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Abstract. This work is focus in the following critical questions:
1. How to incorporate modalities in the process of argumentation rea-

soning?
2. Is it possible to build arguments faced with incomplete information?

Our proposal is based in a specification language which has the fol-
lowing properties: a) it permits to give specifications of modalities in a
natural way; b) it defines a process of argumentation reasoning consid-
ering modalities; and c) it permits to build arguments from incomplete
information.

Keywords: Decision-Making, Argumentation, Logic Programming, Ra-
tional Agents.

1 Introduction

Argumentation has proved to be a useful tool for representing and dealing with
domains in which rational agents are not able to decide by themselves about
something, and may encounter other agents with different preference values.
The ability to reason effectively about what is the best or most appropriate
course of action to take in a given situation is an essential activity for a rational
agent. A simple rational agent may also use argumentation techniques to perform
its individual reasoning as it needs to make rational decisions under complex
preferences policies, or to reason about its commitments, its goals, etc.

A critical question about how to carry out argumentation theory to imple-
mentation systems still exists. For instance, one of the main objectives of the
EU funded project ASPIC1 is to provide a strong foundation for the design and
implementation of a set of generic argument software components which can be
used by 3rd party applications.

1.1 Motivation

Since Aristotle, modalities have been an object of study for logicians especially in
relation with the construction of arguments. Modalities are terms which indicate
the level of certainty with which a claim can be made. One possible definition
of modality is [3]:
1 Consortium for argumentation technology. http://www.argumentation.org/
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“The classification of logical propositions according to their asserting or
denying the possibility, impossibility, contingency, or necessity of their
content”.

Research on rational agents has raised further questions about modalities in
the context of argumentation, and the roles that arguments play in the pursuit
of an agent’s goals and plans.

In our own work on medical decision-making we have very different sources
of examples of argumentation [1, 13]. The main objective is to discover the ac-
ceptable set of arguments that support a given claim in a given context. This
is a purposeful and purposed process where the validity of arguments and the
evidence of premises are both approached. One import point of our particular
medical domain (organ transplant) is that there is small amount of information
available w.r.t. the viability criterions which are applied whether a particular
organ is viable to be transplanted. However, we have a hight-level of detail and
quality information w.r.t. each medical case. Usually, the medical information
(in our particular medical domain) is supported by a set of clinal tests.

Lattices have been used to model a wide range of problems. For instance,
lattice domains are useful to perform aggregate operations which are a great
tool for modeling decision-making in Artificial Intelligence. The use of lattice
domains in declarative programming have shown high level of expressiveness.
For example, the use of partial-order clauses and lattice domains in partial-order
programming is particularly useful for expressing concise solutions to problems
for graph theory, program analysis, and database querying [8, 10].

Osorio et. al [7] showed how to perform aggregate operations using negation
as failure, also Nieves et al [6] showed how to perform relaxation in optimization
problems using aggregate operations and negations as failure.

In this paper, we introduce a declarative language to handle arguments with
modalities like possible, probable, plausible, supported and open. Modality is a
category of linguistic meaning having to do with the expression of possibility
and necessity. In [16] a study of the kinds of modal meaning can be found.

In §2 we put forward the syntax to be used and give a brief introduction to
lattices and order. In §3 we introduce our framework and present some examples.
In §4, we present the declarative semantics of our framework. Finally, in §5 we
offer our conclusions.

2 Background

2.1 Syntax

The language of a propositional logic has an alphabet consisting of

(i) proposition symbols: p0, p1, ...

(ii) connectives : ∨, ∧, ←, ¬, ⊥, �
(iii) auxiliary symbols : ( , ).
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Where ∨, ∧, ← are 2-place connectives, ¬ is 1-place connective and ⊥, � are 0-
place connectives. The proposition symbols and ⊥ stand for the indecomposable
propositions, which we call atoms, or atomic propositions. A literal is an atom,
a, or the negation of an atom ¬a. The complement of a literal is defined as
(a)c = ¬a and (¬a)c = a.

A general clause, C, is denoted:

l1 ∨ . . . ∨ lm ← l1, . . . , lj , not lj+1, . . . , not ln
2

where m ≥ 0, n ≥ 0, each li is a literal. When n = 0 and m > 0 the clause is an
abbreviation of l1 ∨ . . . ∨ lm ← �3, where � is ¬⊥. When m = 0 the clause is an
abbreviation of ⊥ ← l1, . . . , ln

4. Clauses of theses forms are called constraints
(the rest, non-constraint clauses). A logic program is finite set of general clauses.

A signature L is a finite set of elements that we call atoms. By LP we
understand it to mean the signature of P , i.e. the set of atoms that occurs in P.
Given a signature L, we write ProgL to denote the set of all programs defined
over L. A general semantics SEM is a function on ProgL which associates with
every program a partial interpretation.

We point out that we understand the negation ¬ as the classical negation
and the negation not as the negation as failure [5].

2.2 Lattices and Order

In this section, we present some fundamental definitions of lattice theory in order
to make this paper self contained (see [2] for more details).

Definition 1. [2] Let P be a set. An order (or partial order) on P is a binary
relation ≤ on P such that, for all x, y, z ∈ P ,

(i) x ≤ x
(ii) x ≤ y and y ≤ x imply x = y
(iii) x ≤ y and y ≤ imply x ≤ z

These conditions are referred to, respectively, as reflexivity, antisymmetry and
transitivity.

A set P equipped with an order relation ≤ is said to be an order set (or partial
ordered set).

Definition 2. [2] Let P be an ordered set and let S ⊆ P . An element x ∈ P is
an upper bound of S if s ≤ x for all s ∈ S. A lower bound is defined dually. The
set of all upper bounds of S is denoted by Su (read as ‘S upper’) and the set of
all lower bounds by Sl (read as ‘S lower’).

If Su has a least element x, then x is called the least upper bound (LUB) of S.
Equivalently, x is the least upper bound of S if
2 l1, . . . , lnrepresents the formula l1 ∧ . . . ∧ ln.
3 Or simply l1 ∨ . . . ∨ lm.
4 In fact ⊥ is used to define ¬A as A → ⊥.
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(i) x is an upper bound of S, and
(ii) x ≤ y for all upper bound y of S.

The least upper bound of S exists iff there exists x ∈ P such that

(∀y ∈ P )[((∀s ∈ S)s ≤ y) ⇐⇒ x ≤ y],

and this characterizes the LUB of S. Dually, if Sl has a greatest element, x, then
x is called the greatest lower bound (GLB) of S. Since least element and greatest
elements are unique, LUB and GLB are unique when they exist.

The least upper bound of S is called the supremum of S and is denoted by
sup S; the greatest lower bound of S is also called the infimum of S is denoted
by inf S.

Definition 3. [2] Let P be a non-empty order set.

(i) If sup{x, y} and inf{x, y} exist for all x, y ∈ P , then P is called lattice.
(ii) If sup S and inf S exist for all S ⊆ P , then P is called a complete lattice.

Example 1. Let us consider the set of labels S := { Certain, Confirmed, Probable,
Plausible, Supported, Open } and let 
 be a partial order such that the following
set of relations holds :

{Certain 
 Confirmed, Confirmed 
 Probable,
Confirmed 
 Plausible, Probable 
 Support,
P lausible 
 Supported, Supported 
 Open}

A graphic representation of S according to 
 is showed in Figure 1. It is not
difficult to see that S is a lattice and even more it is complete lattice.

Fig. 1. A lattice

The labels given in Example 1 could be qualifiers of a knowledge base.
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3 Modality Argumentation Programming

In this section, we are going to present our framework. We start by defining the
syntax.

Definition 4 (Modality clause). Let Q be a complete lattice. A modality
clause is a clause of the form:

Modality : C.

Where Modality ∈ Q and C is a general clause.

Notice that by using a complete lattice Q, a modality clause categorizes the
sentence expressed in the general clause C. This means that a modality clause
locates a sentence in Q.

We understand a modality as a category of certain meaning having to do with
the expression of possibility. Therefore, a set of possibilities could be categorized
by a complete lattice. For instance, let S := { Certain, Confirmed, Probable,
Plausible, Supported, Open } be a set of labels where each label is a possible
category of believes, so this set could be categorized as it is shown in Figure 1.

Definition 5 (Modality logic program). A modality logic program P is a
tuple of the form 〈Q, Modality Clauses〉, where Q is a complete lattice and
Modality Clauses is a set of modality clauses such that for all Modality : C ∈
Modality Clauses, Modality ∈ Q.

Example 2. Let Q be the lattice presented in Example 1 and let us consider
the following propositions atoms which represent medical knowledge for organ
transplantation.

– dsve = ‘donor has streptococcus viridans endocarditis’.
– risv = ‘recipient infected with streptococcus viridans’.
– nv = ‘non viable’.

One possible modality logic program with its intuitive meaning could be de-
scribed as follows:

Confirmed : dsve. (It is confirmed that the donor has been
infected by streptococus viridas)

Plausible: risv ←dsve. (If the donor has been infected by streptococus viridas,
then it is plausible that the recipient could be infected too.)

Probable : nv←risv. (If it is plausible that the recipient could be infected by
streptococus viridas, then it is probable that his
organs are not viable for transplanting)

Following the definition of argument presented in [11], we are going to define
our concept of argument.
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Definition 6 (Argument). Let P := 〈Q, Modality Clauses〉 be a modality
logic program, an argument Arg w.r.t. P is a tuple of the form

Arg = 〈Claim, Support, Modality Qualifier〉

where Claim is a literal, Support is a finite set of modalities clauses such that:

1. Support is consistent;
2. Support |=I Claim;
3. Support is minimal, so no subset of Support satisfying both 1. and 2. exists.

and Modality Qualifier ∈ Q.

Remark 1. The symbol |=I denotes logic consequence in Intuitionistic Logic (see
[14] for details). Intuitionistic Logic has studied in the context of logic program-
ming, specially in Answer Set Programming, with two kinds of negations [12, 9].
Notice that Support is minimal w.r.t. set inclusion and is not unique.

By definition, an argument has a modality qualifier. The modality qualifier has
the objective of quantify the level of certainty of an argument. There are two
kinds of quantifiers: Pessimistic, and Optimistic. So, we can define two kinds of
arguments.

Definition 7 (Pessimistic argument). Let Arg be an Argument of the form
〈Claim, Support, Modality Qualifier〉. Arg is a pessimistic argument if

Modality Qualifier := GLB{Modality Qualifier|

(Modality Qualifier : formula) ∈ Support}

Definition 8 (Optimistic argument). Let Arg be an argument of the form
〈Claim, Support, Modality Qualifier〉. Arg is an optimistic argument if

Modality Qualifier := LUB{Modality Qualifier|

(Modality Qualifier : formula) ∈ Support}

Example 3. Let us consider again the lattice of Example 1 and the modality
logic program presented in Example 2. One possible argument is:

〈nv, {(Confirmed :dsve), (Plausible : risv←dsve.),(Probable :nv←risv.)}, ?〉

So, a pessimistic argument is:

〈nv, {(Confirmed : dsve), (Plausible :risv ← dsve.), (Probable : nv ← risv.)},
Supported〉

an optimistic argument:

〈nv, {(Confirmed : dsve), (Plausible : risv←dsve.), (Probable : nv←risv.)},
Confirmed〉
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Fig. 2. A lattice of modalities

In the Figure 2 is presented the lattice with the levels of certainty that an
argument could be defined.

Two arguments constructed from two different knowledge bases (two different
rational agents) could be in conflict. We are going to define two well known kinds
of conflicts: attack and undercutting.

Definition 9. Let Arg1 = 〈Claim1, Support1, Modality Qualifier1〉 and Arg2
= 〈 Claim2, Support2, Modality Qualifier2 〉. Arg1 attacks Arg2, if Claim1 =
l and Claim2 = (l)c.

Definition 10. Let Arg1 = 〈Claim1, Support1, Modality Qualifier1〉 and
Arg2 = 〈 Claim2, Support2, Modality Qualifier2 〉. Arg1 undercuts Arg2, if
Claim1 = li and there is a modality clause

(Modality : l1 ∨ . . . ∨ lm ← l1, . . . , lj , not lj+1, . . . , not li, . . . , ln) ∈ Support2

By considering the concepts of attack and undercut, we define our concept of
defeat.

Definition 11. Let Arg1 = 〈 Claim1, Support1, Modality Qualifier1 〉 and
Arg2 = 〈 Claim2, Support2, Modality Qualifier2 〉. Arg1 defeats Arg2, if Arg1
attacks/undercuts Arg2 and LUB{ Modality Qualifier1, Modality Qualifier2}
= Modality Qualifier1.

Notice that, if Arg1 defeats Arg2, then Arg1’s claim has a support with more
evidence/certainty that Arg2.

In order to illustrate those definitions, let us consider the following example.

Example 4. Let us consider the lattice presented Example 1, and the following
proposition atoms:



302 J.C. Nieves and U. Cortés

– a = ‘donor is HIV positive’.
– b = ‘organ is viable for transplanting’.
– c = ‘organ has correct functions and correct structure ’.
– q = ‘positive clinical test’.

Let P1 be the following modality logic program:

Probable: a. (It is probable that donor is HIV positive)
Probable: ¬b ← a, not c. (If donor is HIV positive and there is not evidence

that the organ has correct functions and correct structure,
then the organ is not viable for transplanting )

One possible argument Arg1 from P1 is :

〈¬b, {(Probable : a.), (Probable : ¬b ← a, not c.)}, P robable〉

This argument suggests that the organ is not viable for transplanting (¬b). Now,
let P2 be the following modality logic program:

Confirmed : q. (It is confirmed that the organ has positive clinical tests)
Plausible: c ← q. (If the organ has positive clinical tests, then it is plausible

that the organ has correct functions and correct structure.)

One possible argument Arg2 from P2 is :

〈c, {(confirmed : q.), (Plausible : c ← q)}, Confirmed〉

One can see that Arg2 undercuts Arg1 and even more Arg2 defeats Arg1 because
LUB{Probable, Confirmed} = Confirmed. So, one can not say explicitly that
an organ is not viable for transplanting (¬b).

This example is controversial in the medical domain, because usually an organ
from a donor who is HIV positive is not viable for transplanting. However, there
are cases where the recipient is also HIV positive then he could be receptor of
an acceptable organ from a donor HIV positive.

4 Declarative Semantics

In this section, we are going to present the declarative semantics for our frame-
work. This semantics is characterized in two parts. The first part determines the
models of the modality logic program without considering the modality qualifier
and the second one determines the modality qualifiers of the arguments using
aggregate operations which are implemented by negation as failure.

Definition 12. Let P be a modality logic program, ∆(P ) is a logic program
defined as follows:

∆(P ) := {C|(Modality : C) ∈ P}.
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Definition 13. Let S be a set of modality clauses, Γ (S) is a set of clauses
defined as follows:

Γ (S) := {Qualifier(Modality)|(Modality : C) ∈ S}

The following two definitions are similar to Definition 4.11 of [7].

Definition 14 (GLB basic ext). Given a complete lattice Q with the partial
order 
 and a modality logic program P where the modality clauses of P are
defines under Q. We definite GLB basic ext as the set of the following set of
clauses:

1. f�(X) ← Qualifier(X).
2. f�(X) ← f�(X1), X1 ≺ X.
3. f≺(X) ← f�(X1), X1 ≺ X.
4. f=(X) ← f�(X), ¬f≺(X).
5. f�(Z) ← f�(X), f�(Y ), GLB�(X, Y, Z).

Definition 15 (LUB basic ext). Given a complete lattice Q with the partial
order 
 and a modality logic program P where the modality clauses of P are
defines under Q. We define LUB basic ext as the set of the following set of
clauses:

1. f�(X) ← Qualifier(X).
2. f�(X) ← f�(X1), X1 � X.
3. f≺(X) ← f�(X1), X1 � X.
4. f=(X) ← f�(X), ¬f≺(X).
5. f�(Z) ← f�(X), f�(Y ), LUB�X, Y, Z).

Now, we present how to build arguments from a modality logic program consid-
ering its models.

Definition 16. Let P be a modality logic program and M(P ) := SEM(∆(P )).
Arg := 〈Claim, Support, Modality Qualifier〉 is an argument from P iff Claim
∈ M(P ) and Modality Qualifier := modality where if Arg is a pessimistic
argument

f=(modality) ∈ WFS(Γ (Support) ∪ GLB basic ext)

or if Arg is optimistic argument

f=(modality) ∈ WFS(Γ (Support) ∪ LUB basic ext)

WFS(P) is a function which infers the well-founded model of the program P5.

In order to illustrate the above definitions, we present the following example.

Example 5. Let us consider again the lattice of Example 1 and the following
proposition atoms which represent, like in Example 2, medical knowledge.
5 See [4] for a formal definition of the well-founded semantics.
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– dbd = ‘donor is brain-dead’
– dma = ‘discard metastatic abscess’
– dbce = ‘determine bacteria causing endocarditis’
– bsv = ‘bacteria is streptoccocus viridians’

Let Π be the following modality logic program:

Confirmed : dbd. (The donor is brain-dead)
Probable: dma ∨ dbce ← dbd. (It is probable that if a donor is brain-dead,

then it is discarded a metastatic abscess or
there is a bacteria causing endocarditis)

Confirmed : dbce ← bsv. (It is confirmed that if a donor has been infected
by streptoccocus viridians, then it is diagnosed endocarditis)

Then
∆(Π) := {(dbd.), (dma ∨ dbce ← dbd.), (dbce ← bsv)}

In this example, we consider SEM(P) as the stable models semantics [5]. Let
us consider the stable models of ∆(Π) which are {dbd, dma},{dbd, dbce}. This
means that we can construct three different arguments:

1. 〈dbd, {(Confirmed : dbd.)}, Qualifier1〉
2. 〈dbce, {(Confirmed : dbd.), (Probable : dma ∨ dbce ← dbd)}, Qualifier2〉
3. 〈dma, {Confirmed : dbd.}, (Probable : dma ∨ dbce ← dbd)}, Qualifier3〉

These arguments have not defined their modality quantifiers yet. Let us consider
the support of Argument 2. S := {(Confirmed : dbd.), (Probable : dma∨dbce ←
dbd)}, so

Γ (S) := {(Qualifier(Confirmed).), (Qualifier(Probable).)}

By considering WFS(Γ (S)∪GLB basic ext), we can infer the pessimist modal-
ity qualifier of Argument 2, it is not difficult to see that f=(Probable) ∈ WFS
(Γ (S) ∪ GLB basic ext), this means that Qualifier2 := Probable.

〈dbce, {(Confirmed : dbd.), (Probable : dma ∨ dbce ← dbd)}, P robable〉

This means, that in this context, we have an argument that suggests that if an
donor is brain-dead, then it is probable that he could be infected by a bacteria
which is causing endocarditis.

Notice that, the use of disjunctive clauses allows to build arguments under in-
complete information and also the quantification of the knowledged base permits
to quantify the arguments. By using this kind of arguments, it is possible to sup-
port decisions taken under incomplete information.
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5 Conclusions and Future Work

In this work we introduced an argumentation framework which allows to incor-
porate modalities during the process of argumentation reasoning. We understand
a modality as a category of certain meaning having to do with the expression of
possibility. Therefore, a set of possibilities could be categorized by a complete
lattice.

Our argumentation framework is based in a specification language which per-
mits to provide specifications with levels of certainty in a natural way. Also, the
specification language allows to use disjunctive clauses, so it allows specifications
in situations where the available information is incomplete, as in the medical do-
main showed in the examples. The declarative semantics of our language permits
to build arguments such that any argument is supported by a set of modality
clauses and the argument’s claim is quantified w.r.t. its support. We present a
couple of examples from our real application to manage the assignation process
of human organs for transplantation [1, 13], although the examples are simple
they permit to see the potential of our framework.

Among the future work, we have planned to deploy this framework in the
context of multi-agent systems, in particular to our real multi-agent system called
CARREL [15].
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