
Reasoning about actions under
uncertainty: A possibilistic approach

Juan Carlos Nievesa,1, Mauricio Osoriob, Ulises Cortésa,
Francisco Caballeroc and Antonio López-Navidadc

a Software Department (LSI), Universitat Politècnica de Catalunya, Spain
b Fundación Universidad de las Américas - Puebla, México

c Hospital de la Santa Creu y Sant Pau, Spain

Abstract. In this paper, we present an action language which is calledAPoss in
order to perform reasoning about actions under uncertainty. This language is based
on a possibilistc logic programming semantics which is able to deal with reasoning
under uncertain information. In order to illustrate the language, we use a medical
scenario.

Keywords. Decision making, Uncertainty, Planning, Non-Monotonic Reasoning

1. Introduction

It is well-known that decision making is the physician’s major activity. Many researches
about how doctors make decisions have been growing steadily during at least the last 60
years. The psychologist Paul Meehl pointed out that the use of mathematical methods
could make better clinical decisions than unaided judgment [1]. Meehl’s argument for
adoption of mathematical methods in decision making was enormously controversial and
still is, despite of its considerable influence. But his claim that people frequently make
systematics errors in their decision making is no longer questioned [1]. Now the question
is, which mathematical methods are suitable for coping medical decision making?

Let us introduce a medical scenario in the human organ transplanting context. In this
scenario, there is a donorD which is infected by the hepatitis B virus (HBV+) and there
is a recipientR which needs a heart transplantation and is not infected by HBV (HBV-)
but his clinical situation is 0-urgency. This means that he needs a heart transplantation in
the next 24 hours, otherwise he could die.

According to [2], the common criterion for transplanting an organ from a donor
HBV+ suggests that any organ from a donor HBV+could beconsidered for transplanting
if and only if the recipient is HBV+. However, it is known that organs from donors HBV+
do not alwaystransmit HBV infection to recipients HBV- [2]. Moreover,some times
when the HBV infection occurs, the recipient can spontaneously clear the virus and turn

1Correspondence to: Software Department (LSI), Universitat Politècnica de Catalunya. C/Jordi
Girona 1-3, E08034, Barcelona, Spain. E-mail: (J.C. Nieves: jcnieves@lsi.upc.edu), (M. Osorio:
osoriomauri@googlemail.com), (U. Cortés: ia@lsi.upc.edu)



to HBV-. Hence, the medical question about the scenario is: is the donor’s heart viable
to be transplanted onto the recipientR? It is quite obvious that this crucial decision is
vital for the recipient’s survival. The main complexity of the question is that the decision
is taken under uncertainty. This means that the environment in which the decision takes
place isincomplete, impreciseor uncertain.

One of the first problems we must confront in order to develop a decision support
system that could perform reasoning under uncertainty is to identify a specification lan-
guage able to handle uncertain information. Moreover, it is important that our specifi-
cation language must be able to captureactionsin order to overcome a problem which
is involved with uncertain information. For instance, in human organ transplanting all
the recipients need a post-transplant treatment, then it is important to consider a plan of
actions which will be considered after the allocation of an organ to a recipient. It is worth
mentioning that each plan of actions is particular to each medical situation.

It is well-known that the most common methods for uncertain reasoning are based on
probabilities. However, since medical decision making is susceptible to the evidence of
the information, it is not always natural to quantify the medical knowledge in a numerical
way. For instance in [3], it is pointed out that the chief disadvantages of the decision
theory approach are the difficulties of obtaining reasonable estimates of probabilities and
utilities for a particular analysis.

Tversky and Kahneman observed in [4] that many decisions which are made in our
common life are based on beliefs concerning the likelihood of uncertain events. For
instance, it was pointed out that it is common to use statements such as “I think that. . .”,
“chances are. . .”, “it is probablethat . . .”, “it is plausiblethat . . .”, etc., for supporting
our decisions. Usually, in this kind of statements we are appealing to our experience or
commonsense for solving a problem. In the medical domain, it is not rare that a doctor
supports his decisions based on his commonsense when he has uncertain information.

In [5], it was presented a specification language which is able to cope with uncertain
reasoning based on a possibilistic approach. This approach permits to explicitly use la-
bels likepossible, probable, plausible, etc., for capturing the incomplete state of a belief.
However, this specification language does not provide a syntax for dealing with actions.

Since we are interested on modeling medical decision making where not only we
want to capture uncertain information but also to generate plans of actions in order to
support medical decision making. In this paper, we extend the specification language
presented in [5] into an action language which is calledAPoss. Moreover, we present a
mapping fromAPoss’s syntax into possibilistic programs in order to formulate planning
using possibilistic answer sets.

The rest of the papers is divided as follows: In §2, it is defined theA’s syntax. In
§3, it is presented a mapping fromAPoss’s syntax into possibilistic programs. In the last
section, our conclusions are presented and the future work is outlined.

2. The languageAPoss

Our language is based on the syntax of the languageA, proposed by Gelfond and Lif-
schits in [6]. This language has a simple English-like syntax to express the effects of
actions on a world. As Baral pointed out in [7],A is remarkable for its simplicity and has
been extended in several directions to incorporate additional features of dynamic worlds



and to facilitate elaboration tolerance. We now present an extension ofA, which we call
APoss, in order to capture incomplete states of a belief/fluent.

As inA’s alphabet,APoss’s alphabet consists of two nonempty disjoint sets of sym-
bolsF andA, whereF is a set ofpossibilistic fluentsandA is a set of actions. A possi-
bilistic fluent(f α) is a possibilistic literal1 where intuitivelyf expresses a property of
an item in a world andα expressesf is certain at least to the levelα. A stateσ is a col-
lection of possibilistic fluents. We say that a fluent(f α) holds in a stateσ if (f α) ∈ σ
and a fluent literal(¬f α) holds if (¬f α) /∈ σ.

For example, let us go back to the medical scenario described in the introduction. In
this example, let us assume that any belief about the medical situation could be quanti-
fied bycertain, likely, maybe, unlikelyandfalse(see Figure 1). For simplicity, we will
only consider the following fluents: Clinical situation (CS), organ function (O), and in-
fection (Inf). Then some possibilistic fluents are:(CS(stable) certain), meaning that
it is certain that the clinical situation of the recipient is stable,(inf(positive) maybe),
meaning that it isprobablethat the recipient could have a positive infection,
(O(delayed_graft_function) certain), meaning that the organ has a delay in its func-
tions after it has been transplanted. Some actions about the medical scenario are:trans-
plant, meaning that a transplantation is done,wait, meaning that nothing is donew.r.t.
the clinical situation of the recipient, andpost-transplant treatment, meaning that a post-
transplant treatment is applied to the recipient. Notice that there is not a quantification of
the certainty of the actions. This is because the actions are only conditioned by the status
of the possibilistic fluents.

certain

false

m
aybe

unlikely

likely

Figure 1. A single lattice where the following relations hold:false ≺ unlikely, unlikely ≺ maybe,
maybe ≺ likely, likely ≺ certain.

Situations are representations of the history of action execution. The initial situation
will be the situation where no action has been executed. It is represented by[]. The
situation[an, . . . , a1] corresponds to the history where actiona1 is executed in the initial
situation, followed bya2 and so on untilan.

Now we will describe the three sub-languages ofAPoss.

Domain description languageSimilar toA, the domain description language is used
to succinctly express the transition between states due to actions. This language
consists of possibilistic effect propositions of the following form:

a cause(f α) if p1, . . . , pn,¬qn+1, . . . ,¬qr (1)

wherea is an action,(f α) is a possibilistic fluent, andp1, . . . , pn, qn+1, . . . , qr

are atoms such that there exist the possibilistic fluents(p1 α1), . . . , (pn αn),
(¬q1 αn+1), . . . , (¬qr αr). If r is equal to 0 then the possibilistic effect proposi-
tion is written as follows :

1A possibilistic literalis a pairl = (a, q) ∈ L×Q, whereL is a finite set of literals and(Q,≤) is a finite
lattice. We apply the projection∗ overl as follows:l∗ = a.



a cause(f α) (2)

Also, if there is a set of possibilictic effect propositions of the form{a cause(f1 α1),
. . . , a cause(fm αm)}, then this set could be written as follows:

a cause(f1 α1), . . . , (fm αm) (3)

In order to illustrate the possibilisitic effect propositions, let us consider again our
medical scenario. Then a possible possibilistic effect proposition is :

wait cause (CS(unstable) maybe) if CS(stable),
O(terminal_insufficient_function).

(4)

The intended meaning is that if the recipient has a stable clinical condition, but
he has an organ whose functions are terminal insufficient2 and the doctor’s ac-
tion is wait, then it isprobablethat the clinical condition of the recipient could
beunstable. The Figure 2 presents a diagram which expresses the transitions be-
tween different states where each arrow could be expressed by a possibilistic effect
proposition.

Observation languageA set of observationsObs consists of possibilistic value propo-
sitions which are of the form:

(f α) after a1, . . . , am (5)

where(f α) is a possibilistic fluent anda1, . . . , am are actions. The intuitive read-
ing is that ifa1, . . . , am would be executed in the initial situation then in the state
corresponding to the situation[a1, . . . , am], (f α) would hold. Whenm is equal
to 0, the possibilistic value propositions are written as follows:

initially (f α) (6)

In this case the intuitive meaning is that(f α) holds in the state corresponding to
the initial situation. For instance, let us go back again to our medical scenario. We
already know that the recipient’s clinical situation is 0-urgency. Then this initial
value is represented as follows:

initially (CS(0_urgency) certain) (7)

Moreover he is not infected by HBV

initially (inf(negative) certain) (8)

He has an organ whose functions are terminal insufficient.

initially (O(terminal_insufficient_function) certain) (9)

2We say that an organ hasterminal insufficientfunctions when there exists no clinical treatment for improv-
ing the organ’s functions.



Since the donor was infected by the hepatitis B virus, then it is probable that the
recipient could be infected by HBV in case the heart transplantation is done. This
information is represented by the following possibilistic value proposition:

(inf(positive) maybe) after transplant (10)

Also we know that if the heart transplantation is not done, then the recipient could
die.

(CS(dead) maybe) after wait (11)

Query Language Queries consist of possibilistic value propositions of the form (5).

CS: stable
O:terminal insufficient function

Inf: not present

CS: stable
O: good graft function

Inf: not present

CS: unstable
O:delayed graft function

Inf:not present

CS: unstable
O:terminal insufficient function

Inf: not present

CS: 0_urgency
O:terminal insufficient function

Inf: not present

CS:dead
O:insufficient functional

Inf:present

wait

wait

wait

transplant

CS: stable
O: normal graft function

Inf: not present

wait

post
transplant
treatment

transplant

transplant

transplant

transplant

CS: stable
O: good graft function

Inf: present

CS: unstable
O:delayed graft function

Inf: present

CS: stable
O: normal graft function

Inf: present

transplant

transplant

wait

post
transplant
treatment

transplant

Figure 2. An automata of states and actions for considering infections in organ transplanting.

Executability conditions are not part of the standardA’s syntax; however they are
useful in real applications as is discussed in [7]. Then we will also introduce possibilistic
executability conditions which are of the following form:

executablea if p1, . . . , pn,¬qn+1, . . . ,¬qr (12)

wherea is an action andp1, . . . , pn, qn+1, . . . , qr are atoms such that there exist the
possibilistic fluents(p1 α1), . . . , (pn αn), (¬q1 αn+1). In order to illustrate the possi-
bilistic executability conditions, let us consider the following possibilistic executability
condition which is in the context of our medical scenario:

executabletranplant if ¬CS(dead) (13)

This executability conditions suggests an obvious condition which is that an organ trans-
plant is not possible if the recipient is dead.



3. Reasoning about actions

In this section, we present a mapping fromAPoss’s syntax into possibilistic programs
in order to formulate planning using possibilistic answer sets [5]. Like in Answer Set
Planning [7], we divide our encoding into two parts: the domain dependent part and the
domain independent part.

We point out that we use the predicateneg for denoting the negation of the fluents
and we usenot for denoting the common negation by failure used in logic programming.

3.1. Encoding the domain dependent part

The domain dependent part consists of five parts, defining the domain, the executability
conditions, the dynamic causal laws, the initial state, and the goal conditions.

1. The domain part defines the objects in the world, the fluents and the actions. For
instance, by considering our medical scenario, a small part of the domain is:

certain : patient_states(stable).
certain : patient_states(unstable).
certain : patient_states(zero_urgency).
certain : patient_states(dead).
certain : organ_status(terminal_insufficient_function).
certain : organ_status(delayed_graft_function).
certain : organ_status(good_graft_function)., . . .
certain : infection_status(present).
certain : infection_status(not_present).
certain : fluent(CS(X)) ← patient_states(X).
likely : fluent(CS(X)) ← patient_states(X).
maybe : fluent(CS(X)) ← patient_states(X).
unlikely : fluent(CS(X)) ← patient_states(X).
false : fluent(CS(X)) ← patient_states(X).
certain : fluent(O(X), Y ) ← organ_status(X)., . . . ,
certain : action(transplant).
certain : action(wait).
. . .

2. The executability conditions state the executability conditions of each action. For
instance, the possibilistic executability condition (13) is encoded as follows:

certain : exec(tranplant, neg(CS(dead))).

Notice that we are using the predicateneg for denoting the negation of the fluents.
3. The dynamic causal laws state the effects of the actions. For instance, the possi-

bilictic effect proposition (4) is mapped to:
maybe : cause(wait, CS(unstable), TT ) ← holds(CS(stable), T ),

holds(O(terminal_insufficient_function), T ),
time(T ), time(TT ), TT = T + 1.

4. The initial state defines the initial state by explicitly listing which fluents are true
in the initial state. In our medical scenario some declarationw.r.t. the initial state
are:

certain : initially(CS(0_urgency)).
certain : initially(inf(not_present)).
certain : initially(O(terminal_insufficient_function)).

It is assumed that the fluents not explicitly listed to be true are false in all the
states. This means that the knowledge about all the states are assumed to be com-



plete. Therefore, in order to have our knowledge base complete in our medical
scenario, we add the following possibilistic clauses:

certain : holds(neg(CS(Y )), T ) ← holds(CS(X), T ), patient_states(X),
patient_states(Y ), time(T ), not eq(X, Y ).

ceratin : holds(neg(O(Y )), T ) ← holds(o(X), T ), organ_status(X),
organ_status(Y ), time(T ), not eq(X, Y ).

ceratin : holds(neg(inf(Y )), T ) ← holds(inf(X), T ), infection_status(X),
infection_status(Y ), time(T ), not eq(X, Y ).

5. The goal conditions list the fluents literals that must hold in a goal state. For in-
stance:

certain : finally(CS(stable)).
certain : finally(O(normal_graft_function)).

This goal suggests that we are expecting that the recipient’s clinical situation must
be stable and his organ graft must have normal functions.

3.2. Encoding the domain independent part

This part is independent of the instance of a particular domain. Since this part defines the
general rules for generating plans of actions, all of the clauses are quantified by the top
of the lattice that was considered in the domain dependent part. In our medical example,
it will be certain.

First, it is defined an exact bound or at least an upper bound of the plan lengths that
we want to consider. This length makes that each possiblisitc answer set will be finite.
Using this length, it is defined the predicatetimewhich specifies the time points of our
interest:

certain : time(1 . . . length).

The following possibilistic clauses define when all the goal conditions are satisfied
certain : not_goal(T ) ← finally(X), not holds(X, T ), time(T ).
certain : goal(T ) ← not not_goal(T ), time(T ).

The following constraint eliminates possible possibilisitc answer sets where the goal is
not satisfied in the last time point of interest.

certain : ← not goal(length).

The following possibilistic facts define when a possibilistc fluent literal is the negation
of the other.

certain : contrary(F, neg(F )).
certain : contrary(neg(F ), F ).

The following two possibilistic clauses use the executability conditions to define when
an actionA is executed in a timeT .

certain : not_executable(A, T ) ← exec(A, F ), not holds(F, T ).
certain : executable(A, T ) ← T < length, not not_executable(A, T ).

The following possibilistic clause states the fluents that are held at time point 1.
certain : holds(F, 1) ← initially(T ).

The following possibilistic clause describes the change in fluent values due to the execu-
tion of an action.

certain : holds(F, TT ) ← T < length, executable(A, T ), occurs(A, T ), causes(A, F, TT ),
TT = T + 1, time(T ), time(TT ).

The following possibilistic clause describes the fluents which do not change their values
after an action is executed (frame action).



certain : holds(F, TT ) ← contrary(F, G), T < length, holds(F, T ), not holds(G, TT ),
TT = T + 1, time(T ), time(TT ).

The following possibilistic clauses enumerate the action occurrences. They encode that
in each possibilistic answer set at each time point only one of the executable actions
occurred. Also, for each action that is executed in a possibilistic answer set at a time
point, there is a possibilistic answer set where this action occurs at that time point.

certain : occurs(A, T ) ← action(A), not goal(T ), not not_occurs(A, T ), time(T ).
certain : not_occurs(A, T ) ← action(A), action(AA), time(T ), occurs(AA, T ), A 6= AA.
certain : ← action(A), time(T ), occurs(A, T ), not executable(A, T ).

3.3. Possibilistic answer set semantics

In the previous subsections, we have presented a mapping fromAPoss’s syntax into
possibilistic programs. The possibilistic programs’ semantics which permits to explicitly
use labels likepossible, probable, plausible, etc., was defined in [5]. This semantics is
based on the operatorT which is inspired in partial evaluation [8] and an inference rule
of possibilistic logic [9]. Due to lack of space, we do not present a formal presentation
of this semantics, however we will present the general steps in order to decide if a set of
possibilistic literals is a possibilistic answer set. LetM be a set of possibilistic literals
andP be a possibilistic logic program3.

1. The first step is to verify thatM must satisfy thatM∗ is an answer set ofP ∗. ∗ is
a projection which removes all the possibilistic quantifications of any set of possi-
bilistic literals and possibilistic clauses. For instance,{(a, certain), (b,maybe)}∗ =
{a, b} and{(certain : contrary(F, neg(F ))), (certain : contrary(neg(F ), F ))}∗ =
{contrary(F, neg(F )), contrary(neg(F ), F ))}. Hence, ifM is a set of possi-
bilistic literals andP a possibilistic programs, thenM∗ is a standard set of literals
andP ∗ is a standard logic program.

2. The second step is to reduce the programP by M . The reduced programPM

will be a possibilistic positive logic program, this means thatPM does not have
possibilistic clauses which have negative literals in their bodies4.

3. The third and last step is to apply the operatorT to PM in order to compute the
fix point Π(PM ). Π(PM ) will suggest a set of possibilistic literalsM ′. If M ′ is
equal toM , we will say thatM is a possibilistic answer set ofP .

As we can see the possibilistic answer sets have a strong relation with the common an-
swer sets. In fact, we can observe in the point one, thatM∗ is an answer set ofP ∗. By
the moment, we do not have a possibilisitc answer set solver. However, we have used
common answer set solvers for our experiments. For instance, the reader can find a small
implementation of our medical scenario in (http://www.lsi.upc.edu/∼jcnieves/). This im-
plementation is based on the answer set solver SMODELS[10]. In this implementation,
we have a concrete implementation of the domain independent part of our mapping and
present some mappings from effect propositions to logic program.

Due to lack of space, we can not discuss extensively the generation of plans of ac-
tions from our possibilistic action language. However let us consider again our medical
scenario in order to illustrate a single plan of action.

3For more details of the possibilistic answer set semantics’ definition see [5].
4Let l be a literal.not l is called negative literal.



First letΦ be a specification inAPoss which describes our medical scenario. There-
fore letΠ be the possibilistic logic program which we get fromΦ by mapping it to possi-
bilistic logic programs. Hence, in order to infer a possible plan of actions for our medical
scenario we have to compute the answer sets ofΠ∗.

In order to get a plant of actions in two steps, we fix the constantlength to 2. Re-
member thatlengthis a constant in the encoding of the domain independent part. For the
conditions that were described in this paper, the programΠ∗ will have just one answer
set which is:

ASP(Π∗) = {holds(cs(zero_urgency), 1), holds(inf(not_present), 1),
holds(o(terminal_insufficientfunction), 1), holds(cs(stable), 2),
holds(o(good_graft_function), 2), holds(inf(present), 2),
cause(transplant, o(good_graftfunction), 2), occurs(transplant, 1)}5

First of all, we have to remember that our initial states of our fluents are:

certain : initially(CS(0_urgency)).
certain : initially(inf(not_present)).
certain : initially(O(terminal_insufficient_function)).

This situation is reflected in ASP(Π∗) by the atoms:holds(cs(zero_urgency), 1),
holds(inf(not_present), 1), holds(o(terminal_insufficient_function), 1).
Now our goal conditions are:

certain : finally(CS(stable)).
certain : finally(O(normal_graft_function)).

These conditions are reflected in ASP(Π∗) by the atoms:holds(o(good_graft_function), 2),
cause(wait, cs(dead), 2). It is clear that the goal conditions are satisfied, but which ac-
tions are applied for satisfying the goal conditions? These actions are suggested by the
predicateoccurs. Notice thatoccurs(transplant, 1) belongs to ASP(Π∗). Therefore the
actionorgan transplantationis applied for satisfying the goal conditions.

We accept that this example is really simple, however it is enough for illustrating
that the plans of actions are inferred directly by the the possibilistic answer sets of the
programΠ.

4. Conclusions

We are interested in developing a decision support system in the medical domain. We
have observed that one of the main challenges is to identify a specification language
in order to capture uncertain and incomplete information. The literature suggests that
probability theory is not always a good option for supporting medical decision making
[3].

In this paper, we introduce a possibilistic action languageAPoss in order to cap-
ture natural specifications from medical specialists. In order to be friendly with medical
experts,APoss has a simple English-like syntax to express the effects of actions on a
world. Moreover, we present a mapping fromAPoss’s syntax into possibilistic programs
in order to formulate planning using possibilistic answer sets.

5We are listing the atoms which are relevant for our example.



Acknowledgements

We are grateful to anonymous referees for their useful comments. J.C. Nieves wants to
thank CONACyT for his PhD Grant. J.C. Nieves and U. Cortés were partially supported
by the grant FP6-IST-002307 (ASPIC). The views expressed in this paper are not neces-
sarily those of ASPIC consortium.

References

[1] John Fox and Subrata Das.Safe and Sound: Artificial Intelligence in Hazardous Applications.
AAAI Press/ The MIT Press, 2000.

[2] Antonio López-Navidad and Francisco Caballero. Extended criteria for organ acceptance:
Strategies for achieving organ safety and for increasing organ pool.Clinical Transplantation,
Blackwell Munksgaard, 17:308–324, 2003.

[3] Peter Szolovits.Artificial Intelligence and Medicine. Westview Press, Boulder, Colorado,
1982.

[4] Amos Tversky and Daniel Kahneman.Judgment under uncertainty:Heuristics and biases,
chapter Judgment under uncertainty:Heuristics and biases, pages 3–20. Cambridge Univertisy
Press, 1982.

[5] Juan Carlos Nieves, Mauricio Osorio, and Ulises Cortés. Semantics for possibilistic disjunc-
tive programs. In Gerhard Brewka Chitta Baral and John Schlipf, editors,Ninth Interna-
tional Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR-07), num-
ber 4483 in LNAI, pages 315–320. Springer-Verlag, 2007.

[6] Michael Gelfond and Vladimir Lifschitz. Representing Action and Change by logic pro-
grams.Journal of Logic Programming, 17(2,3,4):301, 323 1993.

[7] Chitta Baral.Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press, Cambridge, 2003.

[8] Stefan Brass and Jürgen Dix. Semantics of (Disjunctive) Logic Programs Based on Partial
Evaluation.Journal of Logic Programming, 38(3):167–213, 1999.

[9] Didier Dubois, Jérôme Lang, and Henri Prade. Possibilistic logic. In Dov Gabbay, Christo-
pher J. Hogger, and J. A. Robinson, editors,Handbook of Logic in Artificial Intelligence and
Logic Programming, Volume 3: Nonmonotonic Reasoning and Uncertain Reasoning, pages
439–513. Oxford University Press, Oxford, 1994.

[10] System SMODELS. Helsinki University of Technology.
http://www.tcs.hut.fi/Software/smodels/, 1995.


