain information by using either numerical
values or relative likelihoods (§3.2).

2. It is computable.

• the definition of three approaches for capturing the semantics of possibilistic
disjunctive logic programs :

– the first is strictly close to the proof theory of possibilistic logic and
answer set models (§3.3.1);

– the second is based on partial evaluation, a fix-point operator and
answer set models (§3.3.2); and

– the last is also based on the proof theory of possibilistic logic and
pstable semantics (§3.3.3).

• the definition of a criterion of preference between possibilistic models in
order to manage the inconsistency of possibilistic models (§3.4).

• the definition of a possibilistic-based argumentation approach based on our
possibilistic disjunctive logic programming approach (Chapter 6).

In the second group, our contributions w.r.t. the modeling of argumentation
theory under a non-monotonic approach, we include:

• the definition of some basic conditions for studying abstract argumentation
semantics in terms of logic programming semantics (§4.2).

• the definition of a suitable codification which is able to characterize the
grounded, stable and preferred semantics (§4.3).

• a study of the preferred semantics in terms of minimal models and answer
set models — this study will suggest some practical methods for implement-
ing the preferred semantics (§4.5).

• a study of the grounded semantics in order to define some intermediate
argumentation semantics between the grounded and the preferred semantics
(§4.6).

• a definition of an approach in order to build new abstract argumentation
semantics based on logic programming semantics. Some properties of the
argumentation semantics constructed under our approach are (Chapter 5):

1. They can be always defined.

6

1.4 Thesis overview

2. They can be constructed under any logic programming semantics.

• the outline of an approach for describing the interaction of arguments based
on rewiring systems and logic programs (§4.6.2).

Since we are interested in capturing real domains as the medical domain, we
consider the following contributions which are not only related to AI community.

• We outline how to model medical scenarios in our possibilistic disjunctive
logic programming approach. In particular, we consider the domain of
human organ transplanting (§3.1).

• We outline a possibilistic argumentation engine architecture in order to
show that by considering the results presented in thesis, we can implement
real argumentation systems.

1.4 Thesis overview

Chapter 2 contains, all the necessary terminology and relevant definitions in or-
der to have a self-contained document. In particular, we present a general
description of the syntax and semantics for logic programs. Also, general
descriptions of Dung’s argumentation approach, rewriting systems and pos-
sibilistic logic are presented.

Chapter 3 The major part of our contribution w.r.t. modeling uncertain and
incomplete information is included in this chapter. It includes the definition
of a possibilistic disjunctive logic programming approach. Part of the results
presented in this chapter were originally published in (81; 82; 94). The
proofs of this chapter are included in Appendix A.

Chapter 4 In this chapter, we present our contribution w.r.t. the modeling of
argumentation theory under a non-monotonic approach. For instance, we
present our study of how to characterize and/or construct argumentation se-
mantics in terms of non-monotonic logic programming semantics. The early
ideas of this chapter were published in (86; 87). After those publications we
explore new ways that lead to the results that have been presented in this
chapter. In fact, part of these results were published in (29; 78; 79; 84).
The proofs of this chapter are included in Appendix B.

Chapter 5 In this chapter, by considering the idea that argumentation seman-
tics can be viewed as a special form of logic programming semantics with
negation as failure, we show that any logic programming semantics as the

7

1. INTRODUCTION

answer set semantics, the minimal models, etc., can define candidate argu-
mentation semantics. These new argumentation semantics will overcome
some of the problems of the Dung’s argumentation semantics that have
been discussed in the literature.

Chapter 6 In this chapter, we define a possibilistic-based argumentation ap-
proach. This approach has as specification language the logic programming
approach defined in Chapter 3. The interaction of possibilistic arguments is
managed by Dung’s argumentation semantics style. Hence, all the results
presented in Chapter 4 and Chapter 5 can be applied to this possibilis-
tic argumentation approach. Some of the first ideas of this chapter were
published in (77; 80; 83).

Chapter 7 We finally, in this last chapter, present a general discussion and
overview of the material presented in this thesis.

8

Chapter 2

Background

In this chapter we introduce all the necessary terminology and relevant definitions
in order to have a self-contained document. We want to point out that this
chapter is not intended to be of a tutorial nature; please consult the references
for a more detailed presentation. We assume that the reader has familiarity with
basic concepts of classic logic, logic programming and lattices. If this is not the
case, the reader can refer himself to (11; 32; 68; 74).

2.1 Logic programs: Syntaxis

The language of a propositional logic has an alphabet consisting of

(i) proposition symbols: p0, p1, ...

(ii) connectives : ∨,∧,←,¬, not,⊥,>

(iii) auxiliary symbols : (,)

where ∨,∧,← are binary-place connectives, ¬, not are unary-place connective
and ⊥ is zero-ary connective. The proposition symbols, ⊥ and > stand for the
indecomposable propositions, which we call atoms, or atomic propositions. Atoms
negated by ¬ will be called extended atoms.

Remark 2.1 We will use the concept of atom without paying attention if it is
an extended atom or not.

The negation sign ¬ is regarded as the so called strong negation by the ASP’s
literature and the negation not as the negation as failure. A literal is an atom,
a, or the negation of an atom not a. Given a set of atoms {a1, ..., an}, we write

9

2. BACKGROUND

not {a1, ..., an} to denote the set of literals {not a1, ..., not an}. An extended
disjunctive clause, C, is denoted:

a1 ∨ . . . ∨ am ← a1, . . . , aj, not aj+1, . . . , not an

where m ≥ 0, n ≥ 0, m + n > 0, each ai is an atom1. When n = 0 and
m > 0 the clause is an abbreviation of a1 ∨ . . . ∨ am ← > such that > is the
proposition symbol that always evaluates to true; clauses of these form some
times are written just as a1∨ . . .∨am. When m = 0 the clause is an abbreviation
of ⊥ ← a1, . . . , aj, not aj+1, . . . , not an such that ⊥ is the proposition symbol
that always evaluates to false. Clauses of this form are called constraints (the
rest, non-constraint clauses). An extended disjunctive program P is a finite set of
extended disjunctive clauses. By LP , we denote the set of atoms in the language
of P .

Sometimes we denote an extended disjunctive clause C by A← B+, not B−,
where A contains all the head literals, B+ contains all the positive body literals
and B− contains all the negative body literals. When B− = ∅, the clause is
called positive disjunctive clause. A set of positive disjunctive clauses is called
a positive disjunctive logic program. When A is a singleton set, the clause can
be regarded as a normal clause. A normal logic program is a finite set of normal
clauses. Finally, when A is a singleton set and B− = ∅, the clause can be also
regarded as a definite clause. A finite set of definite clauses is called a definite
logic program.

We will manage the strong negation (¬), in our logic programs, as it is done
in ASP (11). Basically, it is replaced each extended atom ¬a by a new atom
symbol a′ which does not appear in the language of the program. For instance,
let P be the normal program:

a← q.
¬q ← r.
q ← >.
r ← >.

Then replacing each extended atom by a new atom symbol, we will have:

a← q.
q′ ← r.
q ← >.
r ← >.

In order to disallow models with complementary atoms i.e. q and ¬q, usually
it is added a constraint of the form ⊥ ← q, q′ to the logic program. We will omit

1Notice that these atoms can be extended atoms.

10

2.2 Interpretations and models

this constraint in order to allow models with complementary atoms. However,
the user could add this constraint without losing generality.

When we treat a logic program as a theory, each negative literal not a is
replaced by ∼ a such that ∼ is regarded as the classical negation in classic logic.
Formulæ are constructed as usual in classic logic by the connectives: ∨,∧,←,∼
,⊥,>. A theory T is a finite set of formulæ. By LT , we denote the signature of
T, namely the set of atoms that occur in T.

Given a set of proposition symbols S and a theory Γ in a logic X. If Γ `X S
if and only if ∀s ∈ S Γ `X s.

2.2 Interpretations and models

In this section we define some relevant concepts w.r.t. semantics. The first basic
concept that we introduce will be interpretation.

Definition 2.1 Let T be a theory, an interpretation I is a mapping from LT to
{0, 1} meeting the conditions:

1. I(a ∧ b) = min{I(a), I(b)},

2. I(a ∨ b) = max{I(a), I(b)},

3. I(a← b) = 0 if and only if I(b) = 1 and I(a) = 0,

4. I(∼ a) = 1− I(a),

5. I(⊥) = 0.

6. I(>) = 1.

It is standard to provide interpretations only in terms of a mapping from LT

to {0, 1}. Moreover, it is easy to prove that this mapping is unique by virtue
of the definition by recursion (108). Also, it is standard to use sets of atoms
to represent interpretations. The set corresponds exactly to those atoms that
evaluate to 1.

An interpretation I is called a (2-valued) model of the logic program P if and
only if for each clause c ∈ P , I(c) = 1. A theory is consistent if it admits a model,
otherwise it is called inconsistent. Given a theory T and a formula α, we say that
α is a logical consequence of T , denoted by T |= α, if every model I of T holds
that I(α) = 1. It is a well known result that T |= α if and only if T ∪ {∼ α} is
inconsistent.

11

2. BACKGROUND

We say that a model I of a theory T is a minimal model if there does not exist
a model I ′ of T different from I such that I ′ ⊂ I. Maximal models are defined
in the analogous form.

Since we will use 3-valued semantics, we will define some definitions w.r.t.
3-valued logic semantics. A partial interpretation based on a signature L is a
disjoint pair of sets 〈I1, I2〉 such that I1∪ I2 ⊆ L. A partial interpretation is total
if I1 ∪ I2 = L. Given two interpretations I = 〈I1, I2〉, J = 〈J1, J2〉, we set I ≤k J
if, by definition, Ii ⊆ Ji, i = 1, 2. Clearly ≤k is a partial order. We may also
see an interpretation 〈I1, I2〉 as the set of literals I1 ∪ not I2. When we look at
interpretations as sets of literals then ≤k corresponds to ⊆.

2.3 Rewriting systems

In this section, we define some basic concepts w.r.t. abstract rewriting systems
and some basic transformation rules for normal logic programs.

It is well accepted that rewriting is a very powerful method for dealing com-
putation with equations (33). In fact, rewriting has the computational power
of Markov algorithms — and of recursive functions and Turing machines. In the
context of logic programming, it has been defined program transformations which
allow to define a calculus of logic program transformations (22; 38). These logic
program transformations can be seen as declarative because they express precise
logic programming semantics properties; moreover, they represent a procedural
method for computing logic programming semantics.

As we will see in Chapter 4, the combination of logic programming semantics
and rewriting systems will help to define a calculus of argumentation frameworks
in order to define abstract argumentation semantics and to define a procedural
method for computing abstract argumentation semantics.

An abstract rewriting system is a pair 〈S,→〉 where→ is a binary relation on
a given set S. Let→∗ be the reflexive, and transitive closure of→. When x→∗ y
we say that x reduces to y. An irreducible element is said to be in normal form.
We say that a rewriting system is:

noetherian: if there is no infinite chain x1 → x2 → · · · → xi → xi+1 → . . . ,
where for all i the elements xi and xi+1 are different,

confluent: if whenever u →∗ x and u →∗ y then there is a z such that x →∗ z
and y →∗ z,

locally confluent: if whenever u → x and u → y then there is a z such that
x→∗ z and y →∗ z.

12

2.3 Rewriting systems

In a noetherian and confluent rewriting system, every element x reduces to a
unique normal form that we denote by norm(x).

In literature, it has defined several transformation rules for logic programs
(22; 38; 95). In particular, we only define seven basic transformation rules.

Let ProgL be the set of all normal logic programs with atoms from the
signature L. Given a normal program P , we define HEAD(P) = {a| a ←
B+, not B− ∈ P} — the set of all head-atoms of P .

Definition 2.2 (Transformation Rules) (39) A transformation rule is a bi-
nary relation on ProgL. The following transformation rules are called basic. Let
a program P ∈ ProgL be given.

RED+: This transformation can be applied to P , if there is an atom a which
does not occur in HEAD(P). RED+ transforms P to the program where all
occurrences of not a are removed.

RED−: This transformation can be applied to P , if there is a rule a ← > ∈ P .
RED− transforms P to the program where all clauses that contain not a in
their bodies are deleted.

Success: Suppose that P includes a fact a← > and a clause q ← body such that
a ∈ body. Then we replace the clause q ← body by q ← body \ {a}.

Failure: Suppose that P contains a clause q ← body such that a ∈ body and
a /∈ HEAD(P). Then we erase the given clause.

Loop: We say that P2 results from P1 by LoopA if, by definition, there is a set
A of atoms such that:

1. for each rule a← body ∈ P1, if a ∈ A, then body ∩ A 6= ∅,
2. P2 := {a← body ∈ P1|body ∩ A = ∅},
3. P1 6= P2.

LLC′ Let a be an atom that occurs negatively in P and also appears in the head of
some rule of P. Let P1 be the program that results from P by removing not a
from every clause of P . Let Success∗ denote the reflexive and transitive
closure of the relation Success. Suppose that P1 relates to P2 by Success∗

and a ∈ P2. In this case, we add a← > to P .

Weak-Cases Let us suppose the following condition holds: C1 ∈ P , C2 ∈ P , C1

is of the form a ← l and C2 is of the form a ← not l. Then the Weak-
Cases transformation replaces the clauses C1 and C2 in P by the single
clause a← >.

13

2. BACKGROUND

Based on these transformation rules, we define the following rewriting systems:

CS0 := {RED+, RED−, Success, Failure, Loop}

CS1 := CS0 ∪ {LLC ′}

CS2 := CS0 ∪ {Weak-Cases }

CS3 := CS0 ∪ {LLC ′,Weak-Cases }

We denote the uniquely determined normal form of a program P with respect
to the system CS by normCS(P). In order to illustrate these transformation rules,
let us consider the following example.

Example 2.1 Let P be the following normal program:

d(b)← not d(a). d(b)← >. d(c)← not d(b). d(c)← d(a).

Now, let us apply CS0 to P . Since d(a) /∈ HEAD(P), then, we can apply RED+

to P . Thus we get:

d(b)← >. d(c)← not d(b). d(c)← d(a).

Notice that we can apply RED− to the new program, thus we get:

d(b)← >. d(c)← d(a).

Finally, we can apply Failure to the new program, thus we get: d(b)← >. This
last program is the normal form of P w.r.t. CS0, because none of the transforma-
tion rules from CS0 can be applied.

We use P1 →T P2 for denoting that we get P2 from P1 by applying the
transformation rule T to P1. It is worth mentioning that the rewriting systems
CS0,CS1,CS2 and CS3 are confluent and noetherian.

2.4 Logic programming semantics

In this section, we will define three logic programming semantics: answer set
semantics, pstable semantics and the well-founded semantics. The first two se-
mantics represent a two-valued semantics approach and the last one represents
a three-valued semantics approach. These semantics will be of vital importance
for the study of this thesis. For instance, in Chapter 3 we introduce a couple of
possibilistic logic programming semantics based on the philosophy of the answer
set semantics and the pstable model semantics. Also, we will see, in Chapter 4,
that all semantics presented in this section are of vital importance for studying
abstract argumentation semantics.

14

2.4 Logic programming semantics

2.4.1 Answer set semantics

By using ASP, it is possible to describe a computational problem as a logic
program whose answer sets correspond to the solutions of the given problem. It
represents one of the most successful approaches of non-monotonic reasoning of
the last two decades (11). The number of applications of this approach has been
increased thanks to the efficient implementations of the answer set solvers that
exist.

The answer set semantics was first defined in terms of the so called Gelfond-
Lifschitz reduction (52) and it is usually studied in the context of syntax depen-
dent transformations on programs. The following definition of an answer set for
extended disjunctive logic programs generalizes the definition presented in (52)
and it was presented in (53): Let P be any extended disjunctive logic program.
For any set S ⊆ LP , let P S be the positive program obtained from P by deleting

(i) each rule that has a formula not a in its body with a ∈ S, and then

(ii) all formulæ of the form not a in the bodies of the remaining rules.

Clearly P S does not contain not (this means that P S is either a positive disjunc-
tive logic program or a definite logic program), hence S is called an answer set of
P if and only if S is a minimal model of P S. In order to illustrate this definition
let us consider the following example:

Example 2.2 Let us consider the set of atoms S := {b} and the following normal
logic program P :

b← not a. b← >.
c← not b. c← a.

We can see that P S is:
b← >. c← a.

Notice that this program has three models: {b}, {b, c} and {a, b, c}. Since the
minimal model amongst these models is {b}, we can say that S is an answer set
of P .

In the answer set definition, we will normally omit the restriction that if S
has a pair of complementary literals then S := LP . This means that we allow
that an answer set could have a pair of complementary atoms. For instance, let
us consider the program P :

a. ¬a. b.
then, the only answer set of this program is : {a,¬a, b}. In Section 3.4, we will
discuss how we will manage the inconsistency in our logic programs.

It is worth mentioning that in literature there are several forms for handling
an inconsistency program. For instance, by applying the original definition (53)

15

2. BACKGROUND

the only answer set of P is: {a,¬a, b,¬b}. On the other hand, the DLV system
(40) returns no models if the program is inconsistent.

2.4.2 Pstable semantics

Pstable semantics is a recently introduced logic programming semantics which
is inspired in paraconsistent logics. This semantics is defined by a fixed point
operator in terms of classical logic. The expressiveness of pstable semantics is at
least as the answer set semantics for disjunctive logic program (88). In Chapter
3, we will define an extension of this semantics for possibilistic programs and in
Chapter 4 we will see that this semantics is able to characterize one of the most
acceptable abstract argumentation semantics i.e. preferred semantics.

First, to define pstable semantics, we will introduce some basic concepts. By
`C , we denote logic consequence in classic logic. Given a normal program P, if
M ⊆ LP , we write P M when: P `C M and M is a classical 2-valued model
of P .

Pstable semantics is defined in terms of a single reduction which is defined as
follows:

Definition 2.3 (92) Let P be a normal program and M a set of atoms. We
define

RED(P,M) := {a← B+, not (B− ∩M)|a← B+, not B− ∈ P}

Let us consider the set of atoms M1 := {a, b} and the following normal program
P1:

a← not b, not c.
a← b.
b← a.

We can see that RED(P1,M) is:
a← not b.
a← b.
b← a.

By considering the reduction RED, it is defined the pstable semantics for
normal programs as follows:

Definition 2.4 (92) Let P be a normal program and M a set of atoms. We say
that M is a pstable model of P if RED(P,M) M . We use Pstable to denote
the semantics operator of pstable models.

16

2.4 Logic programming semantics

Let us consider again M1 and P1 in order to illustrate the definition. We want
to verify whether M1 is a pstable model of P1. First, we can see that M1 is a model
of P1, i.e. ∀ c ∈ P1, M1 evaluates c to true. Now, we have to prove each atom of
M1 from RED(P1,M1) by using classical inference, i.e. RED(P1,M1) `C M1 .
Let us consider the proof of the atom a, which belongs to M1, from RED(P1,M1).

1. (a ∨ b)→ ((b→ a)→ a) Tautology
2. ∼ b→ a Premise from RED(P1,M1)
3. a ∨ b From 2 by logical equivalency
4. (b→ a)→ a From 1 and 3 by Modus Ponens
5. b→ a Premise from RED(P1,M1)
6. a From 4 and 5 by Modus Ponens

Remember that the formula ∼ b→ a corresponds to the normal clause a← not b
which belongs to the program RED(P1,M1). The proof for the atom b, which
also belongs to M1, is similar to the proof of the atom a. Then we can conclude
that RED(P1,M1) M1. Hence, M1 is a pstable model of P1.

2.4.3 Well-Founded Semantics

The Well-Founded Semantics (WFS) was introduced by A. V. Gelder et al. in
(50). This semantics is one of the most accepted and studied semantics in logic
programming. In fact this semantics is called a well-behaved semantics (36).
Initially, this semantics was introduced in terms of a fix-point operator; however,
in (22) it was introduced a characterization of WFS in terms of rewriting systems.

Since the characterization of WFS in terms of rewriting systems is most ap-
propriated for the study of this thesis, we will define this characterization. Also
we will define three extensions of this semantics which are based on two trans-
formations rules: LLC ′ and Weak-Cases. In Chapter 4, we will see how the
combination of WFS and rewriting systems will help to describe a calculus of
argumentation framework transformations in order to define new abstract argu-
mentation semantics and to define a procedural method for computing abstract
argumentation semantics.

In order to define WFS, let us introduce some concepts. A general semantics
SEM is a function on ProgL which associates with every program a partial inter-
pretation. Given a signature L and two semantics SEM1 and SEM2, we define
SEM1 ≤k SEM2 if for every program P ∈ ProgL, SEM1(P) ≤k SEM2(P). What
are the minimal requirements we want to impose on a semantics? Certainly, we
want to have facts that requirements, i.e. rules with empty bodies, treated as
being true. Dually, if an atom does not occur in any head, then its negation
should be true. This gives rise to the following definition, which will play an
important role later.

17

2. BACKGROUND

Definition 2.5 (SEM) For any logic program P , we define HEAD(P) = {a| a←
B+, ¬B− ∈ P} — the set of all head-atoms of P . We also define SEM(P) =
〈P true, P false〉, where P true := {p| p← > ∈ P} and P false := {p| p ∈ LP\HEAD(P)}.

Every rewriting system CS induces a semantics SEMCS as follows:

SEMCS(P) := SEM(normCS(P))

By considering the rewriting systems CS0 and the function SEM , WFS is
characterized as follows:

Lemma 2.1 (22) CS0 is a confluent rewriting system. It induces a 3-valued
semantics that it is the Well-founded Semantics.

In order to illustrate the well-founded semantics. Let us consider the program
P in Example 2.1. We have already seen that the normal form of P w.r.t. CS0

is:

d(b)← >.

This means that WFS(P) := 〈{d(b)}, {d(a), d(c)}〉.
This characterization of WFS based on rewriting systems has been useful for

defining some extensions of WFS. We will define three extensions of WFS which
were introduced in (39).

Lemma 2.2

a) CS1 is a confluent rewriting system. It induces a 3-valued semantics that we
call WFSLLC

′
.

b) CS2 is a confluent rewriting system. It induces a 3-valued semantics that we
call WFSWK.

c) CS3 is a confluent rewriting system. It induces a 3-valued semantics that we
call WFSWK+LLC′.

Observe that the differences between WFS and the semantics introduced by
this lemma are made by the transformation rules: LLC ′ and Weak-Cases. In
Chapter 4, we will see that these new semantics will be helpful for defining ex-
tensions of the so call grounded semantics in argumentation theory (See Section
2.6).

18

2.5 Possibilistic Logic

2.5 Possibilistic Logic

In this section, we will define some basic concepts of possibilistic logic for the
case of necessity-valued formulæ.

Possibilistic logic is a weighted logic introduced and developed in the mid-
1980s, in the setting of artificial intelligence, with the view to develop a simple
an rigorous approach to automated reasoning from uncertain or prioritized incom-
plete information. Possibilistic logic is especially adapted to automated reasoning
when the available information is pervaded with vagueness. In fact, possibilistic
logic is a natural extension of classical logic where the notion of total order/partial
order is embedded in the logic.

For the case of necessity-valued formulæ, a necessity-valued formula is a pair
(ϕ α) where ϕ is a classical logic formula and α ∈ (0, 1] is a positive number.
The pair (ϕ α) expresses that the formula ϕ is certain at least to the level α,
i.e. N(ϕ) ≥ α, where N is a necessity measure modeling our possibly incomplete
state knowledge (42). α is not a probability (like it is in probability theory) but it
induces a certainty (or confidence) scale. This value is determined by the expert
providing the knowledge base. A necessity-valued knowledge base is then defined
as a finite set (i.e. a conjunction) of necessity-valued formulæ.

The following properties hold w.r.t. necessity-valued formulæ:

N(ϕ ∧ ψ) = min({N(ϕ), N(ψ)}) (2.1)

N(ϕ ∨ ψ) ≥ max({N(ϕ), N(ψ)}) (2.2)

if ϕ ` ψ then N(ψ) ≥ N(ϕ) (2.3)

Dubois et al, in (42) introduced a formal system for necessity-valued logic
which is based in the following axioms schemata (propositional case):

(A1) (ϕ→ (ψ → ϕ) 1)

(A2) ((ϕ→ (ψ → ξ))→ ((ϕ→ ψ)→ (ϕ→ ξ)) 1)

(A3) ((¬ϕ→ ¬ψ)→ ((¬ϕ→ ψ)→ ϕ) 1)

Inference rules:

(GMP) (ϕ α), (ϕ→ ψ β) ` (ψ min{α, β})

(S) (ϕ α) ` (ϕ β) if β ≤ α

19

2. BACKGROUND

According to Dubois et al, in (42), basically we need a complete lattice in order
to express the levels of uncertainty in Possibilistic Logic. Dubois et al, extended
the axioms schemata and the inference rules for considering partially ordered sets.
We shall denote by `PL the inference under Possibilistic Logic without paying
attention if the necessity-valued formulæ are using either a totally ordered set or
a partially ordered set for expressing the levels of uncertainty.

The problem of inferring automatically the necessity-value of a classical for-
mula from a possibilistic base was solved by an extended version of resolution for
possibilistic logic (see (42) for details).

One of the main basic principle of possibilistic logic is that:

Remark 2.2 The strength of a conclusion is the strength of the weakest argument
used in its proof.

According to Dubois and Prade (43), the contribution of possibilistic logic
setting is to relate this principle (measuring the validity of an inference chain
by its weakest link) to fuzzy set-based necessity measures in the framework of
Zadeh’s possibilistic theory, since the following pattern then holds:

N(∼ p ∨ q) ≥ α and N(p) ≥ β imply N(q) ≥ min(α, β)

This interpretive setting provide a semantics justification to the claim that the
weight attached to a conclusion should be the weakest among the weights attached
to the formulæ involved in the derivation.

By considering the basic principles of possibilistic logic e.g., Remark 2.2, we
will define some possibilistic logic programming semantics (see Chapter 3) which
in turn will define a semantics for possibilistic disjunctive logic programs. More-
over, we will define a possibilistic-based argumentation framework (see Chapter
6).

2.6 Abstract Argumentation Theory

Dung’s approach, presented in (44), is a unifying framework which has played
an influential role on argumentation research and AI. This approach is mainly
orientated to manage the interaction of arguments. This interaction is managed
by four abstract argumentation semantics: stable semantics, preferred semantics,
grounded semantics, and complete semantics. The central notion of these seman-
tics is the acceptability of the arguments. In this section, we will define some basic
concepts of Dung’s argumentation approach.

An argumentation framework captures the relationships between the argu-
ments (all the definitions of this subsection were taken from the seminal paper
(44)).

20

2.6 Abstract Argumentation Theory

Definition 2.6 An argumentation framework is a pair AF := 〈AR, attacks〉,
where AR is a finite set of arguments, and attacks is a binary relation on AR,
i.e. attacks ⊆ AR× AR.

Notice that the relation attacks does not yet tell us with which arguments a
dispute can be won; it only tells us the relation of two conflicting arguments. In
order to illustrate this definition let us consider the following example which was
taken from (99).

Example 2.3 Consider three arguments a, b and c such that a attacks b and b
attacks c. A concrete version of this example is:

c = Tweety flies because it is a bird.
b = Tweety does not fly because it is a penguin.
a = The observation that Tweety is a penguin is unreliable.

Notice that the argumentation framework which capture this example is AF :=
〈{a, b, c}, {(a, b), (b, c)}〉. It is worth mentioning that any argumentation frame-
work could be regarded as a directed graph. For instance, the graph representation
of AF is presented in Figure 2.1.

Figure 2.1: Graph representation of AF := 〈 {a, b, c}, {(a, b), (b, c)}〉.

Definition 2.7 A set S of arguments is said to be conflict-free if there are no
arguments a, b in S such that a attacks b.

A central notion of Dung’s framework is acceptability. It captures how an
argument that cannot defend itself, can be protected by a set of arguments.

Definition 2.8 (1) .An argument a ∈ AR is acceptable w.r.t. a set S of ar-
guments iff for each argument b ∈ AR: If b attacks a then b is attacked by an
argument in S. (2) A conflict-free set of arguments S is admissible iff each
argument in S is acceptable w.r.t. S

To illustrate this definition, let us consider Example 2.3. We can see that c
is acceptable w.r.t. {a}, {a, b}, {a, c} and {a, b, c}, but not w.r.t. {} and {b}.
Notice that {a, b, c} and {a, b} could not be admissible sets because they are not
conflict-free sets. We can say that an admissible set represents a defendable point

21

2. BACKGROUND

of view. For instance, in Example 2.3 there are three admissible sets: {}, {a}
and {a, c}. Intuitively, an admissible set is a coherent point of view. Since an
argumentation framework could have several coherent point of views, one can take
the maximum admissible sets in order to get maximum coherent point of views of
an argumentation framework. This idea is captured by Dung’s framework with
the concept of preferred extension.

Definition 2.9 A preferred extension of an argumentation framework AF is a
maximal (w.r.t. inclusion) admissible set of AF .

Since an argumentation framework could have more than one preferred exten-
sion, the preferred semantics is called credulous. The argumentation framework
of Figure 2.1 has just one preferred extension which is {a, c}.

The grounded semantics is defined in terms of a characteristic function.

Definition 2.10 The characteristic function, denoted by FAF , of an argumenta-
tion framework AF = 〈AR, attacks〉 is defined as follows:

FAF : 2AR → 2AR

FAF (S) = {a| a is acceptable w.r.t. S }

Definition 2.11 The grounded extension of an argumentation framework AF,
denoted by GEAF , is the least fixed point of FAF

In order to illustrate the definition, let us consider the argumentation frame-
work of Figure 2.1. Then

F 0
AF (∅) := {a},
F 1
AF (F 0

AF (∅)) := {a, c},
F 2
AF (F 1

AF (F 0
AF (∅))) := {a, c},

since F 1
AF (F 0

AF (∅)) = F 2
AF (F 1

AF (F 0
AF (∅))), then GEAF = {a, c}. Therefore the

grounded extension of AF is {a, c}.
Another interesting semantics which was introduced in (44) is stable seman-

tics.

Definition 2.12 A conflict-free set of arguments S is called a stable extension if
and only if S attacks each argument which does not belong to S.

Dung showed that this semantics coincides with the notion of stable solutions
of n-person games (44). There is an interesting relationship between the stable
semantics and the preferred semantics which is that every stable extension is a
preferred extension, but not vice versa.

22

2.6 Abstract Argumentation Theory

Remark 2.3 Hence we will say that any argument is defeated if and only if it is
attacked by an acceptable argument.

(44) defined some important concepts w.r.t. the relationship between argu-
ments when they are taking part of a sequence of attacks.

• An argument b indirectly attacks a if there exists a finite sequence a0, . . . , a2n+1

such that 1) a = a0 and b = a2n+1, and 2) for each i, 0 ≤ i ≤ 2n, ai+1 attacks
ai.

• An argument b indirectly defends a if there exists a finite sequence a0, . . . , a2n

such that 1) a = a0 and b = a2n and 2) for each i, 0 ≤ i ≤ 2n, ai+1 attacks
ai.

• An argument b is said to be controversial w.r.t. a if b indirectly attacks a
and indirectly defeats a.

• An argument is controversial if it is controversial w.r.t. some argument a.

In (44), Dung suggested a general method for generating metainterpreters in
terms of logic programming for argumentation systems. This is the first approach
which regards an argumentation framework as a logic program. This metainter-
preter is divided in two units: Argument Generation Unit (AGU), and Argument
Processing Unit (APU). The AGU is basically the representation of the attacks
in an argumentation framework and the APU consists of two clauses:

(C1) acc(x)← not d(x)

(C2) d(x)← attack(y, x), acc(y)

C1 suggests that the argument x is acceptable if it is not defeated and C2
suggests that an argument is defeated if it is attacked by an acceptable argument.
Formally, the Dung’s metainterpreter is defined as follows:

Definition 2.13 Given an argumentation framework AF = 〈AR, attacks〉, PAF
denotes the logic program defined by PAF = APU+AGU where APU = {C1, C2}
and

AGU = {attacks(a, b)← >|(a, b) ∈ attacks}

For each extension E of AF , m(E) is defined as follows:
m(E) = AGU ∪ {acc(a)|a ∈ E}

∪ {defeat(b)|b is attacked by some a ∈ E}
Based on PAF , Dung was able to characterize the stable semantics and the

grounded semantics.

23

2. BACKGROUND

Theorem 2.1 Let AF be an argumentation framework and E be an extension of
AF. Then

1. E is a stable extension of AF if and only if m(E) is an answer set of PAF

2. E is a grounded extension of AF if and only if m(E)∪{¬defeat(a)|a ∈ E}
is the well-founded model of PAF

2.7 Lattices and order

In mathematics, especially order theory formalizes the intuitive concept of an
ordering or an arrangement of the elements of a set. Indeed, the study of order
has let to a great unification of results in algebra and logic. More recently,
it has infused into theoretical computer science, particularly into programming
language semantics (32). As we will see in Chapter 3, an order set will be a
suitable structure for capturing uncertain information, particularly into answer
set programs.

In this section, we will present some fundamental definitions of lattice theory
in order to make this document self contained (see (32) for more details).

Definition 2.14 Let Q be a set. An order (or partial order) on Q is a binary
relation ≤ on Q such that, for all x, y, z ∈ Q,

(i) x ≤ x

(ii) x ≤ y and y ≤ x imply x = y

(iii) x ≤ y and y ≤ z imply x ≤ z

These conditions are referred to, respectively, as reflexivity, antisymmetry and
transitivity.

A set Q equipped with an order relation ≤ is said to be an ordered set (or
partial ordered set). It will be denoted by (Q,≤).

Definition 2.15 Let (Q,≤) be an ordered set and let S ⊆ Q. An element x ∈ Q

is an upper bound of S if s ≤ x for all s ∈ S. A lower bound is defined dually.
The set of all upper bounds of S is denoted by Su (read as ‘S upper’) and the set
of all lower bounds by Sl (read as ‘S lower’).

If Su has a least element x, then x is called the least upper bound (LUB) of
S. Equivalently, x is the least upper bound of S if

24

2.7 Lattices and order

(i) x is an upper bound of S, and

(ii) x ≤ y for all upper bound y of S.

The least upper bound of S exists if and only if there exists x ∈ Q such that

(∀y ∈ Q)[((∀s ∈ S)s ≤ y)⇐⇒ x ≤ y],

and this characterizes the LUB of S. Dually, if Sl has a greatest element, x, then
x is called the greatest lower bound (GLB) of S. Since least element and greatest
element are unique, LUB and GLB are unique when they exist.

The least upper bound of S is called the supremum of S and it is denoted
by sup S; the greatest lower bound of S is also called the infimum of S and it is
denoted by inf S.

Definition 2.16 Let (Q,≤) be a non-empty ordered set.

(i) If sup{x, y} and inf{x, y} exist for all x, y ∈ Q, then Q is called lattice.

(ii) If sup S and inf S exist for all S ⊆ Q, then Q is called a complete lattice.

Example 2.4 Let us consider the set of labels Q := {Certain, Confirmed, Prob-
able, Plausible, Supported, Open}1 and let � be a partial order such that the
following set of relations holds: {Open � Supported, Supported � Plausible,
Supported � Probable, Probable � Confirmed, Plausible � Confirmed,
Confirmed � Certain}. A graphic representation of S according to � is showed
in Figure 2.2. It is not difficult to see that (Q,�) is a lattice and even more it is
a complete lattice.

1This set of labels was taken from (49). In this paper, authors argue that we can construct
a set of labels (they call those: modalities) in a way that this set provides a simple scale for
ordering the claims of our beliefs. In the following chapter, we will use this kind of labels for
quantifying the uncertainty degree of a statement.

25

2. BACKGROUND

Figure 2.2: A graphic representation of a lattice where the following relations
holds: {Open � Supported, Supported � Plausible, Supported � Probable,
Probable � Confirmed, Plausible � Confirmed , Confirmed � Certain}.

26

Chapter 3

Possibilistic Disjunctive Logic
programs

In this chapter, we will explore an approach for modeling uncertain, incomplete
and inconsistent information. This approach will be based on Answer Set Pro-
gramming and ideas of Possibilistic Logic.

3.1 Introduction

Uncertain and incomplete information is an unavoidable feature of daily decision-
making. In order to deal with uncertain and incomplete information intelligently,
we need to be able to represent it and reasoning about it.

Answer Set Programming (ASP) is one of the most successful logic program-
ming approaches in Non-monotonic Reasoning and Artificial Intelligence applica-
tions (11; 51). In (76), a possibilistic framework for reasoning under uncertainty
was proposed. This framework is a combination between ASP and possibilistic
logic (42).

Possibilistic Logic is based on possibilistic theory where at the mathematical
level, degrees of possibility and necessity are closely related to fuzzy sets (42).
Thanks to the natural properties of possibilistic logic and ASP, Nicolas et al ’s
approach allows to deal with reasoning that is at the same time non-monotonic
and uncertain. Nicolas et al ’s approach is based on the concept of possibilistic
stable model which defines a semantics for possibilistic normal logic programs.

To say that possibilistic disjunctive logic programs are required for represent-
ing incomplete information could be questioned; however, Gelfond and Lifschiz
observed in (53) that:

An important limitation of traditional logic programming as a knowl-
edge representation tool, in comparison with classical logic, is that

27

3. POSSIBILISTIC DISJUNCTIVE LOGIC PROGRAMS

logic programming does not allow us to deal directly with incomplete
information.

In order to overcome this limitation they suggested to include strong negation
and disjunctive clauses in ASP for dealing incomplete information. In possi-
bilistic answer set programming, one can also expect to use strong negation and
possibilistic disjunctive clauses for dealing with incomplete information. An im-
portant feature of the possibilistic disjunctive clauses is that they are able to
capture incomplete information and incomplete states of a knowledge base at the
same time.

Let us consider a medical domain, in order to illustrate a scenario where un-
certain and incomplete information is always presented. The particular medical
domain that we consider is human organ transplanting. In human organ trans-
planting, one of the most sophisticated and complex processes is the organ donor
selection. There are several factors that make this process sophisticated and
complex. For instance:

• the transplant acceptance criteria vary ostensibly between transplant teams
from the same geographical area and substantially between more distant
transplantation teams (71). This means that the acceptance criteria applied
in one hospital could be invalid or at least arguable in another hospital.

• there are lots of factors that make unpredictable if an organ donor’s disease
will be diagnosed in the organ recipient. For instance, if an organ donor
D has hepatitis, then an organ recipient R could be infected by an organ
of D. According to (70), there are cases where the infection can occur;
however the recipient can spontaneously clear the infection e.g., hepatitis.
This means that an organ donor’s infection can be present or not-present
in the organ recipient. It is worth to comment that there are infections
which can be prevented by applying a post-transplant treatment to the
organ recipient.

• the clinical state of an organ recipient can be affected by several factors e.g.,
malfunctions of the graft. This means that the clinical state of an organ
recipient can be stable or unstable after the graft because the graft can
have good graft functions, delayed graft functions and terminal insufficient
functions1.

It is worth mentioning that the transplant acceptance criteria may be depen-
dant to the kind of organ (kidney, heart, liver, etc.) that will be considered for
transplanting and the clinical situation of the potential organ recipients.

1Usually, when a doctor says that an organ has terminal insufficient functions, it means
that there exists no clinical treatment for improving the organ’s functions.

28

3.1 Introduction

Let us consider the particular case of kidney transplantation with organ donors
that have a kind of infection e.g., endocarditis, hepatitis. As already stated, the
clinical situation of the potential organ recipients is relevant in the organ trans-
planting process. We will denote the clinical situation of an organ recipient by the
predicate cs(t, T), such that t can be stable, unstable, 0-urgency and T denotes a
moment in the time. Another important factor that we will consider is the state
of the organ’s functions. We will denote by the predicate o(t, T) the state of the
organ’s functions, such that t can be terminal-insufficient functions, good-graft
functions, delayed-graft functions, normal-graft functions and T denotes a mo-
ment in the time. Also, we will consider in our scenario the state of an infection
in both the organ recipient and the organ donor, this condition will be denoted
by the predicates r inf(present, T) and d inf(present, T) respectively such that
T denotes a moment in the time. The last predicate that we introduce, will be
action(t, T) such that t can be transplant, wait, post-transplant treatment and T
denotes a moment in the time. This predicate denotes the possible actions of a
doctor. In Figure 3.11, a finite state automata is presented — for a formal pre-
sentation of automata theory see, (57). In this automata each node represents a
possible situation where an organ recipient can be found and the arrows represent
the possible doctor’s actions. Observe that we are assuming that in the initial
state the organ recipient is clinically stable and he does not have an infection;
however, he has a kidney whose functions are terminal insufficient. From the
initial state, the doctor’s actions can be either to make a kidney transplantation
or just wait2.

According to Figure 3.1, an organ recipient can be found in different situa-
tions after a graft. In fact, the organ recipient may require another graft and the
state of the infection can be unpredictable. Let us introduce extended disjunctive
clauses which describe some situations presented in Figure 3.1

r inf(present, T2) ∨ ¬r inf(present, T2) ← action(transplant, T),
d inf(present, T), T2 = T + 1.

o(good graft funct, T2) ∨ o(delayed graft funct, T2)∨
o(terminal insufficient funct, T2)← action(transplant, T), T2 = T + 1.

The intended meaning of the first clause is that if the organ donor has an infection,
then the infection can be present or not-present in the organ recipient, after the
graft, and the intended meaning of the second one is that the graft’s functions can

1This finite state automata was built under the supervision of Francisco Caballero M. D.
Ph. D. from the Hospital de la Santa Creu I Sant Pau, Barcelona, Spain.

2In the automata of Figure 3.1, we are not considering that there is a waiting list where
the organ recipient waits for an organ. This waiting list has different politics for assigning an
organ to an organ recipient.

29

3. POSSIBILISTIC DISJUNCTIVE LOGIC PROGRAMS

Figure 3.1: An automata of finite states and actions for considering infections in
kidney organ transplanting.

be: good, delayed and terminal, after the graft. Observe that these clauses are
not capturing the uncertainty that is involved in each statement. For instance,
w.r.t. the first clause, one can wish to represent an uncertainty degree in order to
capture the uncertainty that is involved in this statement — remember that the
organ recipient can be infected by the infection of the donor’s organ; however,
the infection can be spontaneously cleared by the organ recipient as it is the case
of hepatitis (70).

In Section 1.1, we remarked that Tversky and Kahneman have observed in
(107) that we commonly use statements such as “I think that . . . ”, “chances are
. . . ”, “it is probable that . . . ”, “it is plausible that . . . ”, etc., for supporting our
decisions. Observe that these statements have as common denominator adjec-
tives which quantify the information. These adjectives are of the form: probable,
plausible, etc. Based on this observation, we propose to use adjectives/labels
of the same kind in order to quantify the uncertain information of a knowledge

30

3.2 Syntax

base. The only formal requirement is that this set of adjectives/labels must be a
complete lattice. For instance, for the case of our medical scenario a transplant
coordinator1 can suggest a set of labels in order to quantify a medical knowledge
base and of course to define an order between those labels. Based on those labels
we can have possibilistic clauses as:

probable: r inf(present, T2) ∨ ¬r inf(present, T2) ← action(transplant, T),
d inf(present, T), T2 = T + 1.

Informally speaking, the reading of this clause is: if the organ donor has an
infection, then it is probable that the organ recipient can be infected or not after
a graft.

In this chapter, we will introduce the use of possibilistic disjunctive clauses
which are able to capture incomplete information and incomplete states of a
knowledge base at the same time. In order to capture the semantics of possibilistic
disjunctive programs, we will present three possible approaches. Two of these
approaches will be based on answer set models and the other one will be based
on pstable models. As part of our study, we will present some approaches for
managing the inconsistency of a possibilistic knowledge. Also, we will take care
of the relationship that there is between the approach presented by Nicolas et al,
in (76) and our approach.

The rest of the chapter is divided as follows: In §3.2, the syntax of our pos-
sibilistic framework is presented. In §3.3, three approaches for defining the se-
mantics of possibilistic disjunctive programs are presented. In §3.4, some criteria
for managing inconsistent possibilistic logic programs are defined. Finally, in the
last section, we present our conclusions.

3.2 Syntax

In this section, we will define the general syntax for possibilistic disjunctive logic
programs. This syntax will be based on the standard syntax of extended disjunc-
tive logic programs (see Section 2.1). First of all, we start defining some relevant
concepts2.

In all the document, we will only consider finite lattices — remember that any
finite lattice is complete. This convention was taken based on the assumption that
in real applications we will rarely have an infinite set of labels for expressing the
incomplete state of a knowledge base.

1A transplant coordinator is an expert in all the process of transplanting (71).
2Some concepts presented in this section extend some terms presented in (76).

31

3. POSSIBILISTIC DISJUNCTIVE LOGIC PROGRAMS

A possibilistic atom is a pair p = (a, q) ∈ A × Q, where A is a finite set
of atoms and (Q,≤) is a lattice. We apply the projection ∗ to any possibilistic
atom p as follows: p∗ = a. Given a set of possibilistic atoms S, we define the
generalization of ∗ over S as follows: S∗ = {p∗|p ∈ S}.

Now, we define the syntax of a valid possibilistic logic program. Let (Q,≤)
be a lattice. A possibilistic disjunctive clause R is of the form:

α : A← B+, not B−

where α ∈ Q and A← B+, not B− is an extended disjunctive clause as defined in
Section 2.1. The projection ∗ for a possibilistic clause is R∗ = A← B+, not B−.
n(R) = α is a necessity degree representing the certainty level of the information
described by R. A possibilistic constraint C is of the form:

TOPQ : ⊥ ← B+, not B−

where TOPQ is the top of the lattice (Q,≤) and ⊥ ← B+, not B− is a constrain
as defined in Section 2.1. As in possibilistic clauses, the projection ∗ for a pos-
sibilistic constraint is : C∗ = ⊥ ← B+, not B−. Observe that any possibilistic
constraint must have the top of the lattice (Q,≤), this restriction is motivated on
the fact that like a constraint in standard ASP, the purpose of a possibilistic con-
straint is to eliminate possibilistic models. Hence, it is assumed that there does
not exists doubt about the veracity of the information captured by a possibilistic
constraint.

A possibilistic disjunctive logic program P is a tuple of the form 〈(Q,≤), N〉,
where N is a finite set of possibilistic disjunctive clauses and possibilistic con-
straints. The generalization of ∗ over P is as follows: P ∗ = {r∗|r ∈ N}. Notice
that P ∗ is an extended disjunctive program. When P ∗ is a normal program, P
is called a possibilistic normal program. Also, when P ∗ is a positive disjunctive
program, P is called a possibilistic positive logic program and so on. A given set
of possibilistic disjunctive clauses {γ, . . . , γ} is also represented as {γ; . . . ; γ} to
avoid ambiguities with the use of the comma in the body of the clauses.

Given a possibilistic disjunctive logic program P = 〈(Q,≤), N〉, we define the
α-cut and the strict α-cut of P , denoted respectively by Pα and Pα, by

Pα = 〈(Q,≤), Nα〉 such that Nα = {c|c ∈ N and n(c) ≥ α}
Pα = 〈(Q,≤), Nα〉 such that Nα = {c|c ∈ N and n(c) > α}

Example 3.1 In order to illustrate a possibilistic program, let us go back to our
scenario described in Section 3.1. We will consider the lattice of Example 2.4;
hence, let (Q,�) be the lattice of Figure 2.2 such that the relation A � B means
that A is less possible that B. The possibilistic program P := 〈(Q,�), N〉 will be
the following set of possibilistic clauses:

32

3.2 Syntax

In the introduction, we presented the following possibilistic clause:

probable: r inf(present, T2) ∨ ¬r inf(present, T2) ← action(transplant, T),
d inf(present, T), T2 = T + 1.

Remember that the intended meaning of the first clause is that if the organ donor
has an infection, then it is probable that the organ recipient can be infected or not
after a graft.
The intended meaning of the following clause is that it is confirmed that the or-
gan’s functions can be: good, delayed and terminal after a graft.

confirmed: o(good graft funct, T2) ∨ o(delayed graft funct, T2)∨
o(terminal insufficient funct, T2)← action(transplant, T), T2 = T + 1.

The intended meaning of the following clause is that it is confirmed that if the
organ’s functions are terminal insufficient then it is necessary a transplanting.

confirmed: action(transplant, T)← o(terminal insufficient funct, T).

The intended meaning of the following clause is that it is plausible that the clinical
situation of the organ recipient can be stable if the graft’s functions are good.

plausible: cs(stable, T)← o(good graft funct, T).

The intended meaning of the following clause is that it is plausible that the clinical
situation of the organ recipient can be unstable if the graft’s functions are delayed.

plausible: cs(unstable, T)← o(delayed graft funct, T).

The intended meaning of the following clause is that it is plausible that the clini-
cal situation of the organ recipient can be of 0-urgency if the graft’s functions are
terminal insufficient after the graft.

plausible: cs(0-urgency, T2)← o(terminal insufficient funct, T2),
action(transplant, T), T2 = T + 1.

The intended meaning of the following possibilistic constraint is that it is certain
that the doctor cannot do two actions at the same time.

certain: ⊥ ← action(transplant, T), action(wait, T).

33

3. POSSIBILISTIC DISJUNCTIVE LOGIC PROGRAMS

The intended meaning of the following possibilistic constraint is that it is certain
that a transplanting cannot be done if the organ recipient is dead.

certain: ⊥ ← action(transplant, T), cs(dead, T).

The initial state of the automata of Figure 3.1 is captured by the following possi-
bilistic clauses:

certain: d inf(present, 0)← >.
certain: ¬r inf(present, 0)← >.
certain: o(terminal insufficient funct, 0)← >.
certain: cs(stable, 0)← >.

3.3 Semantics

In §3.2, we defined the syntax for any possibilistic disjunctive program. Now, in
this section, we will study the semantics for these programs. Essentially, we have
explored three approaches for capturing the semantics of possibilistic disjunctive
programs. The first two are based on answer set models and the last one is based
on pstable models. We start by presenting the approaches which are based on
answer set models.

We will consider sets of atoms as interpretations; hence, before to define the
possibilistic logic programming semantics, we will introduce two basic operations
between sets of possibilistic atoms and a relation of order between them.

Definition 3.1 Let A be a finite set of atoms and (Q,≤) be a lattice. Consider
PS = 2A×Q the finite set of all the possibilistic atoms sets induced by A and Q.
∀A,B ∈ PS, we define.
A uB = {(x,GLB({q1, q2})|(x, q1) ∈ A ∧ (x, q2) ∈ B}
A tB = {(x, q)|(x, q) ∈ A and x /∈ B∗} ∪

{(x, q)|x /∈ A∗ and (x, q) ∈ B} ∪
{(x,LUB({q1, q2})|(x, q1) ∈ A and (x, q2) ∈ B}.

A v B ⇐⇒ A∗ ⊆ B∗, and ∀x, q1, q2,
(x, q1) ∈ A ∧ (x, q2) ∈ B then q1 ≤ q2.

This definition is almost the same as Definition 7 presented in (76). The only
difference is that in Nicolas et al ’s definition, the operators min and max are
used instead of the operators GLB and LUB for defining the operations u and
t1. The following proposition is a straightforward consequence of Proposition 6
of (76).

1The operators u and t were defined as follows in (76):

34

3.3 Semantics

Proposition 3.1 (PS,v) is a complete lattice.

3.3.1 A possibilistic semantics based on answer set models

We will define a possibilistic semantics which is strictly close to the proof theory
of possibilistic logic and answer set models. Like answer set semantics’ definition,
our approach has as its base a syntactic reduction. In fact, this reduction is
inspired in the Gelfond-Lifschitz reduction.

Definition 3.2 (Reduction PM) Let P = 〈(Q,≤), N〉 be a possibilistic disjunc-
tive logic program, M be a set of atoms. P reduced by M is the positive possibilistic
disjunctive logic program:

PM := {(n(r) : A ∩M ← B+)|r ∈ N,A ∩M 6= ∅, B− ∩M = ∅,B+ ⊆M}

where r∗ is of the form A← B+, not B−.

Notice that (P ∗)M is not exactly the Gelfond-Lifschitz reduction. In fact, our
reduction is stronger than Gelfond-Lifschitz reduction when P ∗ is a disjunctive
program. For instance, let us consider the following table.

P P {c,b} (P ∗){c,b}

α1 : a ∨ b← >. α1 : b← >. a ∨ b← >.
α2 : c← not a. α2 : c← >. c← >.
α3 : c← not b.

In the first column, the possibilistic program P is defined, in the second one the
program P is reduced by {c, b} (according to Definition 3.2) and in the third one
the program P ∗ is reduced by {c, b} (according to Gelfond-Lifschitz reduction).
Observe that the reduction of Definition 3.2 removes from the head of the possi-
bilistic disjunctive clauses any atom which does not belong to M . As we will see
in Section 3.3.2, this property will be helpful for defining a possibilistic semantics
for possibilistic disjunctive programs based on a fix-point operator.

Example 3.2 In order to continue with our medical scenario described in the
introduction, let P be a ground instance of the possibilistic program presented in
Example 3.1:

A uB = {(x,min({q1, q2})|(x, q1) ∈ A ∧ (x, q2) ∈ B} and
A t B = {(x, q)|(x, q) ∈ A and x /∈ B∗} ∪ {(x, q)|x /∈ A∗ and (x, q) ∈ B} ∪
{(x,max({q1, q2})|(x, q1) ∈ A and (x, q2) ∈ B}.

35

3. POSSIBILISTIC DISJUNCTIVE LOGIC PROGRAMS

probable: r inf(present, 1) ∨ no r inf(present, 1) ← action(transplant, 0),
d inf(present, 0).
confirmed: o(good graft funct, 1) ∨ o(delayed graft funct, 1)∨
o(terminal insufficient funct, 1)← action(transplant, 0).
confirmed: action(transplant, 0)← o(terminal insufficient funct, 0).
plausible: cs(stable, 1)← o(good graft funct, 1).
plausible: cs(unstable, 1)← o(delayed graft funct, 1).
plausible: cs(0-urgency, 1)← o(terminal insufficient funct, 1),
action(transplant, 0).
certain: ⊥ ← action(transplant, 0), action(wait, 0).
certain: ⊥ ← action(transplant, 0), cs(dead, 0).
certain: d inf(present, 0)← >.
certain: no r inf(present, 0)← >.
certain: o(terminal insufficient funct, 0)← >.
certain: cs(stable, 0)← >.

Observe that the variables of time T and T2 were instantiated with the values
0 and 1 respectively; moreover, observe that the atoms ¬r inf(present, 0) and
¬r inf(present, 1) were replaced by no r inf(present, 0) and no r inf(present, 1)
respectively. This change was applied in order to manage the strong negation.

Now, let S be the following possibilistic set:

S = {(d inf(present, 0), certain), (no r inf(present, 0), certain),
(o(terminal insufficient funct, 0), certain), (cs(stable, 0), certain),
(action(transplant, 0), confirmed), (o(good graft funct, 1), confirmed),
(cs(stable, 1), plausible), (no r inf(present, 1), probable)}.

We can see that P S∗ is:

probable: no r inf(present, 1) ← action(transplant, 0), d inf(present, 0).
confirmed: o(good graft funct, 1)← action(transplant, 0).
confirmed: action(transplant, 0)← o(terminal insufficient funct, 0).
plausible: cs(stable, 1)← o(good graft funct, 1).
plausible: cs(unstable, 1)← o(delayed graft funct, 1).
plausible: cs(0-urgency, 1)← o(terminal insufficient funct, 1),
action(transplant, 0).
certain: ⊥ ← action(transplant, 0), action(wait, 0).
certain: ⊥ ← action(transplant, 0), cs(dead, 0).
certain: d inf(present, 0)← >.
certain: no r inf(present, 0)← >.
certain: o(terminal insufficient funct, 0)← >.

36

3.3 Semantics

certain: cs(stable, 0)← >.

Once a possibilistic logic program P has been reduced by a set of possibilistic
literals M , it is possible to test whether M is a possibilistic answer set of the
program P by considering the following definition.

Definition 3.3 (Possibilistic answer set) Let P = 〈(Q,≤), N〉 be a possibilis-
tic disjunctive logic program and M be a set of possibilistic atoms such that M∗ is
an answer set of P ∗. M is a possibilistic answer set of P if and only if PM∗ `PL M
and @M ′ ∈ PS such that M ′ 6= M , P (M ′)∗ `PL M ′ and M vM ′.

Example 3.3 Let P be again the possibilistic program of Example 3.1 and S
be the possibilistic set of atoms introduced in Example 3.2. First of all, we can
see that S∗ is an answer set of the extended disjunctive program P ∗. Hence, in
order to prove that S is a possibilistic answer set of P , we have to verify that
P S∗ `PL S. This means that for each possibilistic atom p ∈ S, P S∗ `PL p. We
can see that it is straightforward that

P S∗ `PL {(d inf(present, 0), certain), (no r inf(present, 0), certain),
(o(terminal insufficient funct, 0), certain),
(cs(stable, 0), certain)}

Now let us prove (cs(stable, 1), plausible) from P S∗.

Premises from PS
∗

1. o(terminal insufficient funct, 0) certain
2. o(terminal insufficient funct, 0)→ action(transplant, 0) confirmed
3. action(transplant, 0)→ o(good graft funct, 1) confirmed
4. o(good graft funct, 1)→ cs(stable, 1). plausible
From 1 and 2 by GMP
5. action(transplant, 0) confirmed
From 3 and 5 by GMP
6. o(good graft funct, 1) confirmed
From 4 and 6 by GMP
7. cs(stable, 1). plausible

In this proof, we can also see the inference of the possibilistic atom
(action(transplant, 0), confirmed). The proof of the possibilistic atom
(no r inf(present, 1), probable) is similar to the proof of the possibilistic atom
(cs(stable, 1), plausible). Therefore, we can say that P S∗ `PL S is true. Now,
notice that there does not exists a possibilistic set S ′ such that S ′ 6= S, P (S′)∗ `PL
S ′ and S v S ′; hence, we can conclude that S is a possibilistic answer set of P .

37

3. POSSIBILISTIC DISJUNCTIVE LOGIC PROGRAMS

Now what can we say from S about our medical scenario? We can say that
if it is confirmed that a transplanting is done with a donor with an infection, it
is probable that the recipient cannot be infected after the transplanting; moreover
it is plausible that he can be stable. It is worth mentioning that this optimistic
conclusion is just one of the possible scenarios that we can infer from the program
P . In fact, the program P has six possibilistic answer sets where we can find
pessimistic scenarios such as it is probable that the recipient is infected by the
organ donor’s infection and; moreover, it is confirmed that the recipient needs
another transplanting.

Now, let us study some properties of the possibilistic answer set semantics.
First, observe that there is an important condition w.r.t. the definition of a
possibilistic answer set. This is that a possibilistic set S cannot be a possibilistic
answer set of a possibilistic logic program P if S∗ is not an answer set of the
extended logic program P ∗. This condition guarantees that any clause of P ∗ is
satisfied by M∗. For instance, let us consider the possibilistic logic program P :

0.4 : a. 0.6 : b.

and the possibilistic set S = {(a, 0.4)}. We can see that P S∗ `PL S; however, S∗

is not an answer set of P ∗. Therefore, S could not be a possibilistic answer set of
P . Hence, a straightforward relation between the possibilistic answer semantics
and the answer set semantics is formalized by the following proposition.

Proposition 3.2 Let P be a possibilistic disjunctive logic program. M is a pos-
sibilistic answer set of P iff M∗ is an answer set of P ∗.

When all the possibilistic clauses of a possibilistic program P have as certain
level the top of the lattice that was considered in P , the answer sets of P ∗ can
be directly generalized to the possibilistic answer sets of P .

Proposition 3.3 Let P = 〈(Q,≤), N〉 be a possibilistic disjunctive logic program
and TOPQ be the top of the lattice (Q,≤). If ∀r ∈ P , n(r) = TOPQ, and M ′ is
an answer set of P ∗, then M := {(l,TOPQ)|l ∈ M ′} is a possibilistic answer set
of P .

For the class of possibilistic normal logic programs which are built under a
totally ordered set, our definition of possibilistic answer set is closely related
to the definition of a possibilistic stable model presented in (76). In fact, both
semantics coincide.

Proposition 3.4 Let P := 〈(Q,≤), N〉 be a possibilistic normal program such
that (Q,≤) is a totally ordered set and LP has no extended atoms. M is a
possibilistic answer set of P if and only if M is a possibilistic stable model of P .

38

3.3 Semantics

In order to prove that the possibilistic answer set semantics is computable,
we will introduce a straightforward generalization of the possibilistic resolution
rule introduced in (42):

(R) (c1 α1)(c2 α2) ` (R(c1, c2) GLB({α1, α2}))

where R(c1, c2) is any classical resolvent of c1 and c2 such that c1 and c2 are
disjunctions of literals. It is worth mentioning that it is easy to transform any
possibilistic disjunctive logic program P into a set of possibilistic disjunctions C.
Indeed, C can be obtained as follows:

C :=
⋃
{(a1 ∨ . . . ∨ am∨ ∼ a1 ∨ · · · ∨ ∼ aj ∨ aj+1 ∨ . . . , an α)|

(α : a1 ∨ . . . ∨ am ← a1, . . . , aj, not aj+1, . . . , not an) ∈ P}

We remember to the reader that whenever we consider a possibilistic program as
a theory, each negative literal not a is replaced by ∼ a such that ∼ is regarded as
the negation in classic logic — in Example 3.4, the transformation of a possibilistic
program into a set of possibilistic disjunctions is shown.

The following proposition shows that the resolution rule (R) is sound.

Proposition 3.5 Let C be a set of possibilistic disjunctions, and C = (c α) be a
possibilistic clause obtained by a finite number of successive application of (R) to
C; then C `PL C.

Like the possibilistic rule introduced in (42), (R) is complete for refuta-
tion. We will say that a possibilistic disjunctive program P is consistent if
P has at least a possibilistic answer set. Otherwise P is said to be inconsis-
tent. The inconsistency degree of a possibilistic logic program P is Inc(P) =
GLB({α|Pα is consistent }).

Proposition 3.6 Let P be a set of possibilistic clauses and C be the set of possi-
bilistic disjunctions obtained from P ; then the valuation of the optimal refutation
by resolution from C is the inconsistent degree of P .

The main implication of Proposition 3.5 and Proposition 3.6 is that (R) sug-
gests a method for inferring a possibilistic formula from a possibilistic knowledge
base.

Corollary 3.1 Let P := 〈(Q,≤), N〉 be a possibilistic disjunctive logic program,
ϕ be literal and C be a set of possibilistic disjunctions obtained from N ∪ {(∼
ϕ TOPQ)}; then the valuation of the optimal refutation from C is n(ϕ) i.e. P `PL
(ϕ n(ϕ)).

39

3. POSSIBILISTIC DISJUNCTIVE LOGIC PROGRAMS

Based on the fact that the resolution rule (R) suggests a method for inferring
the necessity value of a possibilistic formula, we can define the following function
for computing the possibilistic answer set models of an possibilistic program P .

Function Poss Answer Sets(P)

Let ASP (P ∗) be a function that computes the answer set models of the standard
logic program P ∗ e.g., DLV (40).

Poss-ASP := ∅
For all S ∈ ASP (P ∗)

Let C be the set of possibilistic disjunctions obtained from P S.
S ′ := ∅
for all a ∈ S

C ′ := C ∪ {(∼ a TOPQ)}
Search for a deduction of (R(�) α) by applying repeatedly
the resolution rule (R) from C ′, with α maximal.
S ′ := S ′ ∪ {(a α)}

endfor
Poss-ASP := Poss-ASP ∪ S ′

endfor
return(Poss-ASP).

The following proposition formalizes that the function Poss Answer Sets
computes all the possibilistic answer sets of a possibilistic logic program.

Proposition 3.7 Let P := 〈(Q,≤), N〉 be a possibilistic logic program. The set
Poss-ASP returned by Poss Answer Sets(P) is the set of all the possibilistic
answer sets of P .

In order to illustrate this algorithm, let us consider the following example:

Example 3.4 Let P := 〈(Q,≤), N〉 be a possibilistic program such that Q := {0,
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}, ≤ is the standard relation between
rational numbers and N the following set of possibilistic clauses:

0.7 : a ∨ b ← not c.
0.6 : c ← not a, not b.
0.8 : a ← b.
0.9 : e ← b.
0.6 : b ← a.
0.5 : b ← a.

40

3.3 Semantics

Firs of all, we can see that P ∗ has two answer sets: S1 := {a, b, e} and S2 := {c}.
This means that P has two possibilistic answer set models. Let us consider S1 for
our example. Then, one can see that P S1 is:

0.7 : a ∨ b ← >.
0.8 : a ← b.
0.9 : e ← b.
0.6 : b ← a.
0.5 : b ← a.

Then C := {(a ∨ b 0.7), (a∨ ∼ b 0.8), (e∨ ∼ b 0.9), (b∨ ∼ a 0.6), (b∨ ∼ a 0.5)}. In
order to infer the necessity value of the atom a, we add (∼ a 1) to C and a search
for finding an optimal refutation is applied. As we can see in Figure 3.2, there
are three refutations, however the optimal refutation is (� 0.7). This means that
the best necessity value for the atom a is 0.7.

Figure 3.2: Possibilistic resolution: Search for an optimal refutation for the atom
a.

In Figure 3.3, we can see the optimal refutation search for the atom b. As we
can see the optimal refutation is (� 0.6); hence the best necessity value for the
atom b is 0.6.

In Figure 3.4, we can see that the best necessity value for the atom e is 0.6.

From the process of search, we can infer that a possibilistic answer set of the
program P is : {(a, 0.7), (b, 0.6), (e, 0.6)}.

41

3. POSSIBILISTIC DISJUNCTIVE LOGIC PROGRAMS

Figure 3.3: Possibilistic resolution: Search for an optimal refutation for the atom
b.

Figure 3.4: Possibilistic resolution: Search for an optimal refutation for the atom
e.

3.3.2 Possibilistic answer sets based on partial evaluation

We have defined a possibilistic answer set semantics by considering the formal
proof theory of possibilistic logic. However, in standard logic programming there
are several frameworks for analyzing, defining and computing logic programming
semantics (35; 36). One of these approaches is based on program transformations,
in fact there are many studies around this approach e.g., (19; 20; 21; 39). For
the case of disjunctive logic program, one important transformation is partial
evaluation (also called unfolding) (21).

In this section, we will see that it is also possible to define a possibilistic
disjunctive semantics based on an operator which is a combination between partial
evaluation for disjunctive logic programs and the infer rule GMP of possibilistic
logic (see Section 2.5). This semantics has the same behavior to the semantics

42

3.3 Semantics

based on the proof theory of possibilistic logic.
We will start this section by defining a version of the general principle of

partial evaluation (GPPE) for possibilistic positive disjunctive clauses.

Definition 3.4 (Grade-GPPE (G-GPPE)) Let r1 be a possibilistic clause of
the form α : A← B+∪{B} and r2 a possibilistic clause of the form α1 : A1 ← >
such that B ∈ A1, then

G-GPPE(r1, r2) = (GLB({α, α1}) : A ∪ (A1 \ {B})← B+)

Observe that one of the possibilistic clauses which is considered by G-GPPE
has an empty body. For instance, let us consider the following two possibilistic
clauses:

r1 = 0.7 : a ∨ b← >.
r2 = 0.9 : e← b.

Then G-GPPE(r1, r2) = (0.7 : e ∨ a ← >). Now, by considering G-GPPE, we
will define the operator T.

Definition 3.5 Let P be a possibilistic positive logic program. The operator T(P)
is defined as follows:

T(P) := P ∪ {G-GPPE(r1, r2)|r1, r2 ∈ P}

In order to illustrate the operator T, let us consider the program P S1 of
Example 3.4.

0.7 : a ∨ b ← >.
0.8 : a ← b.
0.9 : e ← b.
0.6 : b ← a.
0.5 : b ← a.

Hence, T(P S1) is:

0.7 : a ∨ b← >. 0.7 : a← >.
0.8 : a← b. 0.7 : e ∨ a← >.
0.9 : e← b. 0.6 : b← >.
0.6 : b← a. 0.5 : b← >.
0.5 : b← a.

43

3. POSSIBILISTIC DISJUNCTIVE LOGIC PROGRAMS

Notice that by considering the possibilistic clauses that were added to P S1 by
T, one can apply G-GPPE again. For instance, if we consider 0.6 : b ← > and
0.9 : e← b from T(P S1), G-GPPE infers 0.6 : e← >. Indeed, T(T(P S1)) is:

0.7 : a ∨ b← >. 0.7 : a← >. 0.6 : a← >.
0.8 : a← b. 0.7 : e ∨ a← >. 0.5 : a← >.
0.9 : e← b. 0.6 : b← >. 0.6 : e← >.
0.6 : b← a. 0.5 : b← >. 0.5 : e← >.
0.5 : b← a. 0.6 : b ∨ e← >.

0.5 : b ∨ e← >.

An important property of the operator T is that it always reaches a fix-point.

Proposition 3.8 Let P be a possibilistic disjunctive logic program. If Γ0 := T(P)
and Γi := T(Γi−1) such that i ∈ N, then ∃ n ∈ N such that Γn = Γn−1. We denote
Γn by Π(P).

Let us consider again the possibilistic program P S1 . We can see that Π(P S1)
is:

0.7 : a ∨ b← >. 0.7 : a← >. 0.6 : a← >. 0.6 a ∨ e← >
0.8 : a← b. 0.7 : e ∨ a← >. 0.5 : a← >. 0.5 a ∨ e← >
0.9 : e← b. 0.6 : b← >. 0.6 : e← >.
0.6 : b← a. 0.5 : b← >. 0.5 : e← >.
0.5 : b← a. 0.6 : b ∨ e← >.

0.5 : b ∨ e← >.

Observe that in Π(PS1) there are possibilistic facts (possibilistic clauses with
empty bodies and one atom in their heads) with different necessity value. In
order to infer the best necessity value of each possibilistic fact, one can consider
the least upper bound of these values. For instance the best necessity value for
the possibilistic atom a is LUB({0.7, 0.6, 0.5}) = 0.7. Based on this idea, we will
define Semmin.

Definition 3.6 Let P be a possibilistic logic program and Facts(P, a) := {(α :
a ← >)|(α : a ← >) ∈ P}. Semmin(P) := {(x, α)|Facts(P, x) 6= ∅ and α :=
LUB({n(r)|r ∈ Facts(P, x)})} where x ∈ LP .

It is easy to see that Semmin(Π(P S1)) is {(a, 0.7), (b, 0.6), (e, 0.6)}. Now by
considering the operator T and Semmin, we can define a semantics for possibilistic
disjunctive logic programs that will be called possibilistic-T answer set semantics.

Definition 3.7 Let P be a possibilistic disjunctive logic program and M be a set
of possibilistic atoms such that M∗ is an answer set of P ∗. M is a possibilistic-T
answer set of P if and only if M = Semmin(Π(PM∗)).

44

3.3 Semantics

In order to illustrate this definition, let us consider again the program P
of Example 3.4 and S = {(a, 0.7), (b, 0.6), (e, 0.6)}. As commented in Example
3.4, S∗ is an answer set of P ∗. We have already seen that Semmin(Π(P S1)) is
{(a, 0.7), (b, 0.6), (e, 0.6)}, therefore we can say that S is a possibilistic-T answer
set of P . Observe that the possibilistic-T answer set semantics and the possibilis-
tic answer set semantics coincide. In fact the following proposition guaranties
that both semantics are the same.

Proposition 3.9 Let P be a possibilistic disjunctive logic program and M a set
of possibilistic atoms. M is a possibilistic answer set of P if and only if M is a
possibilistic-T answer set of P .

3.3.3 A possibilistic semantics based on pstable models

We have defined two semantics which capture the semantics for possibilistic dis-
junctive logic programs. Since these semantics were defined as extensions of the
standard answer set semantics, there are some possibilistic logic programs which
have no possibilistic answer sets. For instance, a simple possibilistic program as

α : a← not a

has no possibilistic answer set. In fact, the existence of one clause of this form
will affect all the possibilistic knowledge base in such a way that the possibilistic
knowledge base will not have a possibilistic answer set.

In this section, we present a second approach for capturing the semantics
of possibilistic logic programs. This approach is based on pstable semantics (see
Section 2.4.2). Pstable semantics emerges from the fusion of paraconsistent logics
and ASP. This semantics is able to capture ASP; moreover, it is less sensitive (in
the sense of inconsistency) than the answer set semantics.

We will start this section defining pstable semantics for possibilistic normal
programs and after that we will show that this semantics is also able to capture
the semantics of possibilistic disjunctive logic programs. Like possibilistic answer
set semantics, possibilistic pstable semantics is defined in terms of a syntactic
reduction. This reduction is based on Definition 2.3.

Definition 3.8 Let P be a possibilistic normal program and M a set of atoms.
We define

PRED(P,M) := {(α : a← B+, not (B− ∩M))|(α : a← B+, not B−) ∈ P}

Let us consider the following example in order to illustrate this definition.

45

3. POSSIBILISTIC DISJUNCTIVE LOGIC PROGRAMS

Example 3.5 First, let S be the set {(a, 0.6), (b, 0.7)} and P1 := 〈(Q,≤), N〉 be
a possibilistic program such that (Q,≥) is the lattice of Example 3.4 and N the
following set of possibilistic clauses:

0.7 : a← not b, not c.
0.6 : a← b.
0.8 : b← a.

Then, we can see that the program PRED(P1, S
∗) is:

0.7 : a← not b.
0.6 : a← b.
0.8 : b← a.

By considering the reduction PRED, we define the possibilistic pstable se-
mantics as follows.

Definition 3.9 (Possibilistic Pstable Semantics) Let P be a possibilistic nor-
mal logic program and M be a set of possibilistic atoms such that M∗ is a pstable
model of P ∗. We say that M is a possibilistic pstable model of P if and only if
PRED(P,M∗) `PL M and @M ′ such that M ′ 6= M , PRED(P,M∗) `PL M ′ and
M vM ′.

Example 3.6 Let us continue with Example 3.5. We have already seen that
PRED(P1, S

∗) is:

0.7 : a← not b.
0.6 : a← b.
0.8 : b← a.

Then, we want to know if S is a possibilistic pstable models of P1. First of all,
we have already seen in Section 2.4.2 that S∗ is a pstable models of P ∗1 . Hence,
we have to construct a proof in possibilistic logic for (a, 0.6) and (b, 0.7). Let us
consider the proof for the possibilistic atom (a, 0.6):

1. (a ∨ b)→ ((b→ a)→ a) 1 Tautology
2. ∼ b→ a 0.7 Premise from PRED(P1, S)
3. a ∨ b 0.7 From 2 by possibilistic logical

equivalency
4. (b→ a)→ a) 0.7 From 1 and 3 by GMP
5. b→ a 0.6 Premise from PRED(P1, S)
6. a 0.6 From 4 and 5 by GMP

46

3.3 Semantics

Observe that the formula ∼ b → a 0.7 corresponds to the possibilistic nor-
mal clause 0.7 : a ← not b which belongs to the program RED(P1, S

∗). The
proof for (b, 0.7) is similar to the proof of (a, 0.6). Notice that @ S ′ such that
PRED(P1, S

∗) `PL S ′ and S v S ′. Therefore, we can conclude that S is a
possibilistic pstable models of P1.

Observe that the possibilistic program P1 is an example where the possibilis-
tic pstable semantics is different to both the possibilistic stable semantics (76)
and the possibilistic answer set semantics (Definition 3.3). In fact, P1 has no
possibilistic stable model neither possibilistic answer set.

Even thought, there are programs where the possibilistic pstable semantics
does not coincide with the possibilistic stable semantics neither with the possi-
bilistic answer set semantics, we can identify a relationship between the possi-
bilistic answer set semantics and the possibilistic pstable semantics.

Proposition 3.10 Let P be a possibilistic normal program. If M is a possibilistic
answer set of P , then the following conditions hold:

a) M∗ is a pstable model of P ∗.

b) there exists a possibilistic pstable mode M ′ of P such that M v M ′ and
M∗ = M ′∗.

This proposition points out that whenever a possibilistic normal program has
a possibilistic answer set M there exists a possibilistic pstable model M ′ such
that the main differences between M and M ′ are the necessity-values of their
elements. For instance, let us consider the following possibilistic program P :

0.3 : a← >.
0.8 : a← not a.

One can see that P has the possibilistic answer set M := {(a, 0.3)} and the
possibilistic pstable model M ′ := {(a, 0.8)}. It is clear that M∗ = M ′∗; however,
M vM ′.

Remark 3.1 It is worth to comment that when P = 〈(Q,≤), N〉 is a possibilistic
program which does not contain extended atoms i.e. atoms of form ¬a, and (Q,≤)
is a totally ordered set, it will be also true that: If M is a possibilistic stable model
of P , then the following conditions hold: 1.− M∗ is a pstable model of P ∗ and
2.− there exists a possibilistic pstable mode M ′ of P such that M v M ′ and
M∗ = M ′∗.

47

3. POSSIBILISTIC DISJUNCTIVE LOGIC PROGRAMS

An interesting property of the possibilistic pstable semantics is that this se-
mantics supports a kind of monotony w.r.t. the inference under possibilistic logic.
In order to formalize this property, we will say that P is equivalent to P ′ under
the possibilistic pstable semantics if and only if any possibilistic pstable model of
P is also a possibilistic pstable model of P ′ and vice versa.

Proposition 3.11 Let P be a possibilistic normal program. If P `PL (x α) then
P is equivalent to P ∪ {(x α)} under the possibilistic pstable semantics.

Notice that neither the possibilistic answer set semantics nor the possibilistic
stable semantics (76) satisfy Proposition 3.11 i.e. if P `PL (x α), then P is not
equivalent to P ∪ {(x α)} under possibilistic answer set semantics neither under
the possibilistic stable semantics. In order to show this, let us consider a simple
possibilistic logic program P :

α : a← not a

It is clear that P `PL (a α). P has no a possibilistic stable model neither a
possibilistic answer set. However, P ∪ {(a α)} has a possibilistic stable model
and a possibilistic answer set which is the same in both cases and is {(a, α)}.

The possibilistic answer set semantics was defined for the family of possibilistic
disjunctive logic programs. This means that the possibilistic clauses could have
a disjunction in their heads. Since the possibilistic pstable semantics was defined
for possibilistic normal programs, one can think that the possibilistic pstable
semantics is less expressive than the possibilistic answer semantics. However,
by considering a simple mapping, one can extend the definition of possibilistic
pstable models for possibilistic normal programs in order to define a semantics
for possibilistic disjunctive logic programs.

An interesting result is that there exists a relationship between the possibilistic
answer sets of a possibilistic disjunctive logic program P and the possibilistic
pstable models of the possibilistic normal program TRAD(P) (defined below).
In order to formalize this result, we define some basic terms.

Given a possibilistic disjunctive logic program P := 〈(Q,≤), N〉, Pc will denote
the set of possibilistic constraints which belong to P and PN will denote the rest
i.e. PN = P \ Pc.

In order to see a possibilistic disjunctive logic program as a possibilistic normal
logic program, we will define a simple mapping of a possibilistic disjunctive logic
programs into a possibilistic normal logic programs.

Definition 3.10 Let P be a possibilistic disjunctive logic program and
(α : A← B+, not B−) ∈ PN . We define

48

3.3 Semantics

R(α : A← B+, not B−) :=
⋃
a∈A

{(α : a← B+, not (B− ∪ (A \ {a}))}

The generalization of R over P is as follows: R(P) :=
⋃
C∈P R(C).

For instance, R(0.7 : a ∨ b← not c) := {0.7 : a← not c, not b;
0.7 : b← not c, not a}

By considering the mapping R, we define the function TRAD.

Definition 3.11 Let P be a possibilistic disjunctive logic program. We define
TRAD(P) as:

TRAD(P) := R(PN) ∪ Pc

Now, by considering the function TRAD, we formalize that whenever a possi-
bilistic disjunctive logic program P has a possibilistic answer set M , there exists
a possibilistic pstable model M ′ of the possibilistic normal program TRAD(P)
such that the main differences between M and M ′ are the necessity-values of their
elements.

Theorem 3.1 Let P be a possibilistic disjunctive program. If M is a possibilistic
answer set of P , then it implies that

a) M∗ is a pstable model of TRAD(P)∗.

b) there exists a possibilistic pstable mode M ′ of TRAD(P) such that M v M ′

and M∗ = M ′∗.

Observe that this result is a generalization of the result of Proposition 3.10.
In terms of computability, since there is an algorithm for inferring pstable models
(69) and the possibilistic pstable semantics is based on the proof theory of pos-
sibilistic logic, the following proposition is a direct consequence of Proposition
3.7.

Proposition 3.12 Given a possibilistic program P := 〈(Q,≤), N〉 there exists
an algorithm that computes the set of possibilistic pstable models of P .

49

3. POSSIBILISTIC DISJUNCTIVE LOGIC PROGRAMS

3.4 Inconsistency in possibilistic logic programs

In this section, we will motivate the relevance of considering inconsistent possi-
bilistic knowledge bases and we will introduce some criteria for managing incon-
sistent possibilistic logic programs.

3.4.1 Relevance of inconsistent possibilistic logic programs

Inconsistent knowledge bases usually are regarded as an epistemic hell that have
to be avoided at all costs. However, many times it is difficult or impossible to
stay away of managing inconsistent knowledge bases. There are approaches, as
it is the case of Paraconsistent Logics, which allow to infer inconsistent pseudo-
models. For instance, in (24), Bueno argues that to pursue inconsistent systems
is a useful device for a number of reasons: (1) this is often the only way to explore
inconsistent information without arbitrarily rejecting precious data. (2) pursu-
ing inconsistent systems is sometimes the only way to obtain new information
(particularly information that conflicts with deeply entrenched theories). As a
result, (3) pursuing inconsistent belief systems allows us to make better informed
decisions regarding which bits of information to accept or reject in the end.

In order to illustrate a small example, where to explore inconsistent informa-
tion can be important to make a better informed decision, we will continue with
the medical scenario described in Section 3.1. In Example 3.2, we have already
presented the grounded program Pinfections of our medical scenario:

probable: r inf(present, 1) ∨ no r inf(present, 1) ← action(transplant, 0),
d inf(present, 0).
confirmed: o(good graft funct, 1) ∨ o(delayed graft funct, 1)∨
o(terminal insufficient funct, 1)← action(transplant, 0).
confirmed: action(transplant, 0)← o(terminal insufficient funct, 0).
plausible: cs(stable, 1)← o(good graft funct, 1).
plausible: cs(unstable, 1)← o(delayed graft funct, 1).
plausible: cs(0-urgency, 1)← o(terminal insufficient funct, 1),
action(transplant, 0).
certain: ⊥ ← action(transplant, 0), action(wait, 0).
certain: ⊥ ← action(transplant, 0), cs(dead, 0).
certain: d inf(present, 0)← >.
certain: no r inf(present, 0)← >.
certain: o(terminal insufficient funct, 0)← >.
certain: cs(stable, 0)← >.

As commented in Example 3.2, in this program the atoms ¬r inf(present, 0) and

50

3.4 Inconsistency in possibilistic logic programs

¬r inf(present, 1) were replaced by no r inf(present, 0) and no r inf(present, 1)
respectively. Usually in standard answer set programming, the constraints

⊥ ← no r inf(present, 0), r inf(present, 0).
⊥ ← no r inf(present, 1), no r inf(present, 1).

must be added to the program for avoiding inconsistent answer sets. In order to
comment the role of this kind of constraints, let C1 be the following possibilistic
constraints:

certain: ⊥ ← no r inf(present, 0), r inf(present, 0).
certain: ⊥ ← no r inf(present, 1), no r inf(present, 1).

Also let us consider three new possibilistic clauses (denoted by Pv):

confirmed: v(kidney, 0)← cs(stable, 1), action(transplant, 0).
probable: no v(kidney, 0)← r inf(present, 1), action(transplant, 0).
certain: ⊥ ← not cs(stable, 1).

The intended meaning of the predicate v(t, T) is that the organ t is viable for
transplanting and T denotes a moment at the time. Observe that we replaced
the atom ¬v(kidney, 0) by no v(kidney, 0). The reading of the first clause is that
if the clinical situation of the organ recipient is stable after the graft, then it is
confirmed that the kidney is viable for transplanting. The reading of the second
one is that if the organ recipient is infected after the graft, then it is plausible
that the kidney is not viable for transplanting. The reading of the possibilistic
constraint is that we do not want to consider scenarios where the clinical situ-
ation of the organ recipient is not stable. We will also consider the respective
possibilistic constrain of the atoms no v(kidney, 0) and v(kidney, 0) (denoted by
C2):

certain: ⊥ ← no v(kidney, 0), v(kidney, 0).

Hence we define two programs

P := Pinfections ∪ Pv and Pc := Pinfections ∪ Pv ∪ C1 ∪ C2

Basically, the difference between P and Pc is that P allows inconsistent possi-
bilistic models and Pc does not allow inconsistent possibilistic models.

Now let us consider the possibilistic answer sets of the programs P and Pc.
We can see that the program Pc has just one possibilistic answer set:

51

3. POSSIBILISTIC DISJUNCTIVE LOGIC PROGRAMS

{(d inf(present, 0), certain), (no r inf(present, 0), certain),
(o(terminal insufficient funct, 0), certain), (cs(stable, 0), certain),
(action(transplant, 0), confirmed), (o(good graft funct, 1), confirmed),
(cs(stable,1), plausible), (no r inf(present,1), probable),
(v(kidney,0), plausible)}

This possibilistic answer set suggests that since it is plausible that recipient’s
clinical situation can be stable after the graft, it is plausible that the kidney is
viable for transplanting. Observe that the possibilistic answer sets of P do not
warn that the organ recipient could be infected after the graft.

Let us consider the possibilistic answer set of the program P :

S1 := {(d inf(present, 0), certain), (no r inf(present, 0), certain),
(o(terminal insufficient funct, 0), certain), (cs(stable, 0), certain),
(action(transplant, 0), confirmed), (o(good graft funct, 1), confirmed),
(cs(stable,1), plausible), (no r inf(present,1), probable),
(v(kidney,0), plausible)}

S2 := {(d inf(present, 0), certain), (no r inf(present, 0), certain),
(o(terminal insufficient funct, 0), certain), (cs(stable, 0), certain),
(action(transplant, 0), confirmed), (o(good graft funct, 1), confirmed),
(cs(stable,1), plausible), (r inf(present,1), probable),
(v(kidney,0), plausible), (no v(kidney,0), probable)}

P has two possibilistic answer sets: S1 and S2. S1 corresponds to the possibilistic
answer set of the program Pc and S2 is an inconsistent possibilistic answer set —
because the atoms (v(kidney,0), plausible) and (no v(kidney,0), probable)
appear in S2. Observe that although S2 is an inconsistent possibilistic answer set,
it contains important information w.r.t. the considerations of our scenario. S2

suggests that even thought it is plausible that the clinical situation of the organ
recipient can be stable after the graft, it is also probable that the organ recipient
can be infected by the infection of the donor’s organ.

Observe that essentially Pc is unable to infer the possibilistic answer set S2

by the presence of the possibilistic constraint:

certain: ⊥ ← no v(kidney, 0), v(kidney, 0).

By defining this kind of constrains, we can guarantee that any possibilistic
answer set inferred from Pc will be consistent; however, one can omit important
considerations w.r.t. a decision-making problem. In fact, we agree with Bueno
(24) that to consider inconsistent systems, as inconsistent possibilistic answer sets,

52

3.4 Inconsistency in possibilistic logic programs

some times is the only way to explore inconsistent information without arbitrarily
rejecting precious data.

3.4.2 Inconsistency degrees of possibilistic sets

For managing inconsistent possibilistic answer set, it is necessary to define a crite-
rion of preference between possibilistic answer sets. In order to define a criterion
between possibilistic answer sets, we will define the concept of inconsistency de-
gree of a possibilistic set. We say that a set of possibilistic atoms S is inconsistent
(resp. consistent) if and only if S∗ is inconsistent (resp. consistent) i.e. there
exists atom a such that a,¬a ∈ S∗.
Definition 3.12 Let A be a finite set of atoms and extended atoms,(Q,≤) be a
lattice and S ∈ 2A×Q. The inconsistent degree of S is defined as follows:

InconsDegre(S) :=

{
BOTQ if S∗ is consistent
GLB({α|Sα is consistent}) otherwise

where BOTQ is the bottom of the lattice (Q,≤) and Sα := {(a, α1) ∈ S|α1 ≥ α}.
For instance, the possibilistic answer set S2 of our example above has an in-

consistency degree of confirmed. Based on the inconsistency degree of possibilistic
sets, we can define a criterion of preference between possibilistic answer sets.

Definition 3.13 Let P = 〈(Q,≤), N〉 be a possibilistic program and M1, M2 two
possibilistic answer set of P . We say that M1 is weakest-inconsistent than M2 if
and only if InconsDegre(M1) < InconsDegre(M2).

For our example above, it is obvious that S1 is weakest-inconsistent than S2. In
general terms, we will say that a possibilistic answer set M1 is preferred than M2

if and only if M1 is weakest-inconsistent than M2. This means that any consistent
possibilistic answer set will be preferred than any inconsistent possibilistic answer
set.

So far we have commented only the case of inconsistent possibilistic answer set.
However, there are possibilistic programs that are inconsistent because they have
no possibilistic answer sets neither possibilistic pstable models. For instance, let
us consider the following possibilistic program Pinc (we are assuming the lattice
of Example 3.4):

0.3 : a← not b.
0.5 : b← not c.
0.6 : c← not a.

Observe that P ∗inc has no answer sets neither pstable models; hence, Pinc has no
possibilistic answer sets neither possibilistic pstable models.

53

3. POSSIBILISTIC DISJUNCTIVE LOGIC PROGRAMS

3.4.3 Restoring inconsistent possibilistic knowledge bases

In order to restore consistency of an inconsistent possibilistic knowledge base,
possibilistic logic deletes the set of possibilistic formulæ which are lower than the
inconsistent degree of the inconsistent knowledge base. By considering this idea,
the authors of (76) defined the concept of α-cut for possibilistic logic programs.
Based on Definition 14 of (76), we define its respective generalization for our
approach.

Definition 3.14 Let P be a possibilistic logic program

- the strict α-cut is the subprogram P>α = {r ∈ P |n(r) > α}

- the consistency cut degree of P :

ConsCutDeg(P) :=

{
BOTQ if P ∗ is consistent
GLB({α|Pα is consistent}) otherwise

where BOTQ is the bottom of the lattice (Q,≤).

Notice that the consistency cut degree of a possibilistic logic program identifies
the minimum level of certainty for which a strict α-cut of P is consistent. As
Nicolas et al, remarked in (76), by the non-monotonicity of the framework it is
not ensure that a higher cut is necessarily consistent.

In order to illustrate these ideas, let us consider again the program Pinc. First,
we can see that ConsCutDeg(Pinc) = 0.3; hence, the subprogram PConsCutDeg(Pinc)

is:

0.5 : b← not c.
0.6 : c← not a.

Observe that this program has a possibilistic answer set which is {(c, 0.6)}1.
Hence thanks to the strict α-cut of P , one is able to infer information from Pinc

We have commented two kinds of inconsistency in our approach,

• one which arises from the presence of complementary atoms in a possibilistic
answer set (or a possibilistic pstable model) and

• the other one which arises from the non-existence of possibilistic answer set
(or possibilistic pstable models) of a possibilistic logic program.

1Remember that any possibilistic answer set is also a possibilistic pstable model.

54

3.5 Related Work

For managing the inconsistency of possibilistic answer sets, we have defined a
criterium of preference between possibilistic answer sets — of course that this
criterium is also applied to possibilistic pstable models. For managing the non-
existence of possibilistic answer set (or possibilistic pstable models) of a possi-
bilistic logic program P , we have adopted the approach suggested by Nicolas et
al, in (76) of cuts for getting subprograms of P which are consistent.

It worth to comment that in some cases, it is possible to apply α-cuts in order
to avoid inconsistent possibilistic answers. For instance, let P be the following
possibilistic program:

0.9 : a← >.
0.9 : ¬a← >.
0.8 : b← >.

We can see that ConsCutDeg(P) = 0.9; hence, if we apply a strict α-cut to P ,
we will get an empty program. On the other hand, if we allow an inconsistent
possibilistic answer set, we get {(a, 0.9), (¬a, 0.9), (b, 0.8)}. As one can see, 0.8 :
b← > is not involved in the inconsistency of P . Hence, it is not necessary to loss
this information. We believe that an inconsistent possibilistic answer set could
be more informative answer than a null-possibilistic answer set for an expert.

3.5 Related Work

Logic programming with uncertainty is an extensively research area. In fact, it has
proceeded along various research lines of logic logic programming. An interesting
historical recollection in this topic was recently presented by V. S. Subrahmanian
in (104). In this recollection he highlights some phases in the evolution of the
topic from the viewpoint of a committed researcher.

Research on logic programming with uncertainty has dealt with various ap-
proaches of logic programming semantics, as well as different applications. Most
of the approaches in the literature employ one of the following formalisms:

• annotated logic programming, e.g., (63).

• probabilistic logic, e.g., (62; 72; 75).

• fuzzy set theory, e.g., (101; 109; 110).

• multi-valued logic, e.g., (46; 66).

• evidence theoretic logic programming, e.g., (10).

• possibilistic logic, e.g., (2; 3; 4; 41; 76).

55

3. POSSIBILISTIC DISJUNCTIVE LOGIC PROGRAMS

Basically, these approaches differ in the underlying notion of uncertainty and
how uncertainty values, associated to clauses and facts, are managed.

As stated on §3.1, we are interested on modeling qualitative expressions such
that these expressions could capture the available information especially when
this information is incomplete, uncertain and inconsistent. As far of this chapter
we have defined a logic programming approach with uncertainty which captures
uncertain values by considering complete lattices. The use of lattices for captur-
ing uncertain values is not new, maybe one of the most influential approach in
this context was suggest by Fitting in (46). In (46), Fitting showed that inter-
laced bilattices provide a simple and elegant setting for the consideration of logic
programming extensions allowing for incomplete or contradictory answers. On
the theoretical level he showed that his approach is a considerable unification of
several approaches.

An interesting observation of Fitting is that in the abstract level all interlaced
bilattices are quite natural; however not all are appropriate for computer imple-
mentation. By Proposition 4.1 of (46), we know that given two complete lattices
C and B, B(C,D) is an interlaced bilattice1. It is not difficult to see that essen-
tially the semantics of a possibilisitic disjunctive logic program P = 〈(Q,≤), N〉 is
defined in the domain of the interlaced bilattice B({0, 1},Q). Since the possibil-
isitic semantics defined in this chapter are computable, our approach is restricted
to computable interlaced bilattices. Observe that by considering a complete lat-
tice Q′ different to {0, 1}, we can explore new logic programming semantics for
our approach by considering multi-valued logics defined under Q′ and Fitting’s
approach. Of course that this issue requires a deep analysis to understand how
Fitting’s approach and our approach are related. It is worth to comment that in
(3), a possibilistic logic programming approach is defined over the many-valued
Gödel logic. The syntax of this approach is restricted to a Horn-clause sub-
language of the many-valued Gödel logic; hence it is unable to capture default
negation and disjunctive clauses.

To prioritize logic clauses, as it is done in our possibilistic approach, can be
also regarded as a preference relation between rules. In fact, by considering the
certainty degrees as preferences, it was defined two criteria for restoring inconsis-
tent possibilistic knowledge bases in §3.4. Observe that these criteria are based
on the notion of maximal consistent subsets of premises. In other words, we try
to recover the maximal consistent subset of possibilistic clauses from an inconsis-
tent possibilistic program to infer consistent information. The use of qualitative
preferences in logic programming has been suggested by authors as G. Brewka
in (23). The Brewka’s approach is also motivated from the fact that a variety
of applications numerical information is hard to obtain. To have a correct un-

1See (46) for details.

56

3.6 Concluding remarks

derstanding of the relationship between Brewka’s approach and our approach
requires a deep analysis.

3.6 Concluding remarks

In this chapter, we have introduced a possibilistic disjunctive logic programming
approach. This approach introduces the use of possibilistic disjunctive clauses
which are able to capture incomplete information and incomplete states of a
knowledge base at the same time.

In particular, we have defined three approaches for capturing the semantics
of the possibilistic disjunctive programs:

1. the first one is strictly close to the proof theory of possibilistic logic and
answer set models;

2. the second one is based on partial evaluation, a fix-point operator and
answer set models; and

3. the last one is also based on the proof theory of possibilistic logic and pstable
semantics.

Based on the flexibility of possibilistic logic for defining degrees of uncertainty,
we have illustrated in this chapter that it is possible to consider non-numerical
degrees for capturing uncertain information. In particular, we have discussed the
use of non-numerical degrees of uncertainty in a medical scenario.

For managing the inconsistency of possibilistic models, we have defined a
criterium of preference between possibilistic answer sets. Also, for managing
the non-existence of possibilistic answer set (or possibilistic pstable models) of a
possibilistic logic program P , we have adopted the approach suggested by Nicolas
et al, in (76) of cuts for getting subprograms of P which are consistent.

With the results of this chapter, we have achieved one of the main goals of
this thesis: to define a non-monotonic approach able to perform reasoning under
uncertain, incomplete and inconsistent information. It is worth comment that to
the best of our knowledge, the approach presented in this chapter is the first one
on dealing with possibilistic disjunctive logic programs.

57

3. POSSIBILISTIC DISJUNCTIVE LOGIC PROGRAMS

58

Chapter 4

Studying abstract argumentation
semantics based on logic
programming semantics

In this chapter, we will present our study of abstract argumentation semantics
based on logic programming semantics. We will see that by modeling argumenta-
tion frameworks as logic programs, it is possible to characterize and define new
abstract argumentation semantics in terms of logic programming semantics.

4.1 Introduction

Argumentation theory, or argumentation, embraces the arts and sciences of civil
debate, dialogue, conversation, and persuasion. It studies rules of inference, logic,
and procedural rules in both artificial and real world settings. Argumentation is
concerned primarily with reaching conclusions through logical reasoning, that is,
claims based on premises. Although including debate and negotiation which are
concerned with reaching mutually acceptable conclusions, argumentation theory
also encompasses eristic dialog, the branch of social debate in which victory over
an opponent is the primary goal. This art and science is often the means by
which people protect their beliefs or self-interests in rational dialogue, in common
parlance, and during the process of arguing.

Argumentation is also a formal discipline within artificial intelligence where
the aim is to make a computer assist in or perform the act of argumentation.
In fact, during the last years, argumentation has been gaining increasing impor-
tance in Multi-Agent Systems (MAS), mainly as a vehicle for facilitating rational
interaction (i.e. interaction which involves the giving and receiving of reasons).
A single agent may also use argumentation techniques to perform its individual

59

4. STUDYING ABSTRACT ARGUMENTATION SEMANTICS
BASED ON LOGIC PROGRAMMING SEMANTICS

reasoning because it needs to make decisions under complex preferences policies,
in a highly dynamic environment.

Although several approaches have been proposed for argument theory, Dung’s
approach presented in (44), is a unifying framework which has played an influ-
ential role on argumentation research and Artificial Intelligence (AI). Dung’s ap-
proach is regarded as an abstract model where the main concern is to find the
set of arguments which are considered as acceptable. The strategy for inferring
the set of acceptable arguments is based on abstract argumentation semantics.
The kernel of Dung’s framework is supported by four abstract argumentation se-
mantics: stable semantics, preferred semantics, grounded semantics, and complete
semantics.

Since Dung introduced his abstract argumentation approach, he proved that
his approach can be regarded as a special form of logic programming with negation
as failure. This result has at least two main implications:

1. It defines a general method for generating metainterpreters for argumenta-
tion systems and

2. it defines a general method for studying abstract argumentation semantics’
properties in terms of logic programming semantics’ properties.

Although the study of abstract argumentation semantics in terms of logic
programming semantics has important implications, there are few efforts in order
to characterize or to define new argumentation semantics based on logic pro-
gramming semantics. In fact, the only argumentation semantics that have been
characterized in terms of logic programming semantics (to the best of our knowl-
edge) are the grounded semantics and the stable semantics (44).

In this chapter, we will present a study of abstract argumentation semantics
in terms of logic programming semantics. We will start by presenting some basic
conditions which will be considered when one wants to regard an argumentation
framework as a logic program. The results of this chapter are mainly concerned
on the argumentations semantics based on admissible sets.

Possibly, the two main challenges of studying Dung’s approach in terms of
logic programming are:

1. To find suitable logic programming codifications able to map an argumen-
tation framework AF into a logic program P such that these codifications
are polynomial time computable, and

2. To find suitable logic programming semantics able to capture the different
patterns of inference of the argumentation semantics.

60

4.1 Introduction

In (44), Dung defined a logic programming codification (PAF , see §2.6) in order
to map an argumentation framework into a logic program. In fact by considering
PAF , Dung showed that the well-founded semantics (§2.4.3) is a proper logic
programming semantics to capture the grounded semantics and the answer set
semantics (§2.4.1) is a proper logic programming semantics to capture the stable
semantics. However, to the best of our knowledge, there does not exist a logic
programming semantics able to capture the preferred semantics by using PAF .

In this chapter will introduce the concept of a suitable codification. A suitable
codification will be a mapping which at least is able to characterize the three well-
accepted argumentation semantics: the grounded, preferred and stable semantics.

It is quite expected that a suitable codification of an argumentation framework
should not only permit to characterize abstract argumentation semantics, but
also it ought to permit to perform a deep study about an abstract argumentation
semantics. Hence, by considering the flexibility of a suitable codification, we will
present:

• a study of the preferred semantics in terms of minimal models and an-
swer set sets models — this study will suggest some practical methods for
implementing the preferred semantics and

• a study of the grounded semantics in order to define some intermediate ar-
gumentation semantics between the grounded and the preferred semantics.

Since we define a characterization of the preferred semantics in terms of answer
set models and positive disjunctive logic program, we also outline how to perform
any query w.r.t. sceptical and credulous reasoning under the preferred semantics
by considering DLV system.

An interesting point of our study of the grounded semantics is that as we
consider rewriting systems for defining extensions of the grounded semantics, we
will see that by applying program transformation to a suitable codification one
can describe the interactions of arguments of an argumentation framework.

The rest of chapter is divided as follows: In §4.2, we will define the concept
of suitable codification for characterizing Dung’s argumentation semantics. In
§4.3 and §4.4, we introduce a suitable codification. In §4.5, we present our study
of the preferred semantics. In §4.6, we define some extensions of the grounded
semantics. Finally, in the last section, we present our concluding remarks.

61

4. STUDYING ABSTRACT ARGUMENTATION SEMANTICS
BASED ON LOGIC PROGRAMMING SEMANTICS

4.2 Suitable codifications for arguing under ad-

missible sets

In this section, we will define the concept of suitable codification for capturing
argumentation theory in terms of logic programming.

The problem of finding suitable codifications for mapping argumentation the-
ory into logic programming is close related to find suitable codifications of an
argumentation framework as a logic program. This is because there is a strong
relationship between the codification and the logic programming semantics which
will be considered for characterizing an abstract argumentation semantics. For
instance, Dung showed that by considering PAF (see §2.6) and WFS, one can
capture the grounded semantics; however any change of the codification or the
logic programming semantics will induce a different candidate argumentation se-
mantics.

What is a suitable codification for argumentation theory in terms of logic
programming? Of course that the answer to this question will depend on the
argumentation approach that one wants to capture in terms of logic programming.
In this work, we are interested on Dung’s argumentation style; hence, based on
the fact that the grounded, preferred and stable semantics are the well-accepted
argumentation semantics for the argumentation community (8; 16; 99), one can
impose that a suitable codification at least must be able to characterize these
semantics. It is worth mentioning that these conditions are imposed in order to
follow an argumentation approach based on admissible sets.

Before to introduce the definition of a suitable codification, we will clarify what
we understand when we say that a logic programming semantics characterizes an
argumentation semantics. Formally, an argumentation semantics arg SEM is a
function from AFAR → 2AR. This means that an argumentation semantics can
be regarded as a mapping from an argumentation framework into a set of sets
of arguments (each set of arguments is called extension). Also remember that
any logic programming semantics S can be regarded as a mapping from a logic
program P into a set H of sets of literals, such that for each set of literals L in
H, P ∪ L is consistent (in the strict sense of classical logic). We call each of the
above sets of literals (such as L) partial models of the program P . By having
these ideas in mind, we introduce the following definition:

Definition 4.1 Given an argumentation framework AF := 〈AR, attacks〉, a
logic program P, a logic programming semantics SEM, and an argumentation
semantics arg SEM. We say that SEM of P characterizes arg SEM of AF if
the following conditions hold:

1. for each model M inferred by SEM from P, there is an extension E inferred

62

4.2 Suitable codifications for arguing under admissible sets

by arg SEM from AF such that there exists a function f such that f(M) =
E.

2. for each extension E inferred by arg SEM from AF , there is a model M
inferred by SEM from P such that there exists a function g such that g(E) =
M .

Informally speaking, the first condition says that if M is a model of P in
a given logic programming semantics, then M induces an extension of AF in a
given argumentation semantics. In the same way, the second condition says that
if E is an extension of AF in a given argumentation semantics, then E induces a
model of P in a given logic programming semantics.

Notice that in this definition, there is a strict relation one to one between the
models of P and the extensions of AF . This means that if we are characterizing
a skeptical argumentation semantics arg SEM , then it must be characterized by
a skeptical logic programming semantics SEM . Also when we are charactering
a credulous argumentation semantics arg SEM , it must be characterized by a
credulous logic programming semantics. By having it in mind, we introduce our
definition of a suitable codification.

Definition 4.2 Given an argumentation framework AF := 〈AR, attacks〉 and a
logic program P , we will say that P is a suitable codification of AF if:

1. there is a logic programming semantics SEM such that SEM of P charac-
terizes the grounded semantics of AF ,

2. there is a logic programming semantics SEM such that SEM of P charac-
terizes the stable semantics of AF ,

3. there is a logic programming semantics SEM such that SEM of P charac-
terizes the preferred semantics of AF ,

4. the functions f and g of each characterization are polynomial time com-
putable, and

5. there exists a polynomial time computable function µ such that µ(AF) = P .

It is worth mentioning that a suitable codification could be an useful tool for
defining intermediate argumentation semantics between the grounded semantics
and the preferred semantics. This means that it is possible to define an interme-
diate reasoning between the grounded semantics and the preferred semantics.

The problem of characterizing abstract argumentation semantics does not only
depend on the codification but also in the logic programming semantics. In fact,

63

4. STUDYING ABSTRACT ARGUMENTATION SEMANTICS
BASED ON LOGIC PROGRAMMING SEMANTICS

to find a suitable logic programming semantic is as important as to find a suitable
codification for characterizing a particular abstract argumentation semantics.

By Theorem 2.1, we have already seen that by using PAF , WFS is a suit-
able logic programming semantics for characterizing the grounded semantics and
answer set semantics for characterizing the stable semantics. However, to the
best of our knowledge there is not a logic programming semantics which could
characterize the preferred semantics by using PAF . Hence we can not say that
PAF is a suitable codification.

In the following section, we will present a single mapping, which has some
interesting properties in order to study argumentation semantics in terms of logic
programming semantics. In fact, we will show that it satisfies the condition of a
suitable codification.

4.3 Mapping an argumentation framework into

a normal program

In this section, we will introduce a mapping in order to regard an argumentation
framework as a logic program. We will see that this mapping has some interesting
properties w.r.t. suitable codifications.

Our mapping is inspired in the conditions which make an argument to be de-
feated — this means that it is attacked by an acceptable argument (see Definition
2.8). Basically, it captures two basic conditions which make an argument to be
defeated. In order to define our mapping, we introduce the predicate d(x), where
the intended meaning of d(x) is: “the argument x is defeated”.

Definition 4.3 Let AF := 〈AR, attacks〉 be an argumentation framework, then
Ψ(AF) is defined as follows:

ΨAF :=
⋃
a∈AR

{
⋃

b:(b,a)∈attacks

{d(a)← not d(b)} ∪
⋃

b:(b,a)∈attacks

{d(a)←
∧

c:(c,b)∈attacks

d(c)}}

1. The first condition of ΨAF ,
⋃
b:(b,a)∈attacks d(a)← not d(b), suggests that the

argument a is defeated when anyone of its adversaries is not defeated.

2. The second condition of ΨAF ,
⋃
b:(b,a)∈attacks d(a)←

∧
c:(c,b)∈attacks d(c), sug-

gests that the argument a is defeated when all the arguments that defend1

a from one of its adversaries b are defeated.

1We say that c defends a if there exists b such that b attacks a and c attacks b.

64

4.4 A suitable codification for arguing under admissible sets

The conditions captured by ΨAF are standard settings in argumentation for
defining the status of an argument. In fact by considering different strength of
the arguments, some approaches define different status for an argument as it is
done by approached based on Defeasible Logic (54; 55).

Since ΨAF captures conditions which make an argument to be defeated, it
is quite obvious that any argument which satisfies these conditions could not
belong to an admissible set. Therefore these arguments also could not belong to
a preferred/stable/grounded extension.

Notice that ΨAF is a finite grounded program, this means that it does not con-
tain predicates with variables; hence, ΨAF is essentially a propositional formula
(just considering the atoms like d(a) as d a) of propositional logic. In order to
illustrate ΨAF , let us consider the following example.

Example 4.1 Let AF := 〈{a, b, c}, {(a, b), (b, c)}〉 be a argumentation framework
— the graph representation of this argumentation framework is presented in Fig-
ure 2.1. We can see that ΨAF is:

d(b)← not d(a). d(b)← >. d(c)← not d(b). d(c)← d(a).

Observe that ΨAF has no normal clauses with the atom d(a) in their head. This
is essentially because ΨAF is capturing the arguments which could be defeated and
the argument a will be always an acceptable argument.

It is worth mentioning that given an argumentation framework AF , ΨAF will
have at most 2n2 normal clauses such that n is the number of arguments in AR
and the maximum length1 of each normal clause is n+ 1. Hence, we can say that
ΨAF is quadratic size w.r.t. the number of arguments of AF .

In the following section, we will see that ΨAF is enough flexible for character-
izing the stable, preferred and grounded semantics.

4.4 A suitable codification for arguing under ad-

missible sets

In this section, we will show that the mapping ΨAF satisfies the conditions of
a suitable codification. This means that it is able to characterize the grounded,
stable and preferred semantics.

We start by defining some basic concepts. Given an argumentation framework
AF := 〈AR,Attacks〉 and E ⊆ AR, we define the sets f(E) and compl(E) as
follows:

1The length of our propositional clauses C is given by the number of atoms in the head of
C plus the number of literals in the body of C

65

4. STUDYING ABSTRACT ARGUMENTATION SEMANTICS
BASED ON LOGIC PROGRAMMING SEMANTICS

f(E) = {d(a)|a ∈ E}
compl(E) = {d(a)|a ∈ AR \ E}

Observe that f(E) essentially is embedding each argument a in the predicate d(a)
and compl(E) essentially expresses the complement of E w.r.t. AR.

The first result that we want to introduce is that by considering the mapping
ΨAF and the well-founded semantics, the grounded semantics can be captured.

Lemma 4.1 Let AF := 〈AR, attacks〉 be an argumentation framework and S ⊆
AR. S is the grounded extension of AF if and only if ∃ D ⊆ AR such that
〈f(D), f(S)〉 is the well-founded model of ΨAF .

In order to illustrate this lemma, let us consider the program ΨAF of Example
4.1. We can see that

WFS(ΨAF) := 〈{d(b)}, {d(a), d(c)}〉
Hence, by Lemma 4.1, this means that {a, c} is the grounded extension of the
argumentation framework AF := 〈{a, b, c}, {(a, b), (b, c)}〉.

We have seen that ΨAF is able to characterize the grounded semantics. Now
we will see that by considering ΨAF and the answer set semantics the stable
semantics can be captured.

Lemma 4.2 Let AF be an argumentation framework and E a set of arguments.
E is a stable extension of AF if and only if compl(E) is a answer set of ΨAF .

Let us consider the following example.

Example 4.2 Let AF := 〈AR, attacks〉 be an argumentation framework, such
that AR := {a, b, c, d, e} and attacks := {(a, b), (b, a), (b, c), (c, d), (d, e), (e, c)}
(see Figure 4.1).

Figure 4.1: Graph representation of the argumentation framework AF := 〈 {a, b,
c, d, e}, {(a, b), (b, a), (b, c), (c, d), (d, e), (e, c)}〉.

In order to infer the stable semantics of the argumentation framework AF ,
we map AF into ΨAF :

66

4.4 A suitable codification for arguing under admissible sets

d(a)← not d(b). d(a)← d(a).
d(b)← not d(a). d(b)← d(b).
d(c)← not d(b). d(c)← not d(e).
d(c)← d(a). d(c)← d(d).
d(d)← not d(c). d(d)← d(b), d(e).
d(e)← not d(d). d(e)← d(c).

we can see that ΨAF has just one answer set model: {d(a), d(c), d(e)}. Then by
Lemma 4.2, we can infer that AF has just one stable extension which is: {b, d}.
Observe that for inferring the stable extension {b, d}, we are only considering the
complement of {d(a), d(c), d(e)} w.r.t. AR.

We have seen that ΨAF is able to characterize the grounded and stable se-
mantics. Now we will see that by considering the pstable semantics and ΨAF , one
can characterize the preferred semantics. In fact, we will see in the next section
that the minimal models of ΨAF also characterize the preferred semantics.

Lemma 4.3 Let AF be an argumentation framework and E a set of arguments.
E is a preferred extension of AF if and only if compl(E) is a pstable model of
ΨAF .

Let us consider again the argumentation framework AF and the normal
program ΨAF of Example 4.2. As we can see, ΨAF has two pstable models:
{d(a), d(c), d(e)} and {d(b), d(c), d(e), d(d))}. Then by Lemma 4.3, we can infer
that AF has two preferred extensions: {b, d} and {a}.

As immediate consequence, of Lemma 4.1, Lemma 4.2 and Lemma 4.3, we
can say that the mapping ΨAF is a suitable codification

Theorem 4.1 ΨAF is a suitable codification.

The idea of identifying a suitable codification is not only to characterize the
well-known argumentation semantics. We believe that it could be a tool for clos-
ing the practical and theoretical results of logic programming and argumentation
theory.

In order to show the potentiality of a suitable codification, in the next two
sections, we will present some important results w.r.t. the preferred and grounded
semantics. First, we will present two new characterizations of the preferred se-
mantics (by minimal models and answer sets). After that, we will present some
extensions of the grounded semantics. These extensions can be regarded as in-
termediate argumentation semantics between the grounded and the preferred
semantics.

67

4. STUDYING ABSTRACT ARGUMENTATION SEMANTICS
BASED ON LOGIC PROGRAMMING SEMANTICS

4.5 Preferred semantics

In this section, we show that ΨAF offers some relevant properties in order to
characterize the preferred semantics in terms of minimal models and answer sets.

4.5.1 Preferred semantics and minimal models

We will start our study of the preferred semantics by proving that the minimal
models of ΨAF corresponds to the preferred extensions of AF . In fact, we will
provide a method for computing preferred extensions. This method is based
on model checking and Unsatisfiability (UNSAT). UNSAT is the complement
of Satisfiability (SAT), a problem for which very efficient systems have been
developed in AI during the last decade.

In order to characterize the preferred semantics in terms of minimal models,
we will introduce some concepts.

Definition 4.4 Let T be a theory with signature L. We say that L′ is a copy-
signature of L if and only if

• L ∩ L′ = ∅,

• the cardinality of L′ is the same to L and

• there is a bijective function f from L to L′.

It is well known that there exists a bijective function from one set to another if
both sets have the same cardinality. Based on the concept of copy-signature, one
can establish an important relationship between maximal and minimal models.

Proposition 4.1 Let T be a theory with signature L. Let L′ be a copy-signature
of L. By g(T) we denote the theory obtained from T by replacing every occurrence
of an atom x in T by ∼ f(x). Then M is a maximal model of T if and only if
f(L \M) is a minimal model of g(T).

In order to regard ΨAF as a propositional formula, we will define the propo-
sitional formula α(AF) which is the same mapping to ΨAF . The only difference
is that ΨAF is regarded as a normal program and αAF is regarded as a proposi-
tional formula. Given an argumentation framework AF := 〈AR, attacks〉, α(AF)
is defined as follows:

α(AF) :=
∧
a∈AR

((
∧

b:(b,a)∈attacks

d(a)←∼ d(b))∧(
∧

b:(b,a)∈attacks

d(a)←
∧

c:(c,b)∈attacks

d(c)))

68

4.5 Preferred semantics

For instance, let us consider the argumentation framework AF of Example
4.1. Hence, we can see that α(AF) is:

(d(b)←∼ d(a)) ∧ (d(b)← >) ∧ (d(c)←∼ d(b)) ∧ (d(c)← d(a)) (4.1)

Observe that α(AF) is the same to ΨAF of Example 4.1 (modulo notation). Like
ΨAF , α(AF) is a finite grounded formula. The idea of regarding ΨAF as a propo-
sitional formula is for formalizing that the minimal models of ΨAF corresponds
to the preferred extensions of AF . In order to formalize this property, let us
consider the following proposition which was proved by Besnard and Doutre in
(17).

Proposition 4.2 (17) Let AF := 〈AR, attacks〉 be an argumentation framework.
Let β(AF) be the formula:

∧
a∈AR

((a→
∧

b:(b,a)∈attacks

∼ b) ∧ (a→
∧

b:(b,a)∈attacks

(
∨

c:(c,b)∈attacks

c)))

then, a set S ⊆ AR is a preferred extension of AF if and only if S is a maximal
model of the formula β(AF).

In contrast with α(AF) which captures conditions which make an argument to
be defeated, β(AF) captures conditions which make an argument acceptable.
However, we will prove that when the mapping f(x) of the theory g(β(AF))
corresponds to d(x) such that x ∈ AF , α(AF) is logically equivalent to g(β(AF))
(see the proof of Theorem 4.2). For instance, let us consider the argumentation
framework AF of Example 4.1. The formula β(AF) is:

(∼ a← b) ∧ (⊥ ← b) ∧ (∼ b← c) ∧ (a← c)

If we replace each atom x by the expression ∼ d(x), we get:

(∼∼ d(a)←∼ d(b)) ∧ (⊥ ←∼ d(b)) ∧ (∼∼ d(b)←∼ d(c)) ∧ (∼ d(a)←∼ d(c))

Now, if we apply transposition to each implication, we obtain:

(d(b)←∼ d(a)) ∧ (d(b)← >) ∧ (d(c)←∼ d(b)) ∧ (d(c)← d(a))

The latter formula corresponds to α(AF). The following theorem is a straight-
forward consequence of Proposition 4.2 and Proposition 4.1.

69

4. STUDYING ABSTRACT ARGUMENTATION SEMANTICS
BASED ON LOGIC PROGRAMMING SEMANTICS

Theorem 4.2 Let AF := 〈AR, attacks〉 be an argumentation framework and
S ⊆ AR. When the mapping f(x) of the theory g(β(AF)) corresponds to d(x)
such that x ∈ AR, the following condition holds: S is a preferred extension of
AF if and only if compl(S) is a minimal model of α(AF).

In order to illustrate Theorem 4.2, let us consider again α(AF) (4.1) w.r.t. the
argumentation framework of Example 4.1. This formula has three models: {d(b)},
{d(b), d(c)} and {d(a), d(b), d(c)}. Then, the only minimal model is {d(b)}, this
implies that {a, c} is the only preferred extension of AF. In fact, each model of
α(AF) implies an admissible set of AF, this means that {a, c}, {a} and {} are
the admissible sets of AF.

There is a well known relationship between minimal models and logical con-
sequence, see (90). The following proposition is a direct consequence of such
relationship. Let S be a set of well formed formulæ then we define

SetToFormula(S) :=
∧
c∈S

c

Proposition 4.3 Let AF := 〈AR, attacks〉 be an argumentation framework and
S ⊆ AR. S is a preferred extension of AF if and only if compl(S) is a model of
α(AF) and

α(AF) ∧ SetToFormula(∼ ˜compl(S)) |= SetToFormula(compl(S))

There are several well-known approaches for inferring minimal models from
a propositional formula (14; 34). For instance, it is possible to use UNSAT’s
algorithms for inferring minimal models. Hence, it is clear that we can use UN-
SAT’s algorithms for computing the preferred extensions of an argumentation
framework. This idea is formalized with the following proposition.

Theorem 4.3 Let AF := 〈AR, attacks〉 be an argumentation framework and
S ⊆ AR. S is a preferred extension of AF if and only if compl(S) is a model of
α(AF) and

α(AF) ∧ SetToFormula(∼ ˜compl(S))∧ ∼ SetToFormula(compl(S))

is unsatisfiable.

In order to illustrate Theorem 4.3, let us consider again the argumentation
framework AF of Example 4.1. Let S = {a}, then compl(S) = {d(b), d(c)}. We
have already seen that {d(b), d(c)} is a model of α(AF), hence the formula to
verify its unsatisfiability is:

70

4.5 Preferred semantics

(d(b)←∼ d(a)) ∧ (d(b)← >) ∧ (d(c)←∼ d(b)) ∧ (d(c)← d(a))∧
∼ d(a) ∧ (∼ d(b)∨ ∼ d(c))

However, this formula is satisfiable by the model {d(b)}, then {a} is not a pre-
ferred extension. Now, let S = {a, c}, then compl(S) = {d(b)}. As seen before,
{d(b)} is also a model of α(AF), hence the formula to verify its unsatisfiability
is:

(d(b)←∼ d(a)) ∧ (d(b)← >) ∧ (d(c)←∼ d(b)) ∧ (d(c)← d(a))∧
∼ d(a)∧ ∼ d(c)∧ ∼ d(b)

It is easy to see that this formula is unsatisfiable, therefore {a, c} is a preferred
extension of AF .

The relevance of Theorem 4.3 is that UNSAT is the prototypical and best-
researched co-NP-complete problem. Hence, Theorem 4.3 opens the possibilities
for using a wide variety of algorithms for inferring the preferred semantics.

4.5.2 Preferred semantics and answer set semantics

We have seen that the minimal models of ΨAF characterize the preferred exten-
sions of AF . One interesting point of ΨAF is that ΨAF is logically equivalent to
the positive logic program ΓAF (defined below). It is well known that given a
positive logic program P, all the minimal models of P correspond to the answer
sets of P (see Section 2.4.1). This property will be enough for characterizing
the preferred semantics by the answer set models of the positive disjunctive logic
program ΓAF . This characterization will suggest an other option for computing
preferred extensions based on answer set solvers. This approach presents an easy-
to-use form for inferring the preferred extensions of an argumentation framework.
In this case, the kind of systems that we need for inferring the preferred exten-
sions of an argumentation framework is any disjunctive answer set solver e.g.,
DLV (40).

We start this section by defining a mapping function which is a variation of
the mapping of Definition 4.3.

Definition 4.5 Let AF := 〈AR, attacks〉 be an argumentation framework and
a ∈ AR. We define the transformation function Γ(a) as follows:

Γ(a) := {
⋃

b:(b,a)∈attacks

{d(a) ∨ d(b)}} ∪ {
⋃

b:(b,a)∈attacks

{d(a)←
∧

c:(c,b)∈attacks

d(c)}}

71

4. STUDYING ABSTRACT ARGUMENTATION SEMANTICS
BASED ON LOGIC PROGRAMMING SEMANTICS

Now we define the function Γ in terms of an argumentation framework.

Definition 4.6 Let AF := 〈AR, attacks〉 be an argumentation framework. We
define its associated general program as follows:

ΓAF :=
⋃
a∈AR

Γ(a)

Remark 4.1 Notice that ΨAF (see Definition 4.3) is similar to ΓAF . The main
syntactic difference of ΓAF w.r.t. ΨAF is the first part of ΓAF which is
(
⋃
b:(b,a)∈attacks(d(a) ∨ d(b))); however this part is logically equivalent to the first

part of ΨAF which is (
⋃
b:(b,a)∈attacks d(a)← not d(b)). In fact, the main difference

is their behavior w.r.t. answer set semantics. In order to illustrate this difference,
let us consider the argumentation framework AF := 〈{a}, {(a, a)}〉. We can see
that

ΓAF := {d(a) ∨ d(a)} ∪ {d(a)← d(a)}

and

ΨAF := {d(a)← not d(a)} ∪ {d(a)← d(a)}

It is clear that both programs have a minimal model which is {d(a)}1; however
ΨAF has no answer sets. This suggests that ΨAF is not a suitable representation
for computing preferred extensions by using answer set solvers. Nonetheless we
will see that the answer sets of ΓAF characterize the preferred extensions of AF .

In the following theorem we formalize a characterization of the preferred se-
mantics in terms of positive disjunctive logic programs and answer set semantics.

Theorem 4.4 Let AF := 〈AR, attacks〉 be an argumentation framework and
S ⊆ AR. S is a preferred extension of AF if and only if compl(S) is an answer
set of ΓAF .

Let us consider the following example.

Example 4.3 Let AF := 〈{a, b, c, d, e}, {(a, b), (b, a), (b, c), (c, d), (d, e), (e, c)}〉
be an argumentation framework. Observe that AF corresponds to the argumen-
tation framework of Example 4.2 — a graph representation of AF is presented in
Figure 4.1. We can see that ΓAF is

1Notice that {d(a)} suggests that AF has a preferred extensions which is {}.

72

4.5 Preferred semantics

d(a) ∨ d(b). d(a)← d(a).
d(b) ∨ d(a). d(b)← d(b).
d(c) ∨ d(b). d(c) ∨ d(e).
d(c)← d(a). d(c)← d(d).
d(d) ∨ d(c). d(d)← d(b), d(e).
d(e) ∨ d(d). d(e)← d(c).

In example 4.2, we saw that ΨAF has just one answer set {d(a), d(c), d(e)} which
corresponds to the only stable extension {b, d} of AF . Now, we can see that ΓAF
has two answer sets {d(a), d(c), d(e)} and {d(b), d(c), d(e), d(d))} that correspond
to the preferred extensions of AF : {b, d} and {a}.

Default negation

One of the advantages of characterizing the preferred semantics, by using a logic
programming semantics with default negation, is that we can infer the acceptable
arguments from the answer sets of ΓAF in a straightforward form. For instance,
let ΛAF be the disjunctive logic program ΓAF of Example 4.3 plus the following
clauses:

a← not d(a). b← not d(b).
c← not d(c). d← not d(d).
e← not d(e).

such that the intended meaning of each clause is: the argument x is acceptable
if it is not defeated. ΛAF has two answer sets which are {d(a), d(c), d(e), b, d}
and {d(b), d(c), d(e), d(d), a}. By taking the intersection of each model of ΛAF

with AR (the set of arguments of AF), we can see that {a, d} and {a} are the
preferred extensions of AF . This idea is formalized by Proposition 4.4 below.

Definition 4.7 Let AF := 〈AR, attacks〉 be an argumentation framework. We
define its associated general program as follows:

ΛAF :=
⋃
a∈AR

{Γ(a) ∪ {a← not d(a)}}

Notice that Γ(a) and Λ(a) are equivalent, the main difference between ΓAF
and ΛAF is the rule a← not d(a) for each argument.

Proposition 4.4 Let AF := 〈AR, attacks〉 be an argumentation framework and
S ⊆ AR. S is a preferred extension of AF iff there is a stable model M of ΛAF

such that S = M ∩ AR.

73

4. STUDYING ABSTRACT ARGUMENTATION SEMANTICS
BASED ON LOGIC PROGRAMMING SEMANTICS

4.5.3 DLV System: Sceptical and Credulous Reasoning

Whenever we use answer set solvers for computing the preferred extensions of
an argumentation framework, we can compute all the preferred extensions of an
argumentation framework. However, we can also perform any query with respect
to sceptical and credulous reasoning under the preferred semantics.

For instance, let us consider the following argumentation framework AF :=
〈{a, b, c, d}, {(a, b), (b, a), (a, c), (b, c), (c, d)}〉 (see Figure 4.2). We can see that
AF has two preferred extensions: {a, c} and {b, c}.

Figure 4.2: Graph representation of the argumentation framework AF := 〈
{a, b, c, d}, {(a, b), (b, a), (a, c), (b, c), (c, d)}〉.

Now, we will illustrate how to perform queries by using our characterization
of Section 4.5.2 and DLV System (40). Let gamma-AF be the file which contains
ΓAF (see Definition 4.7):

d(a) ∨ d(b). d(a)← d(a).
d(b) ∨ d(a). d(b)← d(b).
d(c) ∨ d(a). d(c)← d(b).
d(c) ∨ d(b). d(c)← d(a).
d(d) ∨ d(c). d(d)← d(a), d(b).
acc(a)← not d(a). acc(b)← not d(b).
acc(c)← not d(c). acc(d)← not d(d).

Let us now call DLV with the file gamma-AF:

$dlv gamma-AF

{d(b), d(c), acc(a), acc(d)}
{d(a), d(c), acc(b), acc(d)}

Hence, we can see that gamma-AF has two answer sets and each answer set repre-
sents a preferred extension of AF :

{d(b), d(c), acc(a), acc(d)} −→ {a, d}

74

4.5 Preferred semantics

{d(a), d(c), acc(b), acc(d)} −→ {b, d}

Now let us consider the traditional query with respect to credulous reasoning :
Given an argumentation framework AF and argument x, we want to check if x
is at least in one preferred extension of AF .

Let us suppose that we want to know which arguments belong to some pre-
ferred extensions. Hence, let query-1 be the file:

acc(X)?

Let us call DLV with the brave/credulous reasoning front-end and query-1:

$ dlv -brave gamma-AF query-1

a
b
d

This means that the arguments a, b, d belong to some preferred extension. Now
let us suppose that we want to ask for a particular argument. For instance, we
want to know if argument a belongs to some preferred extension. Hence, let
query-2 be the file:

acc(a)?

Let us call DLV with the brave/credulous reasoning front-end and query-2:

$ dlv -brave gamma-AF query-2

acc(a) is bravely true, evidenced by {d(b), d(d), acc(a), acc(d)}

This means that it is true that the argument a belongs to a preferred extension
and even more we have a preferred extension which contains the argument a.

Now let us consider the traditional query with respect to sceptical reasoning :
Given an argumentation framework AF and argument x, we want to check if x
is in every preferred extension.

Let us suppose that we want to know if the argument d belongs to all the
preferred extensions of AF . Hence let query-3 be the file:

acc(d)?

75

4. STUDYING ABSTRACT ARGUMENTATION SEMANTICS
BASED ON LOGIC PROGRAMMING SEMANTICS

Let us call DLV with the cautious/sceptical reasoning front-end and query-3:

$ dlv -cautious gamma-AF query-3

acc(d) is cautiously true.

This means that it is true that the argument d belongs to all the preferred
extensions of AF . Now let us suppose that we want to know if the argument a
belongs to all the preferred extensions of AF . Hence let query-4 be the file:

acc(a)?

Let us call DLV with the cautious/sceptical reasoning front-end and query-4.

$ dlv -cautious gamma-AF query-4

acc(a) is cautiously false, evidenced by {d(a), d(d), acc(b), acc(d)}

This means that it is false that the argument a belongs to all the preferred
extensions of AF . In fact, we have a counterexample.

Remark 4.2 It is worth mentioning that we can use ΨAF (see Definition 4.3)
and DLV system for performing any query with respect to sceptical and credulous
reasoning under the stable semantics.

4.6 Grounded semantics (GEAF)

In this section, we will show that the suitable codification ΨAF is not only able
to characterize the grounded semantics but it is also able to define some exten-
sions of the grounded semantics. Moreover, we will illustrate that by applying
program transformation to ΨAF , one can describe the interaction of arguments
of an argumentation framework.

We will start by presenting the extensions of the grounded semantics and after
that we will present a small example where we will illustrate the use of rewriting
systems for describe the interactions of arguments.

4.6.1 Extensions of GEAF based on rewriting systems

The extensions of the grounded semantics that we will introduce are based on
extensions of the well-founded semantics (WFS) (see Section 2.4.3). These WFS’

76

4.6 Grounded semantics (GEAF)

extensions have as feature that they are defined in terms of rewriting systems
(see Section 2.3). Hence, the strategy for defining the extensions of the grounded
semantics will be based on a calculus of logic program transformations. The inter-
esting point of this approach is that this calculus of logic program transformations
will define a declarative calculus of argumentation framework transformations. We
will see that when we apply a program transformation to ΨAF , this action will
represent a declarative operation over the argumentation framework AF .

Before to introduce the extensions of the grounded semantics, we define some
concepts. Since WFS is a 3-valued logic semantics, where any atom could be true,
false, and undefined, we will define the concept of a 3-valued extension, where any
argument could be accepted, defeated, and undecided.

Definition 4.8 (3-valued extension) Given an argumentation framework AF :=
〈AR, attacks〉, and S,D ⊆ AR. A 3-valued extension is a tuple 〈S,D〉, where
S∩D = ∅ and S is a conflict-free set. We call an argument a acceptable if a ∈ S,
an argument b defeated if b ∈ D, and an argument c undecided if c ∈ AR\{S∪D}.

WFSLLC
′

semantics

The first extension of WFS that we will consider is the semantics WFSLLC
′
.

As seen in Section 2.4.3, this semantics is induced by the rewriting system CS1

which has the transformation rules: {RED+, RED−, Success, Failure, Loop,
LLC ′}. It worth mentioning that the transformation rules that induce WFS
are {RED+, RED−, Success, Failure, Loop}. Hence the main difference between
WFS and WFSLLC

′
is done by the behavior of the program transformation LLC ′.

Since WFS and ΨAF characterize the grounded semantics, we will use ΨAF

and WFSLLC
′

for defining an extension of the grounded semantics as follows:

Definition 4.9 Let AF := 〈AR, attacks〉 be an argumentation framework and
S,D ⊆ AR. 〈S,D〉 is the WFSLLC

′
-extension of AF if and only if 〈f(D), f(S)〉

is the WFSLLC
′
- model of ΨAF .

As happens with WFS andWFSLLC
′
, the main difference between the ground-

ed extension and the WFSLLC
′
-extension is done by the transformation rule

LLC′. Based on ΨAF , intuitively we can say that LLC ′ first removes all the
attacks of the argument a from AF ; therefore it is reviewed by Success whether
the argument a is defeated. In case that a appears as defeated, it will be assumed
that the argument a is defeated. Notice that the only case that a could be de-
feated after removed its attacks is that a belongs to a cycle of attacks. Let us
consider the following example.

77

4. STUDYING ABSTRACT ARGUMENTATION SEMANTICS
BASED ON LOGIC PROGRAMMING SEMANTICS

Example 4.4 Let AF := 〈AR, attacks〉 be an argumentation framework, where
AR := {a, b, c} and attacks := {(a, a), (a, b), (b, c), (c, b)} (see Figure 4.3). Hence,
ΨAF is:

d(a)← not d(a). d(a)← d(a). d(c)← not d(b).
d(b)← not d(a). d(b)← not d(c). d(c)← d(c), d(a).
d(b)← d(a). d(b)← d(c).

Figure 4.3: Graph representation of the argumentation framework AF := 〈
{a, b, c}, {(a, a), (a, b), (b, c), (c, b)}〉.

To infer the AF’s WFSLLC
′
-extension, we need to get the ΨAF ’s WFSLLC

′

model. Then, we apply CS1 to ΨAF . We can see in Figure 4.3 that the argument a
is a controversial argument since it is attacked by itself. Then the transformation
rule LLC ′ will remove all the atoms of the form: not d(a). This means that, LLC ′

will remove all the a’s attacks of AF . After that, it will view if a is defeated.
Since a appears as defeated, it is assumed that the argument a is a defeated
argument; hence, the assumption d(a)← > is added to the program ΨAF :

d(a)← not d(a). d(a)← d(a). d(c)← not d(b).
d(b)← not d(a). d(b)← not d(c). d(c)← d(c), d(a).
d(b)← d(a). d(b)← d(c). d(a)← >.

If we assume that a is a defeated argument, then RED− will remove all its attacks
(the clauses which will be removed are: d(a) ← not d(a) and d(b) ← not d(a))
and Success will remove all its supports to other arguments (the clause d(c) ←
d(c), d(a) is reduced to d(c)← d(c)).

d(a)← d(a). d(b)← not d(c). d(c)← not d(b).
d(b)← d(a). d(b)← d(c). d(c)← d(c).
d(a)← >.

Then applying Success, it is found that the argument b is a defeated argument:

d(a)← >. d(b)← not d(c). d(c)← not d(b).
d(b)← >. d(b)← d(c). d(c)← d(c).

78

4.6 Grounded semantics (GEAF)

Therefore applying RED−, it is removed all the attacks of the argument b:

d(a)← >. d(b)← not d(c).
d(b)← >. d(b)← d(c). d(c)← d(c).

Since the attack of the argument b to c is removed, Loop will remove the clause
d(c)← d(c). Then we get:

d(b)← >. d(a)← >. d(b)← not d(c).

Finally, since the argument b was already fixed as a defeated argument, RED+

will remove the attack of the argument c to b which is represented by the clause:
d(b)← ¬d(c). Then, the normal form of ΨAF is:

d(b)← >. d(a)← >.

Therefore, WFSLLC
′
(ΨAF) := 〈{d(a), d(b)}, {d(c)}〉, this means that 〈{c}, {a, b}〉

is the AF ’s WFSLLC
′
- extension. We can conclude that the argument c is an

acceptable argument and a, b are defeated arguments. Notice that AF has an
empty grounded extension, AF has no stable extensions and AF has only one
preferred extension which is {c}. In fact, the set of acceptable arguments of the
WFSLLC

′
- extension corresponds to the only preferred extension of AF .

In order to show the difference w.r.t. the semantics WFSLLC
′

between the
mapping ΨAF and the mapping PAF (see Definition 2.13)suggested by Dung in
(44). Let us consider the grounded instance of the program PAF w.r.t. AF :

acc(a)← not d(a). d(a)← acc(a).
acc(b)← not d(b). d(b)← acc(a).
acc(c)← not d(c). d(c)← acc(b).

d(b)← acc(c).

It is not difficult to see that WFSLLC
′
(PAF) := 〈{d(a)}, {acc(a)}〉. This means

that the only thing that we can say w.r.t. AF is that the argument a is defeated
argument.

WFSWK semantics

Another interesting extension of WFS that we will consider for defining an ex-
tension of the grounded semantics is WFSWK . As seen in Section 2.4.3, this
semantics is induced by the rewriting system CS2 := {RED+, RED−, Success,
Failure, Loop, Weak-Cases}.

By considering WFSWK and ΨAF , we will define an extension of the grounded
semantics as follows:

79

4. STUDYING ABSTRACT ARGUMENTATION SEMANTICS
BASED ON LOGIC PROGRAMMING SEMANTICS

Definition 4.10 Let AF := 〈AR, attacks〉 be an argumentation framework and
S,D ⊆ AR. 〈S,D〉 is the WFSWK-extension of AF if and only if 〈f(D), f(S)〉
is a WFSWK- model of ΨAF .

As we can see, the main difference between the characterizations of the grounded
semantics and the WFSWK-extension is done by the transformation rule Weak-
Cases. Essentially the transformation rule Weak-Cases performs a reasoning by
cases. Let us consider the following example.

Figure 4.4: Graph representation of the argumentation framework AF := 〈
{a, b, c, d}, {(a, b), (b, a), (a, c), (b, c), (c, d)}〉.

Example 4.5 Let AF := 〈AR, attacks〉 be an argumentation framework, where
AR := {a, b, c, d} and attacks := {(a, b), (b, a), (a, c), (b, c), (c, d)} (see Figure 4.4)
— notice that this argumentation framework was introduced in Section 4.5.3, we
repeat the figure for commodity of reading. We can see that ΨAF is:

d(a)← not d(b). d(a)← d(a). d(d)← not d(c).
d(b)← not d(a). d(b)← d(b). d(d)← d(b), d(a).
d(c)← not d(b). d(c)← d(b).
d(c)← not d(a). d(c)← d(a).

In order to infer the WFSWK-extension of AF , it is applied CS2 to ΨAF . First
of all, we can see that the argument a is controversial w.r.t. the argument c
because a is attacking to c (d(c) ← not d(a)) and also a is defending to c
(d(c) ← d(a)). Therefore, if a is fixed as an acceptable argument, then c will
be a defeated argument. Moreover, if a is fixed as a defeated argument, then c
also will be a defeated argument. Under this situation, the transformation rule
Weak-Cases will assume that the argument c is defeated, then it will remove the
clauses d(c) ← not d(a) and d(c) ← d(a) from ΨAF and the clause d(c) ← > is
added to ΨAF . Notice that the argument b is also controversial w.r.t. c. Then
the clauses d(c)← not d(b) and d(c)← d(b) are removed from ΨAF :

d(a)← not d(b). d(a)← d(a). d(d)← not d(c).
d(b)← not d(a). d(b)← d(b). d(d)← d(b), d(a).
d(c)← >.

80

4.6 Grounded semantics (GEAF)

Since the argument c was assumed as a defeated argument, the RED− will remove
c’s attacks. Hence, we get:

d(a)← not d(b). d(a)← d(a). d(d)← d(b), d(a).
d(b)← not d(a). d(b)← d(b). d(c)← >.

Since this program is the normal form of ΨAF , WFSWK(ΨAF) := 〈{d(c)}, {}〉.
Hence 〈{}, {c}〉 is the WFSWK-extension of AF . This means that the argument
c is defeated.

Notice that the grounded extension of AF is the empty set, there are two sta-
ble extensions which are {a, d} and {b, d}, and there are two preferred extensions
which coincide with the stable extensions: {a, d} and {b, d}. It is worth men-
tioning that usually any argument which does not belong to a preferred/stable
extension is considered defeated. Then we can see that both preferred/stable ex-
tensions of AF coincide that the argument c is a defeated argument. Therefore
we can appreciate that the WFSWK-extension coincides with the preferred/stable
extensions that the argument c is defeated.

Now let us consider again the mapping PAF to see the behavior of PAF w.r.t.
WFSWK. The grounded instance of the program PAF w.r.t. AF is:

acc(a)← not d(a). d(b)← acc(a).
acc(b)← not d(b). d(a)← acc(b).
acc(c)← not d(c). d(c)← acc(a).
acc(d)← not d(d). d(c)← acc(b).

d(d)← acc(c).

We can see that WFSWK(ΨAF) := 〈{}, {}〉. This means that like the grounded
extension, the argumentation semantics induced by WFSWK and PAF is empty.

WFSWK+LCC′ semantics

We have defined two extensions of the grounded semantics based on two ex-
tensions of WFS, where the main support of these extensions is the use of the
transformation rules: Weak-Cases and LLC ′. Now the combination of these
transformation rules also suggests another extension of the grounded semantics.

By considering WFSWK+LLC′ , we define a new extension of the grounded
semantics as follows:

Definition 4.11 Let AF := 〈AR, attacks〉 be an argumentation framework and
S,D ⊆ AR. 〈S,D〉 is the WFSWK+LLC′- extension of AF if and only if 〈f(D), f(S)〉
is a WFSWK+LLC′- model of ΨAF .

81

4. STUDYING ABSTRACT ARGUMENTATION SEMANTICS
BASED ON LOGIC PROGRAMMING SEMANTICS

None of bothWFSLLC
′
andWFSWK extensions is the same toWFSWK+LLC′-

extension. In order to illustrate this difference let us consider the following ex-
ample.

Example 4.6 Let AF := 〈AR, attacks〉 be an argumentation framework, where
AR := {a, b, c, d, e, f,m, n, p} and attacks := {(a, b), (b, c), (c, a), (a, d), (d, e),
(e, f), (m, e), (n,m), (n, p), (p,m), (p, n)} (see Figure 4.5). It is not diffi-
cult to see that WFSLLC

′
-extension := 〈{}, {a, b, c, d, e}〉, WFSWK-extension :=

〈{}, {m}〉, WFSWK+LLC′-extension := 〈{}, {a, b, c, d, e, m}〉, and the grounded
extension is empty.

Figure 4.5: Graph representation of the argumentation framework AF := 〈
{a, b, c, d, e, f,m, n, p}, {(a, b), (b, c), (c, a), (a, d), (d, e), (e, f), (m, e), (n,m),
(n, p), (p,m), (p, n)} 〉

This argumentation framework has no stable extensions and has tow preferred
extensions: {n} and {p}.

Formalizing the extensions of the grounded semantics

We have introduced three new abstract argumentation semantics, all of them have
as common point a suitable codification which is ΨAF and the only difference
between them is the logic programming semantics which it is applied to ΨAF .

Once we have defined a direct relationship between abstract argumentation
semantics and logic programming semantics, it is possible to understand the
behavior of some abstract argumentation semantics based on the properties of
the logic programming semantics. For instance, since the grounded semantics
is characterized by ΨAF and WFS, we can infer that the WFSLLC

′
-extension,

the WFSWK-extension and the WFSWK+LLC′-extension are extensions of the
grounded semantics and are polynomial time computable. This is essentially
because the semantics WFSLLC

′
, WFSWK and WFSWK+LLC′ are extensions of

WFS and are polynomial time computable. This result is formalized with the
following theorem:

82

4.6 Grounded semantics (GEAF)

Theorem 4.5 Let AF := 〈AR, attacks〉 be an argumentation framework and E
be the grounded extension of AF. Then

a) 1. If 〈S,D〉 is the WFSLLC
′
-extension of AF then E ⊆ S.

2. If 〈S,D〉 is the WFSWK-extension of AF then E ⊆ S.

3. If 〈S,D〉 is the WFSWK+LLC′-extension of AF then E ⊆ S.

b) 1. The WFSLLC
′
-extension of AF is polynomial time computable.

2. The WFSWK-extension of AF is polynomial time computable.

3. The WFSWK+LLC′-extension of AF is polynomial time computable.

Another property that can be formalized w.r.t. the new argumentation se-
mantics is that they are intermediate semantics between the grounded semantics
and the preferred semantics. This is essentially because the semantics WFSLLC

′
,

WFSWK and WFSWK+LLC′ are strongest than WFS but they are weakest than
the pstable semantics. Remember that the pstable models of ΨAF correspond to
the preferred extensions of AF (see Lemma 4.3).

In order to show that our new argumentation semantics are intermediate se-
mantics between the grounded semantics and the preferred semantics, we will
show that they are contained in the preferred semantics.

Theorem 4.6 Let AF := 〈AR, attacks〉 be an argumentation framework, E be
a preferred extension of AF , and E ′ := AR \ E. Then,

1. If 〈S,D〉 is the WFSLLC
′
-extension of AF then S ⊆ E and D ⊆ E ′.

2. If 〈S,D〉 is the WFSWK-extension of AF then S ⊆ E and D ⊆ E ′.

3. If 〈S,D〉 is the WFSWK+LLC′-extension of AF then S ⊆ E and D ⊆ E ′.

Remark 4.3 As final remark of this section, we want to point out that three
extensions of the grounded semantics that were presented follow the approach of
admissible sets. This means that none of the new argumentations semantics will
infer an argument out of the scope of admissible sets.

4.6.2 Rewriting systems and the interaction between ar-
guments

The aim of this section is to outline an approach for describing the interaction
of arguments based on rewiring systems and the suitable codification ΨAF . This

83

4. STUDYING ABSTRACT ARGUMENTATION SEMANTICS
BASED ON LOGIC PROGRAMMING SEMANTICS

approach allows to visualize the process of selecting acceptable arguments from
an argumentation framework.

The general idea is that each time that it is applied a transformation rule to
ΨAF the reduced program will suggest an approximation of the argumentation
semantics that we are inferring. These approximations together with the reduced
program will describe the interaction of the arguments of the argumentation
framework.

In order to identify the status of an argument i.e. acceptable, defeated and
undecided, we will define a mapping which follows the labeling style presented in
(58).

Definition 4.12 Let AF := 〈AR, attacks〉 be an argumentation framework and
SEM(ΨAF) = 〈Ψtrue

AF ,Ψ
false
AF 〉. The labeling lSEM is defined as follows: For all

a ∈ AR, let:

lSEM(a) :=

+ if d(a) ∈ Ψfalse

AF

− if d(a) ∈ PΨtrue
AF

? if d(a) /∈ Ψtrue
AF ∪Ψfalse

AF

Observe that the mapping lSEM is defined in terms of a three valued logic pro-
gramming semantics SEM (Definition 2.5) of the normal logic program ΨAF . By
considering the concepts of a 3-valued extension of an argumentation framework
(Definition 4.8), we will say that

• an argument a ∈ AR is acceptable if lSEM(a) = +

• an argument a ∈ AR is defeated if lSEM(a) = −

• an argument a ∈ AR is undecided if lSEM(a) = ?

Let us consider the argumentation framework of Figure 4.3. In Example 4.4, we
saw that

WFSLLC
′
(ΨAF) := 〈{d(a), d(b)}, {d(c)}〉

hence the graph representation of AF can be labeled as it is shown in Figure 4.6.
In order to illustrate that each time that one applies a transformation rule to

ΨAF , SEM(ΨAF) will induce different labeling states of the graph representation
of AF , we will present a medical scenario. In this medical scenario, a decision
about whether an organ from a donor with endocarditis is viable or not for being
transplanted should be made1.

Let us assume that we have two transplant coordination units, one which
is against the viability of the organ (UCTD) and one which is in favour of the
viability of the organ (UCTR).

1The medical information was taken from (25).

84

4.6 Grounded semantics (GEAF)

Figure 4.6: Graph representation of the argumentation framework AF := 〈
{a, b, c}, {(a, a), (a, b), (b, c), (c, b)}〉 with labeling.

• UCTD argues that the organ is not viable, since the organ donor had en-
docarditis due to streptococcus viridans, then the organ recipient could be
infected by the same microorganism.

• In contrast, UCTR argues that the organ is viable, because the organ
presents correct function and correct structure and the infection could
be prevented with a post-transplanted-treatment with penicillin, even if
the organ recipient is allergic to penicillin, there is the option of a post-
transplanted-treatment with teicoplanin.

Formally, we have an argumentation framework AF := 〈AR, attacks〉, where
AR has the following arguments:

a.- organ is non viable.

b.- organ is viable.

c.- organ has correct function and correct structure.

d.- organ recipient could be infected with streptococcus viridans.

e.- post-transplanted-treatment with administer penicillin.

f.- post-transplanted-treatment with administer teicoplanin.

g.- recipient is allergic to penicillin.

and attacks := {(a, b), (b, a), (c, a), (d, b), (e, d), (f, d), (g, e)} (The graphic repre-
sentation of AF is shown in Figure 4.7). Then ΨAF is:

85

4. STUDYING ABSTRACT ARGUMENTATION SEMANTICS
BASED ON LOGIC PROGRAMMING SEMANTICS

Figure 4.7: A medical scenario where the decision about whether an organ from
a donor with endocarditis is viable or not for being transplanted should be made.

d(a)← not d(b). d(a)← d(a), d(d).
d(a)← not d(c). d(a)← >.
d(b)← not d(a). d(b)← d(b), d(c).
d(b)← not d(d). d(b)← d(e), d(f).
d(d)← not d(e). d(d)← d(g).
d(d)← not d(f). d(d)← >.
d(e)← not d(g). d(e)← >.

A good question is: What can we infer from ΨAF and AF w.r.t. the medical
scenario at this moment? We have not applied any transformation to ΨAF yet;
however we can see that SEM(ΨAF) := 〈{d(a), d(d), d(e)}, {d(c), d(f), d(g)}〉.
Hence:

lSEM(c) = + lSEM(a) = − lSEM(b) = ?
lSEM(f) = + lSEM(d) = −
lSEM(g) = + lSEM(e) = −

This means that both UCTD and UCTR agree with regarding the arguments
{c, f, g} are acceptable. Hence the arguments that are attacked by them are
defeated which are {a, d, e}. At this moment SEM(ΨAF) cannot say nothing
about the argument b (see Figure 4.8).

Now, let us apply the transformation rule Failure to ΨAF as many times as
we can, then we get the following reduced program:

86

4.6 Grounded semantics (GEAF)

Figure 4.8: Medical scenario — acceptable arguments: {c, f, g}, defeated argu-
ments: {a, d, e }, undecided arguments: {b}.

d(a)← not d(b). d(a)← d(a), d(d).
d(a)← not d(c). d(a)← >.
d(b)← not d(a).
d(b)← not d(d).
d(d)← not d(e).
d(d)← not d(f). d(d)← >.
d(e)← not d(g). d(e)← >.

Notice that the clauses that were removed by Failure were assuming that the
argument b could be defeated in case that the arguments c and f were defeated,
but we have already known that c and f are acceptable arguments, hence those
clauses are irrelevant.

Now, let us apply the transformation rule RED− to the reduced program as
many times as we can, then the new reduced program Ψ′AF is:

d(a)← not d(b). d(a)← d(a), d(d).
d(a)← not d(c). d(a)← >.
d(d)← not d(f). d(d)← >.
d(e)← not d(g). d(e)← >.

Now notice that the clauses which were removed from the program were the
clauses which were representing the attackers of the arguments {a, d, e}. At this

87

4. STUDYING ABSTRACT ARGUMENTATION SEMANTICS
BASED ON LOGIC PROGRAMMING SEMANTICS

moment SEM(Ψ′AF) := 〈{d(a), d(d), d(e)}, {d(c), d(f), d(g), d(b)}〉, this means
that SEM(ΨAF) is able to suggest that the argument b is acceptable. Applying
the transformation rule Success as many times as we can, we get the following
new reduced program.

d(a)← not d(b).
d(a)← not d(c). d(a)← >.
d(d)← not d(f). d(d)← >.
d(e)← not d(g). d(e)← >.

We can observe that in this reduced program, all the attackers of the defeated
arguments were removed from the program. We can visualize this status as is
shown in Figure 4.9. Finally, applying the transformation rule Red+, we get the
normal form of ΨAF which is:

Figure 4.9: Medical scenario — acceptable arguments: {c, f, g}, defeated argu-
ments: {a, d, e, d }, undecided arguments: ∅.

d(a)← >. d(d)← >. d(e)← >.

This means thatWFS(ΨAF) = 〈{d(a), d(d), d(e)}, {d(c), d(f), d(g), d(b)}〉; hence,
we have the 3-valued extension 〈{c, f, g, b}, {a, d, e}〉 and the following final map-
ping of the each argument of AF :

88

4.7 Concluding remarks

lSEM(c) = + lSEM(a) = −
lSEM(f) = + lSEM(d) = −
lSEM(g) = + lSEM(e) = −
lSEM(b) = +

Since the argument b is acceptable, one can conclude that the organ is viable for
transplanting and the support of this conclusion are the arguments c, f, and g.
Therefore, one can say that the transplant coordination unit UCTR is the winner
of the disagreement.

Notice that the grounded extension of the argumentation framework AF is:
{b, c, f, g}. As all the new semantics presented in Section 4.6.1 are extensions
of the grounded semantics, then all of them have the behavior described in this
section.

In general terms, we can say that the interaction between rewriting systems
and normal programs which represent an argumentation framework could describe
the interaction of arguments of an argumentation framework. This allows to
visualize the process of selecting acceptable arguments from an argumentation
framework.

4.7 Concluding remarks

In this chapter, we concentrate our attention in some well-accepted patterns
(argumentation semantics) for inferring arguments which are part of a conflict.

When Dung introduced his abstract argumentation approach, he proved that
it can be regarded as a special form of logic programming with negation as failure.
In fact, he showed that the grounded and stable semantics can be characterized
by the well-founded and answer set semantics respectively. This result has at
least two main implications:

1. It defines a general method for generating metainterpreters for argumenta-
tion systems and

2. it defines a general method for studying abstract argumentation semantics’
properties in terms of logic programming semantics’ properties.

Concerning this issue, Dung did not give any characterization of the preferred
semantics in terms of logic programming semantics.

The first result of this chapter is a reconsideration of Theorem 17 of (44).
We show that there exists a suitable codification (ΨAF) of an argumentation
framework in terms of a logic program such that

• the well-founded model of ΨAF characterizes the grounded extension of AF
(Lemma 4.1);

89

4. STUDYING ABSTRACT ARGUMENTATION SEMANTICS
BASED ON LOGIC PROGRAMMING SEMANTICS

• the answer sets of ΨAF characterize the stable extensions of AF (Lemma
4.2); and

• the pstable models of ΨAF characterize the preferred extensions of AF
(Lemma 4.3).

This result unifies, in logic programming with negation as failure, the three
principal argumentation semantics of Dung’s approach. Also this means that the
main patterns of inference in argumentation semantics can be totally captured
by logic programming with negation as failure. These results suggest that one
can explore argumentation semantics by considering the results of logic program-
ming with negation as failure. For instance, since the pstable semantics can be
characterized by paraconsistent logics (as the Cw and G′3 logics (89)) or modal
logics (as the S5 modal logic (91)), one can explore argumentation constructions
in terms of paraconsistent logics or modal logics.

The existence of codifications as ΨAF suggests a class of suitable codifications
for exploring the interaction of arguments by considering logic programming se-
mantics. To find suitable codifications for argumentation theory based on logic
programming could help to close the wide separation between argumentation the-
ory and argumentation systems. It is quite obvious that a suitable codification of
an argumentation framework should not only permit to compute abstract argu-
mentation semantics, but also it ought to permit to perform a deep study about
an abstract argumentation semantics. In this sense, we show that ΨAF allows to
characterize the preferred semantics in terms of

• minimal models (see Theorem 4.2) and

• the answer set semantics (see Theorem 4.4).

These characterizations have as main result the definition of a direct relation-
ship between one of the most satisfactory argumentation semantics and may be
the most successful approach of non-monotonic reasoning of the last two decades
i.e. logic programming with the answer set semantics. Based on this fact, we
introduce a novel and easy-to-use method for implementing argumentation sys-
tems which are based on the preferred semantics. It is quite obvious that our
method will take advantage of the platform that has been developed under stable
model semantics for generating argumentation systems. For instance, we can im-
plement the preferred semantics inside Object-Oriented programs based on our
characterization (Theorem 4.4, Proposition 4.4) and DLV JAVA Wrapper (100).

Our experience in the interaction between argumentation semantics and logic
programming semantics suggests that the correct understanding of the behavior
of one side helps to understand the behavior of the other side. For instance,

90

4.7 Concluding remarks

thanks to the deep study that there is on the well-founded semantics, we define
three extensions of the grounded semantics:

• the WFSLLC
′
-extension,

• the WFSWK-extension and

• the WFSWK+LLC′- extension.

The WFSLLC
′
-extension is an interesting extension of the grounded extension

which is able to deal with the problem of self-defeated arguments (99). The
construction of the WFSLLC

′
-extension is based on the transformation rule LLC ′

that it is nothing else than the application of the local logical consequence in
classical logic to a logic normal program. In classical logic, we know that

∼ a→ a `c a (4.2)

Also, we can see that if AF := 〈{a}, {(a, a)}〉, then ΨAF is:

d(a)← ¬d(a). d(a)← d(a).

by applying LLC ′ to ΨAF , we get the program Ψ′AF :

d(a). d(a)← d(a).

Hence SEM(Ψ′AF) = 〈{d(a)}, {}〉. This means that the argument a is fixed as
a defeated argument. Since WFS is a modular semantics (36), therefore we can
guarantee by (4.2) that any self-defeated argument will be fixed as a defeated
argument in the WFSLLC

′
-extension. In fact this property is also satisfied by

the WFSWK+LLC′- extension.
The WFSWK-extension is another interesting extension of the grounded se-

mantics which provides to the grounded semantics with the property of reasoning
by cases.

The last extension of the grounded semantics presented, the WFSWK+LLC′-
extension, is the stronger extension of the grounded semantics introduced in
this chapter. The WFSWK+LLC′- extension concentrates the properties of the
grounded semantics, the WFSLLC

′
-extension and the WFSWK-extension.

Observe that the extensions of the grounded semantics presented in this chap-
ter show that by considering an argumentation framework as a logic program one
can construct argumentation semantics which could satisfy some particular prop-
erties. These properties will be supported by formal logic foundations.

It is worth mentioning that the extensions of the grounded semantics presented
in this chapter are intermediate semantics between the grounded and preferred

91

4. STUDYING ABSTRACT ARGUMENTATION SEMANTICS
BASED ON LOGIC PROGRAMMING SEMANTICS

semantics and they have the property that they are polynomial time computable
(Theorem 4.5, Theorem 4.6).

As we know, WFS is a three valued semantics and all the extensions of the
grounded semantics presented here are three-valued extensions. Hence, by con-
sidering this relationship, in the last section of this chapter, we outline a labeling
process for identifying the status of an argument in the process of inferring three
valued argumentation semantics. This approach has as aim to describe the in-
teraction of the arguments of an argumentation framework based on rewiring
systems and ΨAF . This approach is close related to the approach presented in
(58); however, a deep study is needed in order to identify the possible relation-
ships between the argumentation semantics presented in (58) and some possible
logic programming semantics.

92

Chapter 5

Beyond of admissible sets

In this chapter, by considering the idea that argumentation semantics can be
viewed as a special form of logic programming semantics with negation as fail-
ure, we show that any logic programming semantics as the answer set semantics,
the minimal models, the pstable semantics etc., can define candidate argumenta-
tion semantics. These new argumentation semantics will overcome some of the
problems of the Dung’s argumentation semantics that have been discussed in the
literature.

5.1 Introduction

As commented in Section 1.2, according to Bench-Capon and Dunne, the three
principal abstract argumentation semantics introduced by Dung are the grounded,
preferred and stable semantics. However, these semantics exhibit a variety of
problems which have illustrated in the literature (13; 16; 26; 27; 99). Authors
as P. Baroni et al, have suggested that in order to overcome Dung’s abstract ar-
gumentation semantics problems, it is necessary to define flexible argumentation
semantics which are not necessarily based on admissible sets (13).

According to Baroni et al, in (13) the preferred semantics is regarded as the
most satisfactory approach; however, they have also pointed out that the preferred
semantics produces some questionable results in some cases concerning cyclic
attack relations (13). For instance, let us consider the argumentation framework
that appears in Figure 5.11. In this argumentation framework there are two
arguments: a and b. We can see that the argument a is attacked by itself and
the argument b is attacked by the argument a. Intuitively, some authors as

1This argumentation framework has received special attention in the literature in order to
commented the problem of the self-defeated arguments (98; 99) and to point out some of the
problems of the Dung’s argumentation semantics (13).

93

5. BEYOND OF ADMISSIBLE SETS

Prakken and Vreeswijk (99) suggest that one can expect that the argument b can
be considered as an acceptable argument since it is attacked by the argument a
which is attacked by itself. However, the preferred semantics is unable to infer
the argument b as an acceptable argument — the only preferred extension of the
argumentation framework of Figure 5.1 is the empty set. In fact, none of the
argumentation semantics suggested by Dung is able to infer the argument b as
acceptable.

Figure 5.1: Graph representation of the argumentation framework AF := 〈 {a, b},
{(a, a), (a, b)}〉.

Another interesting argumentation framework which has been commented on
literature (13; 99) is presented in Figure 5.2. The preferred semantics w.r.t. this
argumentation framework is only able to infer the empty set. Some authors, as
Prakken and Vreeswijk (99), Baroni et al(13), suggest that the argument e can
be considered as an acceptable argument since it is attacked by the argument d
which is attacked by three arguments: a, b, c. Observe that the arguments a, b
and c form a cyclic of attacks.

Figure 5.2: Graph representation of the argumentation framework AF := 〈
{a, b, c, d, e}, {(a, c), (c, b), (b, a), (a, d), (c, d), (b, d), (d, e)}〉.

The stable argumentation semantics defined by Dung in (44) is also consid-
ered as another proper argumentation semantics. However, this semantics has
been criticized by some authors as Bench-Capon and Dunne (16), Caminada (27)
because frequently this semantics is undefined . For instance, the argumentation
framework of Figure 5.3 has no stable extensions; however, it has a preferred
extension, {c} — in fact the argumentation frameworks of Figure 5.1 and Figure
5.2 are two examples where the stable argumentation semantics is also undefined.

94

5.1 Introduction

Figure 5.3: Graph representation of the argumentation framework AF =
〈{a, b, c}, {(a, a), (a, b), (b, c), (c, b)}〉.

The solutions to the problems of the argumentation semantics suggested by
Dung are really diverse some researchers have focused on improving the stable
argumentation semantics (27), some other researchers have focused on improving
the preferred semantics (86), and still other researchers have focused on improving
the concept of admissible set which is the basis of the argumentation semantics
suggested by Dung (13; 58).

We can recognize two major branches for improving Dung’s approach. On
the one hand, we can take advantage of graph theory; on the other hand, we can
take advantage of logic programming with negation as failure.

With respect to graph theory, the approach suggested by Baroni et al, in
(13) is maybe the most general solution defined until now for improving Dung’s
approach. This approach is based on a solid concept in graph theory which is a
strongly connected component (SCC). Based on this concept, Baroni et al, describe
a recursive approach for generating new argumentation semantics. For instance,
the argumentation semantics CF2 suggested in (13) is able to infer the argument
b as an acceptable argument of the argumentation framework of Figure 5.1. Also
CF2 is able to infer the extensions: {a, e}, {b, e}, {c, e} from the argumentation
framework of Figure 5.2. This means that CF2 regards the argument e as an
acceptable argument.

As we saw in Chapter 4, argumentation theory can be viewed as a special
form of logic programming with negation as failure. In particular, we introduced
a mapping in order to map an argumentation framework into a logic program.
When we have a logic program which represents an argumentation framework,
it is natural to think that we can split this program into subprograms where
each subprogram could represent a part of an argumentation framework. For
instance, let us consider a single version of the mapping introduced in Definition
4.3 in order to represent the argumentation framework of Figure 5.1 as the logic
program P :

95

5. BEYOND OF ADMISSIBLE SETS

d(a)← not d(a).
d(b)← not d(a).
acc(a)← not d(a).
acc(b)← not d(b).

Observe that we are only considering the negative clauses of the mapping ΨAF

and two clauses more in order to infer the acceptable arguments by negation as
failure. Moreover observe that this program can be also inferred from Dung’s
mapping PAF (see Definition 2.13) by considering the grounding instance of PAF
and applying the well-known principle of partial evaluation to PAF (this process
is illustrated in the proof of Lemma 4.2). This codification can be regarded as
the common point between the mappings ΨAF and PAF .

As we saw in §4.3, the intended meaning of the first clause of P says that the
argument a is defeated if the argument a is not defeated. The second clause of
P says that the argument b is defeated if the argument a is not defeated. The
third clause of P says that the argument a is acceptable if the argument a is
not defeated and the last clause says that the argument b is acceptable if the
argument b is not defeated.

Notice that the program P can be split in three subprograms, i.e. P1, P2 and
P3, where P1 is:

d(a)← not d(a).

P2 is:

d(b)← not d(a).
acc(a)← not d(a).

and P3 is:

acc(b)← not d(b).

We can see that P2 depends on P1 because the atom d(a) is defined in the
program P1. In the same way, P3 depends on P1 and P2. Hence, in order to infer
the semantics of P2, we have to infer the semantics of P1 before. For instance,
let us consider the minimal models of P1. It is easy to see that the only minimal
model of P1 is: {d(a)}. Hence, in order to infer the semantics of P2 based on the
minimal models of P1, we can remove from P2 any clause that contains not d(a)
in their bodies — let P ′2 be the reduced program. Notice that P ′2 is an empty
program; hence, the only minimal model of P ′2 is the empty model i.e. the atoms
d(b) and acc(a) are considered as false. Now, for inferring the semantics of P3,
we consider the minimal models of P1 union the minimal models of P ′2. We can

96

5.2 Preliminaries

infer the semantics of P3 based on the model {d(a)} — let P ′3 be the reduced
program by considering d(a) as true and d(b) as false. It is easy to see that the
only minimal model of P ′3 is: {acc(b)}. Therefore, the semantics of P will be the
union of the minimal models of P1 ({d(a)}) union the minimal models of P ′2 (∅)
union the minimal models of P ′3 ({acc(b)}). Hence, we have an unique model for
P which is {acc(b), d(a)}. This model suggests that we can consider the argument
b as acceptable and the argument a as defeated.

The idea of spitting a logic program into its component, in order to define logic
programming semantics, has been explored by some authors in logic programming
(37). For instance, by splitting a logic program, Dix and Müller in (37) combine
ideas of the answer set semantics and the well-founded semantics in order to
define a skeptical logic programming semantics which satisfies the property of
relevance and the general principle of partial evaluation.

In the first part of this chapter, we will formalize a recursive general schema for
constructing new logic programming semantics. This recursive general schema is
based on the idea of splitting a logic program into its components. The new logic
programming semantics have as main properties that they are always defined for
any logic program and they satisfy the property of relevance.

In the second part of this chapter, by considering the idea that argumenta-
tion semantics can be viewed as a special form of logic programming semantics
with negation as failure and the schema presented in the first part of the chap-
ter, we show that any logic programming semantics as the answer set semantics
semantics, the minimal models, etc., can define candidate argumentation seman-
tics. These new argumentation semantics will overcome some of the problems of
the Dung’s argumentation semantics that have been discussed in the literature.
In fact, we will see that some of our new argumentation semantics have simi-
lar behavior to the argumentation semantics defined in terms strongly connected
components (13).

The rest of the chapter is divided as follows: In §5.2, we define some extra
concept w.r.t. logic programming. In §5.3, we introduce our new recursive general
schema for defining new logic programming semantics. In §5.4, we define how to
construct new argumentation semantics based on the approach presented in §5.3.
Finally in the last section, we present our concluding remarks.

5.2 Preliminaries

In this section, we will define some important concepts in order to split a logic
program into its components. We start presenting some basic relations.

Given a normal program P , we will call non-trivial tautology C ∈ P if C is at
one of the following forms:

97

5. BEYOND OF ADMISSIBLE SETS

C = a← (B+ ∪ {a}), not B− such that B+ 6= ∅ or B− 6= ∅ (5.1)

C = a← (B+ ∪ {x}), not (B− ∪ {x}) such that x ∈ LP (5.2)

For instance, the clauses a ← a, not b and b ← a, not a are two non-trivial
tautologies. The clauses of the form x← x will be called trivial tautologies.

A program P induces a notion of dependency between atoms from LP . We
say that a depends immediately on b if and only if b appears in the body of a
clause in P , such that a appears in its head. The two place relation depends on
is the transitive closure of depends immediately on. The dependencies of an
atom x is defined by:

dependencies-of(x) is the set {a|x depends on a}

In order to illustrate this definition, let us consider the following normal program,
denoted by RE (Running Example):

e← e.
c← c.
a← not b, c.
b← not a, not e.
d← b.

We can see that LP = {a, b, c, d, e}. Now let us infer the dependency relations
between the atoms of LP :

dependencies-of(a) = {a, b, c, e}
dependencies-of(b) = {a, b, c, e}
dependencies-of(c) = {c}
dependencies-of(d) = {a, b, c, e}
dependencies-of(e) = {e}

We define an equivalence relation ≡ between atoms of LP as follows: a ≡ b if
and only if a = b or (a depends-on b and b depends-on a). We write [a] to denote
the equivalent class induced by the atom a. By considering again the normal
program RE, we can see that:

[a] = [b] = {a, b} [d] = {d}
[c] = {c} [e] = {e}

We take≤P to denote the partial order induced by≡P on its equivalent classes.
Hence, [a] ≤ [b] if and only if b depends-on a. For instance, by considering the
equivalent classes of the program RE, the following relations hold: {c, e} ≤
{a, b} ≤ {d}. By considering the relation ≤P , each atom of LP is assigned an
order as follows:

98

5.2 Preliminaries

• An atom a is of order 0, if [a] is minimal in ≤P .

• An atom a is of order n + 1, if n is the maximal order of the atoms of
which a depends such that n is the order of the atom b and b 6= a.

We say that a program P is of order n if n is the maximum order of its atoms.
By considering again the normal program RE, we can see that:

a is of order 1 d is of order 2
b is of order 1 e is of order 0
c is of order 0

this means that RE is a program of order 2.
We can also break a program P (of order n) into the disjoint union of pro-

grams Pi (0 ≤ i ≤ n) such that Pi is the set of rules such that the head of each
atom is of order i (with respect to P). We say that P0, . . . , Pn are the relevant
modules of P . In order to illustrate these ideas, let us consider the following
table, where RE0, RE1, RE2 are the respective relevant modules of the normal
program RE:

RE RE0 RE1 RE2

e← e. e← e.
c← c. c← c.
a← not b, c. a← not b, c.
b← not a, not e. b← not a, not e.
d← b. d← b.

There is an interesting class of normal programs that is called stratified pro-
grams. This class of normal logic programs satisfies certain syntactic conditions
w.r.t. the occurrence of their positive and negative literals. The stratified logic
programs have gained a lot of importance in connection with the search for nice
declarative semantics for logic programs and the treatment of negative infor-
mation in logic programming — the interested reader can find some interesting
results w.r.t. stratified programs in (11; 68). The formal definition of a stratified
logic program is defined as follows:

Definition 5.1 (11) Let P be a normal logic program. P is called a stratified
logic program if for any clause a ← l1, . . . , lm, not lm+1, . . . , not lnn in Pi,
0 ≤ i ≤ n, then

1. for every lj, 1 ≤ j ≤ m there is a Pq such that lj ∈ LPq and q ≤ i, and

99

5. BEYOND OF ADMISSIBLE SETS

2. for every lj, m+ 1 ≤ j ≤ nn, there is a Pq such that lj ∈ LPq and q < i.

Observe that the first condition only says that the positive literals of the clause
can appear in any component lower than or equal to Pi, and the second condition
says that the negative literals must appear in a clause which belongs to a compo-
nent strictly lower than Pi. For instance, one can see that the logic program RE,
introduced above, is not a stratified normal programs. However, the component
RE0 is a stratified logic program by itself.

Now we introduce a single reduction for any normal program. The idea of
this reduction is to remove from a normal program any atom which has already
fixed to some true value. In fact this reduction is based on a pair of sets of atoms
〈T ;F 〉 such that the set T contains the atoms which can be considered as true
and the set F contains the atoms which can be considered as false. Formally, this
reduction is defined as follows:

Let 〈T ;F 〉 be a pair of sets of atoms. The reduction R(P, 〈T ;F 〉) is obtained
by 4 steps:

1. We replace every atom x that occurs in the bodies of P by 1 if x ∈ T as well
as we replace every atom x that occurs in the bodies of P by 0 if x ∈ F ;

2. We replace every occurrence of not 1 by 0 and not 0 by 1;

3. Every clause with a 0 in its body is removed;

4. Finally, we remove every occurrence of 1 in the body of the clauses.

Note that this is not the Gelfond-Lifschitz reduction presented in Section 2.4.1.
For instance, let P be the normal program RE \RE0. This means that P is:

a← not b, c.
b← not a, not e.
d← b.

Then, R(P, 〈{c}; {e}〉) is:

a← not b.
b← not a.
d← b.

Given a set of interpretations Q and a signature L, we define Q restricted to
L as {M ∩ L|M ∈ Q}. For instance, let Q be {{a, c}, {c, d}} and L be {c, d, e},
hence Q restricted to L is {{c}, {c, d}}.

Let P be a program and P0, . . . , Pn its relevant modules. We say that a
semantics S satisfies the property of relevance if for every i, 0 ≤ i ≤ n, S(P0 ∪
· · · ∪ Pi) = S(P) restricted to LP0∪···∪Pi

.

100

5.3 Construction of new logic programming semantics

Some logic programming semantics that we will consider in this chapter are the
minimal model semantics (denoted by MM)1, the answer set semantics (53) (de-
noted by AnswerSets), the revised stable semantics (97) (denoted by RevStable)
and the pstable semantics (92) (denoted by Pstable).

5.3 Construction of new logic programming se-

mantics

In this section we construct elaborated logic programming semantics based on
a simpler logic programming semantics. We have in mind that our new logic
programming semantics satisfy the following suitable properties:

1. They should be always defined. In both approaches logic programming and
argumentation theory, it is appreciated that logic programming semantics
(resp. argumentation semantics) can be always defined (16; 28; 37; 97).
Hence, our new logic programming semantics will be always defined.

2. They should satisfy the relevance property. The relevance property is an
important property in order to define well-behaved semantics in logic pro-
gramming (36; 37).

3. They should agree with AnswerSets for the class of stratified programs. On
the one hand, answer set semantics is probably the most accepted logic
programming semantics in the last two decades, and on the other hand, the
class of stratified logic programs is the class of logic programs where the
most accepted logic programming semantics agree (11; 68).

4. They should be useful to model argumentation problems. As we commented
in §5.1, one of the main objectives of this chapter is to suggest a general
schema for constructing argumentation semantics based on logic program-
ming semantics.

We assume that every semantics S satisfies the following trivial property:

For every program P such that every atom that appears in P also
occurs as a fact of P then S(P) is defined.

Every well known semantics satisfies this basic property such as AnswerSets,
MM , RevStable, and Pstable. In fact in all these semantics there is exactly one

1It is worth mentioning that the minimal model semantics of a logic program P is given by
the minimal models of P .

101

5. BEYOND OF ADMISSIBLE SETS

intended model that is LP . For instance, let P be the following program:

a← >. b← >.
a← b. b← not a.

Observe that all the atoms of the program P appear as facts in P ; hence P will
always have the model: {a, b}.

Remark 5.1 For the construction of our semantics we assume that our programs
do not include non-trivial tautologies (see §5.2) . If a program includes them, we
simply remove them in the very first stage of our construction of our semantics.

5.3.1 Semantics always defined

It is sometimes desirable that a semantics of a normal program is always defined;
for instance, the case when a program is modeling an argumentation problem.
Given a particular semantics S, we show how to construct a semantics based on
S that is always defined.

First of all, we will define some concepts w.r.t. the notion of generalized S
model.

Definition 5.2 Let S be a logic programming semantics, P be a logic program
and A be a set of atoms (called abductives) such that A ⊆ LP .

• We say that MB is a generalized S model of P w.r.t. A if M ∈ S(P ∪ B)
where B ⊆ A and M ⊆ LP .

• We define a partial order between generalized S models (w.r.t. A) of a
program according to the set inclusion w.r.t. the subindex B. We say that
M is a minimal generalized S model of P w.r.t. A if there exists a set of
atoms B, such that MB is a generalized S model of P w.r.t. A and MB is
minimal w.r.t. the partial order just defined.

• We write S∗ to denote the minimal generalized S semantics, where A = LP .
Namely S∗(P) is the collection of minimal generalized S models of P w.r.t.
LP .

Observe that in our definition we are not instantiating the definition to a
particular logic programming semantics.

The concept of generalized S model is closely related to the semantics of
abductive logic programming (60; 61), in particular to the concept of generalized
answer set. It has also been explored for different logic programming approaches
as in (9; 93). For instance, the authors in (93) consider two partial order relations

102

5.3 Construction of new logic programming semantics

between the generalized models for defining minimal generalized models, one by
considering the set inclusion w.r.t. the subindexes of the generalized models (as
in Definition 5.2) and another one w.r.t. the cardinality of the subindexes of the
generalized models1.

In order to illustrate Definition 5.2, take the program C:

p← not p.

We can see thatAnswerSets(C) is undefined, howeverAnswerSets∗(C) = {{p}}.
Note that {p}{p} is the unique generalized answer set of C. This is because {p} is
an answer set of C ∪{p}. Moreover, {p} is the unique minimal generalized model
of C. Observe also that Pstable(C) = Pstable∗(C) = {{p}}.

Take the program D:

a← not b.
b← not c.
c← not a.

Observe that Pstable(D) is undefined; however, one can see that {a, b} is a pstable
model of P ∪ {a}, {b, c} is a pstable model of P ∪ {b} and {c, a} is a pstable
model of P ∪{c}. Since the models {a, b}{a}, {b, c}{b}, {c, a}{c} are the three min-
imized generalized pstable models of D, Pstable∗(D) = {{a, b}, {b, c}, {a, c}}.
The same situation happens to AnswerSets. AnswerSets(D) is undefined; how-
ever, AnswerSets∗(D) = {{a, b}, {b, c}, {a, c}}.

The following lemma insures that any semantics induced by Definition 5.2 will
be defined — the proof of the lemma is immediate thanks to the basic property
defined at the beginning of this section.

Lemma 5.1 For every semantics S and program P , S∗(P) is defined.

One important property of the semantics induced by Definition 5.2 is that the
concept of generalized model will be important only in the case that the initial
semantics S is undefined.

Lemma 5.2 For every semantics S and program P . If S(P) is defined then
S∗(P) = S(P).

Proof: If S(P) is defined then it is clear that M ∈ S(P) iff M{} is a minimal
generalized S model of P .

This lemma insures that whenever a semantics S is defined, it will be the same
to S∗ e.g., Pstable(C) = Pstable∗(C) = {{p}}. The following lemma makes some
observations w.r.t. MM , RevStable, AnswerSets, Pstable and their induced
semantics based on the concept of generalized model.

1In (93), a generalized model is called a L-completion.

103

5. BEYOND OF ADMISSIBLE SETS

Lemma 5.3 MM and MM∗ are the same semantics. RevStable and RevStable∗

are the same semantics. AnswerSets is different from AnswerSets∗. Pstable
is different from Pstable∗. AnswerSets∗, Pstable∗, and MM∗ are 3 different
semantics.

Proof: MM is the same as MM∗ follows because MM is always defined (Lemma
5.2). For the same reason RevStable and RevStable∗ are the same semantics.
Note that program C already defined shows that AnswerSets is different from
AnswerSets∗. Program D shows that Pstable is different from Pstable∗.

Consider Program E:

a← not b.
b← not a.
p← not b.
p← not p.

AnswerSets∗(E) = AnswerSets(E) = {{p, a}}. Pstable∗(E) = Pstable(E) =
{{p, a}, {p, b}}. MM∗(E) = MM(E) = {{p, a}, {p, b}}. This program shows
that Pstable∗ is different from AnswerSets∗ and that MM∗ is different from
AnswerSets∗

Consider Program F :

a← not b.
b← not a.
u← a.
x← not y, u.
y ← not z, u.
z ← not x, u.

One can see that Pstable∗(F) = {{b}} andMM∗(F) = {{b}, {a, u, x, y}, {a, u, x, z},
{a, u, y, z}}. Hence, this program shows that Pstable∗ is different from MM∗.

5.3.2 Constructing relevant semantics

It is sometimes desirable that a semantics satisfies the relevance property. Rele-
vance is a fundamental property when we are interested in defining the semantics
of a split logic program. Given a semantics S we show how to construct a relevant
semantics based on S that we denote by Sr.

We assume in this subsection the following property:

104

5.3 Construction of new logic programming semantics

For every logic program, if an atom occurs in a program then it should
also occur in the head of some rule.

Later, we show how to deal with programs that do not satisfy this property.
Given Q and R both sets of interpretations, we define

Q ∗R := {M1 ∪M2|M1 ∈ Q,M2 ∈ R}

Definition 5.3 Let S be a logic programming semantics that is always defined.
We define the associate Sr semantics recursively as follow: Given a program P
of order 0, Sr(P) = S(P). For a program P of order n > 0 we define

Sr(P) =
⋃

M∈S(P0)

{M} ∗ Sr(R(P \ P0, 〈M ; LP0 \M〉))

For the reader who knows STABLErel’s definition presented in (37), we want
to point out that Sr is similar to STABLErel w.r.t. the relevance property;
however, STABLErel has a skeptical construction and Sr has a construction by
scenarios.

Consider the program E defined before. We illustrate our definition to com-
pute AnswerSets∗

r
(E). Recall that E is:

a← not b.
b← not a.
p← not b.
p← not p.

Then E0 is:

a← not b.
b← not a.

AnswerSets(E0) = {{a}, {b}}. Since AnswerSets(E0) has two models, there are
two cases to consider:

1. First, consider M be {a}. We can see that E \ E0 is:

p← not b.
p← not p.

Moreover, we can see that R(E \ E0, 〈M ; LE0 \M〉) is:

105

5. BEYOND OF ADMISSIBLE SETS

p.
p← not p.

Hence, Sr(R(E \ E0, 〈M ; LE0 \ M〉)) is: {{p}}. So, {M} ∗ Sr(R(E \
E0, 〈M ; LE0 \M〉)) is: {{p, a}}.

2. Now, consider M be {b}. In this case, we can see that R(E \E0, 〈M ; LE0 \
M〉) is:

p← not p.

Observe thatAnswerSets∗ of this reduced program is {{p}}. Hence, Sr(R(E\
E0, 〈M ; LE0 \M〉)) is: {{p}}. So, {M} ∗ Sr(R(E \ E0, < M ; LE0 \M >))
is: {{p, b}}.

Therefore AnswerSets∗
r
(E) = {{p, a}, {p, b}}.

The general case.

We have shown how to construct a relevant semantics for programs where every
atom in the signature of the program occurs in the head of some rule of that
program. Now, why is it important that every atom in the signature of the
program must occur in the head of some rule of that program? In order to
answer this question, let us consider the program J :

a← not b.

and let S be a logic programming semantics. Now, let us suppose we want to
infer Sr(J). Hence, the first step, in order to infer Sr(J), is to split J into its
components. Since a depends on b, but b does not depend on a, [b] ≤P [a]. This
means that J has to be split into two components: J0 and J1. Remember that J0

will contain all the clauses whose head is the atom b and J1 will contain all the
clauses whose head is the atom a. It is obvious that J0 is an empty component,
but this is a problem because we cannot apply Definition 5.3 in order to infer
Sr(J). A simple way to avoid this problem is to add the tautology b ← b to J .
For instance, let K be the program:

b← b.
a← not b.

Observe that like J , K has also two components; however, none of them is empty.
This idea will suggest a natural generalization of Definition 5.3 in order to infer
Sr for any logic program.

106

5.3 Construction of new logic programming semantics

Definition 5.4 Let P be a normal logic program. We define

Sr(P) = Sr(P ∪ {x← x : x ∈ LP \HEAD(P)})

This completes our construction of relevant semantics. Consider again the pro-
gram J :

a← not b.

Since b does not occur in the head of some rule, we add the tautology b ← b,
obtaining K:

b← b.
a← not b.

Now we can proceed as before to obtain our intended semantics. MM∗r(K) =
AnswerSets∗

r
(K) = Pstable∗

r
(K) = {{a}}. Hence, MM∗r(J) = AnswerSets∗

r
(J) =

Pstable∗
r
(J) = {{a}}.

Observe that the logic programming semantics induced by Definition 5.4 are
different w.r.t. the logic programming semantics induced by Definition 5.2. For
instance, the following lemmas formalize the differences w.r.t. some semantics.

Lemma 5.4 AnswerSets∗ is different from AnswerSets∗
r
. Pstable∗ is different

from Pstable∗
r
.

Proof: Program E shows that AnswerSets∗ is different from AnswerSets∗
r
.

Program F shows that Pstable∗ is different from Pstable∗
r
.

Lemma 5.5 AnswerSets∗
r
, Pstable∗

r
, and MM∗r are 3 different semantics.

Proof:
Consider Program L:

a← not b.
b← not a.
p← not b.
p← not p.
b← not p.

Then AnswerSets∗
r
(L) = {{p, a}}. However Pstable∗

r
(L) = {{p, a}, {p, b}}.

Hence AnswerSets∗
r

is different from Ptable∗
r
. This example also show that

AnswerSets∗
r

is different from MM∗r .

Consider Program R:

107

5. BEYOND OF ADMISSIBLE SETS

x← not y.
y ← not z.
z ← not x.
x← not u.
d← not z.
u← not d.

This example shows thatAnswerSets∗
r

is different fromMM∗r . AnswerSets∗
r
(R) =

{{x, y, d}}. However {u, x, z} ∈ MM∗r(R). This example also shows that
Pstable∗

r
is different from MM∗r , since Pstable∗

r
(R) = AnswerSets∗

r
(R).

As we commented in Section 5.2, the stratified logic programs define a class
of logic programs which have interesting properties w.r.t. the search for nice
declarative semantics. In particular we can observe that AnswerSets, Pstable,
MM∗r , as well as all our refined versions for AnswerSets and Pstable agree with
respect to the class of stratified programs.

Lemma 5.6 Let P be a stratified program. Hence,
AnswerSets(P) = Pstable(P) = MM∗r(P) = AnswerSets∗

r
(P) = Pstable∗

r
(P)

Proof:
The proof is by induction on the number of components of P e.g., P =

P0 ∪ · · · ∪ Pn.

Base Step By definition of stratified program, one can see that if P = P0, then
P is a definite program i.e. P does not have negative literals. Hence,
MM(P) = AnswerSets(P) = Pstable(P). Since MM(P) is always de-
fined, AnswerSets(P) = Pstable(P) = MM∗r(P) = AnswerSets∗

r
(P) =

Pstable∗
r
(P).

Inductive Step Now, let us suppose that P has n components.

Let us suppose that it is true that AnswerSets(Pk) = Pstable(Pk) =
MM∗r(Pk) = AnswerSets∗

r
(Pk) = Pstable∗

r
(Pk) for some k < n.

By definition, Sr(P) =
⋃
M∈S(P0){M} ∗ Sr(R(P \ P0, 〈M ; LP0 \M〉))

Observe that since P is a stratified program, hence for any M ∈ Sr(Pk),
R(Pk+1 \ Pk, 〈M ; LPk+1

\M〉) is a definite program. Therefore by inductive
hypothesis, AnswerSets(P) = Pstable(P) =MM∗r(P) =AnswerSets∗

r
(P) =

Pstable∗
r
(P).

As final result of this subsection, we can introduce the following lemma whose
proof is immediate by Lemma 5.1.

108

5.4 Construction of abstract argumentation semantics

Lemma 5.7 For every semantics S and program P , S∗
r

is defined.

This lemma insures that any logic programming semantics induced by Defi-
nition 5.2 and Definition 5.4 will be defined for any logic program.

Before to finish this section, we want to remember to the reader that there is
an important preprocessing that must be applied to any logic program in order to
apply the semantics introduced in this section. In Remark 5.1, we pointed out that
we have assumed that our programs do not include non-trivial tautologies. This
preprocessing has an important role in logic programming semantics as MM∗r .
For instance, let P be the following logic program:

a← not b.
b← a, not a. (non-trivial tautology)

Observe that the atom b is implied by the formula a ∧ not a; hence, one can
expect not to infer the atom b from P . However, one can see that P has a minimal
model which contains the atom b. This means that MM∗r = {{a, b}}; therefore,
MM∗r is inferring an unexpect model. It is worth to comment that this problem
does not happen with semantics as AnswerSets and Pstable — these semantics
only infer from P the model {a}.

In order to avoid some kind of unexpect models, one can remove from P
any non-trivial tautology. Observe that the clause b ← a, not a is a non-trivial
tautology. Hence by removing this non-trivial tautology from P , we can get the
logic program P ′:

a← not b.

In this case like the semantics AnswerSets and Pstable, MM∗r only infers the
model {a} from P ′.

It worth to comment that the constructive definition of relevant semantics
presented in Definition 5.4 only considers trivial tautologies in order to insure
that any atom of a given program appears in the head of some clause.

5.4 Construction of abstract argumentation se-

mantics

In the previous section, we have defined a recursive general schema for construct-
ing new logic programming semantics. As we mentioned in the introduction, we
are interested in constructing new abstract argumentation semantics based on
logic programming semantics. In this section, we will show how to take advan-
tages of our approach for building new abstract argumentation semantics.

109

5. BEYOND OF ADMISSIBLE SETS

It is quite obvious that in order to regard an argumentation framework as a
logic program, we require a function mapping which constructs a logic program
from an argumentation framework. Hence let M be a mapping from the class of
argumentation frameworks (AFAR) to the class of logic programs (ProgL). M

assigns to every argumentation framework AF a logic program P . We are going
to denote the image of AF under M as PAF .

Now, we will define how any logic programming semantics can induce a can-
didate abstract argumentation semantics under a particular mapping.

Definition 5.5 Let AF := 〈AR, attacks〉 be an argumentation framework and
S be any logic programming semantics. The semantics S induces the candidate
abstract argumentation semantics SM

Arg as follows:

SM
Arg(AF) := F(S∗

r

(PAF))

such that F is a mapping from 2LPAF to 2AR.

Observe that for each model of PAF the mapping F is defining an extension
for the argumentation framework AF . Informally speaking we can say that SM

Arg

is the candidate abstract argumentation semantics induced by the logic program-
ming semantics S under the mapping M.

The following lemma is immediate thanks to Lemma 5.1.

Lemma 5.8 For every logic programming semantics S, the candidate abstract
argumentation semantics SM

Arg is always defined

In order to illustrate our general schema for constructing abstract argumen-
tation semantics, let us introduce a simple mapping to regard an argumentation
framework as a normal logic program. In this mapping, we are only considering
the negative clauses of the mapping ΨAF (see Definition 4.3). Remember that the
intended meaning of the predicate d(x) is: “the argument x is defeated”. This
means that the argument x is attacked by an acceptable argument.

Definition 5.6 Let AF := 〈AR, attacks〉 be an argumentation framework. We
define:

PAF :=
⋃
a∈AR

(
⋃

b:(b,a)∈attacks

d(a)← not d(b))

The only condition which is captured by this program is that any argument
will be defeated when anyone of its adversaries is not defeated. Observe that
essentially PAF is capturing the basic principle of conflict-freeness (see Definition

110

5.4 Construction of abstract argumentation semantics

2.7); hence, one can insure that any candidate abstract argumentation semantics
induced by PAF at least will satisfy the principle of conflict-freeness. It worth
to comment that according to Baroni and Giacomin in (12), the principle of
conflict-freeness is the minimal requirement to be satisfied by any argumentation
semantics. Two relevant properties of the mapping PAF are:

1. The stable models of PAF characterize the stable argumentation semantics
of AF (Lemma 4.2) and

2. The well founded model of PAF characterizes the grounded semantics of AF
(Lemma 4.1).

In order to illustrate the mapping PAF , let AF be the argumentation frame-
work of Figure 5.2. We can see that PAF is:

d(a)← not d(b). d(d)← not d(a). d(e)← not d(d).
d(b)← not d(c). d(d)← not d(b).
d(c)← not d(a). d(d)← not d(c).

In order to construct our abstract argumentation semantics induced by any
logic programming semantics and the mapping PAF . Let us point out that
LPAF

:= {d(a)|a ∈ AR}. Hence given any logic programming semantics S and
an argumentation framework AF :

F(S(PAF)) :=
⋃

M∈S(PAF)

{a|d(a) ∈ LPAF
\M}

We have already commented that the answer sets of PAF characterize the
stable extensions of AF . For instance, we can see that the program PAF of the
argumentation framework of Figure 5.2 has no answer sets, this means that this
argumentation framework has no stable extensions. However, let us consider the
argumentation semantics AnswerSets∗

r

Arg w.r.t. AF .
First of all, we have to compute the semantics AnswerSets∗

r
w.r.t. PAF . It

is not difficult to see that

AnswerSets∗
r

(PAF) := {{d(a), d(b), d(d)}, {d(b), d(c), d(d)}, {d(a), d(c), d(d)}}

Then we can see that

F(AnswerSets∗
r

(PAF)) := {{a, e}, {b, e}, {c, e}}

This means that

AnswerSets∗
r

Arg(PAF) := {{a, e}, {b, e}, {c, e}}

111

5. BEYOND OF ADMISSIBLE SETS

Figure 5.4: Graph representation of the argumentation framework AF := 〈
{x, y, z, u, d}, {(x, z), (z, y), (y, x), (u, x), (z, d), (d, u)}〉.

Observe that the extensions suggested by the argumentation semantics
AnswerSets∗

r

Arg are the same to the extensions suggested by the semantics CF2
introduced by P. Baroni et al, in (13). In fact MM∗r

Arg and Pstable∗
r

Arg also coincide
with CF2 in this example.

Now let us consider the argumentation framework of Figure 5.4. It is not
difficult to see that PAF w.r.t. the argumentation framework of Figure 5.4 is:

d(x)← not d(y).
d(y)← not d(z).
d(z)← not d(x).
d(x)← not d(u).
d(d)← not d(z).
d(u)← not d(d).

Observe that PAF is exactly (modulo notation) the program R of the proof of
Lemma 5.5. SinceAnswerSets∗

r
(PAF) = {{d(x), d(y), d(d)}}, thereforeAnswerSets∗

r

Arg =
{{u, z}}. We can see that AnswerSets∗

r

Arg coincides with the preferred semantics,
the stable argumentation semantics and Pstable∗

r

Arg in this example. Now let us
compute the argumentation semantics MM∗r

Arg. Since MM∗r(PAF) :=

{{d(y), d(z), d(u)}, {d(x), d(z), d(d)}, {d(u), d(x), d(z)}, {d(x), d(y), d(d)}}

then MM∗r
Arg(PAF) = {{x, d}, {y, u}, {y, d}, {z, u}}. Notice that MM∗r

Arg coin-
cides again with the argumentation semantics CF2.

We want to remark that the argumentation semantics MM∗r
Arg is really close

to the argumentation semantics CF2. Let us consider another example where
MM∗r

Arg and CF2 coincide. Let AF be the argumentation framework of Figure
5.51.

In order to compute MM∗r
Arg(AF), first of all we have to map AF to PAF :

1This argumentation framework was introduced in (13).

112

5.5 Related work

Figure 5.5: Graph representation of the argumentation framework AF := 〈
{r, s, j, a, b}, {(r, j), (j, s), (s, r), (j, a), (a, b), (b, a)}〉.

d(r)← not d(s).
d(s)← not d(j).
d(j)← not d(r).
d(a)← not d(j).
d(a)← not d(b).
d(b)← not d(a).

As we can see, MM∗r(PAF) has five models which are:

{{d(r), d(s), d(a)}, {d(j), d(r), d(a)}, {d(j), d(r), d(b)},
{d(s), d(j), d(a)}, {d(s), d(j), d(b)}}

This means that:

MM∗r
Arg(AF) := {{j, b}, {s, b}, {s, a}, {r, b}, {r, a}}

As commented before, MM∗r
Arg(AF) = CF2(AF).

5.5 Related work

As far this chapter, we have commented that our approach for building new
argumentation semantics is close related to Baroni et al ’s approach presented in
(13). In this section, we will point out some of the main common points between
our approach and Baroni et al ’s approach.

As we know, Baroni et al ’s approach is based on a solid concept in graph
theory which is a strongly connected component (SCC)1. Based on the fact that
any argumentation framework AF can be represented by a directed graph, Baroni

1A directed graph is called strongly connected if there is a path from each vertex in the
graph to every other vertex. The strongly connected components (SCC) of a directed graph
are its maximal strongly connected subgraphs (31).

113

5. BEYOND OF ADMISSIBLE SETS

et al ’s approach consider the strongly connected components of AF in order to
introduce a recursive definition for argumentation semantics. The behavior of the
argumentation semantics will be mainly influenced by

• a basic argumentation semantics-specific function. This function is a pat-
tern of inference of arguments e.g., conflict-free sets, admissible sets, etc.

In §5.2, we saw that any logic program induces a notion of dependency be-
tween atoms from LP . In fact, we saw that this dependency can define classes of
atoms such that theses classes of atoms form a partial order which encodes the
dependencies existing among the atoms. By considering theses classes of atoms,
one can break any logic program into a disjoint union of subprograms. Based on
this disjoint union of subprograms, we introduce a recursive definition for logic
programming semantics.

In §5.4, we saw that by considering an argumentation framework as a logic
program, one can use the recursive definition for logic programming semantics
presented in §5.3 in order to induce candidate argumentation semantics. The be-
havior of the induce candidate argumentation semantics will be mainly influenced
by two variables:

• the representation of an argumentation framework into a logic program and

• the basic logic programming semantics function e.g., the minimal model
semantics, the answer set semantics, the pstable semantics, etc.

Unlike to Baroni et al ’s approach which always starts with the same represen-
tation of an argumentation framework into a directed graph, our approach allows
to use different representations of an argumentation framework in terms of logic
programs. These different representations could induce different dependencies of
atoms of the given logic program; therefore we can break a logic program into
different disjoint subprograms. This means that we can break an argumentation
framework into different components.

Even though one can consider different representations of an argumentation
framework in terms of logic programs, we can consider single mappings of an ar-
gumentation framework into a logic program in order to split an argumentation
framework similarly as it is done by Baroni et al ’s approach. For instance, let us
consider the argumentation framework AF of Figure 5.2. Observe that the graph
representation of AF has three strongly connected components:

SCC0
AF = {a, b, c}

SCC1
AF = {d}

SCC2
AF = {e}

114

5.5 Related work

By considering the relation of attack between sets of arguments and the so called
directionality principle (13), Baroni et al ’s approach defines a partial order be-
tween theses strongly connected components (let us denote this relation as ≤SCC).
≤SCC defines the following relations between the above strongly connected com-
ponents:

{a, b, c} ≤SCC {d} ≤SCC {e} (5.3)

Essentially, these relations capture that SCC0
AF attacks SCC1

AF and SCC1
AF

attacks SCC2
AF . Since there is not a strongly connected component that attacks

SCC0
AF , SCC0

AF is called initial.
Now, let us consider the representation of AF in terms of normal logic pro-

grams according to the mapping presented in Definition 5.6. We can see that
PAF is:

d(a)← not d(b). d(d)← not d(a). d(e)← not d(d).
d(b)← not d(c). d(d)← not d(b).
d(c)← not d(a). d(d)← not d(c).

Observe that this program induces the following classes of atoms:

[d(a)] = {d(a), d(b), d(c)} [d(d)] = {d(d)} [d(e)] = {d(e)}
[d(b)] = {d(a), d(b), d(c)}
[d(c)] = {d(a), d(b), d(c)}

such that

d(a) is of order 0 d(d) is order 1 d(e) is of order 2
d(b) is of order 0
d(c) is of order 0

This means that we have the following relations of atoms:

{d(a), d(b), d(c)} ≤p {d(d)} ≤p {d(e)} (5.4)

Observe that we have very similar relations between the partial orders: ≤SCC
(5.3) and ≤p (5.4). In Baroni et al ’s approach, the partial order ≤SCC is used
for splitting an argumentation framework in order to define a recursive construc-
tion of argumentation semantics. In our approach, the partial order ≤p is used
for splitting a logic program in order to define a recursive construction of logic
programming semantics. If the given logic program captures an argumentation
framework AF (as it is done by PAF), ≤p will support the construction of an
recursive construction of argumentation semantics as well.

115

5. BEYOND OF ADMISSIBLE SETS

In Baroni et al ’s approach, once an argumentation framework is partitioned
into its strongly connected components and the relation between them is de-
fined, the possible choices for extensions within each initial strongly connected
component are determined using a basic argumentation semantics-specific func-
tion e.g., conflict-free sets, admissible sets, etc., which returns the extensions of
the argumentation frameworks consisting of a single strongly connected compo-
nents. For instance, let us consider the initial strongly connected component
(SCC0

AF = {a, b, c}) of the argumentation framework AF of Figure 5.2. SCC0
AF

will define the following subargumentation framework:

AFSCC0
AF

= 〈{a, b, c}, {(a, c), (c, b), (b, a)}〉
Now let us consider, as basic argumentation semantics-specific function, the func-
tion which returns all the possible conflict-free sets (CF) of an argumentation
framework. Hence we can see that CF(AFSCC0

AF
) = {{a}, {b}, {c}}.

Once a basic argumentation semantics-specific function Sarg was applied to
all the initial strongly connected component of an argumentation framework, for
each choice determined by Sarg

• the nodes directly attacked within subsequent strongly connected compo-
nents are suppressed and

• a distinction between defended and undefended arguments is taken into
account.

This changes are done according to the reinstatement principle. This basic
principle prescribes that the arguments defeated by an extension E play no role
in the selection of the arguments to be included in E (13).

In our approach, once the partial order ≤p is defined in terms of LPAF
, the

program PAF is split into its components. For instance, PAF is splint as follows:

P0 P1 P2

d(a)← not d(b). d(d)← not d(a). d(e)← not d(d).
d(b)← not d(c). d(d)← not d(b).
d(c)← not d(a). d(d)← not d(c).

Observe that P0 can be constructed from AFSCC0
AF

. In fact P0 = PAF
SCC0

AF

. Let us

consider the minimal model semantics MM as basic logic programming semantics
function in order to illustrate the relations of our approach with Baroni et al ’s
approach. The basic logic programming semantics function is applied recursively
as it is presented in Definition 5.3. Observe that

MM(P0) = {{d(a), d(b)}, {d(b), d(c)}, {d(a), d(c)}}

116

5.6 Concluding remarks

therefore F(MM(P0)) = {{a}, {b}, {c}}. This means that

F(MM(P0)) = CF(AFSCC0
AF

)

Like Baroni et al ’s approach which reduces recursively the original argumen-
tation framework by considering the results of the basic argumentation semantics-
specific function, our approach applies a reduction to a logic program.

As we can see there are several key points that we can identified in common
between Baroni et al ’s approach and our approach, some them are:

1. Both approach consider an partial order for splitting the representation of
an argumentation framework i.e. graph representation or logic program.

2. Both approach use a recursive definition for constructing the desired se-
mantics (argumentation semantics / logic programming semantics).

A deep analysis is required in order to understand more about the relation
between Baroni et al ’s approach and our approach. In fact some interesting
questions that we are going to consider in our future work are: Which is the
class of argumentation semantics that can be characterized in both approaches?
Which are the logic programming semantics that are more useful for building
argumentation semantics? Which mappings of an argumentation framework into
a logic program defines useful argumentation semantics?

With respect to the above questions, we know, by the moment, that the
mapping of Definition 5.6 is a practical mapping that by considering the logic
programming MM∗r is able to suggest an argumentation semantics similar to
CF2. It is worth to comment that CF2 is one of the most accepted argumentation
semantics builded under the Baroni et al ’s approach (12).

As final comment, we want to comment that any of the candidate argumen-
tation semantics Sarg suggested under our approach can be explored their non-
monotonic properties in terms of the logic programming semantics which induces
Sarg. This is a relevant feature of our approach since many of the new argumen-
tation semantics are only motivated by particular examples; hence, the identifica-
tion of the non-monotonic reasoning properties, that a particular argumentation
semantics satisfies, takes relevance in order to support the well-behaviour of an
argumentation semantics.

5.6 Concluding remarks

Authors as Baroni et al, have suggested that in order to overcome Dung’s ab-
stract argumentation semantics problems, it is necessary to define flexible argu-
mentation semantics which are not necessarily based on admissible sets (13). For

117

5. BEYOND OF ADMISSIBLE SETS

instance, Baroni et al, have pointed out that in any admissibility-based semantics
odd-length cycles admit only the empty extension. Based on the fact that logic
programming offers a wide liberty for modeling knowledge, we can construct ab-
stract argumentation semantics by specifying the basic conditions that our new
argumentation semantics must satisfy. For instance, the mapping introduced in
Definition 5.6 only captures the restriction that any argument will be defeated
when anyone of its adversaries is not defeated. This single mapping is enough for
characterizing argumentation semantics as the grounded semantics and the stable
argumentation semantics. In fact, we also defined the abstract argumentation se-
mantics MM∗r

Arg which is similar to CF2 — the semantics MM∗r
Arg is constructed

under the mapping of Definition 5.6 and the logic programming semantics MM∗r .
By considering the idea that argumentation semantics can be viewed as a

special form of logic programming semantics with negation as failure, we introduce
a general recursive approach for defining a new family of logic programming
semantics which induce a new family of abstract argumentation semantics.

We have in mind that our new logic programming semantics satisfy the fol-
lowing suitable properties:

1. They should be always defined.

2. They should satisfy the relevance property.

3. They should agree with answer set semantics for the class of stratified pro-
grams.

4. They should be useful to model argumentation problems.

To explore the properties of the family of the abstract argumentation seman-
tics which are induced by our approach is an issue for argumentation research. In
fact, it is part of our future research. It is worth mentioning that thanks to the
properties that the logic programming semantics hold, we can study the argumen-
tation semantics that are constructed under these logic programming semantics
e.g., Lemma 5.8.

118

Chapter 6

A non-monotonic
possibilistic-based argumentation
approach

In this chapter, we introduce a possibilistic-based argumentation approach which
is based on the possibilistic logic programming approach introduced in Chapter 3
and the argumentation semantics explored in Chapter 4 and Chapter 5.

6.1 Introduction

One of the purposes of argumentation theory is to provide tools for support-
ing decisions. For instance, argumentation theory is able to suggest arguments
in favour a decision. Usually argumentation theory is adequate for supporting
decisions in scenarios where the information is inconsistent and incomplete. In-
deed, an interesting feature of argumentation theory inference is that it is able
to manage inconsistent information in a natural way.

In Chapter 3, we defined an approach for modeling uncertain, incomplete and
inconsistent information. In fact, in §3.4, we defined some criteria for dealing
with two kinds of inconsistency of a possibilistic program

• one which arises from the presence of complementary atoms in a possibilistic
answer set (or a possibilistic pstable model) and

• the other one which arises from the non-existence of possibilistic answer set
(or possibilistic pstable models) of a possibilistic logic program.

In order to manage these problems of inconsistency, we define two different
approaches in §3.4: One based on a preference criterion between possibilistic
atoms and the other one based on cuts as it is done Possibilistic Logic.

119

6. A NON-MONOTONIC POSSIBILISTIC-BASED
ARGUMENTATION APPROACH

As we saw in §3.4, many times to consider inconsistent information is often the
only way to explore inconsistent information without arbitrarily rejecting precious
data. Also pursuing inconsistent systems is sometimes the only way to obtain
new information. As a result, pursuing inconsistent belief systems allows us to
make better informed decisions regarding which bits of information to accept or
reject in the end.

In order to extend our approach presented in Chapter 3, in this chapter, we
will define a possibilistic-based argumentation approach. This approach will be
based on the concept of possibilistic argument and the argumentation semantics
explored in Chapter 4 and Chapter 5.

To consider arguments in order to support conclusions provides a natural pro-
cess for supporting decision-making in possibilistic knowledge bases. For instance,
one can require to support/justify each of the possibilistic atoms which belongs
to a possibilistic answer set (or possibilistic pstable models). For example, let us
consider the program P of Section 3.4:

probable: r inf(present, 1) ∨ no r inf(present, 1) ← action(transplant, 0),
d inf(present, 0).
confirmed: o(good graft funct, 1) ∨ o(delayed graft funct, 1)∨
o(terminal insufficient funct, 1)← action(transplant, 0).
confirmed: action(transplant, 0)← o(terminal insufficient funct, 0).
plausible: cs(stable, 1)← o(good graft funct, 1).
plausible: cs(unstable, 1)← o(delayed graft funct, 1).
plausible: cs(0-urgency, 1)← o(terminal insufficient funct, 1),
action(transplant, 0).
certain: ⊥ ← action(transplant, 0), action(wait, 0).
certain: ⊥ ← action(transplant, 0), cs(dead, 0).
certain: d inf(present, 0)← >.
certain: no r inf(present, 0)← >.
certain: o(terminal insufficient funct, 0)← >.
certain: cs(stable, 0)← >.
confirmed: v(kidney, 0)← cs(stable, 1), action(transplant, 0).
probable: no v(kidney, 0)← r inf(present, 1), action(transplant, 0).
certain: ⊥ ← not cs(stable, 1).

Remember that this program captures the possible situations where an organ
recipient can be found after a graft. In particular, we are considering a donor’s
organ with a possible infection (see the introduction of Chapter 3.1 and Example
3.1 for a full description).

Now based on the knowledge base of the program P , we want to know if a
kidney from a donor with an infection is viable for transplanting. In Section 3.4,

120

6.1 Introduction

we saw that this program has two possibilistic answer sets:

S1 := {(d inf(present, 0), certain), (no r inf(present, 0), certain),
(o(terminal insufficient funct, 0), certain), (cs(stable, 0), certain),
(action(transplant, 0), confirmed), (o(good graft funct, 1), confirmed),
(cs(stable,1),plausible), (no r inf(present,1), probable),
(v(kidney,0), plausible)}

S2 := {(d inf(present, 0), certain),(no r inf(present, 0), certain),
(o(terminal insufficient funct, 0), certain),(cs(stable, 0), certain),
(action(transplant, 0), confirmed), (o(good graft funct, 1), confirmed),
(cs(stable,1), plausible),(r inf(present,1), probable),
(v(kidney,0), plausible), (no v(kidney,0), probable)}

By considering the possibilistic answer set S1, we can see that there is a pos-
sibilistic atom (v(kidney, 0), plausible) that suggests that the kidney is viable for
transplanting, but a good question is: what is it the information supporting this
conclusion? By definition of possibilistic answer set (see Definition 3.3), we know
that P S1 `PL (v(kidney, 0) plausible). This means that there is a set of possibilis-
tic clauses Support ⊆ P S∗1 , such that Support `PL (v(kidney, 0) plausible). In
fact, we can restrict to Support in order to be minimal w.r.t. set inclusion. This
ideas of considering the minimal information in order to support a conclusion is
captured by the concept of argument in argumentation theory. By considering a
standard form of an argument, in argumentation literature (1; 64), we can say
that the following structure is an argument that suggests that the kidney is plau-
sible to be transplanted:

Arg1 = 〈v(kidney, 0),

{certain : o(terminal insufficient funct, 0)← >;
confirmed : action(transplant, 0)← o(terminal insufficient funct, 0);
confirmed : o(good graft funct, 1) ∨ o(delayed graft funct, 1)∨

o(terminal insufficient funct, 1)← action(transplant, 0);
plausible : cs(stable, 1)← o(good graft funct, 1);
confirmed : v(kidney, 0)← cs(stable, 1), action(transplant, 0);
certain : ⊥ ← not cs(stable, 1)},

plausible 〉

Essentially, one can identify three components in the structure of this argument:
a conclusion, a support and a degree of uncertainty. Observe that when a pos-
sibilistic answer set is inconsistent, as in S2, one can construct arguments which

121

6. A NON-MONOTONIC POSSIBILISTIC-BASED
ARGUMENTATION APPROACH

attack each other. For instance, by considering S2 one cannot only construct an
argument in favor to consider the kidney viable to be transplanted; but it is also
possible to construct an arguments with oppositive conclusion:

Arg2 = 〈no v(kidney, 0),

{certain : o(terminal insufficient funct, 0)← >;
certain : d inf(present, 0)← >;
confirmed : action(transplant, 0)← o(terminal insufficient funct, 0);
probable : r inf(present, 1) ∨ no r inf(present, 1) ← action(transplant, 0),

d inf(present, 0).
probable : no v(kidney, 0)← r inf(present, 1), action(transplant, 0)
certain : ⊥ ← not cs(stable, 1)},

probable 〉
In this case, we have to identify some criteria for selecting possibilistic arguments
which are in conflict.

As we saw, in Chapter 4, the selection of arguments can be done by considering
special patterns of selection of arguments i.e. the Dung’s argumentation seman-
tics and the new argumentation semantics presented in Chapter 4 and Chapter
5. However, the selection of arguments is just one of the steps in the inference in
argumentation theory.

The inference in argumentation theory usually can be regarded by 4 steps
(48):

1. Argument construction. This argument construction is based on a knowl-
edge base. In our case, we will consider possibilistic disjunctive logic pro-
grams.

2. Argument valuation. In this step, it is assigned a weight to arguments.
This weight will be assigned by possibilistic answer sets/possibilistic pstable
models in our approach.

3. Argumentation interaction. In this step, the conflicts between the argu-
ments are identified.

4. Argumentation status evaluation. For determining the winning or justified
arguments.

In this chapter, we will formalize these 4 steps in the context of our possibilistic
logic programming approach presented in Chapter 3. Essentially, by considering

122

6.2 Building possibilistic arguments

a possibilistic logic program, we will define a strategy for building possibilis-
tic arguments. A possibilistic argument will have a standard structure (as in
argumentation theory) and will be inferred by possibilistic logic programming
semantics, as the possibilistic answer set semantics or the possibilistic pstable
semantics, of the given possibilistic knowledge base.

In order to manage the conflict that could appear between possibilistic argu-
ments, we will instantiate the argumentation framework structure introduce by
Dung in terms of possibilistic arguments. This instantiation will allow us to use
the argumentation semantics presented in Chapter 4 and Chapter 5 in order to
infer justified arguments.

The rest of this chapter is divided as follows: In §6.2, we will start presenting
the definition of a possibilistic argument. After that, in §6.3, we formalize how to
manage the conflicts between possibilistic arguments. In the last section of this
chapter, we present our concluding remarks.

6.2 Building possibilistic arguments

As we commented in the previous section, the first step in the inference in ar-
gumentation theory is the construction of arguments. Hence, in this section, we
shall start by defining how to build possibilistic arguments from a possibilistic
program.

A possibilistic argument can be constructed by considering any possibilistic
logic programming semantics i.e. the possibilistic answer set semantics, the pos-
sibilistic pstable semantics. Since one can consider the skeptical and credulous
versions of possibilistic semantics as the possibilistic answer set semantics and the
possibilistic pstable semantics, we will define two kinds of possibilistic arguments:
brave possibilistic arguments and cautious possibilistic arguments.

Definition 6.1 (Possibilistic Arguments) Let P = 〈(Q,≤), N〉 be a possi-
bilistic logic program. A possibilistic argument Arg w.r.t. P is a tuple of the
form Arg = 〈Claim, Support, α〉 such that the following conditions hold:

1. Support ⊆ P .

2. Support is minimal w.r.t. set inclusion.

3. ∃ M ∈ PSEM(Support) such that (Claim, α) ∈ M (in this case the pos-
sibilistic arguments Arg is called brave. When the existent quantified ∃ is
changed by the for all quantified ∀, the possibilistic arguments Arg is called
cautious).

123

6. A NON-MONOTONIC POSSIBILISTIC-BASED
ARGUMENTATION APPROACH

PSEM is any possibilistic logic programming semantics i.e. possibilistic sta-
ble semantics, possibilistic answer set semantics, possibilistic pstable semantics.
Brave-ARGPSEMP gathers all the brave possibilistic arguments which can be con-
structed from P and the possibilistic logic programming semantics PSEM . Cautious-
ARGPSEMP gathers all the cautious possibilistic arguments which can be con-
structed from P and the possibilistic logic programming semantics PSEM .

In order to simplify the following definition, ARGP will denote any set of
possibilistic arguments constructed from P .

The arguments Arg1 and Arg2 presented in the previous section are two ex-
amples of two brave possibilistic arguments w.r.t. the possibilistic answer set
semantics. In order to illustrate some features of this definition, let us consider
the following two programs:

P1: 0.5 : a← >. P2: 0.5 : a← >.
0.6 : b← ¬a 0.6 : b← not a

First of all, observe that the only difference between P1 and P2 is the kind of
negation that is used in the second clause of each program. In P1, the atom a
is negated by the strong negation (¬) and in P2, the atom a is negated by the
negation as failure (not). This simple syntactic difference makes strong differences
w.r.t. the semantics of each program, and therefore to the set of possibilistic
arguments which can be inferred from each program. It is easy to see that in
both programs P1 and P1, one can construct an argument for the atom a which
is:

Arga = 〈a, {0.5 : a← >}, 0.5〉

Now the question is: is there an argument for the atom b from P1 and P2? On
the one hand, observe that there does not exist a subprogram P ′1 of P1 such that
P ′1 `PL b, this means that one cannot build an possibilistic argument for the
atom b from the program P1. On the other hand, by considering the subprogram
P ′2 ⊆ P2 such that P ′2 = {0.6 : b← not a}, one can easily see that any reasonable
possibilistic argumentation semantics PSEM that captures negation as failure
will inter that ∃M ∈ PSEM(P ′2) such that (b, 0.6) ∈ M . This means that by
considering any reasonable possibilistic semantic PSEM , one can construct the
possibilistic argument:

Argb = 〈b, {0.6 : b← not a}, 0.6〉

from the program P2.
Before to follow on, we want to point out that whenever a possibilistic program

P is positive i.e. it has no negative literals. The construction of possibilistic

124

6.3 Conflicts between possibilistic arguments

arguments will depend on the inference of Possibilistic Logic. Hence, in this case
we can ensure that Brave-ARGPSEMP = Cautious-ARGPSEMP .

6.3 Conflicts between possibilistic arguments

Once we have defined how to build possibilistic arguments, we require to define
how the possibilistic arguments will interact. In other words, we will define the
cases when two possibilistic arguments will be in a conflict and then to define
which arguments will be considered accepted (according to an argumentation
semantics).

Usually the relation of attack between arguments is defined in terms of comple-
mentary atoms i.e. a and ¬a. For instance, if we have the possibilistic program:

P : 0.6 : a← >.
0.5 : ¬a← >.

one can construct two possibilistic arguments: Arg1 = 〈a, {0.6 : a← >}, 0.6〉 and
Arg2 = 〈¬a, {0.5 : ¬a← >}, 0.5〉. It is clear that both arguments Arg1 and Arg2

are in a conflict since Arg1 and Arg2 have complementary conclusions. In this
case, we will say that the arguments Arg1 and Arg2 attack each other. This kind
of relations are standard in argumentation theory. Since Arg1 has a possibilistic
degree greatest than Arg2’s possibilistic degree, Arg1 will be preferred than Arg2.
Hence, in order to define which argument can be considered accepted according
to an argumentation semantics, we will can omit that Arg2 attacks Arg1.

But now, how will a possibilistic argument be affected by the presence of neg-
ative literals in its support in the interaction with other possibilistic arguments?
Let us consider the arguments Arga and Argb constructed in the previous section
w.r.t. the possibilistic program P2. We can see that Argb has as conclusion the
atom b and as support the possibilistic program:

0.6 : b← not a

This clause suggests that b is inferred if there does not exist evidence of a. How-
ever, there is a possibilistic argument Arga which suggests that there exists evi-
dence to believe in a. Hence, even though Arga has a possibilistic degree lower
than the Argb’s possibilistic degree, we cannot say that Argb is preferred than
Arga. Therefore, by the fact that negation as failure captures no evidence, we
will assume that Arga attacks Argb.

It is worth to remember that the clause 0.6 : b ← not a has a different
intended meaning of the clause:

0.6 : b← ¬a

125

6. A NON-MONOTONIC POSSIBILISTIC-BASED
ARGUMENTATION APPROACH

In this case, one intended meaning of this clauses is that b is inferred if ¬a is true,
in other words there is a possibilistic theory Γ such that Γ `PL (¬a, α).

By having in mind the previous ideas, we will define the relation of attack
between possibilistic arguments.

Definition 6.2 Let Arg1 and Arg2 be two possibilistic arguments such that Arg1 =
〈Claim1, Support1, α1〉 and Arg2 = 〈Claim2, Support2, α2〉. We say that Arg1

attacks Arg2 if one of the following conditions hold:

i) Claim1 = l, Claim2 = l̃ and α1 ≥ α2.

ii) ∃(q : l← B+, not B−) ∈ Support2 such that C̃laim1 ∈ B+ and α1 ≥ α2.

iii) ∃(q : l← B+, not B−) ∈ Support2 and Claim1 ∈ B−.

In order to illustrate a little bit more this definition, let us consider the fol-
lowing example.

Example 6.1 Let P be the following possibilistic program:

0.1 : b← >. 0.8 : ¬b← >.
0.9 : a← not b. 0.5 : c← ¬a.

As we can see, one can construct four possibilistic arguments by considering any
reasonable possibilistic argumentation semantics:

Arg1 = 〈b, {0.1 : b← >}, 0.1〉
Arg2 = 〈¬b, {0.8 : ¬b← >}, 0.8〉
Arg3 = 〈a, {0.9 : a← not b}, 0.9〉
Arg4 = 〈c, {0.5 : c← ¬a}, 0.5〉

By instantiating Definition 6.2, one identify the following conflicts between these
possibilistic arguments:

Arg2 attacks Arg1 by condition i).
Arg3 attacks Arg4 by condition ii).
Arg1 attacks Arg3 by condition iii).

Observe that Arg1 does not attack Arg2 because Arg1’s possibilistic degree is less
than Arg2’s possibilistic degree.

In order to define which possibilistic arguments will be considered accepted
according to an argumentation semantics, we will use Dung’s argumentation style.
Therefore, we will define the basic concept of possibilistic argumentation frame-
work in terms of Dung’s argumentation framework.

126

6.3 Conflicts between possibilistic arguments

Definition 6.3 (Possibilistic Argumentation Framework) Given a possibilis-
tic logic program, a possibilistic argumentation framework AF w.r.t. P is the tuple
AF = 〈ARGP , Attacks〉, where attacks contains the relations of attack between
the arguments of ARGP .

Observe that essentially, we are instantiating the Dung’s argumentation ap-
proach into possibilistic arguments. Hence, we can take advantage of all the
results introduced in Chapter 4 and Chapter 5 in order to manage the interaction
of possibilistic arguments.

In order to illustrate the application of argumentation semantics into possi-
bilistic argumentation frameworks, let us consider the following examples.

Example 6.1 Let us continue with Example 6.1. As we saw, we have the
following relations: Arg2 attacks Arg1, Arg3 attacks Arg4, Arg1 attacks Arg3.
Hence, we have the following possibilistic argumentation framework:

AF = 〈{Arg1, Arg2, Arg3}, {(Arg2, Arg1), (Arg3, Arg4), (Arg1, Arg3)}〉

It is easy to see that AF has an unique preferred extensions which is: {Arg2, Arg3}.
Hence, we can consider as accepted arguments:

Arg2 = 〈¬b, {0.8 : ¬b← >}, 0.8〉
Arg3 = 〈a, {0.9 : a← not b}, 0.9〉

This set of possibilistic arguments suggests that one can infer from the possibilistic
program P the set of possibilistic atoms: {(¬b, 0.8), (a, 0.9)}. Observe that the
only possibilistic answer set of P is the inconsistent set: {(b, 0.1), (¬b, 0.8)}.

Now, let us consider another example.

Example 6.2 Let P = 〈(Q,≤), N〉 be the following possibilistic logic program:

0.5 : a← not b.
0.5 : b← not a.
0.6 : p← not p.
0.7 : p← not a.

By considering the possibilistic answer set semantics (PASP), we can see that:

Brave-ARGPASPP = { Arg1 = 〈a, {0.5 : a← not b}, 0.5〉,
Arg2 = 〈b, {0.5 : b← not a}, 0.5〉,
Arg3 = 〈p, {0.7 : p← not a}, 0.7〉 }

Hence, the possibilistic argumentation framework AFP w.r.t. Brave-ARGPASPP is
〈{Arg1, Arg2, Arg3}, {(Arg1, Arg2), (Arg2, Arg1), (Arg1, Arg3)}〉. Once we have

127

6. A NON-MONOTONIC POSSIBILISTIC-BASED
ARGUMENTATION APPROACH

constructed the possibilistic argumentation frame AFP , we can apply to AFP any
argumentation semantics in order to infer extensions (sets) of possibilistic argu-
ments from AFP . For example, we can see that AFP has tow stable extensions
which are: {Arg2, Arg3} and {Arg1}. In this example, the stable and preferred
semantics coincide.

Observe that the two stable extensions of the possibilistic argumentation
framework AFP of Example 6.2 suggest that one can infer the following two sets
of possibilistic atoms: {(b, 0.5), (p, 0.7)}, {(a, 0.5)} from the possibilistic program
P . It is worth to mentioning, that the only possibilistic answer of the possibilistic
program P is: {(b, 0.5), (p, 0.7)}. However, one can see that {(a, 0.5)} can be also
inferred from P as it is done by our possibilistic-based argumentation approach.

An other interesting point of considering our possibilistic-based argumentation
approach is that it could help to manege inconsistent possibilistic programs w.r.t.
the non-existent of possibilistic answer sets (or possibilistic pstable models) of a
possibilistic program. For instance, we saw that the program Pinc:

0.3 : a← not b.
0.5 : b← not c.
0.6 : c← not a.

presented in §3.4 has neither possibilistic answer set nor possibilistic pstable mod-
els. However, one can see that by considering either the possibilistic answer set
semantics or the possibilistic pstable semantics, we have the following set of pos-
sibilistic brave possibilistic arguments:

Brave-ARGPinc
= { Arg1 = 〈a, {0.3 : a← not b}, 0.3〉,

Arg2 = 〈b, {0.5 : b← not c}, 0.5〉,
Arg3 = 〈c, {0.6 : c← not a}, 0.6〉 }

Hence, we can define the following possibilistic argumentation frameworkAFPinc
=

〈{Arg1, Arg2, Arg3}, {(Arg1, Arg3), (Arg3, Arg2), (Arg2, Arg1)}. It is easy to see
that AFPinc

has no stable extensions, the only preferred extension of AFPinc
is

empty and the grounded extension of AFPinc
is empty as well. However, if we

consider the argumentation semantics MM∗r
Arg presented in §5.4 (or the argumen-

tation semantics CF2 (13)), we can see that MM∗r
Arg(AFPinc

) has three extensions:
{{Arg1}, {Arg2}, {Arg3}}. This means that MM∗r

Arg is suggesting that one can
infer the following three sets of possibilistic atoms from Pinc:{(a, 0.3)}, {(b, 0.5)}
and {(c, 0.6)}. Remember in §3.4, by considering the consistency cut degree of
Pinc, we could infer {(c, 0.6)} as possibilistic answer set of PConsCutDeg(Pinc).

128

6.4 Some Properties

6.4 Some Properties

In this section, we identify some properties w.r.t. our possibilistic-based argu-
mentation approach.

Since the possibilistic arguments are based on possibilistic models (as possi-
bilistic answer sets or possibilistic pstable models), the possibilistic arguments
satisfy some properties which are inherited of Possibilistic Logic. Possibilistic
logic has a basic principle that is:

The strength of a conclusion is the strength of the weakest argument
used in its proof.

According to Dubois and Prade (43), the contribution of possibilistic logic setting
is to relate this principle (measuring the validity of an inference chain by its
weakest link) to fuzzy set-based necessity measures in the framework of Zadeh’s
possibilistic theory.

This basic principle of possibilistic logic will give an interesting property
to any possibilistic argument: The strength of a possibilistic argument Arg =
〈Claim, Support, q〉 will be the strength of the weakest possibilistic clause of
Support.

In order to prove this property, let us introduce the following lemma:

Lemma 6.1 Let P be a possibilistic logic program and Arg = 〈Claim, Support, q〉
be a possibilistic argument w.r.t. P . Then

Support ⊆ Pq

Proof: The result follows from the followings two observations:

1. By Definition 6.1, we know that SupportM `PL (Claim, q) and Support is
minimal w.r.t. set inclusion.

2. By Proposition 11 of (42), it is true that Γ `PL (Claim, q) if and only if
Γq `PL (Claim, q).

By considering this lemma, we formalize the following result.

Proposition 6.1 (Weakest link) Let P be a possibilistic logic program an Arg =
〈Claim, Support, q〉 be a possibilistic argument w.r.t. P . Then

q = GLB{n(r)|r ∈ Support}

129

6. A NON-MONOTONIC POSSIBILISTIC-BASED
ARGUMENTATION APPROACH

Proof: The result is direct by Lemma 6.1.
The property of the weakest link has been discussed by some authors (5; 7)

as an important property because it could help

• to allow an agent to compare different arguments in order to select the best
one and

• to determine the acceptable arguments among the conflicting ones.

An important property of the possibilistic-based argumentation inference is
that it will infer consistent sets of possibilistic atoms from any possibilistic knowl-
edge base. For instance, by considering Dung’s argumentation semantics we can
ensure the following theorem

Theorem 6.1 (Consistency Information) Let AF = 〈ARGP , Attacks 〉 be a
possibilistic argumentation framework and S ⊆ ARG. If S is either a preferred
extension, a stable extension or the grounded extension of AF , then the follow-
ing condition holds: If Cs = {Claim|〈Claim, Support, α〉 ∈ S}, then Cs is a
consistent set of literals.

Proof: It is straightforward by the fact that any admissible set is a conflict-free
set.

6.5 A Possibilistic Argumentation Engine

As we know, one of the main objectives of argumentation theory is to explore
mechanics in order to implement argumentation engines into argumentation sys-
tems. These argumentation systems can be intelligence systems as agents, a
tool for supporting dialogue or a tool for supporting decision making based on
argumentation reasoning.

So far this thesis, we have presented results w.r.t :

• how to modeling uncertain, incomplete and inconsistent information and

• how to characterize argumentation semantics as the preferred semantics in
order to be implemented into argumentation systems.

In fact, in this chapter, we have defined an possibilistic-based argumenta-
tion inference which is based on possibilistic knowledge bases, possibilistic logic
programming semantics, and argumentation semantics.

In order to outline that by considering some of the results presented in thesis
can be implemented into real argumentation systems. In Figure 6.5, we present
a general architecture of a possibilistic argumentation engine. This architecture
has three main components for storing data:

130

6.5 A Possibilistic Argumentation Engine

Figure 6.1: A Possibilistic Argumentation Engine Architecture.

• Possibilistic knowledge base (PK-Storing data),

• Possibilistic arguments (PA-Storing data) and

• Relations of attack between possibilistic arguments (RA-Storing data).

Obviously the initial data will be a possibilistic logic program which will be
into PKB-Storing data. PA-Storing data and RA-Storing data have information
which is inferred from PK-Storing data. PA-Storing data and RA-Storing data
are updated each time that PK-Storing data is updated.

In the possibilistic argumentation engine architecture, there are three main
functions:

• The construction of possibilistic arguments,

• the identification of the interaction (attacks) of the possibilistic arguments,
and

• the inference of accepted arguments.

131

6. A NON-MONOTONIC POSSIBILISTIC-BASED
ARGUMENTATION APPROACH

From these functions, the construction of the possibilistic arguments and the
inferences of accepted arguments can be considered as dynamic functions in the
sense that they can change their behavior by changing the possibilistic logic
programming semantics and the argumentation semantics respectively.

Observe that the function which construct possibilistic arguments can be im-
plemented as a frontend of an answer set solver (40; 103) or a pstable solver (69).
Remember that the algorithms that we suggested for inferring possibilistic answer
sets and possibilistic pstable models are based on answer set solvers and pstable
solvers respectively.

As a final comment, observe that if we consider the Dung’s argumentation
semantics for inferring accepted arguments (as the stable, preferred and grounded
semantics), we can implemented as a frontend of answer set solvers as DLV (40).
In fact, for the case of the preferred semantics, it can be implemented by using
some UNSAT solver.

6.6 Related work

In §3.5, we have already commented the related work w.r.t. the possibilistic logic
programming approach used in the possibilistic-based argumentation approach
defined in this chapter. Therefore, in this section, we will only concentrate our
attention to possibilistic approaches in the context of argumentation theory.

Maybe the two main representative argumentation approaches which are close
related to our approach are the proposals of Leila and Prade in (6) and Alsinet
et al in (2).

In the proposal of Leila and Prade, they define an argumentation approach for
supporting decision making. The specification language is based on the syntax of
possibilistic logic. Unlike to our possibilistic arguments which are based on the
inference of possibilistic logic (for the case of positive possibilistic programs1),
in Leila-Prade’s approach, the arguments are based on the inference of classical
logic. Indeed, the certain level of each argument is inferred by a secondary defini-
tion to argumentation’s definition. In Leila-Prade’s approach, the inference over
conflicting arguments is managed essentially by the grounded semantics.

The proposal of Alsinet et al, in (2), is an argumentation approach which
combine features from argumentation theory and logic programming (without
negation as failure). The specification language of this approach is based on
a possibilistic logic programming approach. It is worth mentioning that this
possibilistic logic programming approach is defined over the possibilistic Gödel
logic (3). Indeed, the construction of arguments in this approach is based on the

1Remember that a positive possibilistic program is a program which does not have clauses
with literals negated by negation as failure.

132

6.7 Concluding remarks

inference of the possibilistic Gödel logic. The inference over conflicting arguments
is based on a dialectical analysis which defines a skeptical reasoning process.

6.7 Concluding remarks

In this chapter, we defined a possibilistic-based argumentation approach based
on:

• the inference of possibilistic logic programming semantics and

• Dung’s argumentation semantics style.

This approach inherits all the expressiveness of the possibilistic disjunctive logic
programs (presented in Chapter 3) and offers some natural mechanisms for dealing
with reasoning under inconsistent information. In fact, this approach does not
requite to apply cuts to an inconsistent possibilistic knowledge base, as it is
done in possibilistic logic programming, in order to manage the non-existence of
possibilistic models. Another interesting property of our approach is that any set
of possibilistic atoms inferred by the possibilistic-based argumentation inference
will be consistent.

We also outline a possibilistic argumentation engine architecture in order to
outline that by considering the results presented in thesis, we can implement real
argumentation systems. In fact this architecture is a good picture where theo-
retical results in argumentation theory and argumentation systems can converge.

133

6. A NON-MONOTONIC POSSIBILISTIC-BASED
ARGUMENTATION APPROACH

134

Chapter 7

Discussion

In this final chapter, we present a summary of the work carried out in this thesis.
We will start given an overview of this thesis. After that, we comment the major
contributions presented in this research.

7.1 Thesis overview

One of our first objectives of this thesis was to explore a specification language
for modeling medical information in order to support medical decision-making.
To support medical decision-making is often complicated by the need to integrate
uncertain, incomplete and potentially conflicting information from several sources
(65). There are researchers in medical decision-making (47; 48) who have pointed
out that clinicians frequently have difficulty acquiring or estimating the numbers
required to model decisions e.g., probabilities. Hence based on this evidence and
the fact that probability has some problems for performing symbolic reasoning
(§1.1), we decided to explore a non-probabilistic approach for capturing uncer-
tain information. Moreover since there are also cognitive researchers (59) who
have observed that people usually appeal to their experience or commonsense for
supporting their decisions, we decided to explore a specification language able to
perform reasoning under non-numerical values of uncertainty.

In Chapter 3, we defined a possibilistic disjunctive logic programming ap-
proach. This approach introduces the use of possibilistic disjunctive clauses which
are able to capture incomplete information and incomplete states of a knowledge
base at the same time (§3.2). Based on the flexibility of possibilistic logic for
defining degrees of uncertainty, we have illustrated in Chapter 3 that it is pos-
sible to consider non-numerical degrees for capturing uncertain information. In
particular, we have discussed the use of non-numerical degrees of uncertainty in
a medical scenario.

135

7. DISCUSSION

In order to define the semantics of a possibilistic disjunctive logic program,
we define three approaches:

• the first is strictly close to the proof theory of possibilistic logic and answer
set models (§3.3.1);

• the second is based on partial evaluation, a fix-point operator and answer
set models (§3.3.2); and

• the last is also based on the proof theory of possibilistic logic and pstable
semantics (§3.3.3).

As many times it is difficult or impossible to keep away of managing incon-
sistent knowledge bases, we also explore some criteria for managing inconsistent
possibilistic logic programs (§3.4). In particular, we define a preference crite-
rion between inconsistent possibilistic models and adopt the approach of cuts for
restoring consistency of an inconsistent possibilistic knowledge base.

Strictly speaking, we can accept that when we consider non-numerical values
for capturing uncertain information, our possibilistic clauses are not at all possi-
bilistic formulæ in the sense of possibilistic logic. However, since our possibilistic
semantics are based on the proof theory of possibilistic logic, we can insure that
our approach satisfies the basic principle of possibilistic logic that is:

The strength of a conclusion is the strength of the weakest argument
used in its proof.

In fact, based on this principle we define possibilistic arguments as base of a
non-monotonic possibilistic-based argumentation approach (see Chapter 6).

Once we defined a specification language for capturing uncertain information,
we decided to explore another important step in the decision-making process
which is how to choose one decision over anther and how to explain a decision.
Some researchers (16; 30; 47; 48; 99) argues that from a practical perspective,
argumentation provides a versatile computation model for developing advanced
services for decision support and for computer human dialogues in which expla-
nation and rationale play role.

In Chapter 4, we explored the well-known abstract argumentation semantics
which have as main function to find the set of arguments which are considered
as acceptable. In particular, we explore how to model abstract argumentation
semantics from a point of view of non-monotonic logic programming semantics.
In order to consider an argumentation framework as a logic program, we define
some basic conditions for studying abstract argumentation semantics which are
based on admissible sets. In fact, we introduce the concept of suitable codification
(§4.2). By considering a suitable codification (§4.3,§4.4), we present:

136

7.1 Thesis overview

• a study of the preferred semantics in terms of minimal models and answer
set models —this study will suggest some practical methods for implement-
ing the preferred semantics (§4.5) — and

• a study of the grounded semantics in order to define some intermediate
argumentation semantics between the grounded and the preferred semantics
(§4.6).

An interesting point of our study of the grounded semantics is that we out-
line an approach for describing the interaction of arguments based on rewriting
systems and our suitable codification (§4.6.2).

Despite the abstract argumentation semantics built in terms of admissible
sets are well-accepted (Dung’s approach §2.6), these semantics exhibit a variety
of problems which have illustrated in literature (§1.2). In the process of study-
ing the Dung’s abstract argumentation semantics in terms of logic programming
semantics, we could recognize that one can define new abstract argumentation
semantics in terms of logic programming semantics. By considering the idea that
argumentation semantics can be viewed as a special form of logic programming
semantics with negation as failure, we introduce a general recursive approach for
defining a new family of logic programming semantics which induces a new family
of abstract argumentation semantics (Chapter 5). We have in mind that our new
logic programming semantics satisfy the following suitable properties (§5.3):

1. They should be always defined.

2. They should satisfy the relevance property.

3. They should agree with answer set semantics for the class of stratified pro-
grams.

4. They should be useful to model argumentation problems.

Based on the fact that logic programming offers a wide liberty for model-
ing knowledge, we can construct abstract argumentation semantics by specifying
the basic conditions that our new argumentation semantics must satisfy. For
instance, the mapping introduced in Definition 5.6 only captures the restriction
that any argument will be defeated when anyone of its adversaries is not defeated.
This single mapping is enough for characterizing argumentation semantics as the
grounded semantics and the stable argumentation semantics. In fact, we also
defined the abstract argumentation semantics MM∗r

Arg which is similar to CF2 —
the semantics MM∗r

Arg is constructed under the mapping of Definition 5.6 and the
logic programming semantics MM∗r (§5.4).

137

7. DISCUSSION

In Chapter 6, we defined an approach for building possibilistic arguments
from possibilistic logic programs. We argue that this argumentation approach
is adequate for supporting decision-making in scenarios where the information is
uncertain and incomplete. One of the motivations for defining this possibilistic
argumentation approach is that once it is inferred the possibilistic answer set (or
the possibilistic pstable models) of a possibilistic knowledge base, one can require
to support/justify each of the possibilistic atoms which belongs to a possibilis-
tic answer set (or possibilistic pstable models). Another important motivation
for considering the construction of possibilistic arguments is the flexibility of the
inference in argumentation theory for managing inconsistent information. For
instance, although a possibilistic logic programming semantics could infer incon-
sistent possibilistic models from a possibilistic knowledge Σ, by considering the
possibilistic arguments built form Σ, one can infer conclusions from Σ supported
by consistent subset of Σ.

7.2 Impact of the main contributions

In this section, we highlight four of the major contribution of this thesis. The first
one is the development of a possibilistic disjunctive logic programming approach.
The second one is the study of three of the Dung’s argumentation semantics in
terms of logic programming semantics. The third one is the definition of general
schema for constructing argumentations semantics based on logic programming
semantics. The last one is the definition of a possibilistic-based argumentation
approach based on the possibilistic disjunctive approach introduced in this thesis.

7.2.1 Possibilistic Disjunctive Logic Programming

In Chapter 3, we define a possibilistic disjunctive logic programming approach
in order to capture incomplete information and incomplete states of a knowl-
edge base at the same time and also to capture inconsistent information. This
approach could be of interest for researchers who are interested on capturing un-
certain information where non-numerical values are not easy available. In fact,
our approach means to capture qualitative knowledge that usually people use for
supporting their decisions. In this sense in Chapter 3, we illustrate the use of our
approach in the medical domain for capturing qualitative knowledge.

The results presented in Chapter 3 also contribute to the intensive research
that have been done during the last years around of the answer set semantics. For
the answer set semantics community, we introduce the first logic programming
semantics which are able to capture possibilistic disjunctive logic programs and an
approach for capturing qualitative preferences between clauses. These qualitative

138

7.2 Impact of the main contributions

preferences are formalized by partial orders and ideas from possibilistic logic.
An important property of our approach is that it is computable. Hence, the
construction of real applications based on our approach are feasible. In fact, we
proposed some algorithms for implementing possibilistic disjunctive interpreters
as frontends of both answer set solvers and pstable model solvers.

7.2.2 Study of the Dung’s argumentation semantics

In Chapter 4, we present novel results w.r.t. the close relationship between Dung’s
argumentation semantics and logic programming semantics. We show that one
can capture the grounded, stable and preferred semantics by one logic program
and three logic programming semantics (the well-founded semantics, the answer
set semantics and the pstable semantics). These results open the possibilistic of
studying the non-monotonic features of argumentation semantics as the preferred
semantics in terms of logic foundations. For instance, since the preferred seman-
tics can be characterized by the pstable semantics, one can define the preferred
semantics in terms of paraconsistent logics (as the Cw and G3 logics) or modal
logics (as the S5 modal logic).

An important concern in abstract argumentation theory is the computational
complexity of the decision problems that has been shown to range from linear to
Π

(p)
2 -complete. A summary of this is given in Table 7.1 (practically all this table

was taken from (45))
As we can see in Table 7.1, the computational complexity of the decision prob-

lem of argumentation semantics as the preferred semantics is hard. In this issue,
we showed that by considering an argumentation framework AF as a proposi-
tional formula α(AF), one can characterize the preferred extensions of AF as
the minimal models of α(AF). By using this result, we showed that one can use
any UNSAT’s algorithm for inferring the preferred extensions of AF . Remember
that UNSAT is the complement of Satisfiability (SAT), a problem for which very
efficient systems have been developed in AI during the last decade. This result
suggests that one can implement argumentation-components based on UNSAT’s
algorithm in order to capture the preferred semantics in argumentation systems.

Another important result w.r.t. the preferred semantics was the formalization
of the preferred semantics in terms of answer sets of a positive disjunctive logic
program. This result opens the possibilistic of using any disjunctive answer set
solver for computing the preferred extensions of an argumentation framework. In
fact, by considering the codifications presented in Chapter 4 and any disjunctive
answer solver, one can perform any of the decision queries presented in Table 7.1
(excepting by query h). Hence, the implementation of argumentation-components
based on answer set solvers is a feasible way for supporting the implementation
of argumentation systems. It is worth mentioning that nowadays the answer set

139

7. DISCUSSION

Instance Decision Question Complexity
(a) AF = 〈AR, attacks〉, Is x in the grounded extension linear

x ∈ AR of AF?
(b) AF = 〈AR, attacks〉, Is x in any preferred extension? NP-complete

x ∈ AR
(c) AF = 〈AR, attacks〉, Is x in any stable extension? NP-complete

x ∈ AR
(d) AF = 〈AR, attacks〉 Does AF have a non-empty NP-complete

preferred extension?
(e) AF = 〈AR, attacks〉 Does AF have any stable NP-complete

extension?
(f) AF = 〈AR, attacks〉, Is x in every stable extension? CO-NP-Complete

x ∈ AR
(g) AF = 〈AR, attacks〉, Is x in every preferred extension? Π

(p)
2 -complete

x ∈ AR
(h) AF = 〈AR, attacks〉 Is AF a coherent argumentation Π

(p)
2 -complete

framework?

Table 7.1: Decision problems in finite argumentation frameworks

solvers as DLV are faster algorithms able to give answer to problems of hard
complexity.

By capturing Dung’s argumentation semantics as logic programming seman-
tics, we do not only identify general methods for generating argumentation com-
ponents. This approach allows to explore the definition of new argumentation
semantics in order to overcome some of their limitations. For instance, we de-
fine three extensions of the grounded semantics based on local logical consequence
in classical logic and reasoning by cases in order to overcome some of the cases
where the grounded semantics is empty. These extensions are able to manage, in
a natural way, problems as the self-defeated arguments.

7.2.3 Construction of argumentations semantics and logic
programming semantics

Since argumentation semantics can be viewed as a special form of logic pro-
gramming semantics with negation as failure, in Chapter 5, we show that any
logic programming semantics as the answer set semantics, the minimal models,
the pstable semantics etc., can define candidate argumentation semantics. This
approach suggests a systematic process for constructing new argumentation se-

140

7.2 Impact of the main contributions

mantics and new logic programming semantics.
Nowadays it has increased the number of new argumentation semantics in

the context of Dung’s argumentation approach; however, many of these new ar-
gumentation semantics are only motivated by particular examples. Hence, the
definition of argumentation semantics with logical foundations takes relevance.
Indeed, the identification of the non-monotonic reasoning properties, that a par-
ticular argumentation semantics satisfies, takes relevance in order to support the
well-behaviour of an argumentation semantics.

Our approach is open enough for constructing new argumentation semantics
based on the following considerations:

• the basic principles that we want that our new argumentation semantics
must satisfy i.e. conflict-freeness, reinstatement etc.

• the basic logic programming semantics function e.g., the minimal model
semantics, the answer set semantics, the pstable semantics, etc.

The basic principles that we want that a new argumentation semantics has
to satisfy are captures by the codification of an argumentation framework in
terms of a logic program. Observe that this approach opens the possibilities
of constructing new argumentation semantics under well accepted principles i.e.
conflict-freeness.

We want to point out that also our approach motivates argumentation research
by having in mind results of the non-monotonic reasoning area and the logic
programming area. For instance, in order to define our approach for constructing
argumentation semantics, we first introduce a recursive schema for constructing
logic programming semantics which are always defined. Hence, this property
ensures that any argumentation semantics induced by the new logic programming
semantics will be always defined as well.

7.2.4 A possibilistic-based argumentation approach

In Chapter 6, we introduce the argumentation-based approach which is based on
the syntaxis and semantics of possibilistic disjunctive logic programs. This ap-
proach tries to converge ideas from our possibilistic disjunctive logic programming
approach and our results w.r.t. argumentation semantics.

Unlike to standard argumentation approach which are based on the mono-
tonic inference of classical logic for building arguments, our approach is based
on the non-monotonic inferences of logic programming semantics as the possi-
bilistic answer set semantics and the possibilistic pstable semantics for building
arguments.

141

7. DISCUSSION

The possibilistic-based argumentation inference defined for this approach can
be regarded as an adapted tool for

• automatic reasoning based on possibilistic logic programming semantics
where the available information is pervaded with inconsistencies.

• supporting decision making under a possibilistic knowledge base.

7.3 Future work

Research in logic programming with uncertainty has been extensively studies;
however, the study of logic programming with qualitative degrees in the context of
ASP is still lacking. The results of Chapter 3 can be considered into this direction.
However, there are several issues open to explore and investigate e.g., qualitative
optimization, qualitative planning. It is worth mentioning that Brewka in (23)
has motivated an approach for qualitative optimization. In (85), we have defined
a possible extension of our possibilistic approach in order to develop qualitative
planning.

As young area, in argumentation there are many challenges in order to build
real intelligence systems based on fundamental mechanisms of argumentation.
The study of argumentation semantics in terms of logic programming semantics
is promised. For instance, as it has increased the number of new argumentation
semantics in the context of Dung’s argumentation style, the identification of the
non-monotonic reasoning properties, that a particular argumentation semantics
satisfies, will take relevance in order to support the well-behaviour of an argu-
mentation semantics. In (12), it was defined a first set of basic principles in
order to evaluate argumentation semantics. We believe that the set of principles
described in (12) can be enriched by the identification of the non-monotonic rea-
soning properties that must satisfy any argumentation semantics. Of course, that
this study could be explored by the characterization of argumentation semantics
in terms of logic programming semantics.

In Chapter 5, a novel strategy for constructing argumentation semantics in
terms of logic programming semantics was defined. As we commented, this ap-
proach is related to Baroni et al ’s approach presented in (13). Hence a deep
analysis is required in order to understand more about the relation between Ba-
roni et al ’s approach and our approach. In fact some interesting questions that
we are going to consider in our future work are: Which is the class of argumen-
tation semantics that can be characterized in both approaches? Which are the
logic programming semantics that are more useful for building argumentation se-
mantics? Which mappings of an argumentation framework into a logic program
define useful argumentation semantics?

142

7.3 Future work

In general, we believe that a good study of the relationship between argumen-
tation semantics and logic programming semantics with negation as failure could
contribute to develop of prominent non-monotonic reasoning approaches.

143

7. DISCUSSION

144

Bibliography

[1] T. Alsinet, C. I. Chesñevar, L. Godo, S. Sadri, and G. R. Simari. Formal-
izing argumentative reasoning in a possibilistic logic programming setting
with fuzzy unification. International Journal of Approximate Reasoning,
page in press, 2008. 121

[2] T. Alsinet, C. I. Chesñevar, L. Godo, and G. R. Simari. A logic program-
ming framework for possibilistic argumentation: Formalization and logical
properties. Fuzzy Sets and Systems, 159(10):1208–1228, 2008. 55, 132

[3] T. Alsinet and L. Godo. A Ccomplete Calculus for Possibilistic Logic Pro-
gramming with Fuzzy Propositional Variable. In Proceedings of the Sixteen
Conference on Uncertainty in Artificial Intelligence, 1-10, 2000. ACM Press.
55, 56, 132

[4] T. Alsinet and L. Godo. Towards an automated deduction system for first-
order possibilistic logic programming with fuzzy constants. Int. J. Intell.
Syst., 17(9):887–924, 2002. 55

[5] L. Amgoud and C. Cayrol. Inferring from inconsistency in preference-based
argumentation frameworks. J. Autom. Reasoning, 29(2):125–169, 2002. 130

[6] L. Amgoud and H. Prade. Using arguments for making decisions: A pos-
sibilistic logic approach. In Proceedings of the 20th Annual Conference
on Uncertainty in Artificial Intelligence (UAI-04), pages 10–17, Arlington,
Virginia, 2004. AUAI Press. 4, 132

[7] ASPIC:Project. Deliverable D2.1: Theoretical framework for argumenta-
tion. Argumentation Service Plarform with Integrated Components, 2004.
130

[8] ASPIC:Project. Deliverable D2.2:Formal semantics for inference and
decision-making. Argumentation Service Plarform with Integrated Com-
ponents, 2005. 62

145

BIBLIOGRAPHY

[9] M. Balduccini and M. Gelfond. Logic Programs with Consistency-Restoring
Rules. In P. Doherty, J. McCarthy, and M.-A. Williams, editors, Interna-
tional Symposium on Logical Formalization of Commonsense Reasoning,
AAAI 2003 Spring Symposium Series, Mar 2003. 102

[10] J. F. Baldwin. Evidential support logic programming. Fuzzy Sets and
Systems, 24(1):1–26, Octuber 1987. 55

[11] C. Baral. Knowledge Representation, Reasoning and Declarative Problem
Solving. Cambridge University Press, Cambridge, 2003. 9, 10, 15, 27, 99,
101

[12] P. Baroni and M. Giacomin. On principle-based evaluation of extension-
based argumentation semantics. Artificial Intelligence., 171(10-15):675–
700, 2007. 111, 117, 142

[13] P. Baroni, M. Giacomin, and G. Guida. SCC-recursiveness: a general
schema for argumentation semantics. Artificial Intelligence, 168:162–210,
October 2005. 5, 93, 94, 95, 97, 112, 113, 115, 116, 117, 128, 142

[14] R. Ben-Eliyahu-Zohary. An incremental algorithm for generating all mini-
mal models. Artificial Intelligence, 169(1):1–22, 2005. 70

[15] T. Bench-Capon. Value-based argumentation frameworks. In Proceedings
of Non Monotonic Reasoning, pages 444–453, 2002. 4

[16] T. J. M. Bench-Capon and P. E. Dunne. Argumentation in artificial intelli-
gence. Artificial Intelligence, 171(10-15):619–641, 2007. 1, 4, 5, 62, 93, 94,
101, 136

[17] P. Besnard and S. Doutre. Checking the acceptability of a set of argu-
ments. In Tenth International Workshop on Non-Monotonic Reasoning
(NMR 2004),, pages 59–64, June 2004. 69

[18] A. Bondarenko, P. M. Dung, R. A. Kowalski, and F. Toni. An abstract,
argumentation-theoretic approach to default reasoning. Artificial Intelli-
gence, 93:63–101, 1997. 4

[19] S. Brass and J. Dix. Characterizations of the disjunctive stable semantics
by partial evaluation. J. Log. Program., 32(3):207–228, 1997. 42

[20] S. Brass and J. Dix. Characterizations of the disjunctive well-founded
semantics: Confluent calculi and iterated gcwa. J. Autom. Reasoning,
20(1):143–165, 1998. 42

146

BIBLIOGRAPHY

[21] S. Brass and J. Dix. Semantics of (Disjunctive) Logic Programs Based on
Partial Evaluation. Journal of Logic Programming, 38(3):167–213, 1999. 42

[22] S. Brass, U. Zukowski, and B. Freitag. Transformation-based bottom-up
computation of the well-founded model. In NMELP, pages 171–201, 1996.
12, 13, 17, 18

[23] G. Brewka. Answer sets: From constraint programming towards qualita-
tive optimization. In V. Lifschitz and I. Niemelä, editors, Logic Program-
ming and Nonmonotonic Reasoning, 7th International Conference, LPNMR
2004, Fort Lauderdale, FL, USA, January 6-8, 2004, Proceedings, volume
2923 of Lecture Notes in Computer Science, pages 34–46. Springer, 2004.
56, 142

[24] O. Bueno. Knowledge and Inquiry : Essays on the Pragmatism of Isaac
Levi, chapter Why Inconsistency Is Not Hell: Making Room for Inconsis-
tency in Science, pages 70–86. Cambridge Studies in Probability, Induction
and Decision Theory. CAMBRIDGE UNIVERSITY PRESS, 2006. 50, 52

[25] F. Caballero, A. López-Navidad, M. Perea, C. Cabrer, L. Guirado, and
R. Solá. Successful liver and kidney transplantation from cadaveric donor
with left-sided bacterial endocarditis. American Journal of Transplantation,
5:781–787, 2005. 84

[26] M. Caminada. Contamination in formal argumentation systems. In BNAIC
2005 - Proceedings of the Seventeenth Belgium-Netherlands Conference on
Artificial Intelligence, Brussels, Belgium, October 17-18, pages 59–65, 2005.
5, 93

[27] M. Caminada. Semi-Stable semantics. In P. E. Dunne and T. J. Bench-
Capon, editors, Proceedings of COMMA, volume 144, pages 121–130. IOS
Press, 2006. 5, 93, 94, 95

[28] M. Caminada and C. Sakama. On the existence of answer sets in normal
extended logic programs. In ECAI, pages 743–744, 2006. 101

[29] J. L. Carballido, J. C. Nieves, and M. Osorio. Inferring Preferred Exten-
sions by Pstable Semantics. Iberoamerican Journal of Artificial Intelligence
(Inteligencia Artificial)ISSN: 1137-3601, to appear. 7, 162, 164

[30] C. I. Chesñevar, A. G. Maguitman, and R. P. Loui. Logical models of
argument. ACM Comput. Surv., 32(4):337–383, 2000. 4, 136

147

BIBLIOGRAPHY

[31] T. H. Cormen, C. E. Leiserson, R. L. Riverst, and C. Stein. Introduction
to Algorithms. MIT Press, second edition, 2001. 113

[32] B. A. Davey and H. A. Priestly. Introduction to Lattices and Order. Cam-
bridge University Press, second edition, 2002. 9, 24

[33] N. Dershowitz and D. A. Plaisted. Handbook of Automated Reasoning,
chapter Rewriting. Elsevier Science Publishers, 2001. 12

[34] Y. Dimopoulos and A. Torres. Graph theoretical structures in logic pro-
grams and default theories. Theor. Comput. Sci., 170(1-2):209–244, 1996.
70

[35] J. Dix. A classification theory of semantics of normal logic programs: I.
strong properties. Fundam. Inform., 22(3):227–255, 1995. 42

[36] J. Dix. A classification theory of semantics of normal logic programs: II.
weak properties. Fundam. Inform., 22(3):257–288, 1995. 17, 42, 91, 101,
163

[37] J. Dix and M. Müller. Partial evaluation and relevance for approximations
of stable semantics. In ISMIS, volume 869 of Lecture Notes in Computer
Science, pages 511–520. Springer, 1994. 97, 101, 105

[38] J. Dix, M. Osorio, and C. Zepeda. A General Theory of Confluent Rewriting
Systems for Logic Programming and its applications. Annals of Pure and
Applied Logic, 108(1–3):153–188, 2001. 12, 13

[39] J. Dix, M. Osorio, and C. Zepeda. A general theory of confluent rewriting
systems for logic programming and its applications. Ann. Pure Appl. Logic,
108(1-3):153–188, 2001. 13, 18, 42, 168

[40] S. DLV. Vienna University of Technology.
http://www.dbai.tuwien.ac.at/proj/dlv/, 1996. 16, 40, 71, 74, 132

[41] D. Dubois, J. Lang, and H. Prad. Towards possibilistic logic programming.
In K. Furukawa, editor, ICLP, pages 581–595. The MIT Press, 1991. 55

[42] D. Dubois, J. Lang, and H. Prade. Possibilistic logic. In D. Gabbay, C. J.
Hogger, and J. A. Robinson, editors, Handbook of Logic in Artificial In-
telligence and Logic Programming, Volume 3: Nonmonotonic Reasoning
and Uncertain Reasoning, pages 439–513. Oxford University Press, Oxford,
1994. 2, 3, 19, 20, 27, 39, 129, 156, 158

148

BIBLIOGRAPHY

[43] D. Dubois and H. Prade. Possibilistic logic: a retrospective and prospective
view. Fuzzy Sets and Systems, 144(1):3–23, 2004. 2, 20, 129

[44] P. M. Dung. On the acceptability of arguments and its fundamental role in
nonmonotonic reasoning, logic programming and n-person games. Artificial
Intelligence, 77(2):321–358, 1995. 4, 20, 22, 23, 60, 61, 79, 89, 94

[45] P. E. Dunne. Computational properties of argument systems satisfy-
ing graph-theoretic constraints. Artificial Intelligence, 171(10-15):701–729,
2007. 139

[46] M. Fitting. Bilattices and the semantics of logic programming. Journal of
Logic Programming, 11(1&2):91–116, 1991. 55, 56

[47] J. Fox and S. Das. Safe and Sound: Artificial Intelligence in Hazardous
Applications. AAAI Press/ The MIT Press, 2000. 1, 135, 136

[48] J. Fox, D. Glasspool, D. Grecu, S. Modgil, M. South, and V. Patkar.
Argumentation-Based inference and decision making — A Medical Perspec-
tive. IEEE Intelligence Systems, 22(6):34–41, November/December 2007.
122, 135, 136

[49] J. Fox and S. Modgil. From arguments to decisions: Extending the Toulmin
view. In D. Hitchcock and B. Verheij, editors, Arguing on the Toulmin
model: New essays on argument analysis and evaluation, pages 273–287.
Springer Netherlands, 2006. 25

[50] A. V. Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for
general logic programs. Journal of the ACM, 38(3):620–650, 1991. 17

[51] M. Gelfond. Handbook of Knowledge Representation, chapter Answer Sets,
pages 285–316. Elsevier, 2008. 27

[52] M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Pro-
gramming. In R. Kowalski and K. Bowen, editors, 5th Conference on Logic
Programming, pages 1070–1080. MIT Press, 1988. 15

[53] M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs and
Disjunctive Databases. New Generation Computing, 9:365–385, 1991. 15,
27, 101

[54] G. Governatori and M. J. Maher. An argumentation-theoretic characteri-
zation of defeasible logic. In ECAI, pages 469–473. IOS Press, 2000. 65

149

BIBLIOGRAPHY

[55] G. Governatori, M. J. Maher, G. Antoniou, and D. Billington. Argumenta-
tion semantics for defeasible logic. J. Log. Comput., 14(5):675–702, 2004.
65

[56] J. Y. Halpern. Reasoning about uncertainty. The MIT Press, 2005. 1, 2

[57] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata
Theory, Languages and Computation, 3/E. Addison Wesley Higher Educa-
tion, 2007. 29

[58] H. Jakobovits and D. Vermeir. Robust semantics for argumentation frame-
works. Journal of logic and computation, 9(2):215–261, 1999. 4, 84, 92,
95

[59] D. Kahneman, P. Slovic, and A. Tversky. Judgment under uncer-
tainty:Heuristics and biases. Cambridge Univertisy Press, 1982. 3, 135

[60] A. C. Kakas, R. A. Kowalski, and F. Toni. The role of abduction in logic
programming. In D. Gabbay, C. J. Hogger, and J. A. Robinson, editors,
Handbook in Artificial Intelligence and Logic Programming, Volume 5, pages
235–324. Oxford University Press, Oxford, 1998. 102

[61] A. C. Kakas and P. Mancarella. Generalized stable models: A semantics
for abduction. In ECAI, pages 385–391, 1990. 102

[62] G. Kern-Isberner and T. Lukasiewicz. Combining probabilistic logic pro-
gramming with the power of maximum entropy. Artificial Intelligence,
157(1-2):139–202, 2004. 55

[63] M. Kifer and V. S. Subrahmanian. Theory of generalized annotated logic
programming and its applications. J. Log. Program., 12(3&4):335–367,
1992. 55

[64] P. Krause, S. Ambler, M. Elvang-Gøransson, and J. Fox. A logic of ar-
gumentation for reasoning under uncertainty. Computational Intelligence,
11:113–131, 1995. 121

[65] A. W. Kushniruk. Analysis of Complex Decision Process in Health Care:
Cognitive Approaches to Health Informatics. Journal of Biomedical Infor-
matics, 34:365–376, 2001. 135

[66] L. V. S. Lakshmanan. An epistemic foundation for logic programming with
uncertainty. In FSTTCS, pages 89–100, 1994. 55

150

BIBLIOGRAPHY

[67] V. Lifschitz, D. Pearce, and A. Valverde. Strongly equivalent logic pro-
grams. ACM Trans. Comput. Log., 2(4):526–541, 2001. 162

[68] J. W. Lloyd. Foundations of Logic Programming. Springer, Berlin, 1987. 9,
99, 101

[69] A. López. Implementing pstable. In R. Dávila, M. Osorio, and C. Zepeda,
editors, Workshop in Logic, Language and Computation, volume 220.
CEUR Workshop Proceedings, 2006. 49, 132, 160

[70] A. López-Navidad and F. Caballero. Extended criteria for organ acceptance:
Strategies for achieving organ safety and for increasing organ pool. Clinical
Transplantation, Blackwell Munksgaard, 17:308–324, 2003. 28, 30

[71] A. López-Navidad, P. Domingo, and M. A. Viedma. Professional character-
istics of the transplant coordinator. In XVI International Congress of the
Transplantation Society, volume 29 of Transplantation Proceedings, pages
1607–1613. Elsevier Science Inc, February-March 1997. 28, 31

[72] T. Lukasiewicz. Probabilistic logic programming. In ECAI, pages 388–392,
1998. 55

[73] J. McCarthy and P. J. Hayes. Some philosophical problems from the stand-
point of artificial intelligence. In B. Meltzer and D. Michie, editors, Machine
Intelligence 4, pages 463–502. Edinburgh University Press, 1969. reprinted
in McC90. 2

[74] E. Mendelson. Introduction to Mathematical Logic. Chapman and
Hall/CRC, Fourth edition 1997. 9

[75] R. T. Ng and V. S. Subrahmanian. Probabilistic logic programming. Inf.
Comput., 101(2):150–201, 1992. 55

[76] P. Nicolas, L. Garcia, I. Stéphan, and C. Lafèvre. Possibilistic Uncertainty
Handling for Answer Set Programming. Annal of Mathematics and Artifi-
cial Intelligence, 47(1-2):139–181, June 2006. 27, 31, 34, 38, 47, 48, 54, 55,
57, 155

[77] J. C. Nieves and U. Cortés. Modality argumentation programming. In
Proceedings of the conference Modeling Decisions for Artificial Intelligence
(MDAI 2006), volume 3885 of Lecture Notes in Computer Science, pages
295–306. Springer, 2006. 8

151

BIBLIOGRAPHY

[78] J. C. Nieves and M. Osorio. Inferring Preferred Extensions by Pstable
Semantics. In Proceedings of the Latin-American Workshop on Non-
Monotonic Reasoning (LA-NMR07) Workshop, volume 286 of CEUR Work-
shop Proceedings. CEUR-WS.org, 2007. 7

[79] J. C. Nieves, M. Osorio, and U. Cortés. Inferring Preferred Extensions by
Minimal Models. In G. Simari and P. Torroni, editors, Argumentation and
Non-Monotonic Reasoning (LPNMR-07 Workshop), pages 114–124, Ari-
zona, USA, 2007. 7

[80] J. C. Nieves, M. Osorio, and U. Cortés. Modality-based argumentation
using possibilistic stable models. In R. Kibble, F. Grasso, and C. Reed, ed-
itors, 7th Workshop on Computational Models of Natural Argument (CMNA
VII), pages 35–41, Hyderabad, India, January 2007. 8

[81] J. C. Nieves, M. Osorio, and U. Cortés. Semantics for possibilistic dis-
junctive programs. In S. Costantini and R. Watson, editors, Answer Set
Programming: Advances in Theory and Implementation (ICLP-07 Work-
shop), pages 271–284, 2007. 7

[82] J. C. Nieves, M. Osorio, and U. Cortés. Semantics for possibilistic disjunc-
tive programs (poster). In C. Baral, G. Brewka, and J. Schlipf, editors,
Ninth International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR-07), number 4483 in LNAI, pages 315–320. Springer-
Verlag, 2007. 7

[83] J. C. Nieves, M. Osorio, and U. Cortés. Possibilistic-based argumentation:
An answer set programming approach. In In Proc. of the Mexican Interna-
tional Conference on Computer Science, page to appear. IEEE Computer
Science Press, 2008. 8

[84] J. C. Nieves, M. Osorio, and U. Cortés. Preferred Extensions as Stable
Models. Theory and Practice of Logic Programming, 8(4):527–543, July
2008. 7

[85] J. C. Nieves, M. Osorio, U. Cortés, F. Caballero, and A. López-Navidad.
Reasoning about actions under uncertainty: A possibilistic approach. In
C. Angulo and L. Godo, editors, In proceedings of CCIA, 2007. 142

[86] J. C. Nieves, M. Osorio, U. Cortés, I. Olmos, and J. A. Gonzalez. Defining
new argumentation-based semantics by minimal models. In Seventh Mex-
ican International Conference on Computer Science (ENC 2006), pages
210–220. IEEE Computer Science Press, September 2006. 7, 95

152

BIBLIOGRAPHY

[87] J. C. Nieves, M. Osorio, C. Zepeda, and U. Cortés. Inferring acceptable
arguments with answer set programming. In Sixth Mexican International
Conference on Computer Science (ENC 2005), pages 198–205. IEEE Com-
puter Science Press, September 2005. 7

[88] M. Osorio, J. R. Arrazola, and J. L. Carballido. Logical Weak Comple-
tions of Paraconsistent Logics. Journal of Logic and Computation, doi:
10.1093/logcom/exn015, 2008. 16, 159

[89] M. Osorio and J. L. Carballido. Brief study of G’3 logic. Journal of Applied
Non-Classical Logics, 18(4):79–103, 2008. 90

[90] M. Osorio, J. A. Navarro, and J. Arrazola. Applications of Intuitionistic
Logic in Answer Set Programming. Theory and Practice of Logic Program-
ming (TPLP), 4(3):225–354, May 2004. 70, 167

[91] M. Osorio, J. A. Navarro, J. R. Arrazola, and V. Borja. Ground Nonmono-
tonic Modal Logic S5: New Results. Journal of Logic and Computation,
15(5):787–813, 2005. 90, 158

[92] M. Osorio, J. A. Navarro, J. R. Arrazola, and V. Borja. Logics with Com-
mon Weak Completions. Journal of Logic and Computation, 16(6):867–890,
2006. 16, 101, 157, 158

[93] M. Osorio and J. C. Nieves. Ws,c-Stable Semantics for Propositional The-
ories. In International Conferences of CIC’2001, pages 319–328, México,
2001. 102, 103

[94] M. Osorio and J. C. Nieves. Pstable semantics for possibilistic logic pro-
grams. In MICAI 2007: Advances in Artificial Intelligence, 6th Mexican
International Conference on Artificial Intelligence, number 4827 in LNAI,
pages 294–304. Springer-Verlag, 2007. 7

[95] M. Osorio, J. C. Nieves, and C. Giannella. Useful Transformations in An-
swer Set Programming. In A. Provetti and S. T. Cao, editors, Answer Set
Programming: Towards Efficient and Scalable Knowledge Representation
and Reasoning (AAAI Spring 2001 Symposium), Stanford, USA, March
2001. 13

[96] F. J. Pelletier and R. Elio. Scope of Logic, Methodology and Philosophy
of Science, volume 1 of Synthese Library, chapter Logic and Computation,
pages 137–156. Dordrecht: Kluwer Academic Press, 2002. 3

153

BIBLIOGRAPHY

[97] L. M. Pereira and A. M. Pinto. Revised stable models - a semantics for
logic programs. In EPIA, pages 29–42, 2005. 101

[98] J. L. Pollock. Justification and defeat. Artif. Intell., 67(2):377–407, 1994.
93

[99] H. Prakken and G. A. W. Vreeswijk. Logics for defeasible argumenta-
tion. In D. Gabbay and F. Günthner, editors, Handbook of Philosoph-
ical Logic, volume 4, pages 219–318. Kluwer Academic Publishers, Dor-
drecht/Boston/London, second edition, 2002. 4, 5, 21, 62, 91, 93, 94, 136

[100] F. Ricca. The dlv java wrapper. In 2003 Joint Conference on Declara-
tive Programming, AGP-2003, Reggio Calabria, Italy, September 3-5, 2003,
pages 263–274, 2003. 90

[101] M. Rodŕıguez-Artalejo and C. A. Romero-Dı́az. Quantitative Logic Pro-
gramming revisited. In J. Garrigue and M. Hermenegildo, editors, 9th
International Symposium, FLOPS, volume 4989 of LNCS, pages 272–288.
Springer-Verlag Berlin Heidelberg, 2008. 55

[102] S. Rusell and P. Norvig. Artificial Intelligence: A Modern Approach. Pretice
Hall Series in Artificial Intelligence, 2003. 1

[103] S. SMODELS. Helsinki University of Technology.
http://www.tcs.hut.fi/Software/smodels/, 1995. 132

[104] V. S. Subrahmanian. Uncertainty in logic programming. Association for
Logic Programming (ALP), Newsletter, 20(2), May/June 2007. 55

[105] P. Szolovits. Artificial Intelligence and Medicine. Westview Press, Boulder,
Colorado, 1982. 1

[106] A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pa-
cific Journal of Mathematics, 5(2):285–309, 1955. 157

[107] A. Tversky and D. Kahneman. Judgment under uncertainty:Heuristics and
biases, chapter Judgment under uncertainty:Heuristics and biases, pages
3–20. Cambridge Univertisy Press, 1982. 3, 30

[108] D. van Dalen. Logic and structure. Springer-Verlag, Berlin, 3rd., aumented
edition edition, 1994. 11

[109] M. H. van Emden. Quantitative deduction and its fixpoint theory. Journal
of Logic Programming, 3(1):37–53, 1986. 55

154

BIBLIOGRAPHY

[110] D. Van-Nieuwenborgh, M. D. Cock, and D. Vermeir. An introduction to
fuzzy answer set programming. Ann. Math. Artif. Intell., 50(3-4):363–388,
2007. 55

[111] G. Vreeswijk. Abstract argumentation systems. Artificial Intelligence, 90(1-
2):225–279, 1997. 4

155

BIBLIOGRAPHY

156

Appendix A

Proofs of Chapter 3

In this annex we give the proof of most of the results given in Chapter 3.

Proposition 3.2 Let P be a possibilistic disjunctive logic program. M is a
possibilistic answer set of P iff M∗ is an answer set of P ∗.

Proof: The proof is straightforward by the possibilistic answer set’s definition.

Proposition 3.3 Let P = 〈(Q,≤), N〉 be a possibilistic disjunctive logic program
and TOPQ be the top of the lattice (Q,≤). If ∀r ∈ P , n(r) = TOPQ, and M ′ is
an answer set of P ∗, then M := {(l,TOPQ)|l ∈ M ′} is a possibilistic answer set
of P .

Proof: We know that if M is a possibilistic answer set of P , then M∗ is an
answer set of P ∗ (by Proposition 3.2) and NM∗ `PL M . Now, since (GMP)
(ϕ TOPQ), (ϕ → ψ TOPQ) `PL (ψ TOPQ), then any formula inferred from P by
GMP will have TOPQ as necessity-value. Then, if M ′ is an answer set of P ∗, then
{(l,TOPQ)|l ∈M ′} will be a possibilistic answer set of P .

Proposition 3.4 Let P := 〈(Q,≤), N〉 be a possibilistic normal program such
that (Q,≤) is a totally ordered set and LP has no extended atoms. M is a
possibilistic answer set of P if and only if M is a possibilistic stable model of P .

Proof: (Sketch) It is not difficult to see that when P is a possibilistic normal pro-
gram, then the syntactic reduction of Definition 3.2 and the syntactic reduction
of Definition 10 from (76) coincide. Then the proof is reduced to possibilistic
definite programs. But, this case is straightforward, since essentially GMP is
applied for inferring the possibilistic models of the program in both approaches.

Proposition 3.5 Let C be a set of possibilistic disjunctions, and C = (c α) be
a possibilistic clause obtained by a finite number of successive application of (R)

157

A. PROOFS OF CHAPTER 3

to C; then C `PL C.
Proof: (The proof is similar to the proof of Proposition 3.8.2 of (42)) Let us
consider two possibilistic clauses: C1 = (c1 α1) and C2 = (c2 α2), the application
of R yields C ′ = (R(c1, c2) GLB({α1, α2})). By classic logic, we known that
R(c1, c2) is sound; hence the key point of the proof is to show that n(R(c1, c2)) ≥
GLB({α1, α2}).

By definition of necessity-valued clause, n(c1) ≥ α1 and n(c2) ≥ α2, then
n(c1 ∧ c2) = GLB({n(c1), n(c2)}) ≥ GLB({α1, α2}). Since c1 ∧ c2 `C R(c1, c2),
then n(R(c1, c2)) ≥ n(c1 ∧ c2) (because if ϕ `PL ψ then N(ψ) ≥ N(ϕ)). Thus
n(R(c1, c2)) ≥ GLB({α1, α2}); therefore (R) is sound. Then by induction any
possibilistic formula inferred by a finite number of successive applications of (R)
to C is a logical consequence of C.

Proposition 3.6 Let P be a set of possibilistic clauses and C be the set of possi-
bilistic disjunctions obtained from P ; then the valuation of the optimal refutation
by resolution from C is the inconsistent degree of P .
Proof: (The proof is similar to the proof of Proposition 3.8.3 of (42)) By pos-
sibilistic logic, we know that C `PL (⊥ α) if and only if (Cα)∗ is inconsistent
in the sense of classic logic. Since (R) is complete in classic logic, then there
exists a refutation R(�) from (Cα)∗. Thus considering the valuation of the refu-
tation R(�), we obtain a refutation from Cα such that n(R(�)) ≥ α. Then
n(R(�)) ≥ Inc(C). Since (R) is sound then n(R(�)) cannot be strictly greater
than Inc(C). Thus n(R(�)) is equal to Inc(C). According to Proposition 3.8.1
of (42), Inc(C) = Inc(P), thus n(R(�)) is also equal to Inc(P).

Proposition 3.7 Let P := 〈(Q,≤), N〉 be a possibilistic logic program. The
set Poss-ASP returned by Poss Answer Sets(P) is the set of all the possibilistic
answer sets of P .
Proof: The result follows from the following facts:

1. The function ASP computes all the answer set of P ∗.

2. If M is a possibilistic answer set of P iff M∗ is an answer set of P ∗ (Propo-
sition 3.2).

3. By Corollary 3.1, we know that the possibilistic resolution rule R is sound
and complete for computing optimal possibilistic degrees.

Proposition 3.8 Let P be a possibilistic disjunctive logic program. If Γ0 := T(P)
and Γi := T(Γi−1) such that i ∈ N, then ∃ n ∈ N such that Γn = Γn−1. We denote
Γn by Π(P).

158

Proof: It is not difficult to see that the operator T is monotonic, then the proof
is direct by Tarski’s Lattice-Theoretical Fixpoint Theorem (106).

Proposition 3.9 Let P be a possibilistic disjunctive logic program and M a set
of possibilistic atoms. M is a possibilistic answer set of P if and only if M is a
possibilistic-T answer set of P .
Proof: Two observations:

1. By definition, it is straightforward that if M1 is a possibilistic answer set of
P , then there exists a possibilistic-T answer set M2 of P such that M∗

1 = M∗
2

and viceversa.

2. Since G-GPPE can be regarded as a macro of the possibilistic rule (R), we
can conclude by Proposition 3.5 that G-GPPE is sound.

Let M1 be a possibilistic answer set of P and M2 be a possibilistic-T answer
set of P . By Observation 1, the central point of the proof is to prove that if
(a, α1) ∈M1 and (a, α2) ∈M2 such that M∗

1 = M∗
2 , then α1 = α2.

The proof is by contradiction. Let us suppose that (a, α1) ∈M1 and (a, α2) ∈
M2 such that M∗

1 = M∗
2 and α1 6= α2. Then there are two cases α1 < α2 or

α1 > α2

α1 < α2 : Since G-GPPE is sound (Observation 2), then α1 is not the optimal
necessity-value for the atom a, but this is false by Corollary 3.1.

α1 > α2 : If α1 > α2 then there exists a possibilistic claus α1 : A← B+ ∈ P (M1)∗

that belongs to the optimal refutation of the atom a and it was not reduced
by G-GPPE. But this is false because G-GPPE is a macro of the resolution
rule (R).

Proposition 3.10 Let P be a possibilistic normal program. If M is a possibilistic
answer set of P , then the following conditions hold:

a) M∗ is a pstable model of P ∗.

b) there exists a possibilistic pstable mode M ′ of P such that M v M ′ and
M∗ = M ′∗.

Proof:

a) The proof is straightforward by Theorem 4.4 of (92) (The Theorem 4.4 of (92)
says that given a normal logic program P and a set of atoms M , if M is an
answer set of P then M is a pstable model of P).

159

A. PROOFS OF CHAPTER 3

b) First of all observe that the following relation is true:

PM∗ ⊆ PRED(P,M) (A.1)

By a), it is direct that if M is a possibilistic answer set of P , then there
exists a possibilistic pstable model M ′ such that M∗ = M ′∗. Hence, if
(a, α1) ∈ M , then a ∈ M ′∗ such that (a, α2) ∈ M ′. Therefore, the relevant
part of prove is to show that α1 ≤ α2.

The proof is by contradiction: Let us suppose that α2 < α1, by def-
inition of possibilistic answer set and pstable model, PM∗ `PL (a, α1)
and PRED(P,M) `PL (a, α2) such that α1 and α2 are optimal. Since
PM∗ ⊆ PRED(P,M), hence then PRED(P,M) `PL (a, α1). Therefore,
α2 is not the optimal value of a w.r.t. PRED(P,M). This is a contradic-
tion, because α2 is the optimal value of a w.r.t. PRED(P,M) by definition
of the possibilistic pstable semantics.

Proposition 3.11 Let P be a possibilistic normal program. If P `PL (x α) then
P is equivalent to P ∪ {(x α)} under the possibilistic pstable semantics.
Proof: Some observations;

a) By Theorem 7.11 of (91) and Theorem 5.1 of (92), we can see that: If
P ∗ `C x then P ∗ is equivalent to P ∗ ∪ {x} under the pstable semantics
i.e. Pstable(P ∗) = Pstable(P ∗ ∪ {x})

b) By definition of the possibilistic pstable semantics: M is a possibilistic pstable
model of P then M∗ is a pstable model of P ∗.

c) By definition of the syntactic reduction PRED, it is easy to see that: Given
a possibilistic normal program P and a set of atoms M : PRED(P ∪
(a, α),M) = PRED(P,M) ∪ {(a, α)}.

d) In (42), it was proved that: P `PL (x α) iff Pα `PL (x α).

We use poss Pstable to denote the semantics operator of the possibilistic
pstable semantics. Then we have to prove that

poss Pstable(P) = poss Pstable(P ∪ {(x α)})

=> We have to prove that if M ∈ poss Pstable(P) then M ∈ poss Pstable(P ∪
{(x α)}).

160

Proof: M ∈ poss Pstable(P) iff M∗ ∈ Pstable(P ∗) (by b) iff M∗ ∈
Pstable(P ∗ ∪ {x}) (by a). Hence, there exists M ′ ∈ poss Pstable(P ∪
{(x α)}) such that M∗ = M ′∗.

Let us suppose that M 6= M ′, this means that there exists (a, α1) ∈M and
(a, α2) ∈M ′ such that α1 6= α2.

If α1 6= α2, then there two cases:

α1 > α2: If α1 > α2, then PRED(P,M∗)α1 ⊂ PRED(P ∪ {(a, α)},M ′∗)α2

(remember that PRED(P ∪ (a, α),M) = PRED(P,M) ∪ {(a, α)}).
Since PRED(P,M∗)α1 `PL (a α1) and PRED(P ∪ (a, α),M ′∗)α2 `PL
(a α2), hence α2 is not the optimal necessity value of a inferred from
PRED(P ∪ {(a, α)},M ′∗)α2 . This is a contradiction, because M’ is a
possibilistic Pstable model of P ∪ (a, α).

α1 < α2: If α1 < α2, then PRED(P,M ′∗)α2 ⊂ PRED(P,M∗)α1 and α <
α1. Hence α2 = α. Then Pα2 ⊂ Pα1 . Since Pα2 `PL (x α2), then
Pα2 `PL (a α2). Therefore Pα1 `PL (a α2). Then α1 is not the
optimal necessity value for a inferred from PRED(P,M)α1 . This is a
contradiction, because M is a possibilistic Pstable model of P .

Therefore α1 = α2, this means that M = M ′.

<= We have to prove that ifM ∈ poss Pstable(P∪{(x α)}) thenM ∈ poss Pstable(P).
The proof is similar to the previous case.

Theorem 3.1 Let P be a possibilistic disjunctive program. If M is a possibilistic
answer set of P , then it implies that

a) M∗ is a pstable model of TRAD(P)∗.

b) there exists a possibilistic pstable mode M ′ of TRAD(P) such that M v M ′

and M∗ = M ′∗.

Proof:

a) The proof is straightforward by Theorem 5.3 of (88) (The Theorem 5.3 of
(88) says that if M is an answer set of P ∗ then M is a pstable model
of (TRAD(P))∗. The authors of (88) use the concept of “closed under d-
shift”; but this concept is nothing else that the consideration of the mapping
TRAD without the possibilistic values).

161

A. PROOFS OF CHAPTER 3

b) Direct by a) and Proposition 3.10.

Proposition 3.12 Given a possibilistic program P := 〈(Q,≤), N〉 there exists
an algorithm that computes the set of possibilistic pstable models of P .
Proof: The algorithm is the same to the algorithm presented in the proof of
Proposition 3.7. The only difference is that instead of using an algorithm for
computing the answer sets of P ∗, it is used an algorithm for computing the
pstable models of P ∗ e.g., the algorithm presented in (69).

162

Appendix B

Proofs of Chapter 4

In this annex we give the proof of most of the results given in Chapter 4.

Lemma 4.1 Let AF := 〈AR, attacks〉 be an argumentation framework and
S ⊆ AR. S is the grounded extension of AF if and only if ∃ D ⊆ AR such that
〈f(D), f(S)〉 is the well-founded model of ΨAF .
Proof: The proof is by induction on the minimum number of steps N to get the
ΨAF ’s normal form. Let FAF be the characteristic function of AF . By Lemma
2.1, we known that WFS(P) := SEM(normCS0(P)). So, let 〈f(D), f(S)〉 be the
well-founded model of ΨAF .

Base Step If N = 0, then ΨAF is in its normal form. By the definition of ΨAF , if
a ∈ AR and @b ∈ AR such that (b, a) ∈ attacks, then d(a) /∈ HEAD(ΨAF).
This means that d(a) ∈ f(S) and a ∈ F 0

AF . It is easy to see that F 0
AF is

the fix point of FAF and f(F 0
AF) = f(S). Therefore, S is the grounded

extension of AF .

Inductive step Now, let us suppose that ΨAF is not in its normal form, so we
need N steps to get its normal form. Let 〈f(D′), f(S ′)〉 be SEM(ΨAF) and
〈f(D′′), f(S ′′)〉 be SEM(Ψ′′AF) such that ΨAF →T Ψ′′AF and T ∈ CS0. If
a ∈ AR and @b ∈ AR such that (b, a) ∈ attacks, then d(A) /∈ HEAD(ΨAF),
d(A) ∈ f(S ′), A ∈ Fm

AF , and m ≥ 0. There are two relevant cases w.r.t. the
argument a:

1. If b ∈ AR such that b is attacked by a, then there is a rule r1 ∈ ΨAF

of the form r1 : d(b) ← not d(a); therefore, if T = RED+, then
d(b) ← > ∈ Ψ′′AF and d(b) ∈ f(D′′). This means b is a defeated
argument and b /∈ Fm

AF .

2. If b is defended by a, then there is a rule r2 ∈ ΨAF of the form r2 :
d(b)← d(x1), . . . , d(a), . . . , d(xn), where xi ∈ AR such that xi defends

163

B. PROOFS OF CHAPTER 4

b; therefore, r2 is deleted by Failure. This means, if T = Failure,
then r2 /∈ Ψ′′AF . Notice that, if d(b) /∈ HEAD(Ψ′′AF), then d(b) ∈ f(S ′′)
and B ∈ Fm

AF .

One can see that the application of CS0 over ΨAF will remove from ΨAF

any rule r ∈ ΨAF such that r’s head is an atom of the form d(a) and a is
an acceptable argument. So, by inductive hypothesis, it is easy to see that
if 〈f(D), f(S)〉 is the well-founded model of ΨAF then S is the grounded
extension of AF .

Proof of Lemma 4.2

In order to prove Lemma 4.2, let us introduce the following two lemmas w.r.t.
answer set equivalence1.

According to (67), P1 is answer set equivalent to P2 if P1 and P2 have the
same answer sets. Also we can say that P1 is strongly equivalent to P2 if and
only if for every logic program P , P1 ∪ P and P2 ∪ P have the same answer sets.
The intuitive idea of stable equivalence is that for any two programs which are
stable equivalent we can replace one by the other in any large program without
changing the stable models (declarative semantics). By having in mind this idea,
we present the following two lemmas:

Lemma B.1 (29) Let P be a normal program that includes the clause:

x← not y

Suppose in addition that all the rules in P with head equal to y are:
y ← not y1. . . . y ← not ym.

Then P is answer set equivalent to P ∪ {x← y1, . . . , ym}.

Lemma B.2 (29) Let P be a normal program, let r1, r2, ..., rn be definite rules
such that the two programs P and P ∪ ri have the same answer sets for any
i ∈ {1, 2..., n}. Then P and P ∪ r1 ∪ r2 ∪ ... ∪ rn have the same answer sets.

The following lemma is a straightforward result by the properties of negation
as failure of the answer set semantics.

1The proofs of Lemma B.1 and Lemma B.2 were done in collaboration with José Luis
Carballido in (29).

164

Lemma B.3 Let P be a normal program such that there exist P1 and P2 satis-
fying:

1. P = P1 ∪ P2 and P1 ∩ P2 = {}.

2. The atoms in the head of P1 do not occur in P2.

3. The atoms in the body of P1 do not occur in the head of P1.

Then M is an answer set of P if and only if there exist M1 and M2 such that
M = M1∪M2, M2 is an answer set of P2 and M1 = {x : x← α ∈ P1,M2(α) = 1}.

By considering Lemma B.1, Lemma B.2 and Lemma B.3, we present the proof
of Lemma 4.2.

Lemma 4.2 Let AF be an argumentation framework and E a set of arguments.
E is a stable extension of AF if and only if compl(E) is a answer set of ΨAF .

Proof: Let P be the grounding of the program PAF (see Definition 2.13). Hence,
P is of the form:

P =
⋃

b:(b,a)∈attacks

{d(a)← acc(b)} ∪
⋃
a∈AR

{acc(a)← not d(a)}

Now let P ′ be the program obtained from P by applying the well-know principle
of partial evaluation (PPE) (36) to P :

P ′ =
⋃

b:(b,a)∈attacks

{d(a)← not d(b)} ∪
⋃
a∈AR

{acc(a)← not d(a)}

Let P ′ = P ′2 ∪ P ′1 such that P ′1 =
⋃
a∈AR{acc(a)← not d(a)} and

P ′2 =
⋃
b:(b,a)∈attacks{d(a) ← not d(b)}. Since the answer set semantics is closed

under PPE (36), M is an answer set of P if and only if M is answer set of P ′. By
Lemma B.3, M is answer set of P ′ if and only if M = M2 ∪M1 such that M2 is
an answer set of P ′2 and M1 = {acc(a)|acc(a)← not d(a) ∈ P ′1 and d(a) /∈ M2}.
Hence, by Theorem 2.1, E is a stable extension of AF if and only if compl(E) is
an answer set of P ′2 (observe that compl(E) = M2).

By Lemma B.1 and Lemma B.2, M2 is an answer set of P ′2 if and only M2 is
an answer set of P ′2 ∪

⋃
b:(b,a)∈attacks{d(a) ←

∧
c:(c,b)∈attacks d(c)}. Therefore, E is

a stable extension of AF iff compl(E) is an answer set of P ′2iff compl(E) is an
answer set of ΨAF .

165

B. PROOFS OF CHAPTER 4

Proof of Lemma 4.3

Since our formalization of the characterization of the preferred semantics by the
pstable semantics will consider Theorem 4.4 and this theorem is based on positive
disjunctive logic programs and the answer set semantics, we will introduce a
lemma which will show how to recover the answer sets of a positive disjunctive
logic program by considering pstable models.

As we know by Definition 2.4, the pstable semantics is defined for normal
programs. Hence, for a disjunctive positive rule

r = a1 ∨ a2 ∨ ... ∨ as ← b1 ∧ b2 ∧ · · · ∧ bn

we define the closure of r as the union of the s rules:

ai ← ∧bk
∧

(∧ not aj){j 6=i}
for i : 1, 2, . . . , s and k : 1, 2, . . . , n. In the case in which the rule r is normal,
its closure is the same r. The closure CL(P), of a disjunctive program P , is
the union of the closures of its rules. Observe that this program is normal. Our
lemma then says1:

Lemma B.4 (29) For a positive disjunctive program P , one can recover its stable
models from the pstable models of CL(P), specifically, the stable models of P are
exactly the pstable models of CL(P).

By considering Lemma B.4, we will prove our Lemma 4.3.

Lemma 4.3 Let AF be an argumentation framework and E a set of arguments.
E is a preferred extension of AF if and only if compl(E) is a pstable model of
ΨAF .
Proof: Let P be ΨAF and CLO(P) be P ∪ {x ← not y : y ← not x ∈
P}. By Theorem 4.4 and Lemma B.4, one can immediately see that E is a
preferred extension of AF iff compl(E) is a pstable model of CLO(P) (observe
that CL(ΓAF) = CLO(P)). We will now see that M is a pstable model of P iff
M is a pstable model of CLO(P).

Suppose that M is a pstable of P . It is immediate to see that M is a pstable
model of CLO(P).

The interesting case is the converse. Suppose that M is a pstable model
of CLO(P) and let us try to prove that M is a pstable model of P . By our
assumption and the definition of pstable model, M is a model of CLO(P) and

1The proof of Lemma B.4 was done in collaboration with José Luis Carballido in (29).

166

RED(CLO(P),M) |= M . Clearly M is a model of P . We only need to prove
that RED(P,M) |= M . This follows since RED(P,M) |= RED(CLO(P),M)
and this finishes this first part of the proof. It is worth to explain the last step
in some more detail.

In order to prove that RED(P,M) |= RED(CLO(P),M), let r1 be any rule
that belongs to CLO(P) such that it does not belong to P . Then r1 must be
of the form x ← not y. Clearly r2 (of the form y ← not x) belongs to both
P and CLO(P). Let s1 be the result of r1 after the reduction RED. Similarly,
let s2 be the result of r2 after the reduction RED. So, s2 ∈ (RED(P,M) ∩
RED(CLO(P),M)) and s1 ∈ RED(CLO(P),M). We have two cases:
A) r1 = s1. Then clearly s2 |= s1. Hence RED(P,M) |= s1.
B) Suppose that r1 is different from s1. Then r2 = s2. In addition s1 should
be the fact x which belongs to RED(CLO(P),M). Necessarily y /∈ M . Let
x ← not z1, ...,x ← not zm be all the non definite rules of P such that x is
in the head. Then y ← z1, ..., zm ∈ P . Since M is a model of P then there
exists z ∈ {z1, ..., zm} such that z /∈ M . Hence x ← not z ∈ P and so x is a
fact of RED(P,M). Hence, x |= s1 and so RED(P,M) |= s1. From both cases
RED(P,M) |= s1, so it follows that RED(P,M) |= RED(CLO(P),M).

As a consequence of the above reasoning E is a preferred extension of AF iff
compl(E) is a pstable model of P .

Theorem 4.1 ΨAF is a suitable codification.
Proof: The theorem follows of Lemma 4.1, Lemma 4.2, Lemma 4.3, and the fact
that ΨAF is polynomial time computable function.

Proposition 4.1 Let T be a theory with signature L. Let L′ be a copy-signature
of L. By g(T) we denote the theory obtained from T by replacing every occurrence
of an atom x in T by ∼ f(x). Then M is a maximal model of T if and only if
f(L \M) is a minimal model of g(T).
Proof: First of all two observations:

1. Given M1,M2 ⊆ LT , it is true that M1 ⊂M2 iff f(LT \M2) ⊂ f(LT \M1).

2. Given a propositional formula A, an interpretation M from LT to {0, 1}
and x ∈ {0, 1}. Then it is not difficult to prove by induction on A’s length1

that M(A) = x iff f(LT \M)(g(A)) = x.

=> To prove that if M is a maximal model of T then f(L \M) is a minimal
model of g(T). The proof is by contradiction. Let us suppose that M is a

1Since A is a disjunctive clause, the length of A is given by the number of atoms in the
head of A plus the number of literals in the body of A.

167

B. PROOFS OF CHAPTER 4

maximal model of T but f(L \M) is a model of g(T) and is not minimal.
Then if f(L \M) is not minimal then there exists M2 such that f(L \M2)
is a model of g(T) and f(L \M2) ⊂ f(L \M). Then by observation 2, if
f(L \M2) is a model of g(T) then M2 is a model of T . By observation 1, if
f(L \M2) ⊂ f(L \M) then M ⊂ M2. But this is a contradiction because
M is a maximal model of T .

<= To prove that if f(L \M) is a minimal model of g(T) then M is a maximal
model of T . The proof is also by contradiction. Let us suppose that f(L\M)
is a minimal model of g(T) but M is model of T and is not maximal. If
M is not maximal, then exists a model M2 of T such that M ⊂ M2. Then
by observation 2, if M2 is a model of T then f(L \M2) is a model of g(T).
By observation 1, if M ⊂ M2 then f(L \M2) ⊂ f(L \M). But this is a
contradiction because f(L \M) is a minimal model of g(T).

Theorem 4.2 Let AF := 〈AR, attacks〉 be an argumentation framework and
S ⊆ AR. When the mapping f(x) of the theory g(β(AF)) corresponds to d(x)
such that x ∈ AR, the following condition holds: S is a preferred extension of
AF if and only if compl(S) is a minimal model of α(AF).
Proof: Two observations:

1. Since the mapping f(x) corresponds to d(x), then compl(S) = f(AR \ S)
because compl(S) := {d(a)|a ∈ AR\S} and f(AR\S) := {f(a)|a ∈ AR\S}.

2. α(AF) is logically equivalent to g(β(AF)):

g(β(AF)) =
∧
a∈AR((∼ d(a)→

∧
b:(b,a)∈attacks d(b))∧

(∼ d(a)→
∧
b:(b,a)∈attacks(

∨
c:(c,b)∈attacks ∼ d(c))))

Since a→
∧
b∈S b ≡

∧
b∈S(a→ b), we get:

∧
a∈AR

(
∧

b:(b,a)∈attacks

(∼ d(a)→ d(b))∧(
∧

b:(b,a)∈attacks

(∼ d(a)→
∨

c:(c,b)∈attacks

∼ d(c))))

By applying transposition and cancelation of double negation in both im-
plications, we get:

∧
a∈AR

(
∧

b:(b,a)∈attacks

(∼ d(b)→ d(a))∧(
∧

b:(b,a)∈attacks

(∼
∨

c:(c,b)∈attacks

∼ d(c)→ d(a))))

168

Now, for the right hand side of the formula we need to apply Morgan laws:

∧
a∈AR

(
∧

b:(b,a)∈attacks

(∼ d(b)→ d(a)) ∧ (
∧

b:(b,a)∈attacks

(
∧

c:(c,b)∈attacks

d(c)→ d(a))))

Finally by changing → by ←, we get α(AF).

∧
a∈AR

(
∧

b:(b,a)∈attacks

(d(a)←∼ d(b))∧(
∧

b:(b,a)∈attacks

(d(a)←
∧

c:(c,b)∈attacks

d(c)))) = α(AF)

Now the main proof: S is a preferred extension of AF iff (by Proposition 4.2)
S is a maximal model of β(AF) iff (by Proposition 4.1) f(AR \ S) is a minimal
model of g(β(AF)) iff (by observations 1 and 2) compl(S) is a minimal model of
α(AF).

Proposition 4.3 Let AF := 〈AR, attacks〉 be an argumentation framework and
S ⊆ AR. S is a preferred extension of AF if and only if compl(S) is a model of
α(AF) and

α(AF) ∧ SetToFormula(∼ ˜compl(S)) |= SetToFormula(compl(S))

Proof: First of all, let us introduce the following relationship between minimal
models and logic consequence.

Lemma B.5 (90) For a given general program P , M is a model of P and P ∪
¬M̃) |= M iff M is a minimal model of P .

This lemma was introduced in terms of augmented programs. Since a general
program is a particular case of an augmented program, we write the lemma in
terms of general programs (see (90) for more details about augmented programs).
Main Proof: S is a preferred extension of AF iff (by Theorem 4.2) compl(S) is a
minimal model of α(AF) iff (by lemma B.5) compl(S) is a model of α(AF) and

α(AF) ∧ SetToFormula(¬ ˜compl(S)) |= SetToFormula(compl(S)).

Theorem 4.3 Let AF := 〈AR, attacks〉 be an argumentation framework and
S ⊆ AR. S is a preferred extension of AF if and only if compl(S) is a model of
α(AF) and

α(AF) ∧ SetToFormula(∼ ˜compl(S)) ∧ ¬SetToFormula(compl(S))

169

B. PROOFS OF CHAPTER 4

is unsatisfiable.
Proof: Directly, by Proposition 4.3.

Theorem 4.4 Let AF := 〈AR, attacks〉 be an argumentation framework and
S ⊆ AR. S is a preferred extension of AF if and only if compl(S) is an answer
set of ΓAF .
Proof: S is a preferred extension of AF iff compl(S) is a minimal model of α(AF)
(by Theorem 4.2) iff compl(S) is a minimal model of ΓAF (since ΓAF is logically
equivalent to α(AF) in classical logic) iff compl(S) is an answer set of ΓAF (since
ΓAF is a positive disjunctive logic program and for every positive disjunctive logic
program P, M is an answer set of P iff M is a minimal model of P).

Proposition 4.4 Let AF := 〈AR, attacks〉 be an argumentation framework and
S ⊆ AR. S is a preferred extension of AF iff there is a stable model M of ΛAF

such that S = M ∩ AR.
Proof: The proof is straightforward from Theorem 4.4 and the semantics of de-
fault negation.

Theorem 4.5 Let AF := 〈AR, attacks〉 be an argumentation framework and E
be the grounded extension of AF. Then

a) 1. If 〈S,D〉 is the WFSLLC
′
-extension of AF then E ⊆ S.

2. If 〈S,D〉 is the WFSWK-extension of AF then E ⊆ S.

3. If 〈S,D〉 is the WFSWK+LLC′-extension of AF then E ⊆ S.

b) 1. The WFSLLC
′
-extension of AF is polynomial time computable.

2. The WFSWK-extension of AF is polynomial time computable.

3. The WFSWK+LLC′-extension of AF is polynomial time computable.

Proof:

a) It is direct by Lemma 4.1.

b) The result follows from the facts that: 1.- Thee mapping ΨAF is a polynomial
time computable function, and 2.- The rewriting systems CS1, CS2, and
CS3 are polynomial time computable (39).

Theorem 4.6 Let AF := 〈AR, attacks〉 be an argumentation framework, E be
a preferred extension of AF , and E ′ := AR \ E. Then,

170

1. If 〈S,D〉 is the WFSLLC
′
-extension of AF then S ⊆ E and D ⊆ E ′.

2. If 〈S,D〉 is the WFSWK-extension of AF then S ⊆ E and D ⊆ E ′.

3. If 〈S,D〉 is the WFSWK+LLC′-extension of AF then S ⊆ E and D ⊆ E ′.

Proof: (sketch)
This theorem follows from the facts that

1. The pstable semantics satisfies the basic transformation RED+, RED−,
Success, Failure, Loop, WK, and LLC ′ (this means that any atom inferred
by these transformations is also inferred by Pstable semantics. This fact is
essentially because these transformation are closed under classic logic),

2. The pstable models of ΨAF correspond to the preferred extensions of AF
(Lemma 4.3).

171

	1 Introduction
	1.1 Modeling uncertain information
	1.2 Modeling rational criteria
	1.3 Contribution of this thesis
	1.4 Thesis overview

	2 Background
	2.1 Logic programs: Syntaxis
	2.2 Interpretations and models
	2.3 Rewriting systems
	2.4 Logic programming semantics
	2.4.1 Answer set semantics
	2.4.2 Pstable semantics
	2.4.3 Well-Founded Semantics

	2.5 Possibilistic Logic
	2.6 Abstract Argumentation Theory
	2.7 Lattices and order

	3 Possibilistic Disjunctive Logic programs
	3.1 Introduction
	3.2 Syntax
	3.3 Semantics
	3.3.1 A possibilistic semantics based on answer set models
	3.3.2 Possibilistic answer sets based on partial evaluation
	3.3.3 A possibilistic semantics based on pstable models

	3.4 Inconsistency in possibilistic logic programs
	3.4.1 Relevance of inconsistent possibilistic logic programs
	3.4.2 Inconsistency degrees of possibilistic sets
	3.4.3 Restoring inconsistent possibilistic knowledge bases

	3.5 Related Work
	3.6 Concluding remarks

	4 Studying abstract argumentation semantics based on logic programming semantics
	4.1 Introduction
	4.2 Suitable codifications for arguing under admissible sets
	4.3 Mapping an argumentation framework into a normal program
	4.4 A suitable codification for arguing under admissible sets
	4.5 Preferred semantics
	4.5.1 Preferred semantics and minimal models
	4.5.2 Preferred semantics and answer set semantics
	4.5.3 DLV System: Sceptical and Credulous Reasoning

	4.6 Grounded semantics (GEAF)
	4.6.1 Extensions of GEAF based on rewriting systems
	4.6.2 Rewriting systems and the interaction between arguments

	4.7 Concluding remarks

	5 Beyond of admissible sets
	5.1 Introduction
	5.2 Preliminaries
	5.3 Construction of new logic programming semantics
	5.3.1 Semantics always defined
	5.3.2 Constructing relevant semantics

	5.4 Construction of abstract argumentation semantics
	5.5 Related work
	5.6 Concluding remarks

	6 A non-monotonic possibilistic-based argumentation approach
	6.1 Introduction
	6.2 Building possibilistic arguments
	6.3 Conflicts between possibilistic arguments
	6.4 Some Properties
	6.5 A Possibilistic Argumentation Engine
	6.6 Related work
	6.7 Concluding remarks

	7 Discussion
	7.1 Thesis overview
	7.2 Impact of the main contributions
	7.2.1 Possibilistic Disjunctive Logic Programming
	7.2.2 Study of the Dung's argumentation semantics
	7.2.3 Construction of argumentations semantics and logic programming semantics
	7.2.4 A possibilistic-based argumentation approach

	7.3 Future work

	A Proofs of Chapter 3
	B Proofs of Chapter 4

