Knowledge Representation Using High-Level
Non-monotonic Reasoning

Mauricio Osorio', Juan Carlos Nieves', Fernando Zacarias?, and
Erika Saucedo®

! Universidad de las Americas,
Departamento de Ingenieria en Sistemas Computacionales,
Sta. Catarina Martir, Cholula
72820 Puebla, Mexico
josorio@mail.udlap.mx
2 Benemerita Universidad Autonoma de Puebla,
Facultad de ciencias de la computacion,

75570 Puebla, Mexico.

3 Instituto Tecnoldgico y de Estudios Superiores de Monterrey, CEM,
Departamento de Ingenieria y Ciencias
Atizapan de Zaragoza, Edo. de Mexico.
esaucedo@campus.cem.itesm.mx

Abstract. We introduce the new paradigm of High-Level Non-Monotonic
reasoning (HLNM). This paradigm is the consolidation of our recent re-
sults on disjunctions, sets, explicit and implicit negation, and partial-
order clauses. We show how these concepts are integrated in a natural
way into the standard logic programming framework. For this purpose,
we present several well known examples from the literature that motivate
the need of this new paradigm. Finally, we define a declarative semantics
for HLNM reasoning.

1 Introduction

Knowledge based systems can be modeled adequately using non-monotonic logic,
because it provides formal methods that enable intelligent systems to operate
properly when they are faced with incomplete or changing information. There
exist close interconnections between logic programming and non-monotonic rea-
soning. Actually, negation as failure, the interpretation of negation in logic pro-
grams as the failure to prove a ground atomic formula is a prothotypical example
of non-monotonic behavior.

In this paper, we introduce the new paradigm High-Level Non-Monotonic
reasoning, which supports the well-known formalism of definite logic programs
by allowing for disjunctions in rule heads, general formulas in rule bodies, ex-
plicit and implicit negation, set notation { H|T'} like Prolog’s list notation, and
function atoms f(t) = e or f(t) > e for formulating conditions on functions
like intersect({X|-}, {X]-}) > {X}. Thus, High-Level Non-Monotonic reasoning
integrates functional programming aspects, since functions may be defined by

0. Cairo, L.E. Sucar, and F.J. Cantu (Eds.): MICAI 2000, LNAI 1793, pp. 13-24] 2000.
© Springer-Verlag Berlin Heidelberg 2000

14 M. Osorio et al.

logical rules. One main contribution of our paper is the definition of a semantics
integrating all the above mentioned concepts.

The interest in allowing two kinds of negations (default negation and explicit
negation) is considered elsewhere in the literature, see [ABITIT8]. It has been
shown in [3] how they can be used to represent defeasible reasoning. In [28] we
discuss an application to the Botanic filed. Based on the work in [I8] we also
claim that HLNM reasoning is better suited for legal knowledge representation
than normal logic programming, due to the presence, in HLNM, of both explicit
and default negation.

With respect to default negation, it is well known that the stable semantics
and the well founded semantics (WFS) are the two most acceptable definitions
of this form of negation in Logic Programming. Our use of default negation is
different than in previous approaches. We allow the combination of the idea of
negation as failure with reasoning by cases to obtain a powerful use of negation.
Preliminary research on this direction is presented in [T6/T0].

Disjunctive logic programming is one of the most expressive declarative lo-
gic programming language [§]. It is more natural to use since it permits direct
translation of disjunctive statements from natural language and from informal
specifications. The additional expressive power of disjunctive logic programs sig-
nificantly simplifies the problem of translation of non-monotonic formalisms into
logic programs, and, consequently, facilitates using logic programming as an in-
ference engine for non-monotonic reasoning. A novel contribution of our paper
is a translation T from HLNM programs P to disjunctive logic programs (with
default negation) P’.

Let us motivate the need for partial-order clauses. In a recent meeting orga-
nized by Krzystztof Apt (president of the Association of Logic Programming),
whose aim was to get a clear picture of the current activities in Logic Pro-
gramming and its role in the coming years, Gelfond pointed out: “We need to
find elegant ways for accomplishing simple tasks, e.g. counting the numbers of
elements in the database satisfying some property P. At the moment we have
neither clear semantics nor efficient implementation of setof of other aggregates
used for this type of problems” [0]. We propose partial-order clauses as an an-
swer to this issue. The evolution of partial-order clauses is shown in the papers
[252623I22]15//29]. Related work on this topic is found in the following papers:
[2120T3IT2I3T/TTIIB0]. A central concept in most of the works that include sets
is one which we call collect-all. The idea is that a program needs only to define
explicitly what are the members of the set and, by assuming a closed world,
the set becomes totally defined. Moreover, all the just mentioned works, have
defined a precise semantics for restricted classes of programs and they agree on
the common subclasses. Also, a common assumption is to consider only finite
sets. According to our knowledge, our approach generalizes all the work done so
far about this topic.

HLNM programs also allow general formulas as the body of a clause. In
[I'4/Z1] it is found motivation on this issue.

Knowledge Representation Using High-Level Non-monotonic Reasoning 15

A preliminary research on this topic is presented in [29]. The current paper
presents the full language and a more refined semantics.

Our paper is structured as follows: In section [2, we introduce our new pa-
radigm High-Level Non-Monotonic reasoning, giving its grammatical definition
and motivation. In section B] we define the declarative semantics of our language.
Finally, in our section we present our conclusions.

2 High-Level Non-monotonic Programs

We will now give a brief informal introduction to HLNM programs to give an
intuition of the style of programming in this language and also to provide some
context for discussing the semantic issues it raises. HLL clauses have the following
form:

rule ::= head < body. | head.

head : 1= literals | literals ; head

literal ::= literal, | POC

POC i 1= Fu(list_terms) > Fu(argumenty) | Fu(list_terms)>term
body ::=literaly | (body Ob body) | (Q Var body) | (—body)
literaly 1= atomy | literal,

literal, ::= —atom | atom

atom ::= Pr(list_terms)

atom ::= Fu(list_terms) = term

argumentsy ::= argumenty | argumenty, arguments
argumenty ::= f(argumentsy) | terms

list terms ::=term | term, list_terms

term ::=Const | Var | CT (list_terms)

where Ob, Q, Pr, Fu, C'T, and Cons are nonterminal symbols defined as follows:
0Ob € {A,;,—}, Q € {3,V}, Pr is a user-defined predicate symbol, Fu is any
functional symbol, C'T" is any contructor symbol, and Cons is any constant
symbol (i.e. a constructor of arity 0). We use ”;” to denote the disjunctive logical
connective. We also use ”,” to denote the conjunctive logical connective A. We
use — and — to denote explicit and default negation respectively. A HLNM
program is a set of program rules (also called clauses).

We adopt four constructors: cons (of arity 2), nil (of arity 0), scons (of
arity 2), and empty (of arity 0). The two constructors cons and nil are used to
represent lists as usual in logic programming. Moreover, we prefer the notation
[X]Y] instead of cons(X,Y) and [| instead of nil. To represent finite sets, we
use the two constructors scons and empty. Again, we prefer to use the more
suggestible notation {z\¢} and ¢. The notation {x\t} refers to a set in which z is
one element and ¢ is the remainder of the set. We permit as syntactic sugar { expr}
to stand for {expr \¢}, and {e1, es, ..., ex}, where all e; are distinct, to stand for
{e1\{e2\ ... {ex\@}}}. To illustrate the set constructor, matching {X\T} against
a ground set {a, b, c} yields three different substitutions, {X < a, T < {b,c}},
{X+b,T+ {a,c}}, and {X < ¢, T < {a,b}}. One should contrast {X\T} from
{X}UT.

16 M. Osorio et al.

The ‘logical’ view of logic programming is that a program is a theory and com-
putation is logical inference. In the classical approach to logical programming,
the inference mechanism is faithful to logical consequence in classical first-order
logic. This paper adopted the canonical model approach, where the inference
mechanism is faithful to truth in the “intended” model of the program.

2.1 Negation in Logic Programming.

Default negation has proved to be quite useful in many domains and applicati-
ons, however, this in not the unique form of negation which is needed for non-
monotonic formalisms. Explicit negation has many characteristics which makes
it a good candidate to represent non-monotonic reasoning. It can occur in the
head of a clause and so it allows us to conclude negatively. Explicit Negation
treats negative information and positive information in a simetric form, that is
to say, it does not give any kind of preference. However, it allows the representa-
tion of exceptions and preference rules. We show how can we represent defeasible
reasoning with default and explicit negation. In particular, we discuss the repre-
sentation of exceptions and preference rules. These ideas are not ours, but taken
from [3]. The notion of exception may be expressed in three different ways:

Exceptions to predicates. We express that the rule angiosperm(X) «—
tree(X) applies whenever possible but can be defeated by exceptions using the
rule:

angiosperm(X) <— tree(X), - ab(X)

If there is a tree a which is known that is not an angiosperm we may express
it by —angiosperm(a). In this case —angiosperm(a) establishes an exception
to the conclusion predicate of the defeasible rule.

Exceptions to rules. A different way to express that a given element is
some exception is to say that a given rule must not be applicable to the element.
If, for instance, element a is an exception to the rule trees are angiosperms,
we express it as ab(a). In general, we may want to express that a given X is
abnormal under certain conditions. This is the case where we want to express
Pines are abnormal to the rule about angiosperms given above. We write this
as follows:

ab(X) +— pine(X)

Exceptions to exceptions. In general we may extend the notion of excep-
tioned rules to exception rules themselves, i.e. exception rules may be defeasibles.
This will allow us to express an exception to an exception rule.

Preference rules. We may express now preference between two rules, sta-
ting that if one rule may be used, that constitutes an exception to the use of the
other rule:

angiosperm(X)<+— tree(X), — ab;(X)

- angiosperm(X)<— pine(X), — aby(X)

tree(X) +— pine(X)

Knowledge Representation Using High-Level Non-monotonic Reasoning 17

In some cases we want to apply the most specific information; above, there
should be (since a pine is a specific kind of tree) an explicit preference of the
rule about non-angiosperm pines over the rule about angiosperm trees.

ab; (X)¢— pino(X), — abs(X)

Botanic Field. We have studied a small fragment part of the Botanic field (the
Mycota Kingdom), where we found that is natural to use exceptions and prefe-
rence rules. Our information was taken from the Britanic Encyclopedia OnLine
and our results are presented in [28].

2.2 Disjunctions

Disjunctive reasoning is more expressive and natural to use since it permits direct
translation of disjunctive statements from natural language and from informal
specifications. The additional expressive power of disjunctive logic programs sig-
nificantly simplifies the problem of it translation of non-monotonic formalisms
into logic programs, and consequently, facilitates using logic programming as an
inference engine for non-monotonic reasoning.

The following is a well known example that can not be handled adequately by
Circumscription.

Ezample 1 (Poole’s Broken arm, [7]).

left-use(X) <« — ab(left,X).

ab(left,X) <« left-brok(X).

right-use(X) ¢ - ab(right,X).

ab(right,X) < right-brok(X).

left-brok(fred) ; right-brok(fred) <.

make-cheque(X) < left-use(X).

make-cheque(X) ¢ right-use(X).

disabled(X) < left-brok(X), right-brok(X).
The well known semantics D-WFS and DSTABLE derive that Fred is not dis-
abled (see [7]). We get the same answer in our approach. Moreover, DSTABLE
(but not D-WFS) derives that Fred can make out a cheque. We get also this
result in our approach.

2.3 Partial-Order Clauses

As we have said, Gelfond pointed out: “We need to find elegant ways for ac-
complishing simple tasks, e.g. counting the numbers of elements in the database
satisfying some property P. At the moment we have neither clear semantics
nor efficient implementation of setof of other aggregates used for this type of
problems” [9]. We propose to use partial-order clauses to solve this problem.
The first author of this paper has done an extensive research on this topic in
[25l/26/23l22IT5//29] and we have strong evidence to make us think that our results
in this paper will help to obtain a final answer.

18 M. Osorio et al.

Modeling Setof. The original motivation of partial-order clauses was to include
a kind of setof operator. There are two mayor problems with the setof operator
in PROLOG. First, it has no formal definition and second, it is very weak. See
23].

Ezample 2. Consider that we want to obtain the set of all students that are
taking both the cs101 class and cs202 class. We write a clause in Prolog that do
the given function as follow:

both(X) : — setof(W, (cs101(W), cs202(W)), X)
while in our paragigm this represented by:

both(X) > {X} <« cs101(W), cs202(W)

We note that our paradigm is not only a change of notation, but we define a
more powerful notion of ’setof’ than PROLOG. The reader is invited to see an
example of this nature in [29].

General Domains. We generalize our approach of partial-orders to different
domains and not just sets. The following example illustrates this idea.

Ezample 3 (Min-Maz Programl [15]).
p(X) <X1 <« final(X,X1).
pX) <X2 <+ edge2(X,Y), q(Y)=X2.
q(X) > X3 <« final(X,X3).
q(X) > X4 <+ edgel(X,Y), p(Y)=X4.

This program models a two-player game defined on a bipartite graph represented
by predicates edgel and edge2. The function p obtains the minimum value, while
q obtains the maximum value. The program is considered non-monotonic due to
the interaction of > with <. Consider the following extensional database:

final(d,0). edgel(a,b). edge2(b,d).

final(e,1). edgel(a,c). edge2(b,e).

final(f,-1). edge2(c,f).

final(g,0). edge2(c,g) .
In our approach we obtain the intended model, where p(a)=0. Our operatio-
nal semantics with pruning (introduced in [27]) behaves very much as the well
known alpha-beta procedure. Other interesting examples about partial-order are
presented in [23].

It is important to observe, as will see in the following section, that we have
a formal definition of the semantics of partial-order clauses.

3 Declarative Semantics

We first present our definition of the declarative semantics for propositional
disjunctive programs. Then we explain how we generalize our results to the
general framework of HLNM programs.

Knowledge Representation Using High-Level Non-monotonic Reasoning 19

3.1 Declarative Semantics of Propositional Disjunctive Programs

A signature is any finite set. An atom is any element of a signature. A positive
literal is an atom. A mnegative literal is a formula of the form —a, where a is an
atom. A literal is a positive literal or a negative literal. Two literals are of the
same sign if both are positive or both are negative. Propositional disjunctive
clauses are of the form:

Al,,An (*Ll,...Lm
where n > 1,m > 0, every A; is an atom and every L; is a literal. When m = 0,
we say that the clause is a fact. When n = 1 the clause is called normal. A normal
program consists of just normal clauses. Traditional logic programming is based
on this kind of programs. When m = 0 and n = 1 the clause is called a normal
fact. We also would like to denote a disjunctive clause by C:= A < BT, =B~
where A denotes the set of atoms in the head of the clause (namely {A;, ... 4, };),
BT denotes the set of positive atoms in the body, and B~ denotes the set of
negative atoms in the body. A pure disjunction a disjunction of literals of the
same sign.

The stable semantics and the well founded semantics are the two most well
known definitions of semantics for Logic Programs. Our proposed semantics is
different than in previous aproaches and more powerful even for normal pro-
grams. We allow the combination of the idea of negation as failure with reasoning
by cases to obtain a powerful use of negation.

We now provide our formal definition of our declarative semantics.

We start with some definitions. Given a program P, we define HEAD(P) :=
UA<—B+,ﬁB*€P A. Tt will be useful to map a disjunctive program to a normal
program. Given a clause C:= A + BT, ~B~, we write dis-nor(C) to denote the
set of normal clauses:

{a + B, ~(B~U(A\ {a})la € A)}.

We extend this definition to programs as follows. If P is a program, let dis-nor(P)
denotes the normal program: | J p dis — nor(C).

We first discuss the notion of a supported model for a disjunctive program.
It generalizes the notion of a supported model for normal programs (which in
turns is equivalent to a model of the Clark’s completion of a program).

Definition 1 (Supported model).

Let P be a program. A supported model M of P is model of dis — nor(P) such
that for every atom a that occurs in P and is true in M, there exists a clause C
in dis — nor(P) such that a is the head of C and the body of C is true in M.

We now discuss the notion of a D-WFS partial model. The key concept of
this approach is the idea of a transformation rule. We adopt the transformation
rules introduced in [5lf7], which are: REDT, RED~, GPPE, TAUT, SUB. We
define CS; to be the rewriting system which contains the just mentioned rules.
It is known that this system is confluent and terminating, see [6].

Definition 2 (D-WFS partial model). Let P be a program and P’ its nor-
mal form, i.e. P’ is the program obtained after reducing P by CS1. The D-WFS

20 M. Osorio et al.

partial model of P is defined as: {a| a is a normal fact of P' } U {—al| a is an
atom in the language of P that does not occurs in P’ }.

We can now present the main definition of this section:

Definition 3. Let P be a program. We define a DWFS-DCOMP model as a two-
valued minimal supported model that extends D-WFS(P). Any such extension
is a model that agrees with the true/false assigments given by D-WFS(P). The
scenario DWFS-DCOMP semantics of P is the set of DWFS-DCOMP models of
P. The sceptical DWFES-DCOMP semantics for P is the set of pure disjunctions
that are true in every DWES-DCOMP model of P. If no such model exists then
we say that the program s inconsistent.

In the above definition we stress the importance of considering minimal models
([210), since they are critical in logic programming. In this paper our concern is
only in the sceptical semantics.

3.2 Moving to Predicates and Adding the Set Constructor

We will work with Herbrand interpretations, where the Herbrand Universe of a
program P consists only of ground terms, and is referred to as Up. The Herbrand
Base Bp of a program P consists of ground atoms as usual.

The generalization of the function dis — nor to predicate logic is straightfor-
ward. Given this , we need a definition of supported model for predicate normal
programs. This has been done in [21]. D-WF'S for predicate programs is presen-
ted in full detail in [11]. We can therefore define DWFS-DCOMP models with
no problem.

With respect to the set constructor we proceed as follows. We continue wor-
king with Herbrand interpretations. But due to the equational theories for con-
structors, the predicate = defines an equivalence relation over the Herbrand Uni-
verse. But, we can always contract a model to a so-called normal model where
= defines only an identity relation [24] as follows: Take the domain D’ of I to
be the set of equivalence classes determined by = in the domain Up of I. Then
use Herbrand =-interpretations, where = denotes that the domain is a quotient
structure. We then should refer to elements in D’ by [t], i.e. the equivalence class
of the element ¢, but in order to make the text more readable, we will refer to
the [t] elements just as ¢, keeping in mind that formally we are working with the
equivalence classes of ¢. These details are explained in [T4].

3.3 Adding Partial-Order Clauses

The first step is to obtain the flattened form [I4] of every partial-order clause.
Consider the following example:

£X) > gX) ; £(2) > {m(@)} + 1(X).
then its flattened form is:

(£(X) > X1 « h(X)=X2, g(X2)=X1 ; £(2) > {21} + m(2)= Z1)
1(X).

Knowledge Representation Using High-Level Non-monotonic Reasoning 21

The second step is to transform this formula to a disjunctive clause. With this
same example, we get:

£(X) > X1; £(2) > {21 } « h(X)=X2, g(X2)=X1, m(Z)=21, 1(X).
As the third step we translate the clause to its relational form. Again, using this
example, we get:

> (X,X1); £5(Z,{Z1}) + h_(X,X2), g—(X2,X1), m_(Z,Z1), 1(X).
These steps can easily be defined for the general case. We suggest the reader to
see [26] to check the details.

The fourth step is to add axioms that related the predicate symbols f— with
f> for each functional symbol f. Let us consider again our example. The axioms
for f in this case are as follows:

(1) £-(z, 8) « f> (Z,8), -£f-(zZ, 9

(2) £-(z, 8) « f-(Z,S1), S1>S

(3) £x(z, 8) « £5(Z,81), S1 > 8

(4) > (zZ, L)

(5) £(2,C) « £ >(Z,C1), £5(2,Cy), 1ub(Cy,Cy,C).
We understand that S1 > S means that S1 > S and S1 # S. L is a constant
symbol used to represent the bottom element of the lattice and 1ub(C1, Cs, C)
interprets that C' is the least upper bound of C; and Cs. The first two clauses
are the same (modulo notation) as in definition 4.2 in [32]. Clause (5) is not
useful for total-order domains. It is easy to see that symmetric definitions can
be provided for f< symbols.

3.4 Allowing a General Formula as the Body Clause

Here, we adopt the approach suggested by Lloyd in his well known book [21]. The
idea is to apply an algorithm that transform a clause (with a general formula
as the body) into one or more clauses with simple bodies (i.e. conjunction of
literals). Space limitations disallow us to explain the algorithm, instead, we work
out an example and let the interested reader to check the details in the above
mentioned reference.

rp({X\-}) > {X} «+ VY(d(X,Y) — ontime(X,Y))
If we use the rules of [21] the translation becomes:

rp({X\-}) = {X} = =c(X)

c(X)«d(X,Y), montime(X,Y).
where c is new predicate symbol.

3.5 Explicit Negation

We show how to reduce programs with explicit negation to programs without it.
The idea is originally considered in [4] but we have also explored it in [28]. Let
T be the program that includes explicit negation. Let P be the program T plus
the following set of clauses:

7p(X1a) Xn) A _‘p(Xla s Xn)

22 M. Osorio et al.

for all predicate symbols p from the language of T'. For any predicate symbol
p ocurring in P, let p’ be a new predicate symbol of the same arity. The atom
P’ (t1,...pn) will be called the positive form of the negative literal, —p(t1,...pn).
Every positive literal, is, by definition its own form. Let P’ the program that
we obtain form P by replacing every literal. by its positive form.

There is a simple way of evaluating queries in 7. To obtain an answer for p
run queries p and p’ on P’. If the answer to p is yes then we say that T derives
p. If the answer to p’ is yes then we say that T' does not derives p.

4 Conclusions

We presented our notion of HLNM program. It includes standard logic program-
ming plus disjunctions, partial-order clauses, two kinds of negation and general
body formulas. For this purpose, we had to define a new declarative seman-
tics (an hybrid of D-WFS and supported models) that is suitable to express
the above mentioned notions. To our knowledge, this is the first proposal that
extends Logic Programming that far. We presented several and different inte-
resting problems considered in the literature. HLNN programming defines the
intended meaning of each of them. Our paradigm combines several ideas from
several authors and our own earlier work and it seems promising.

The bad news is that the operational semantics of the full language is not
computable. However we can identify large and interesting fragments of the
language that are computable. Our main research on this direction is presented
in [2322].

References

1. E. Pontelli A. Dovier, E. G. Omodeo and G. Rossi. {log}: A logic programming
language with finite sets. In Proc. 8th International Conference of Logic Program-
ming, pages 111-124, Paris, June 1991. 1991.

2. S. Abiteboul and S. Grumbach. A rule-based language with functions and sets.
ACM Transactions on Database Systems, 16(1):1-30, 1991.

3. Jose Julio Alferes and Luiz Moniz Pereira, editors. Reasoning with Logic Program-
ming, LNAI 1111, Berlin, 1996. Springer.

4. Chitta Baral and Michael Gelfond. Logic Programming and Knowlege Represen-
tation. Journal of Logic Programming, 19-20:73—-148, 1994.

5. Stefan Brass and Jiirgen Dix. Characterizations of the Disjunctive Stable Seman-
tics by Partial Evaluation. Journal of Logic Programming, 32(3):207-228, 1997.
(Extended abstract appeared in: Characterizations of the Stable Semantics by
Partial Evaluation LPNMR, Proceedings of the Third International Conference,
Kentucky, pages 85-98, 1995. LNCS 928, Springer.).

6. Stefan Brass and Jiirgen Dix. Characterizations of the Disjunctive Well-founded
Semantics: Confluent Calculi and Iterated GCWA. Journal of Automated Rea-
soning, 20(1):143-165, 1998. (Extended abstract appeared in: Characterizing D-
WEFS: Confluence and ITterated GCWA. Logics in Artificial Intelligence, JELIA
96, pages 268-283, 1996. Springer, LNCS 1126.).

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Knowledge Representation Using High-Level Non-monotonic Reasoning 23

Gerhard Brewka and Jiirgen Dix. Knowledge representation with logic programs.
Technical report, Tutorial Notes of the 12th European Conference on Artificial
Intelligence (ECAI ’96), 1996. Also appeared as Technical Report 15/96, Dept. of
CS of the University of Koblenz-Landau. Will appear as Chapter 6 in Handbook of
Philosophical Logic, 2nd edition (1998), Volume 6, Methodologies.

Baral C. and Son T.C. Formalizing sensing actions: a transition function based
approach. In Cognitive Robotics Workshop of AAAI Fall Symposium, pages 13-20,
1998.

Jiirgen Dix. The Logic Programming Paradigm. AI Communications, Vol. 11, No.
3:39-43, 1998. Short version in Newsletter of ALP, Vol. 11(3), 1998, pages 10-14.
Jirgen Dix, Mauricio Osorio, and Claudia Zepeda. A General Theory of Confluent
Rewriting Systems for Logic Programming and its Applications. Annals of Pure
and Applied Logic, submitted, 2000.

Jirgen Dix and Frieder Stolzenburg. A Framework to incorporate Nonmonotonic
Reasoning into Constraint Logic Programming. Journal of Logic Programming,
37(1,2,3):47—76, 1998. Special Issue on Constraint Logic Programming, Guest
Editors: Kim Marriott and Peter Stuckey.

S. Greco G. Ganguly and C. Zaniolo. Minimum and maximum predicates in lo-
gic programs. In Proceedings of the ACM Symposium on Principles of Database
Systems, pages 154—16. 1991.

A. Van Gelder. The well-founded semantics of aggregation. In Proc. ACM 11th
Principles of Database Systems, pages 127-138. San Diego, 1992.

D. Jana and Bharat Jayaraman. Set constructors, finite sets, and logical semantics.
Journal of Logic Programming, 38(1):55-77, 1999.

Bharat Jayaraman and K. Moon. Subset logic programs and their implementation.
Journal of Logic Programming, To appear:?7—7, 1999.

Jirgen Dix Jose Arrazola and Mauricio Osorio. Confluent rewriting systems in
non-monotonic reasoning. Computacion y Sistemas, Volume II; No. 2-3:104-123,
1999.

R. Kowalski. Logic for problem solving. North Holland Publishing Company, 1979.
R. Kowalski and F. Toni. Abstract Argumentation. Artificial Intelligence and Law
Journal, pages 275-296, September 1996.

G. M. Kuper. Logic programming with sets. JCSS, 41(1):44-64, 1990.

M. Liu. Relationlog: A Typed Extension to Datalog with Sets and Tuples. In John
Lloyd and Evan Tick, editors, Proceedings of the 1995 Int. Symposium on Logic
Programming, pages 83-97. MIT, June 1995.

John W. Lloyd. Foundations of Logic Programming. Springer, Berlin, 1987. 2nd
edition.

Bharat Jayaraman Mauricio Osorio and J. C. Nieves. Declarative pruning in a
functional query language. In Danny De Schreye, editor, Proceedings of the Inter-
national Conference on Logic Programming, pages 588—602. MIT Press, 1999.
Bharat Jayaraman Mauricio Osorio and David Plaisted. Theory of partial-order
programming. Science of Computer Programming, 34(3):207-238, 1999.

E. Mendelson. Introduction Mathematical logic (3th ed.). Wasdworth and Bro-
oks/Cole Advanced Books and Software, United Stated, 1987.

Mauricio Osorio. Semantics of partial-order programs. In J. Dix and L.F. del
Cerro andU. Furbach, editors, Logics in Artificial Intelligence (JELIA ’98), LNCS
1489, pages 47—61. Springer, 1998.

Mauricio Osorio and Bharat Jayaraman. Aggregation and negation-as-failure. New
generation computing, 17(3):255-284, 1999.

24

27.

28.

29.

30.

31.

32.

M. Osorio et al.

Mauricio Osorio and J. C. Nieves. Extended partial-order logic programming. In
Gianfranco Rossi and Bharat Jayaraman, editors, Proceedings of the Workshop on
Declarative Programming with Sets, pages 19-26, Paris, France, 1999.

Mauricio Osorio and Erika Saucedo. Aplicacién de wfsx en el campo de la boténica.
In Proceedings of II Encuentro Nacional de Computacidn, pages 7—7? Mexico, 1999.
Mauricio Osorio and Fernando Zacarias. High-level logic programming. LNCS
1762, pages 7—7, Berlin, 2000. Springer Verlag.

K. Ross. Modular stratification and magic sets for datalog programs with negation.
Journal of the ACM, 41(6):1216-1266, 1994.

K.A. Ross and Y. Sagiv. Monotonic aggregation in deductive databases. In Proc.
11th ACM Symp. on Principles of Database Systems, pages 114-126. San Diego,
1992.

Allen Van Gelder. The Well-Founded Semantics of aggregation. In Proc. of the 11th
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,
San Diego, USA, pages 127-138. ACM Press, 1992.

	Introduction
	High-Level Non-monotonic Programs
	Negation in Logic Programming.
	Disjunctions
	Partial-Order Clauses

	Declarative Semantics
	Declarative Semantics of Propositional Disjunctive Programs
	Moving to Predicates and Adding the Set Constructor
	Adding Partial-Order Clauses
	Allowing a General Formula as the Body Clause
	Explicit Negation

	Conclusions

