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Abstract. In the literature, there are several approaches which try to perform common sense rea-
soning. Among them, the approaches which have probably received the most attention the last two
decades are the approaches based on logic programming semantics with negation as failure and ar-
gumentation theory. Even though both approaches have their own features, it seems that they share
some common behaviours which can be studied by considering the close relationship between logic
programming semantics and extension-based argumentation semantics.

In this paper, we will present a general recursive schema for defining new logic programming seman-
tics. This schema takes as input any basic logic programming semantics, such as the stable model
semantics, and gives as output a new logic programming semantics which satisfies some desired
properties such as relevance and the existence of the intended models for every normal program. We
will see that these new logic programming semantics can define candidate extension-based argumen-
tation semantics. These new argumentation semantics will overcome some of the weakness of the
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extension-based argumentation semantics based on admissible sets. In fact, we will see that some
of these new argumentation semantics have similar behaviour to the extension-based argumentation
semantics built in terms of strongly connected components.

Keywords: Non-monotonic reasoning, extension-based argumentation semantics and logic pro-
gramming semantics, logic programming.

1. Introduction

In the non-monotonic reasoning community, it is well-accepted that the stable model semantics (also
called answer set semantics) [26] represents a prominent approach for performing non-monotonic rea-
soning. In fact it has given place to a new approach of logic programming with negation as failure.
Usually an answer set program can be seen as a specification of a problem where each stable model of
a program P represents possible solutions to the problem. Nowadays, there are efficient solvers such as
dlv, clasp, and smodel. The efficiency of these answer set solvers have increased the list of the stable
model semantics’ applications, e.g., planning, bioinformatics, argumentation theory, etc.

Even though the stable model semantics enjoys a good reputation in the non-monotonic reason-
ing community, it is also well-known that the stable model semantics does not satisfy some desired
properties pointed out by several authors [7, 17, 43, 46]. Among these properties we can mention the
existence of intended models in some normal logic programs. Take for instance the basic program:
P = {a ← ¬a, a ← a}. Note that this program is consistent from the point of view of classical logic, P
has one model namely {a}. We follow the point of view of Schlipf [46], that proposes that logic program-
ming with negation as failure should extend classical logic not replace it. Furthermore there are several
approaches [7, 18, 20, 32, 39, 43, 46] which consider the above program consistent and that it should
derive “a”. For the stable semantics, the program P is inconsistent. Of course that this is not necessarily
a weakness of the stable semantics. It all depends on the intended use of our logic programs. In the case
of an approach motivated by argumentation theory it is desirable that normal programs (representing a
dispute among arguments) always give an answer that infers the winning arguments in a dispute among
arguments.

Argumentation theory has become an increasingly important and exciting research topic in Artifi-
cial Intelligence (AI), with research activities ranging from developing theoretical models, prototype
implementations, and application studies [5]. The main purpose of argumentation theory is to study the
fundamental mechanism humans use in argumentation and to explore ways to implement this mechanism
on computers.

Dung’s approach, presented in [21], is a unifying framework which has played an influential role
on argumentation research and AI. This approach is mainly orientated to manage the interaction of ar-
guments. The interaction of arguments is supported by four extension-based argumentation semantics:
stable semantics, preferred semantics, grounded semantics, and complete semantics1. The central no-
tion of these semantics is the acceptability of the arguments. Even thought each of these argumentation
semantics represents different patterns of selection of arguments, all of them are based on the basic con-
cept of admissible set. Informally speaking, an admissible set presents a coherent and defendable point
1It is worth mentioning that recently Dung et al, [22] defined another argumentation semantics which is called ideal semantics.
This semantics can be regarded as an intermediate semantics between the grounded and preferred semantics.
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of view in a conflict between arguments. According to Bench-Capon and Dunne [5], the three principal
abstract argumentation semantics introduced by Dung are the grounded, preferred and stable seman-
tics. However, these semantics exhibit a variety of problems which have been illustrated in the literature
[4, 5, 9, 45]. Authors such as P. Baroni et al, have suggested that in order to overcome Dung’s abstract
argumentation semantics problems, it is necessary to define flexible argumentation semantics which are
not necessarily based on admissible sets [4].

According to Baroni et al, in [4] the preferred semantics is regarded as the most satisfactory approach;
however, they have also pointed out that the preferred semantics produces some questionable results
in some cases concerning cyclic attack relations [4]. For instance, let us consider the argumentation
framework that appears in Figure 12. In this argumentation framework, there are two arguments: a and
b. The arrows in the figure represent conflicts between the arguments. We can see that argument a is
attacked by itself and argument b is attacked by argument a. Intuitively, some authors as Prakken and
Vreeswijk [45] suggest that one can expect that argument b can be considered as an acceptable argument
since it is attacked by argument a which is attacked by itself. However, the preferred semantics is unable
to infer argument b as an acceptable argument — the only preferred extension of the argumentation
framework of Figure 1 is the empty set. In fact, none of the argumentation semantics suggested by Dung
is able to infer argument b as acceptable.

a b c a b c

a) b)

a b

x

z d

u

y
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j a b

a b c

Figure 1. Graph representation of the argumentation framework AF = 〈{a, b}, {(a, a), (a, b)}〉.

Another interesting argumentation framework which has been commented on in the literature [45, 4]
is presented in Figure 2. The preferred semantics w.r.t. this argumentation framework is only able to infer
the empty set. Some authors, such as Prakken and Vreeswijk [45], Baroni et al[4], suggest that argument
e can be considered as an acceptable argument since it is attacked by argument d which is attacked by
three arguments: a, b, c. Observe that the arguments a, b and c form a cycle of attacks.

Figure 2. Graph representation of the argumentation framework AF =
〈{a, b, c, d, e}, {(a, c), (c, b), (b, a), (a, d), (c, d), (b, d), (d, e)}〉.

The stable argumentation semantics defined by Dung in [21] is also considered as another proper
argumentation semantics. However, this semantics has been criticized by some authors such as Bench-
2This argumentation framework has received special attention in the literature in order to commented the problem of the self-
defeated arguments [44, 45] and to point out some of the problems of the Dung’s argumentation semantics [4].
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Capon and Dunne [5], Caminada [9] because there are argumentation frameworks where no stable ex-
tensions exists, as in the case of odd-length cycles. In fact, the argumentation frameworks of Figure 1
and Figure 2 are two examples where the given argumentation frameworks has no stable extensions.

Since Dung’s approach was introduced in [21], it was viewed as a special form of logic program-
ming with negation as failure. For instance, in [21] it was proved that the grounded semantics can be
characterized by the well-founded semantics [25] and the stable argumentation semantics can be charac-
terized by the stable model semantics [26]. Also in [11], it was proved that the preferred semantics can
be characterized by the p-stable semantics. In fact, the preferred semantics can be also characterized by
the minimal models and the stable models of a logic program [35]. Furthermore, Caminada [48] proved
the correspondence between complete extensions and 3-valued stable models of a logic program.

We can recognize two major branches for improving Dung’s approach3. On the one hand, we can
take advantage of graph theory; on the other hand, we can take advantage of logic programming with
negation as failure.

With respect to graph theory, the approach suggested by Baroni et al, in [4] is maybe the most general
solution defined until now for improving Dung’s approach. This approach is based on a solid concept
in graph theory: strongly connected components (SCC). Based on this concept, Baroni et al, describe
a recursive approach for generating new argumentation semantics. For instance, the argumentation se-
mantics CF2 suggested in [4] is able to infer argument b as an acceptable argument of the argumentation
framework of Figure 1. Also CF2 is able to infer the extensions: {a, e}, {b, e}, {c, e} from the argumen-
tation framework of Figure 2. This means that CF2 regards argument e as an acceptable argument.

As we commented, argumentation theory can be viewed as a special form of logic programming
with negation as failure [21, 35, 36, 11]. In fact Dung in [21] introduced a metainterpreter PAF for
generating argumentation systems. When we have a logic program which represents an argumentation
framework, we can split this program into subprograms where each subprogram could represent a part
of an argumentation framework. For instance, let us consider a version of the mapping ΨAF introduced
in [35, 11] in order to represent the argumentation framework of Figure 1 as the logic program P :

d(a) ← ¬d(a).
d(b) ← ¬d(a).
acc(a) ← ¬d(a).
acc(b) ← ¬d(b).

We want to point out that we are only considering the negative clauses of the mapping ΨAF and two
clauses more in order to infer the winning/acceptable arguments by negation as failure. This program
can also be inferred from Dung’s mapping PAF [21] by considering the grounding instance of PAF and
applying the well-known principle of partial evaluation to PAF . In fact, this codification can be regarded
as the common point between the mappings ΨAF and PAF .

The intended meaning of the first clause of P says that argument a is defeated if argument a is not
defeated. The second clause of P says that argument b is defeated if argument a is not defeated. The
third clause of P says that argument a is acceptable if argument a is not defeated and the last clause of
P says that argument b is acceptable if argument b is not defeated.
3By improving Dung’s approach, we mean to define new extension-based argumentation which are not necessarily defined
in terms admissible sets. However, it is expected that these new extension-based argumentation semantics are able to infer
coherent points of views from a conflict of arguments.
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Notice that the program P can be split into three subprograms, i.e., P1, P2 and P3, where P1 is:

d(a) ← ¬d(a).

P2 is:

d(b) ← ¬d(a).
acc(a) ← ¬d(a).

and P3 is:

acc(b) ← ¬d(b).

We can see that P2 depends on P1 because the atom d(a) is defined in the program P1. In the
same way, P3 depends on P1 and P2. Hence, in order to infer the semantics of P2, we have to infer
the semantics of P1. This suggests a semantics dependency between P1, P2 and P3. By managing this
semantics dependency, one can define a whole semantics interpretation of P . For illustrating this idea,
let us consider the logic programming semantics MM∗r

, one of the semantics introduced in this paper.
In order to infer MM∗r

, let us consider the minimal models of P1. It is easy to see that the only minimal
model of P1 is: {d(a)}. Hence, in order to infer the semantics of P2 based on the minimal models of P1,
we can remove from P2 any clause that contains ¬ d(a) in their bodies — let P ′

2 be the reduced program.
Notice that P ′

2 is an empty program; hence, the only minimal model of P ′
2 is the empty model, i.e., the

atoms d(b) and acc(a) are considered false. Now, for inferring the semantics of P3, we consider the
minimal models of P1 union the minimal models of P ′

2. We can infer the semantics of P3 based on the
model {d(a)} — let P ′

3 be the reduced program by considering d(a) true and d(b) false. It is easy to see
that the only minimal model of P ′

3 is: {acc(b)}. Therefore, MM∗r
(P ) will be the union of the minimal

models of P1 ({d(a)}) union the minimal models of P ′
2 (∅) union the minimal models of P ′

3 ({acc(b)}).
Hence, we have a unique model for P which is {acc(b), d(a)}. This model suggests that we can consider
argument b as acceptable and the argument a as defeated. It is worth mentioning that the stable models
of P correspond to the stable extensions of argumentation framework of Figure 1; however, the program
P does not have stable models.

The idea of splitting a logic program into its component, in order to define logic programming seman-
tics, has been explored by some authors in logic programming [18, 31, 24]. For instance, by splitting a
logic program, Dix and Müller in [18] combine ideas of the stable model semantics and the well-founded
semantics in order to define a skeptical logic programming semantics which satisfies the property of rel-
evance and the general principle of partial evaluation.

The property of relevance is a highly desirable property in any logic programming semantics. In fact,
Dix and Müller in [19] pointed out that the reason of the anomalous behavior of stable model semantics
is the failure of relevance. Also one of its main implications of relevance is that it allows us to define
top-down algorithms for answering queries from a knowledge base. In the context of argumentation
semantics, relevance can also play an important role for identifying the attack-dependencies that exist in
argumentation framework [4].

In the first part of the paper, given that the existence of models for all normal logic program could
play an important role in some applications such as argumentation theory, we define a general approach
for extending any logic programming semantics S, such as the stable model semantics, in order to define



1006 J. C. Nieves, M. Osorio and C. Zepeda / Relevant Logic Programming Semantics for Argumentation Theory

a new logic programming semantics S∗ which will always have intended models for every normal logic
program. This approach extends S for normal logic program in a natural way. S∗ is equivalent to S for
a logic program P whenever P has models in S. By considering the idea of splitting, we will formalize
a recursive general schema for constructing new logic programming semantics. This schema takes as
input any basic logic programming semantics S, such as the stable model semantics, and gives as output
a new logic programming semantics Sr which satisfies some desired properties such as relevance and the
existence of the intended models for every normal logic program. For instance, we will be able to define
an alternative version of the stable model semantics which will always have intended models for every
normal logic program, and satisfy the property of relevance.

In the second part of this paper, considering the idea that argumentation semantics can be viewed
as a special form of logic programming semantics with negation as failure and the schema presented in
the first part of the paper, we show that any logic programming semantics as the stable model semantics,
the minimal models, etc., can define candidate argumentation semantics. These new argumentation
semantics will overcome some of the problems of the Dung’s argumentation semantics that have been
discussed in the literature. In fact, we will see that some of our new argumentation semantics have similar
behavior to the argumentation semantics defined in terms of strongly connected components [4].

The rest of the paper is divided as follows: In §2, we present some basic concept w.r.t. logic pro-
gramming and argumentation theory. In §3, we introduce our new recursive general schema for defining
new logic programming semantics. In §4, we define how to construct new argumentation semantics
based on the approach presented in §3. In §5, we will show that there is a close relationship between the
approach presented in [4] and the approach presented in this paper. In the last section, we present our
main conclusions.

2. Background

In this section, we define the syntax of the logic programs that we will use in this paper. In terms of logic
programming semantics, we present the definition of the stable model semantics and the p-stable model
semantics. After that, we present a short description of Dung’s argumentation approach.

2.1. Syntax and some operations

A signature L is a finite set of elements that we call atoms. A literal is either an atom a, called positive
literal; or the negation of an atom ¬a, called negative literal. Given a set of atoms {a1, ..., an}, we write
¬{a1, ..., an} to denote the set of atoms {¬a1, ...,¬an}. A normal clause, C, is a clause of the form

a ← b1 ∧ . . . ∧ bn ∧ ¬bn+1 ∧ . . . ∧ ¬bn+m

where a and each of the bi are atoms for 1 ≤ i ≤ n + m. In a slight abuse of notation we will denote
such a clause by the formula a ← B+ ∪ ¬B− where the set {b1, . . . , bn} will be denoted by B+, and the
set {bn+1, . . . , bn+m} will be denoted by B−. We define a normal program P , as a finite set of normal
clauses. When B− = ∅, the clause can be regarded as a definite clause. We define a definite program, as
a finite set of definite clauses. If the body of a clause is empty, then the clause is known as a fact and can
be denoted just by: a ←.
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We write LP , to denote the set of atoms that appear in the clauses of P . We denote by Head(P ) the
set {a | a ← B+ ∪ ¬B− ∈ P}. Given a signature L, we write ProgL to denote the set of all normal
programs defined over L.

Remark 2.1. We want to point out that our negation symbol, ¬, corresponds to “not” in the standard
use of Logic Programming.

The following definitions of dependency, proposed by Dix and Müller in [18], are inspired on the
idea of splitting a logic program into its component in order to define a logic programming semantics. A
program P induces a notion of dependency between atoms fromLP . We say that a depends immediately
on b, if and only if, b appears in the body of a clause in P , such that a appears in its head. The two place
relation depends on is the transitive closure of depends immediately on. The set of dependencies of an
atom x, denoted by dependencies-of (x), corresponds to the set {a | x depends on a}. We define an
equivalence relation ≡ between atoms of LP as follows:

a ≡ b if and only if a = b or (a depends on b and b depends on a)

We write [a] to denote the equivalent class induced by the atom a.

Example 2.1. Let us consider the following normal program,
S = {e ← e, c ← c, a ← ¬b ∧ c, b ← ¬a ∧ ¬e, d ← b}.

The dependency relations between the atoms of LS are as follows: dependencies-of (a) = {a, b, c, e};
dependencies-of (b) = {a, b, c, e}; dependencies-of (c) = {c}; dependencies-of (d) = {a, b, c, e}; and
dependencies-of (e) = {e}. We can also see that, [a] = [b] = {a, b}, [d] = {d}, [c] = {c}, and [e] = {e}.

We take <P to denote the strict partial order induced by ≡ on its equivalent classes. Hence, [x] <P

[y], if and only if, there exists w ∈ [x] and z ∈ [y] such that z depends-on w and [x] is not equal to [y].
By considering the relation <P , each atom of LP is assigned an order as follows:

• An atom x is of order 0, if [x] is minimal in <P .

• An atom x is of order n + 1, if n is the maximal order of the atoms on which x depends.

We say that a program P is of order n, if n is the maximum order of its atoms. We can also break a
program P of order n into the disjointed union of programs Pi with 0 ≤ i ≤ n, such that Pi is the set of
rules for which the head of each clause is of order i (w.r.t. P ). The empty program has order 0. We say
that P0, . . . , Pn are the relevant modules of P or the components of P .

Let us consider the following example in order to illustrate some of the concepts.

Example 2.2. By considering the equivalent classes of the program S in Example 2.1, the following
relations hold: {c} <S {a, b}, {e} <S {a, b}, and {a, b} <S {d}. We can also see that: d is of order
2, a is of order 1, b is of order 1, e is of order 0, and c is of order 0. This means that S is a program of
order 2. The following table illustrates how the program S can be broken into the disjointed union of the
following relevant modules or components S0, S1, S2:
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S S0 S1 S2

e ← e. e ← e.
c ← c. c ← c.
a ← ¬b ∧ c. a ← ¬b ∧ c.

b ← ¬a ∧ ¬e. b ← ¬a ∧ ¬e.
d ← b. d ← b.

Now we introduce a single reduction for any normal program. Informally speaking, the idea of this
reduction is to remove from a normal program any atom which has already been assigned some true
value. This reduction is based on a pair of sets of atoms 〈T ; F 〉 such that the set T contains the atoms
which can be considered as true and the set F contains the atoms which can be considered as false.
Formally, this reduction is defined as follows:

Let P be a normal logic program and A = 〈T ; F 〉 be a pair of sets of atoms. The reduction R(P, A)
is obtained by 2 steps:

1. Let R′(P, A) be the program obtained in the following steps:

(a) We replace every atom x that occurs in the bodies of P by 1 if x ∈ T , and we replace every
atom x that occurs in the bodies of P by 0 if x ∈ F ;

(b) we replace every occurrence of ¬1 by 0 and ¬ 0 by 1;

(c) every clause with a 0 in its body is removed;

(d) finally we remove every occurrence of 1 in the body of the clauses.

2. R(P, A) = normCS(R′(P,A)) such that CS is a rewriting system formed by the transformation
rules: RED+, RED−, Success, Failure and Loop (Due to lack of space, we do not present
the definition of these transformation rules; however, their definition can be founded in [20]); and
normCS(P ) denotes the uniquely determined normal form of a program P with respect to the
system CS.

We want to point out that this reduction does not coincide with the Gelfond-Lifschitz reduction [26] (it
will be presented in Section 2.2.2). On the other hand, it is important to recall that the rewriting system
CS can characterize the Well-founded Semantics [20].

Example 2.3. Let us consider the normal program S of Example 2.1 and the relevant module S0 of S
described in Example 2.2. Let P be the normal program (S \ S0) ∪ {b ← e,m ← n, n ← m} = {a ←
¬b ∧ c, b ← ¬a ∧ ¬e, d ← b, b ← e, m ← n, n ← m}, and let A be the pair of sets of atoms
〈{c}; {e}〉. Thus, R′(P, A) = {a ← ¬b, b ← ¬a, d ← b, m ← n, n ← m}. Hence, R(P, A) =
{a ← ¬b, b ← ¬a, d ← b}.

2.2. Logic Programming Semantics

Here, we present the definitions of a couple of logic programming semantics and some of their properties.
Note that we only consider 2-valued logic programming semantics.
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Definition 2.1. A logic programming semantics SEM is a mapping from the class of all programs into
the powerset of the set of (2-valued) models.

We sometimes refer to logic programming semantics as semantics, when no ambiguity arises. The
semantics that we consider in this paper are: the minimal model semantics (denoted by MM ), the stable
model semantics [26] (denoted by stable), and the p-stable model semantics [39] (denoted by p-stable).
We will review these semantics in the next subsections. From now on, we assume that the reader is
familiar with the notion of an interpretation [13].

2.2.1. Minimal model semantics

An interpretation M is called a (2-valued) model of P if and only if for each clause c ∈ P , M(c) = 1.
It is clear that M is a characteristic function, and by a slight abuse of notation we can also regard M as
a set of atoms, namely those to which M assigns the value 1 [32]. We say that M is a minimal model
of P if and only if there does not exist a model M ′ of P such that M ′ ⊂ M , M ′ 6= M [13]. We will
denote by MM(P ) the set of all the minimal models of a given logic program P . Usually MM is called
minimal model semantics.

Example 2.4. Let P be the normal program {a ← ¬b, b ← ¬a, a ← ¬c, c ← ¬a}. As we can see,
P has five models: {a}, {b, c}, {a, c}, {a, b}, {a, b, c}; however, P has just two minimal models: {b, c},
{a}. Hence MM(P ) = { {b, c}, {a} }.

2.2.2. Stable model semantics

The stable model semantics was defined in terms of the so called Gelfond-Lifschitz reduction [26] and
it is usually studied in the context of syntax dependent transformations on programs. The following
definition of a stable model for normal programs was presented in [26].

Definition 2.2. Let P be any normal program. For any set S ⊆ LP , let PS be the definite program
obtained from P by deleting each rule that has a formula ¬l in its body with l ∈ S, and then all formulæ
of the form ¬l in the bodies of the remaining rules. Clearly PS does not contain ¬. Hence S is a stable
model of P if and only if S is a minimal model of PS .

Example 2.5. Let S = {b} and P be the following program: {b ← ¬a, c ← ¬b, b ←, c ← a}.
Notice that PS has three models: {b}, {b, c} and {a, b, c}. Since the minimal model among these models
is {b}, we can say that S is a stable model of P .

2.2.3. p-stable semantics

Before defining the p-stable semantics (introduced in [39]), we define some basic concepts. Logical
inference in classic logic is denoted by `. Given a set of proposition symbols S and a theory (a set of
well-formed formulae) Γ, Γ ` S if and only if ∀s ∈ S, Γ ` s. When we treat a program as a theory,
each negative literal ¬a is regarded as the standard negation operator in classical logic. Given a normal
program P, if M ⊆ LP , we write P ° M when: P ` M and M is a classical 2-valued model of P .

The p-stable semantics is defined in terms of a single reduction which is defined as follows:
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Definition 2.3. [39] Let P be a normal program and M a set of literals. We define

RED(P, M) = {a ← B+ ∪ ¬(B− ∩M) | a ← B+ ∪ ¬B− ∈ P}

Example 2.6. Let us consider the set of atoms M1 = {a, b} and the following normal program P1:
{a ← ¬b ∧ ¬c, a ← b, b ← a}. We can see that RED(P, M) is: {a ← ¬b, a ← b, b ← a}.

Next we present the definition of the p-stable semantics for normal programs.

Definition 2.4. [39] Let P be a normal program and M a set of atoms. We say that M is a p-stable
model of P if RED(P,M) ° M . We use p-stable to denote the semantics operator of p-stable models.

Example 2.7. Let us consider again P1 and M1 of Example 2.6. Let us verify whether M1 is a p-stable
model of P1. First, we can see that M1 is a model of P1, for each clause C of P1, M1 evaluates C to
true. We also can verify that RED(P1,M1) ` M1 . Then we can conclude that RED(P1, M1) ° M1.
Hence, M1 is a p-stable model of P1.

2.2.4. Some properties of logic programming semantics

Informally, if a logic program has models under a particular logic programming semantics SEM , then
we say that the program is SEM_consistent. In the case that each normal logic program always has
models under a given semantics, then this semantics is called Always Consistent (AC4).

Definition 2.5. Let P be a program and SEM be a semantics. We say that P is SEM_consistent if
SEM(P ) 6= ∅, otherwise we say that P is SEM_inconsistent. A semantics SEM is AC if for every
normal program P , SEM(P ) 6= ∅.

We illustrate the above definition using the stable semantics.

Example 2.8. Let P1 be the following program: {a ← ¬a}. Since P1 does not have stable-models
stable(P1) = ∅. Hence, stable(P1) is stable_inconsistent. Now, let P2 be the following program:
{a ← ¬b, b ← ¬a}. Since P2 has two stable-models, namely {a} and {b}, then stable(P2) =
{{a}, {b}}. Hence, stable(P2) is stable_consistent.

Finally, we present the property of relevance. Informally speaking, when it is necessary to find an
answer to a query, the property of relevance allows us to compute just the partial models that sustain the
answer to the query instead of computing the whole model. Pereira et al. [30] and Dix et al. [17, 18] are
some of the authors who have discussed the importance of the property of relevance in logic programming
semantics. Now we present the formal definition of the property of relevance.

Given a set of interpretations Q and a signature L, we define Q restricted to L as {M ∩L | M ∈ Q}.
For instance, let Q be {{a, c}, {c, d}} and L be {c, d, e}, hence Q restricted to L is {{c}, {c, d}}.

Definition 2.6. Let P be a program and P0, . . . , Pn its relevant modules. We say that a semantics SEM
satisfies the property of relevance if for every i, 0 ≤ i ≤ n, SEM(P0 ∪ · · · ∪Pi) = SEM(P ) restricted
to LP0∪···∪Pi .
4Perhaps Always Consistent is not the best name but it is a shorthand to express this property. Thus some readers could not
agree with this name.



J. C. Nieves, M. Osorio and C. Zepeda / Relevant Logic Programming Semantics for Argumentation Theory 1011

Example 2.9. Let P0 = {a ← ¬b, b ← ¬a} and P1 = {p ← ¬p, p ← ¬a} be the relevant modules
of the program P = {a ← ¬b, b ← ¬a, p ← ¬p, p ← ¬a}. We can verify that the stable semantics
is not relevant since stable(P0) 6= stable(P ) restricted to LP0 .

2.3. Argumentation theory: Dung’s approach

A fundamental definition of Dung’s approach is the concept called argumentation framework, which is
defined as follows.

Definition 2.7. [21] An argumentation framework is a pair AF = 〈AR, attacks〉, where AR is a finite
set of arguments, and attacks is a binary relation on AR, i.e.attacks ⊆ AR × AR. We write AFAR to
denote the set of all the argumentation frameworks defined over AR.

Figure 3. Graph representation of the argumentation framework AF = 〈{a, b, c}, {(a, b), (b, c)}〉.

Any argumentation framework could be regarded as a directed graph. For instance, if AF =
〈{a, b, c}, {(a, b), (b, c)}〉, then AF is represented as in Figure 3. We say that a attacks b (or b is at-
tacked by a) if attacks(a, b) hold. We say that a set S of arguments attacks b (or b is attacked by S) if b
is attacked by an argument in S. For instance in Figure 3, {a} attacks b.

Definition 2.8. [21] A set S of arguments is said to be conflict-free if there are no arguments a, b in S
such that a attacks b.

For instance, the sets {a}, {b}, and {a, c} are conflict-free sets w.r.t. Figure 3. We will denote by
max_conflict_freeSets(AF ) the set of maximal conflict free sets (w.r.t. set inclusion) of an argumen-
tation framework AF .

Definition 2.9. [21] An argument a ∈ AR is acceptable with respect to a set S of arguments if and only
if for each argument b ∈ AR: If b attacks a then b is attacked by S. A conflict-free set of arguments S is
admissible if and only if each argument in S is acceptable w.r.t. S.

One of the semantics of Dung’s approach which has played an influential role on argumentation
research is the preferred semantics [21]. This semantics is defined as follows.

Definition 2.10. [21] A preferred extension of an argumentation framework AF is a maximal (w.r.t.
inclusion) admissible set of AF .

The admissible sets of Figure 3 are {a} and {a, c}, then the only preferred extension is {a, c}.

Remark 2.2. There are other interesting argumentation semantics introduced by Dung, such as the sta-
ble semantics and the grounded semantics [21], we omit their definition due to lack of space.
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3. Construction of new logic programming semantics

In this section we construct elaborated semantics, each of which is based on a basic logic programming
semantics. Our new semantics will satisfy the following suitable properties: AC and relevance. We start
presenting a useful definition that indicates when a semantics S is a basic logic programming semantics.

Definition 3.1. Let S be a semantics and P be a normal program. We say that S is a basic semantics if
it satisfies the following property: if x ∈ LP and x ← ∈ P , then P is S_consistent.

Let us remark that every well known semantics such as the logic programming semantics mentioned
in Section 2.2, namely MM , stable, and p-stable, are basic semantics. In fact in all these basic semantics
there is exactly one intended model that corresponds toLP . For instance, let P be the following program:
{a ←, b ←, a ← b, b ← ¬a}. Observe that all the atoms of the program P appear as facts in P ;
hence P will always have the model {a, b}.

Clearly, we can see that a semantics AC is also a basic semantics.

3.1. Semantics always defined

It is sometimes desirable that a logic programming semantics of a normal program could be AC [7, 46,
20, 18, 39, 43]; for instance, the case when a logic program is used for modeling an argumentation
semantics [21, 11, 35]. We want to point out that according to Bench-Capon and Dunne there are three
main problems which have been reported in the context of argumentation semantics [5]:

(P1) Emptiness: this problem happens when even though an extension satisfying the prescribed condi-
tions always exists, there are argumentation frameworks for which the only such extension is the
empty set. This problem can arise with both the grounded and preferred semantics.

(P2) Non-existence: there are argumentation semantics as the stable argumentation semantics that when
it exists is never empty, but there are argumentation frameworks for which no extension meeting
the required criteria exist.

(P3) Multiplicity: in an argumentation framework AF there may be several incompatible extensions,
i.e.S1 and S2 which are well-defined extensions of AF but with S1 ∪ S2 failing to be so. This
problem does not happen with Dung’s grounded semantics; however, argumentation frameworks
are easily constructed in which both the preferred and stable semantics exhibit this phenomenon 5.

In Section 1, we have already motivated that an argumentation semantics can be regarded as a logic
programming semantics. Hence, we claim that the non-existence of extensions in an argumentation se-
mantics can be tackle by considering logic programming semantics which are AC and specify a congruent
patter of selection of arguments in a dispute among arguments. Therefore, we show how to construct a
logic programming semantics that is AC, based on a particular basic semantics S.

We start defining some concepts w.r.t. the notion of generalized S model. The concept of generalized
S model is closely related to the semantics of abductive logic programming [29, 28], in particular to the
concept of generalized answer set. It has also been explored for different logic programming approaches

5We are not concerned with this issue in this paper.
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as in [1, 40]. For instance, the authors in [40] consider two partial order relations between the gener-
alized models for defining minimal generalized models, one by considering the set inclusion w.r.t. the
subindexes of the generalized models (as in Definition 3.4) and another one w.r.t. the cardinality of the
subindexes of the generalized models6.

Given a basic semantics S, we present the definition of a generalized S model of a program.

Definition 3.2. Let S be a basic semantics, P be a normal program, A ⊆ LP a set that we call of
abductives, and let B ⊆ A. We say that MB is a generalized S model of P w.r.t. A, if MB ∈ S(P ∪B).

Now, we define a partial order between a pair of generalized S models of a program.

Definition 3.3. Let S be a basic semantics, let P be a normal program, and A ⊆ LP . Let B1 ⊆ A,
B2 ⊆ A, and let MB1 and MB2 be two generalized S models of P w.r.t. A. We define a partial order
between two generalized S models of P w.r.t. A as follows: MB1 < MB2 , if B1 ⊂ B2.

Based on the partial order just defined, we define the minimal generalized S models of a program.

Definition 3.4. Let S be a basic semantics, and P be a normal program. Let A ⊆ LP , and B ⊆ A.
We say that MB is a minimal generalized S model of P w.r.t. A, if there exists a set of atoms B such
that MB is a generalized S model of P w.r.t. A, and MB is minimal w.r.t. the partial order among the
generalized S models of P w.r.t. A. We write S∗ to denote the minimal generalized S semantics w.r.t.
A, where A = LP . Namely, S∗(P ) is the collection of minimal generalized S models of P w.r.t. LP .

Observe that in the three previous definitions of this section, we do not instantiate any of them to
a particular basic logic programming semantics. The following two examples illustrate Definition 3.2,
Definition 3.3, and Definition 3.4, each of them based on a different basic semantics.

Example 3.1. Let C be the normal program {p ← ¬p}. We can see that C is stable_inconsistent,
however stable∗(C) = {{p}}. Note that {p}{p} is the unique generalized stable model of C. This is
because {p} is a stable model of C ∪{p}. Moreover, {p} is the unique minimal generalized model of C.
Observe also that p-stable(C) = p-stable∗(C) = {{p}}.

Example 3.2. Let D be the normal program {a ← ¬b, b ← ¬c, c ← ¬a}. Observe that D
is p-stable_inconsistent; however, one can see that {a, b} is a p-stable model of P ∪ {a}, {b, c} is a
p-stable model of P ∪{b} and {c, a} is a p-stable model of P ∪{c}. Since the models {a, b}{a}, {b, c}{b},
{c, a}{c} are the three minimal generalized p-stable models of D, p−stable∗(D) = {{a, b}, {b, c}, {a, c}}.
Observe that D is stable_inconsistent and stable∗(D) = {{a, b}, {b, c}, {a, c}}.

The following lemma assures that given a semantics S induced by Definition 3.4, each normal pro-
gram is S_consistent.

Lemma 3.1. For every basic semantics S and normal program P , S∗(P ) is AC.

6In [40], a generalized model is called a L-completion.
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Proof: Follows directly from Definition 3.1 and definition of a semantics AC given in Definition 2.5.
One important property of the semantics induced by Definition 3.4 is that the concept of a generalized

S model is important only in the case that the basic semantics S is S_inconsistent (see Definition 2.5).
The following lemma assures that given a normal logic program P and a basic semantics S, if P is
S_consistent, then S(P ) and S∗(P ) are the same, e.g., considering Example 3.1, we can see that
p-stable(C) = p-stable∗(C) = {{p}}.

Lemma 3.2. For every basic semantics S and logic program P . If P is S_consistent then S∗(P ) =
S(P ).

Proof: If P is S_consistent then M ∈ S(P ) iff M{} is a minimal generalized S model of P .
The following lemma makes some observations w.r.t. MM , stable, p − stable and their induced

semantics based on the concept of generalized model.

Lemma 3.3. MM and MM∗ are the same semantics. stable is different from stable∗. p − stable is
different from p-stable∗. stable∗, p-stable∗, and MM∗ are three different semantics.

Proof: We can see that MM is the same as MM∗ because MM is AC (Lemma 3.2). In Example 3.1,
we can note that program C shows that stable(C) is different from stable∗(C). Also in Example 3.2,
program D shows that p-stable is different from p-stable∗. Now, let E be the normal program {a ←
¬b, b ← ¬a, p ← ¬b, p ← ¬p}. We can verify that: stable∗(E) = stable(E) = {{p, a}}.
p-stable∗(E) = p-stable(E) = {{p, a}, {p, b}}. MM∗(E) = MM(E) = {{p, a}, {p, b}}. This
program shows that p-stable∗ is different from stable∗ and that MM∗ is different from stable∗. Now,
let F be the normal program {a ← ¬b, b ← ¬a, u ← a, x ← ¬y ∧ u, y ← ¬z ∧ u, z ← ¬x∧ u}.
One can see that p-stable∗(F ) = {{b}} and MM∗(F ) = {{b}, {a, u, x, y}, {a, u, x, z}, {a, u, y, z}}.
Hence, this program shows that p-stable∗ is different from MM∗.

3.2. Constructing relevant semantics

The property of relevance is a highly desirable property in any logic programming semantics. Pereira,
et al, [30] and Dix, et al, [17, 18] are some of the authors who have discussed the importance of the
property of relevance in logic programming semantics. One of its main implications of relevance is that
it allows us to define top-down algorithms for answering queries from a knowledge base. This thanks that
one can split a logic program into subprograms. Hence, computing models of a given semantics from
a logic program can be simplified by considering only subprograms. In the context of argumentation
semantics, relevance can also play an important role for identifying the attack-dependencies that exist in
an argumentation framework [4]. In fact, following the idea of relevance Baroni et al, defined a partial
order between the strongly connected components of the directed graph induced by an argumentation
framework7.

For constructing relevant semantics, we considering a process of splitting a program into its compo-
nent. Hence, by considering an order between these components, we define a general recursive schema
which takes as input a logic programming semantics S and gives as output a logic programming seman-
tics Sr

c which satisfy relevance.

7We want to clarify that Baroni et al, do not use the concept of relevant by itself, they consider strongly connected components
and the so-called directionality principle for following similar concept.
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Before to introduce the recursive construction, we introduce a basic operator between sets: Given
two sets of interpretations Q and R, we define Q ]R := {M1 ∪M2|M1 ∈ Q,M2 ∈ R}.

Now we present the recursive definition of the relevant semantics Sr
c based on a given semantics

S that is AC. Let us recall that an AC semantics is also a basic semantics. In order to understand this
definition, it is useful to recall the definition w.r.t. the order of a normal program given in Section 2.1.

Definition 3.5. Let S be a semantics that is AC. We define the associated Sr
c semantics recursively as

follows: Given a program P of order 0, Sr
c (P ) = S(P ). For a program P of order n > 0 we define

Sr
c (P ) =

⋃

M∈S(P0)

{M} ] Sr
c (R(P \ P0, 〈M ;N〉))

where N := (LP0 ∪ {a ∈ LP | a 6∈ Head(P )}) \M .

It is important to observe that in each recursive call of the construction of the semantics Sr
c , the reduc-

tion R is applied. Since R reduces a given program in terms of the rewriting systems which characterizes
the WFS semantics, the WFS semantics has an influence to semantics constructed by Sr

c . However, since
R is not applied to the original program P , we cannot insure that Sr

c will contain the WFS model. If
R is applied to the original program before using the construction Sr

c , Sr
c will define a semantics which

contains the WFS model. For the particular results that will be presented in Section 4, this property is
not relevant; however, it is a consideration that could be relevant for other applications.

Let us illustrate how the recursion in Definition 3.5 is given by means of the following example.

Example 3.3. Let us consider the program E = {a ← ¬b, b ← ¬a, p ← ¬b, p ← ¬p} defined
in the proof of Lemma 3.3. Let S be the semantics stable∗ that is AC. We are going to compute the
stable∗r

c (E) for the normal program E. So, according to Definition 3.5, since E is of order 1, then we
need to obtain the following:
1) stable∗(E0),
2) stable∗r

c (R(E \E0, 〈M ; N〉)) for each M ∈ stable∗(E0), and
3) stable∗r

c (E) =
⋃

M∈stable∗(E0){M} ] stable∗r

c (R(E \E0, 〈M ; N〉)).

Obtaining stable∗(E0): Let us see that E0 = {a ← ¬b, b ← ¬a} is the component of order 0 of
program E. Thus stable∗(E0) = stable(E0) = {{a}, {b}}.

Obtaining stable∗r

c (R(E \ E0, 〈M ; N〉)) for each M ∈ stable∗(E0): Since stable∗(E0) has two
models, then we need to consider two cases.

1. First, consider M to be {a}. Let E′ be the normal program R(E \ E0, 〈M ; N)) with E \ E0 =
{p ← ¬b, p ← ¬p}, and N = (LE0∪{ })\M = ({a, b}∪{ })\{a} = {b}. We can see that E′ =
{p ←}. Now we need to obtain stable∗r

c (E′). Since E′ is of order 0, then applying Definition 3.5,
we can see that stable∗r

c (E′) = stable∗(E′) = {{p}}. So, stable∗r

c (R(E \ E0, 〈M ; N〉)) with
M = {a} corresponds to {M} ] stable∗r

c (E′) = {{a}} ] {{p}} = {{a, p}}.

2. Now, consider M to be {b}. In this case, we can verify that R(E \ E0, 〈M ;N〉) = {p ←
¬p}. Since R(E \ E0, 〈M ; N〉) is of order 0, then applying Definition 3.5, we can see that
stable∗r

c (R(E \ E0, 〈M ; N〉)) = stable∗(R(E \ E0, 〈M ; N〉)) = {{p}}. So, stable∗r

c (R(E \
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E0, 〈M ; N〉)) with M = {b} corresponds to {M} ] stable∗r

c (R(E \ E0, 〈M ; N〉)) = {{b}} ]
{{p}} = {{b, p}}.

Obtaining stable∗r

c (E): It is easy to verify that stable∗r

c (E) =
⋃

M∈stable∗(E0){M} ] stable∗r

c (R(E \
E0, 〈M ; N〉)) = {{a, p}, {b, p}}.

Let us observe that in Definition 3.5, the set N that is considered is defined in terms of the set
{a ∈ LP | a 6∈ Head(P )}. The set N allows us to deal with normal programs where some of the
atoms in the signature of the program do not occur in the head of some clause of that program. For
instance, let us consider the program J = {a ← ¬b} and the stable∗ semantics. Now, let us suppose
we want to infer stable∗r

c (J). The first step, in order to infer stable∗r

c (J), is to obtain the components
of J (see Section 2.1). Since a depends on b, but b does not depend on a, [b] <P [a]. This means that
J has two components: J0 and J1. Remember that J0 will contain all the clauses whose head is the
atom b and J1 will contain all the clauses whose head is the atom a. It is obvious that J0 is an empty
component, but this is not a problem when we apply Definition 3.5 in order to infer stable∗r

c (J). So, let
us see how to obtain stable∗r

c (J). We can verify that J is of order 1, and stable∗(J0) = { }. We also
see that J \ J0 is J and M is { }. Additionally, since we expect intuitively that b evaluates to false, then
b must be in the set N that corresponds to the set of atoms considered as false. So, N = (LJ0 ∪ {x ∈
LJ | x 6∈ Head(J)}) \ M = ({ } ∪ {b}) \ { } = {b}. Now, let us see that R(J \ J0, 〈M ;N〉) =
R({a ← ¬b}, 〈{ }; {b}〉) is {a}. Since R(J \ J0, 〈M ; N〉) is of order 0, then applying recursively
Definition 3.5, we can see that stable∗r

c (R(J \ J0, 〈M ; N〉)) = stable∗(R(J \ J0, 〈M ; N〉)) = {{a}}.
So, stable∗r

c (J) = {M} ] stable∗r

c (R(J \ J0, 〈M ;N〉)) = {{ }} ] {{a}} = {{a}}.
For the reader who knows STABLErel’s definition presented by Dix et al. [18], we want to point out

that the construction Sr
c is similar to STABLErel w.r.t. the relevance property; however, STABLErel

has a skeptical construction and Sr
c has a construction by scenarios.

3.2.1. Analizing programs with tautologies

It is important to eliminate tautologies from the programs, since they can introduce non-desirable models.
For example, if P is the program {a ← ¬b, b ← a, b}, then the minimal models for this program are
{a} and {b}; however, after deleting the second rule, which is a tautology, it is clear that the second set,
namely {b} is not an intended minimal model.

In order to construct a relevant semantics based on a semantics S that also considers programs with
tautologies, we need to extend the semantics Sr

c given in Definition 3.5. This extension considers re-
moving all the tautologies of the original program and then applying to the new program the semantics
Sr

c . We are going to consider two types of tautologies, and depending on the type, we define a set
of tautologies from a normal program. Given a normal program P , we say that Taut1(P ) = {x ←
B+ ∪ ¬B− | x ∈ B+} and Taut2(P ) = {x ← B+ ∪ ¬B− | B+ ∩ B− 6= ∅}.

Now, we define two different relevant semantics, Sr(P ) and Sr
alt, that consider programs with tau-

tologies.

Definition 3.6. Let P be a normal program. We define Sr(P ) = Sr
c (P \ (Taut1(P )∪ Taut2(P ))) and

Sr
alt(P ) = Sr

c (P \ Taut1(P )).

This completes our construction of relevant semantics. Now we present an example of semantic Sr(P )
and some lemmas about some of the semantics defined until now.
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Example 3.4. Consider the program K = {b ← b, a ← ¬b}. The semantics Sr(K) of program
K is the same when S corresponds to the MM∗, the stable∗, or the p − stable∗ semantics, namely,
MM∗r

(K) = stable∗r
(K) = p-stable∗r

(K) = {{a}}.

Observe that the semantics induced by Definition 3.6 are different w.r.t. the semantics induced by
Definition 3.4. The following lemmas formalize the differences w.r.t. some semantics.

Lemma 3.4. stable∗ is different from stable∗r
, and p-stable∗ is different from p-stable∗r

.

Proof: Program E in Example 3.3 shows that stable∗ is different from stable∗r
. Program F defined in

the proof of Lemma 3.3 shows that p-stable∗ is different from p-stable∗r
.

Lemma 3.5. stable∗r
, p-stable∗r

, and MM∗r
are three different semantics.

Proof: Let L be the following normal program: {a ← ¬b, b ← ¬a, p ← ¬b, p ← ¬p, b ← ¬p}.
We can verify that stable∗r

(L) = {{p, a}} and p-stable∗r
(L) = {{p, a}, {p, b}}. Hence stable∗r

is
different from p-stable∗r 8. The following example shows that stable∗r

is different from MM∗r
. Let R

be the following normal program: {x ← ¬y, y ← ¬z, z ← ¬x, x ← ¬u, d ← ¬z, u ← ¬d}. We
can verify that stable∗r

(R) = p-stable∗r
(R) = {{x, y, d}}. However, {u, x, z} ∈ MM∗r

(R). This
example also shows that p-stable∗r

is different from MM∗r
.

As a final result of this subsection, we can introduce the following lemma.

Lemma 3.6. For every semantics S and program P , S∗r
is AC.

Proof: Follows directly from Lemma 3.1
This lemma assures that any logic programming semantics induced by Definition 3.4 and Defini-

tion 3.6 is defined for any program. As final result of this section, we want to formalize that the semantics
stable∗r

, p-stable∗r
, and MM∗r

satisfy relevance.

Theorem 3.1. stable∗r
, p-stable∗r

, and MM∗r
satisfy relevance.

Proof: The proof is straightforward by definition of SR.

4. Construction of extension based argumentation semantics

So far we have defined how to construct logic programming semantics which are AC and satisfy the
property of relevance. Now in this section, we are going to show that these new argumentation seman-
tics can induce new extension-based argumentation semantics. For this end, we map an argumentation
framework into a logic program. This approach of mapping an argumentation approach into a logic pro-
gram is a standard approach which was first introduced in [21] and has been explored in several contexts
in [11, 35, 23, 47]. The main difference among these approaches is the purpose of each mapping. Some
of them are introduced only for operational purpose [23, 47]. This means the mapping does not only
require to specify an argumentation framework into a logic program, but it also introduces operational
knowledge. The mappings introduced in [21, 11, 35] are thought in terms of the basic principles that a set

8This example also show that stable∗
r

is different from MM∗r

.
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of winning/acceptable arguments must satisfy in a dispute among arguments. Since the purpose of the
mappings in this paper will be the definition of new argumentation semantics, we claim that a suitable
mapping for defining new argumentation semantics has to be the specification of basic principles of the
argumentation inferences, e.g., the basic principle of conflict-freeness (an intensive discussion of basic
principles in argumentation theory can be found in [3]).

Let M be a mapping from AFAR to ProgL, i.e., a mapping from the set of all argumentation
frameworks over a finite set of arguments AR to the set of all normal programs defined over a signature
L. M assigns to every argumentation framework AF a normal program denoted by PAF .

In order to show how to define argumentation semantics in terms of basic principles, we will define
an instance of M. In this mapping, we use the predicate d(x), where the intended meaning of d(x) is:
“the argument x is defeated”. We also use the predicate a(x), where the intended meaning of a(x) is: “the
argument x is accepted”.

Definition 4.1. Let AF = 〈AR, attacks〉 be an argumentation framework, P 1
AF = {d(x) ← ¬d(y1), . . . ,

d(x) ← ¬d(yn) | x ∈ AR and {y1, . . . , yn} = {yi ∈ AR | (yi, x) ∈ attacks}}; and P 2
AF =⋃

x∈AR{a(x) ← ¬d(x)}. We define: PAF = PD
AF ∪ PA

AF .

The intended meaning of each clause d(x) ← ¬d(y) is that argument x will be defeated when
anyone of its adversaries y is not defeated. The expert reader in argumentation theory can observe that
essentially, PD

AF captures the basic principle of conflict-freeness (this means that any set of acceptable
argument will not contain two arguments which attack each other, see Definition 2.8). The idea PA

AF is
just to infer that any argument x that is not defeated is accepted. It is worth commenting that according
to Baroni and Giacomin [3], the principle of conflict-freeness is the minimal requirement to be satisfied
by any argumentation semantics.

Example 4.1. Now, we illustrate the mapping PAF , let AF be the argumentation framework of Figure 2.
We can see that PAF = PD

AF ∪ PA
AF is:

P D
AF : P A

AF :

d(a) ← ¬d(b). d(d) ← ¬d(a). d(e) ← ¬d(d). a(a) ← ¬d(a). a(d) ← ¬d(d).
d(b) ← ¬d(c). d(d) ← ¬d(b). a(b) ← ¬d(b). a(e) ← ¬d(e).
d(c) ← ¬d(a). d(d) ← ¬d(c). a(c) ← ¬d(c).

We point out that PAF is similar to the mapping defined in [21]. In fact, we known that

1. The stable models of PAF characterize the stable argumentation semantics (see [21, 33] for de-
tails), and

2. by Theorem 17 of [21], one can see that the well founded model semantics [25] of PAF characte-
rizes the grounded semantics defined in [21] (see [33] for details).

Now, we define how any logic programming semantics, S, can induce an abstract argumentation
semantics under the mapping PAF .
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Definition 4.2. Let AF = 〈AR, attacks〉 be an argumentation framework and S be any logic program-
ming semantics. The semantics S induces the extension-based argumentation semantics SM as follows:

SM(AF ) = f(S(PAF ))

where f is a mapping from 22
LPAF to 22AR

, such that f(X) =
⋃

M∈X{t(M)} with t(M) = {y | a(y) ∈
M}.

Our definition is written in terms of a mapping f given explicitly in the second row, but it could be
applied to a different mapping. Observe that for each model of S(PAF ), the mapping f assigns a set of
arguments from the argumentation framework AF . Now, we illustrate the definition of SM(AF ).

Example 4.2. Let us again consider the argumentation framework AF of Figure 2. Let S be the logic
programming semantics stable∗r

. Let us consider the normal program PAF previously obtained in
Example 4.1. This means that we are going to obtain the extension-based argumentation semantics
stable∗r

M(AF ). First of all, we have to obtain the semantics stable∗r
of PAF . It is not difficult to see that

stable∗r
(PAF ) corresponds to the following set:

{ {d(a), d(b), d(d), a(c), a(e)}, {d(b), d(c), d(d), a(a), a(e)}, {d(a), d(c), d(d), a(b), a(e)} }
Hence, stable∗r

M(AF ) = f(stable∗r
(PAF )) = {{c, e}, {a, e}, {b, e}}.

Let us point out that the models suggested by the argumentation semantics stable∗r

M are the same as
the extensions suggested by the semantics CF2 introduced by P. Baroni et al. [4]. Moreover, we can
also verify that MM∗r

M and p− stable∗r

M also coincide with CF2 in this example.

The following lemma indicates that SM is AC.

Lemma 4.1. For every logic programming semantics S, the extension-based argumentation semantics
SM is AC.

Proof: Follows directly from Lemma 3.1 and Lemma 3.6.

5. Relation between semantics CF2 and MM ∗r

M
In this section, we will show that there is a close relationship between the approach presented in [4] and
the approach presented in this paper. In particular, we show the relation between semantics CF2 and
MM∗r

M.

5.1. Semantics CF2

We present some definitions w.r.t. the argumentation semantics CF2. The details of these definitions are
presented in [4].

Definition 5.1. [4] Given an argumentation framework AF = 〈AR, attacks〉, the binary relation of path-
equivalence between nodes, denoted as PEAF ⊆ (AR×AR), is defined as follows:
— ∀a ∈ AR, (a, a) ∈ PEAF ,
— given two distinct nodes a, b ∈ AR, (a, b) ∈ PEAF if and only if there is a path from a to b and a
path from b to a.
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Given an argumentation framework AF = 〈AR, attacks〉, the strongly connected components of AF
are the equivalent classes of nodes which are defined according to path-equivalence relaction. The set of
the strongly connected components of AF is denoted as SCCSAF . Given a node a ∈ AR, the strongly
connected component a belongs to is denoted as SCCAF (a).

Definition 5.2. [4] Let AF = 〈AR, attacks〉 be an argumentation framework, and let S ⊆ AR be a set of
arguments. The restriction of AF to S is the argumentation framework AF ↓S= 〈S, attacks∩ (S×S)〉.

Considering an argumentation framework, AF = 〈AR, attacks〉, a set E ⊆ AR and a strongly
connected component S ∈ SCCSAF . We will present the definition of some useful sets, the formal
definition of these sets is in [4]. The set DAF (S, E) consists of the nodes of S attacked by E from
outside S, the set UAF (S, E) consists of the nodes of S that are not attacked by E from outside S and
are defended by E (i.e., their defeaters from outside S are all attacked by E), and PAF (S,E) consists of
the nodes of S that are not attacked by E from outside S and are not defended by E (i.e., at least one
of their defeaters from outside S is not attacked by E). Finally, UPAF (S, E) = (S \ DAF (S, E)) =
(UAF (S,E) ∪ PAF (S, E)).

Here, we define GF (AF, C) for an argumentation framework AF = 〈AR, attacks〉 and a set C ⊆ A,
representing the defended nodes of AF : two cases have to be considered in this respect.

If AF consists of exactly one strongly connected component, it does not admit a decomposition
in which can be applied the directionality principle, therefore it has to be assumed that GF (AF, C)
coincides in this case with a base function, denoted as BFS(AF,C), that must be assigned in order to
characterize a particular argumentation semantics S.

On the other hand, if AF can be decomposed into several strongly connected components, then,
GF (AF,C) is obtained by applying recursively GF to each strongly connected component of AF ,
deprived of the nodes in DAF (S,E). Formally, this means that for any S ∈ SCCSAF , (E ∩ S) ∈
GF (AF ↓UPAF (S,E), C

′), where C ′ represents the set of defended nodes of the restricted argumentation
framework AF ↓UPAF (S,E). The set C ′ can be determined by taking into account both the attacks coming
from outside AF and those coming from other strongly connected components of AF .

Definition 5.3. [4] A given argumentation semantics S is SCC-recursive if and only if for any argumen-
tation framework AF = 〈AR, attacks〉, ES(AF ) = GF (AF,AR), where for any AF = 〈AR, attacks〉
and for any set C ⊆ AR, the function GF (AF, C) ⊆ 2AR is defined as follows: for any E ⊆ AR,
E ∈ GF (AF,C) if and only if

• in case |SCCSAF | = 1, E ∈ BFS(AF, C),

• otherwise,∀S ∈ SCCSAF (E ∩ S) ∈ GF (AF ↓UPAF (S,E)
, UAF (S,E) ∩ C).

where BFS(AF,C) is a function, called base function, that, given an argumentation framework AF =
〈AR, attacks〉 such that |SCCSAF | = 1 and a set C ⊆ AR, gives a subset of 2AR.

Definition 5.3 does not define any particular semantics, but defines a general structure, where if one
changes the base function, BFS(AF,C), one can induce several semantics.

In particular, when BFS(AF, C) is the function that returns all sets that are free of maximal conflicts,
max_conflict_freeSets(AF ), then CF2 is obtained.
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5.2. Expressing CF2 using MM∗r

M

This section introduces Theorem 5.1 which formalizes the fact about the coincidence between the strat-
ified argumentation semantics and the argumentation semantics CF2 introduced by P. Baroni et al. [4].
In order to present the proof of Theorem 5.1, we first show some lemmas.

The following lemma shows that the number of strongly connected components of an argumentation
framework AF is the same as the number of components of the normal program PAF .

Lemma 5.1. Let AF be an argumentation framework. If PAF = PD
AF ∪ PA

AF such that PD
AF is of order

n, then |SCCAF | = n + 1.

Proof: (sketch) Since the number of components of P 1
AF depends on the number of equivalent classes of

atoms in LPAF
and the number of strongly connected components depends on the number of equivalent

classes of nodes in PEAF , the proof follows from that fact that: The number of equivalent classes of
atoms induced by the relation depends-on in LPAF

is the same as the number of classes of nodes induced
by the relation path-equivalence in PEAF .

Lemma 5.2. Let AF = 〈AR, Attacks〉 be an argumentation framework. If PAF = PD
AF ∪ PA

AF such
that PD

AF is of order 0, then E ∈ max_conflict_freeSets(AF ) if and only if {a(x)|x ∈ E} ∪
{d(x)|x ∈ AR \ E} is a model of MM∗r

M(PAF ).

Proof: Observations:

1. PAF consists of two levels where PD
AF is of order 0 and PA

AF is of order 1. Moreover, M is a
model of MM∗r

M(PAF ) if and only if there exists M1 and M2 such that M = M1 ∪M2, M1 is a
minimal model of PD

AF and M2 = {a(x)|a(x) ← ¬d(x) ∈ P 2
AF , d(x) /∈ M1, x ∈ AR}.

2. If E is a conflict free set of AF , then M = {d(x)|x ∈ E} is a model of PD
AF .

3. If M is a model of PD
AF , then E = {x|d(x) ∈ M} is a conflict free set of AF .

⇒ If E is a maximal conflict free set of AF , then, by Proposition 1 of [35] and Observation 2, M1 =
{d(x)|x ∈ AR \ E} is a minimal model of PD

AF . Hence, by Observation 1, M1 ∪ {a(x)|x ∈ E}
is a model of MM∗r

M(PAF ).

⇐ If M = M1 ∪M2 such that E ⊆ AR, M1 = {d(x)|x ∈ AR \ E}, M2 = {a(x)|x ∈ E} and M is
a model of MM∗r

M(PAF ) (from Observation 1, we known that M1 is a minimal model of P 1
AF ),

then E is a maximal conflict-free set of AF (see Observation 3 and Proposition 1 of [35]).

Given the set of strongly connected components SCC(AF ), we denote by ≤SCC the partial order
between strongly connected components defined in [4]. This partial order is induced by the so called
directionality principle and the relation of attack between set of arguments.

Theorem 5.1. Given an argumentation framework AF = 〈AR, Attacks〉, where E ∈ AR. Then,
E ∈ MM∗r

M(PAF ) if and only if E ∈ CF2(AF ).
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Proof: (sketch) Since the construction of both semantics is recursive, the proof is by induction w.r.t. the
number of components n of the normal logic program PAF .

Base Step If n = 0, then AF has just one strongly connected component (Lemma 5.1); hence,
MM∗r

M(PAF ) = CF2(AF ) by Lemma 5.2.

Inductive Step If n > 0, then the proof follows from the following observations:

1. The partial order ≤SCC and the partial order <P correspond to each other, since the equiva-
lent classes correspond to PD

AF .

2. The base function for the construction of MM∗r

M(PAF ) and CF2(AF ) are the same (Lemma
5.2).

6. Conclusions

During the last decades, logic programming semantics with negation as failure and argumentation the-
ory have received a special attention for formalizing common sense reasoning. Even though both ap-
proaches have their own features, it seems that they share some common behaviours which can be
studied by considering the close relationship between logic programming semantics with negation as
failure and extension-based argumentation semantics. In this paper, we have showed that some results in
logic programming semantics can suggest some general mechanism for tackling some weakness of the
extension-based argumentation semantics based on admissible sets.

In terms of logic programming with negation as failure, we have defined a general approach for
extending any logic programming semantics S, such as the stable model semantics, in order to define
a new logic programming semantics S∗ which will be always_consistemt (AC) (Definition 3.4). S∗ is
equivalent to S for a logic program P whenever P has models in S (Lemma 3.2). By considering a
process of splitting a logic program into its components, we have formalized a recursive general schema
for constructing new logic programming semantics. This schema takes as input any basic logic program-
ming semantics S, such as the stable model semantics, and gives as output a new logic programming
semantics Sr which satisfies some desired properties such as relevance and AC (Lemma 3.6, Theorem
3.1).

In terms of extension-based argumentation semantics, we showed that by considering a logic pro-
gramming semantics S which is AC, S can induce an extension-based argumentation semantics which is
AC (Lemma 4.1). In fact, we showed that by considering Sr in terms of minimal models, Sr can charac-
terize CF2 that is an extension-based argumentation semantics based on strongly connected components
(Theorem 5.1). This suggests that our approach for generating new argumentation semantics can define
new argumentation semantics with similar behaviour to the argumentation semantics defined in [4].

In logic programming side, we want to point out that the definition of logic programming semantics
which are AC is not necessary a requirement for many application; however, it seem that in the explo-
ration of formalisms for capturing common sense reasoning sometimes it is a highly desirable property.
We can also see that the property of relevance has a strong influence in the definition of general ap-
proaches for capturing common sense reasoning. As we have cited, relevance (in other terms) can be
found in other approaches for capturing practical reasoning such as in [4].
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In the argumentation theory side, we want to point out that the identification of basic principles such
as the conflict freeness can help to determine when an argumentation semantics can be considered really
a well-behaved. It seems that the basic directionality principle introduced in [4] can be also motivated
in terms of the property of relevance. This suggests that some well-accepted properties of the logic
programming semantics can motivate some basic principles for the argumentation semantics.

Exploring the properties of the family of the argumentation semantics which are induced by our
approach is an issue for argumentation research. In fact, it is part of our future research. It is worth
mentioning that thanks to the properties that the logic programming semantics hold, we can study the
argumentation semantics that are constructed under these logic programming semantics.
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