
Stratified Partial-Order Logic Programming

Mauricio Osorio1 and Juan Carlos Nieves2

1 Universidad de las Americas
CENTIA

Sta. Catarina Martir,
Cholula, Puebla
72820 Mexico

josorio@mail.udlap.mx
2 Universidad Tecnologica de la Mixteca
Instituto de Electronica y Computacion

Huajuapan de Leon, Oaxaca
69000 Mexico

jcnieves@nuyoo.utm.mx

Abstract. The stable semantics has become a prime candidate for
knowledge representation and reasoning. The rules associated with
propositional logic programs and the stable semantics are not expres-
sive enough to let one write concise optimization programs. We propose
an extension to the language of logic programs that allows one to express
optimization problems in a suitable well. In earlier work we defined the
declarative semantics for partial order clauses. The main contribution of
our paper is the following: First, we define the language of our extended
paradigm as well as its declarative semantics. Our declarative semantics
is based on translating partial order clauses into normal programs and
the using the stable semantics as the intended meaning of the original
program. Second, we propose an operational semantics for our paradigm.
Our experimental results show that our approach is more efficient than
using the well known system SMODELS over the translated program.

1 Introduction

The stable semantics has become a prime candidate for knowledge representa-
tion and reasoning. The rules associated with propositional logic programs and
the stable semantics are not expressive enough to let one write concise optimiza-
tion programs. We propose an extension to the language of logic programs that
allows one to express optimization problems in a suitable well. Furthermore, our
proposal allows some degree of integration between logic and functional program-
ming. We use partial order clauses as the functional programming ingredient and
disjunctive clauses as the logic programming ingredient.

Partial-order clauses are introduced and studied in [11,10], and we refer the
reader to these papers for a full account of the paradigm. In comparison with
traditional equational clauses for defining functions, partial-order clauses offer
better support for defining recursive aggregate operations. We illustrate with an

E. Stroulia and S. Matwin (Eds.): AI 2001, LNAI 2056, pp. 225–235, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

226 M. Osorio and J.C. Nieves

example from [11]: Suppose that a graph is defined by a predicate edge(X,Y,C),
where C is the non-negative distance associated with a directed edge from a node
X to node Y, then the shortest distance from X to Y can be declaratively specified
through partial-order clauses as follows:

short(X,Y) ≤ C :- edge(X,Y,C)
short(X,Y) ≤ C + short(Z,Y) :- edge(X,Z,C)

The meaning of a ground expression such as short(a,b) is the greatest lower
bound (smallest number in the above example) of the results defined by the
different partial-order clauses. In order to have a well-defined function using
partial-order clauses, whenever a function is circularly defined (as could happen
in the above example when the underlying graph is cyclic), it is necessary that the
constituent functions be monotonic. We refer to this paradigm as partial-order
programming, and we have found that it offers conciseness, clarity, and flexibility
in programming problems in graph theory, optimization, program analysis, etc.
Partial-order program clauses are actually a generalization of subset program
clauses [7,8].

The declarative semantics of partial-order clauses is defined by a suitable
translation to normal clauses. We have studied this approach in full detail in [14].
However, this is the first time that we consider the use of the stable semantics
[5]). Since the stable semantics is defined for disjunctive clauses and constraints,
we obtain a paradigm that allows the integration of partial-order programs with
disjunctive programs. We have solved some optimization problems (taken from
the archive of the ACM programming contest) in this paradigm and we claim
that the use of partial-order clauses were suitable in this respect.

The operational semantics of our language combines a general form of dy-
namic programming with the SMODELS1 algorithm (proposed in [15]). We com-
pute all the stable models of the program by dividing the program in modules,
computing the models of the lower module, reducing the rest of the program
with respect of each model found and iterating the process. When we need to
compute the stable models at a given module, we have two cases: In the first
case the module consists of partial-order clauses. We use dynamic programming
to compute the (exactly one) model of such module. In the second case the
module consists of normal clauses. We use SMODELS to obtain all the stable
models. If there are no stable models the entired program is inconsistent. The
rest of this paper is organized as follows: Section 2 provides a basic background
on partial-order programming. We also define our class of legal programs. In
section 3 we present the declarative semantics of our language. In section 4 we
present the operational semantics of our full language. The last section presents
our conclusions and future work. We assume familiarity with basic concepts in
logic programming2.

1 SMODELS is a system available in : http://www.tcs.hut.fi/Software/smodels/
2 A good introductory treatment of the relevant concepts can be found in the text by

Lloyd [9]

Stratified Partial-Order Logic Programming 227

2 Background

Our language includes function symbols, predicate symbols, constant symbols,
and variable symbols. A f-p symbol is either a function symbol or a predicate
symbol. A term is a constant symbol or a variable symbol. Function atoms are
of the form f(t1, . . . , tn) = t, where t, t1, . . . , tn are terms and f is a function
symbol of arity n. Inequality atoms are of the form f(t1, . . . , tn) ≤ t, where
t, t1, . . . , tn are terms and f is a function symbol of arity n. Predicate atoms are
of the form p(t1, . . . , tn), where t1, . . . , tn are terms and p is a predicate symbol
of arity n. A f-p atom is either a function atom or a predicate atom. A f-p literal
is a f-p atom or a negated f-p atom.

A program P is a pair < PO, DA > where PO is a set of partial-order clauses
and DA is a set of disjunctive clauses. Partial-order clauses are of the form:

f(terms) ≤ expression :- lit1, . . . , litk

where each liti (with 1 ≤ i ≤ k) is a f-p literal. By terms we mean a list of terms.
The syntax of expression is given below:

expression ::= term | f(exprs)
exprs ::= expression | expression , exprs

The symbol f stands for a function symbol, also called user-defined function
symbol. A disjunctive clauses is of the form: head1 ∨ . . .∨headn :- l1 . . . lk, where
n ≥ 0, k ≥ 0, each headi is an atom, and each lj is a f-p literal. When n = 0
the clause is called a constraint. Our lexical convention in this paper is to begin
constants with lowercase letters and variables with uppercase letters. We assume
that our programs use only ≤ clauses. Since we assume complete lattices, the ≥
case is dual and all the results hold immediately.

We now present several examples that are naturally expressed in our
paradigm.

Example 2.1 (Data-flow Analysis). Partial-order clauses can be used for carrying
out sophisticated flow-analysis computations, as illustrated by the following pro-
gram which computes the reaching definitions and busy expressions in a program
flow graph. This information is computed by a compiler during its optimization
phase [1]. The example also shows the use of monotonic functions.

reach out(X) ≥ reach in(X) - kill(X).
reach out(X) ≥ gen(X).
reach in(X) ≥ reach out(Y) :- pred(X,Y).

In the above program, kill(X) and gen(X), are predefined set-valued functions
specifying the relevant information for a given program flow graph and basic
block X. We assume an EDB pred(X,Y), that defines when Y is predecessor of
X. The set-difference operator (-) is monotonic in its first argument, and hence
the program has a unique intended meaning as it is shown in [1]. A general result
that explains this fact can be found in [11]. Our operational semantics behaves
exactly as the algorithm proposed in [1] to solve this problem. We consider this
fact as a main evidence that our operational semantics is efficient.

228 M. Osorio and J.C. Nieves

Example 2.2 (Shortest Distance). The formulation of the shortest-distance prob-
lem is one of the most elegant and succinct illustrations of partial-order clauses:

short(X,Y) ≤ C :- edge(X,Y,C)
short(X,Y) ≤ C + short(Z,Y) :- edge(X,Z,C)

The relation edge(X,Y,C) means that there is a directed edge from X to Y with
distance C which is non-negative. The function short(X,Y) = C means that a
shortest path (in terms of costs) from node X to node Y has cost C. The + operator
is monotonic with respect to the numeric ordering, and hence the program is
well-defined. The logic of the shortest-distance problem is very clearly specified
in the above program.

This problem can be solved using dynamic programming, that corresponds
in this case to Floyd’s algorithm. Our operational semantics behaves exactly as
Floyd’s algorithm and hence this is again a main evidence that supports that
our approach is suitable.

Suppose we wanted to return both the shortest distance as well as the shortest
paths corresponding to the shortest distance. We then can include the following
code to our program:

path(X,Y) ∨ complement(X,Y) :- edge(X,Y,C).
:- node(X), ini(A), path(X, A).
:- node(X), fin(D),path(D,X).
:- node(X), node(Y), node(Y1), path(X,Y),
path(X,Y1), neq(Y,Y1).
:- node(Y), node(X), node(X1), path(X,Y),
path(X1,Y), neq(X,X1).

r(X) :- ini(X).
r(X) :- num(C), node(X), node(Y), r(Y),path(Y,X).
k(Y) :- node(X), node(Y), path(X,Y).

:- node(D), k(D), not r(D).
:- fin(D), not r(D).

cost(X,Y,C) :- node(X), node(Y),num(C),path(X,Y), edge(X,Y,C).
cost(X,Y,C) :- node(X), node(Y), node(Z), num(C),num(C1), num(C2)

,path(X,Z), edge(X,Z,C1), cost(Z,Y,C2), C = C1 + C2.
:-num(C), num(C1), ini(A), fin(D), cost(A,D,C),
short(A,D) = C1, C > C1.

The meaning of the constraint :- node(X), ini(A), path(X, A) is that
the initial node of the graph is of indegree zero. In a similar way, the meaning of
the second constraint :- node(X), fin(D),path(D,X) is that the final node
of the graph is of outdegree zero. The idea of the third and fourth constraints,
is that every node of the path must be of indegree (and outdegree) less or equal
to one. The relation r(X) defines the nodes that are possibly reachable since the
initial node. The relation cost(X,Y) defines the cost of the partial paths and
the total path to reach the final node.

The declarative semantics defines as many models as shortests paths. In each
model, path defines such shortest path.

Example 2.3 (Matrix Chain Product). [16]
Suppose that we are multiplying n matrices M1, ...Mn. Let ch(J,K) denote the

Stratified Partial-Order Logic Programming 229

minimum number of scalar multiplications required to multiply Mj , ...Mk. Then,
ch is defined by the following inequalities:

ch(I,I) ≤ 0 :- size(N), 1≤I, I≤ N

ch(J,K) ≤ ch(J,I)+ch(I+1,K) + r(J)*c(I)*c(K) :- J≤I, I≤ K-1

where we encode the size of matrix Mi by r(I), number of rows, and c(I),
number of columns, and we suppose that c(I)=r(I+1). The functions r and c
have been omitted in the above code.

In order to capture the >-as-failure assumption, we assume that for every func-
tion symbol f, the program is augmented by the clause: f(X) ≤ >.

3 Declarative Semantics

In the following we assume that our programs are free-head cyclic, see [2]. We
adopt this assumption for two reasons. First, we have never found an interesting
example where this condition does not hold. Second, free-head cyclic programs
can be translated to normal programs such that the stable semantics agree. In
this case SMODELS is a very fast tool to compute stable models.

We now explain how to translate a disjunctive clause into a set of normal
clauses.

Definition 3.1. Let P be a program such that P :=< PO, DA >. We define
the map of DA to a set of normal clauses as follows: Given a clause C ∈ DA
where C is of the form p1(terms)∨ . . .∨pn(terms) : −body, we write dis-nor(C)
to denote the set of normal clauses:

pi(terms) : −body, ¬p1(terms), . . . ,¬pi−1(terms),¬pi+1(terms), . . . ,¬pn(terms)

where 1 ≤ i ≤ n.
We extend this definition to the set DA as follows. Let dis-nor(DA) denote the
normal program:

⋃

C∈DA

dis − nor(C)

From now on we may assume that every disjunctive clause of the program has
been translated as before. We also get rid of the constraints as follows: Replace
every constraint clause :- RHS by new :- RHS, ¬ new.

Where new is a propositional symbol that does not appears at all in the
original program.

Definition 3.2. A program P is stratified if there exists a mapping function,
level : F ∪ Pr → N , from the set F of user-defined (i.e., non-constructor)
function symbols in P union the set Pr of predicates symbols of P to (a finite
subset of) the natural numbers N such that all clauses satisfy:

230 M. Osorio and J.C. Nieves

(i) For a clause of the form

f(term1) ≤ term2 : −RHS

where RHS is a conjunction of f-p atoms then level(f) is greater than level(p)
where p is any f-p symbol that appears in RHS.

(ii) For a clause of the form

f(term) ≤ g(expr) : −RHS

where f and g are user-defined functions, and RHS is as before then level(f)
is greater or equal to level(g), level(f) is greater than level(h), level(f) is
greater than level(p), level(g) is greater to level(p), where p is any f-p symbol
that appears in RHS and h is any user-defined function symbol that occurs
in expr.

(iii) For a clause of the form

f(terms) ≤ m(g(expr)) : −RHS

where RHS is as before and m is a monotonic function then, level(f) is
greater than level(m), level(f) is greater or equal to level(g), level(f) is
greater than level(h), level(f) is greater than level(p), where p is any f-p
symbol that appears in RHS and h is any function symbol that occurs in
expr.

(iv) For a clause of the form

p(term) : −RHS

where RHS is as before, if f is a f-p symbol that appears in RHS then level(p)
is greater than level(f).

(v) No other form of clause is permitted.

Although a program can have different level mappings we select an image set
consisting of consecutive natural numbers from 1. In addition we select the level
mapping such that level(p) 6= level(f) where p is a predicate symbol and f is a
function symbol. In the above definition, note that f and g are not necessarily
different. Also, non-monotonic “dependence” occurs only with respect to lower-
level functions. We can in fact have a more liberal definition than the one above:
Since a composition of monotonic functions is monotonic, the function m in the
above syntax can also be replaced by a composition of monotonic functions,
except that we are working with functions rather than predicates.

Considering again our shortest path example, a level mapping could assign:
All predicate symbols of the EDB have level 1. The function symbol + has level
2. The function symbol short has level 3. The rest of the predicates have level
4.

Our next step is to flatten the functional expressions on the right-hand sides
of the partial-order clauses [3,6]. We illustrate flattening by a simple example:

Stratified Partial-Order Logic Programming 231

Assuming that f, g, h, and k are user-defined functions the flattened form of a
clause f(X,Y) ≥ k(h(Y,1)) is as follows:

f(X,Y) ≥ Y2 :- h(Y,1) = Y1, k(Y1) = Y2.
In the above flattened clause, we follow Prolog convention and use the notation
:- for ‘if’ and commas for ‘and’. The order in which the basic goals are listed
on the right-hand side of a flattened clause is the leftmost-innermost order for
reducing expressions.

3.1 Translating a Partial Order Program into a Normal Program

The strategy here is to translate a stratified program to a standard normal
program and then to define the semantics of the translated normal program as
the semantics of the original program. We work in this section with the normal
form of a program. This form is obtained from the flattened form by replacing
every assertion of the form f(t) = t1 by the atom f=(t, t1) and every assertion
of the form f(t) ≤ t1 by f≤(t, t1). Except for minor changes, the following four
definitions are taken from [13]. Just to keep the notation simple we assume that
functions accept only one argument.

Definition 3.3. Given a stratified program P , we define P ′ to be as follows:
Replace each partial-order clause of the form

E0 :- condition, E1, . . . , Ek, . . . , En

by the clause
E0 :- condition, E1, . . . , E

∗
k , . . . , En

where E0 is of the form f≤(t1, X1), Ek is of the form g=(tk, Xk), E∗
k is of the

form g≤(tk, Xk) and f and g are (not necessarily different) functions at the same
levelP . Note that it is possible that k = n.

Definition 3.4. Given a program P , we define head(P) to be the set of head
function symbols of P , i.e., the head symbols on the literals of the left-hand sides
of the partial-order clauses.

Definition 3.5. Given a program P, a predicate symbol f≤ which does not occur
at all in P, we define ext1(f) as the following set of clauses:

f=(Z, S) :- f≤ (Z, S), ¬ fbetter(Z,S)
fbetter(Z, S) :- f≤(Z, S1), S1 < S
f≤(Z, S) :- f≤(Z,S1), S1 < S
f≤ (Z, >)
f≤(Z, C) :- f ≤(Z, C1), f≤(Z, C2), glb(C1, C2, C).

We call the last clause, the glb clause, and it is ommited when the partial order
is total, glb(C1, C2, C) interprets that C is the greatest lower bound of C1 and
C2. Symmetric definitions have to be provided for f≥ symbols.

232 M. Osorio and J.C. Nieves

Definition 3.6. Given a stratified program P , we define
ext1(P) :=

⋃
f∈ head(P) ext1(f), and

transl(P) := P ′ ∪ ext1(P), where P ′ is as the definition 3.3.

As an example of the translation we use program Short given in example 2.2
short≤(X, Y, >).
short≤(X, Y, C) :- edge(X,Y,C).
short≤(X, Y, C) :- edge(X, Z, C1), short≤(Z, Y, C2), C = C1 + C2.
short≤(W, W1, X) :- short≤(W, W1, X1), X1 < X.
short<(W, W1, X) :- short≤(W, W1, X1), X1 < X.
short=(W, W1, X) :- short≤(W, W1, X), ¬short<(W, W1, X).

Definition 3.7. For any stratified program P , we define D(P), as the set of
stable models for transl(P).

Definition 3.8. For any stratified program P , we define level(P) = max{n :
level(p) = n, where p is any f-p symbol }

Lemma 3.1. Given any program P of level n greater than 1, there exists P1
such that the following holds:

1. Level(P1) < n,
2. Every f-p symbol p in the head of every clause in (P \ P1) is of level n.
3. All clauses in (P \P1) are partial-order clauses or all clauses in (P \P1) are

disjunctive clauses.
4. If Mi for 1 ≤ i ≤ k > 0 are all the stable models of P1 then stable(P) =

{M |M ∈ stable((P \ P1)Mi), 1 ≤ i ≤ k}. Moreover, if (P \ P1) consists of
partial-order clauses then SEM((P \ P1)Mi) has exactly one model. (Here
we understand PM , where P is a program and M an interpretation of P , as
reducing P w.r.t. M . A formal definition is given in [4].

Proof. (Sketch) We actually select P1 as the program that consists of every clause
where the level of the head is less than n. Therefore 1, 2 and 3 are immediate. To
prove 4 we note that each Mi is a candidate to be completed as a stable model
of P . Moreover the stable semantics satisfies reduction, see [4]. Also, if M is a
stable model of P then exists M ′ ⊂ M over the language of P1 that is a stable
model of P1. Therefore, exists i such that Mi = M ′.

A naive idea to obtain the semantics of a program would be to translate a
program and use the SMODELS system. However this could be very inefficient.
We have in fact tried several examples where SMODELS got the answer in
several minutes while in our current implementation we got an answer in less
than one minute3.
3 Both systems ran in C++ under a SUN SPARC station

Stratified Partial-Order Logic Programming 233

4 Operational Semantics

We discuss the operational semantics of our language. We assume that our lattice
is finite. Our lemma of the last section is one of the notions that we use to de-
fine our operational semantics. Based on this notion, computing the operational
semantics of a program reduces almost4 to compute the operational semantics
of a program of level 1. Here, we have two cases:

First, when the program consists only of normal clauses where the body of
every clause is free of function atoms. Then, we can use the algorithms that are
used by the well known systems: SMODELS and DLV5. We have successfully
tried this process with several program examples, meaning that it is possible to
handle programs that after instantiating them they contain hundreds of thou-
sands of rules.

Second, when the program consists only of partial-order clauses. Then we can
use dynamic programming to compute the glb among the fix-points of the pro-
gram, see [11]. The precise formulation of the operational semantics of a program
is the following. Let Fix-Point-Semantics(P) be the fix-point semantics defined
in [12]. Let SMODELS(P) be the operational semantics for normal programs
(with constraints) given in [15]. Let reduce(P,M) be PM (already defined). Our
operational semantics is then OP(P, n) where n is the level of P.

Function OP(P, n)
if n = 1 return(One level(P));
else
{

let MS = OP (P, n − 1);
if MS = ∅ return ∅;
else
{

M ′ = ∅;
for each M ∈ MS

P ′ = reduce(P, M); M ′ = M ′ ∪ One level(P ′);
return(M ′);

}
}

Function One level(P)
if P is a partial-order program return(Fix-Point-Semantics(P));
else return(SMODELS(P));

The correctness of our algorithm follows immediately by induction on the
level of our program, lemma 3.1, proposition 3 in [12] and the well known cor-
rectness of the SMODELS algorithm.
4 We also need to reduce the program w.r.t. the semantics of a lower module
5 DLV is a system available in : http://www.dbai.tuwien.ac.at/proj/dlv/

234 M. Osorio and J.C. Nieves

5 Conclusion and Related Work

Partial-order clauses and lattice domains provide a concise and elegant means
for programming problems involving circular constraints and aggregation. Such
problems arise throughout deductive databases, program analysis, and related
fields. Our language allows some degree of integration between logic and func-
tional programming. We use partial order clauses as the functional programming
ingredient and disjuntive clauses as the logic programming ingredient. We use
the Stable smantics to take care of the relational component. We also discuss an
operational semantics that integrates dynamic programming with the algorithm
used in SMODELS.

References

1. Alfred V. Aho, Ravi Setvi, and Jeffrey D. Ullman. Compilers Principles, Tech-
niques, and Tools. Addison Wesley, 1988.

2. Rachel Ben-Eliyahu and Rina Dechter. Propositional Semantics for Disjunctive
Logic Programs. In K. R. Apt, editor, LOGIC PROGRAMMING: Proceedings
of the 1992 Joint International Conference and Symposium, pages 813–827, Cam-
bridge, Mass., November 1992. MIT Press.

3. D. Brand. Proving theorems with the modification method. SIAM Journal, 4:412–
430, 1975.

4. Gerd Brewka, Jürgen Dix, and Kurt Konolige. Nonmonotonic Reasoning: An
Overview. CSLI Lecture Notes 73. CSLI Publications, Stanford, CA, 1997.

5. Michael Gelfond and Vladimir Lifschitz. The Stable Model Semantics for Logic
Programming. In R. Kowalski and K. Bowen, editors, 5th Conference on Logic
Programming, pages 1070–1080. MIT Press, 1988.

6. D. Jana and Bharat Jayaraman. Set constructors, finite sets, and logical semantics.
Journal of Logic Programming, 38(1):55–77, 1999.

7. Bharat Jayaraman. Implementation of subset-equational programs. Journal of
Logic Programming, 11(4):299–324, 1992.

8. Bharat Jayaraman and K. Moon. Subset logic programs and their implementation.
Journal of Logic Programming, 41(2):71–110, 2000.

9. John W. Lloyd. Foundations of Logic Programming. Springer, Berlin, 1987. 2nd
edition.

10. Bharat Jayaraman Mauricio Osorio and J. C. Nieves. Declarative pruning in a
functional query language. In Danny De Schreye, editor, Proceedings of the Inter-
national Conference on Logic Programming, pages 588–602. MIT Press, 1999.

11. Bharat Jayaraman Mauricio Osorio and David Plaisted. Theory of partial-order
programming. Science of Computer Programming, 34(3):207–238, 1999.

12. Mauricio Osorio. Semantics of partial-order programs. In J. Dix and L.F. del
Cerro andU. Furbach, editors, Logics in Artificial Intelligence (JELIA ’98), LNCS
1489, pages 47–61. Springer, 1998.

13. Mauricio Osorio and Bharat Jayaraman. Aggregation and WFS+. In J. Dix,
L. Pereira, and T. Przymusinski, editors, Nonmonotonic Extensions of Logic Pro-
gramming, LNAI 1216, pages 71–90. Springer, Berlin, 1997.

14. Mauricio Osorio and Bharat Jayaraman. Aggregation and negation-as-failure. New
generation computing, 17(3):255–284, 1999.

Stratified Partial-Order Logic Programming 235

15. P. Simons. Towards constraint satisfaction through logic programs and the stable
model semantics. Technical Report 47, Helsinki University of Technology, Digital
Systems Laboratory, August 1997.

16. D.R. Stinson. An introduction to the Design and Analysis of Algorithms. The
Charles Babbage Research Centre, Winnipeg, Canada, 1987.

	Introduction
	Background
	Declarative Semantics
	Translating a Partial Order Program into a Normal Program

	Operational Semantics
	Conclusion and Related Work

