A Discrete Subexponential Algorithm
for Parity Games * **

Henrik Bjorklund, Sven Sandberg, and Sergei Vorobyov

Information Technology Department, Uppsala University

Abstract. We suggest a new randomized algorithm for solving parity games
with worst case time complexity roughly

) k
min (O <n3 . (% + 1)) , 20(\/@)) ,

where n is the number of vertices and k the number of colors of the game. This
is comparable with previously known algorithms when the number of colors is
small. However, the subexponential bound is a substantial advantage when the
number of colors is large, k = 2(n!/2+¢).

1 Introduction

Parity games are infinite games played on finite directed leafless graphs, with vertices
colored by integers. Two players move a pebble along edges of the graph. Vertices are
partitioned between the players, and the owner of the vertex currenly visited by the
pebble decides where to move it next by selecting an outgoing edge. The goal of Player 0
is to ensure that the biggest color visited by the pebble infinitely often is even, whereas
Player 1 tries to make it odd. The complexity of determining a winner in parity games,
equivalent to the Rabin chain tree automata non-emptiness, as well as to the u-calculus
model checking [10,8], is a fundamental open problem in complexity theory [19]. The
problem belongs to NPNCONP, but its PTIME-membership status remains widely
open. All known algorithms for the problem are exponential, with an exception of [20]
when the number of colors is large and games are binary."

In this paper we present a new discrete, randomized, subexponential algorithm for
parity games. It combines ideas of iterative strategy improvement, randomization tech-
niques of Kalai [15] for Linear Programming and of Ludwig [16] for simple stochastic
games, with discrete strategy evaluation similar to Voge and Jurdziriski [24]. Generally,
algorithms for parity games are exponential in the number of colors k, which may be
as big as the number n of vertices. For most, exponentially hard input instances are
known [9,8,7,22,14]. Our algorithm is subexponential in n. Earlier we suggested a subex-
ponential algorithm [20], similar to [16], but based on graph optimization rather than
linear programming subroutines. Both algorithms [16,20] become exponential in n for
graphs with unbounded vertex outdegree. The present paper eliminates this drawback.
There is a well-known reduction from parity to mean payoff games, but the best known
algorithms for the latter [13,26,21] are known to be exponential (pseudopolynomial).

* Supported by Swedish Research Council Grants “Infinite Games: Algorithms and Complex-
ity”, “Interior-Point Methods for Infinite Games”.
** This is an extended version of [4].
! More precisely, when the total number of edges for one of the player is subquadratic in the
number of his vertices.

Reducing parity to simple stochastic games [26] leads to manipulating high-precision
arithmetic and to algorithms invariably subexponential in the number of vertices, which
is worse than an exponential dependence on colors when colors are few.

A recent iterative strategy improvement algorithm by Voge and Jurdzinski [24]
uses a discrete strategy evaluation involving game graph characteristics like colors, sets
of vertices, and path lengths. Despite a reportedly good practical behavior, the only
known worst-case bound for this algorithm is exponential in the number of vertices n,
independently of the number of colors. This is no better than searching the full strategy
space.

Our new algorithm avoids any reductions and applies directly to parity games of
arbitrary outdegree. We use a discrete strategy evaluation measure similar to, but more
economical than the one used in [24]. The longest possible improving sequence of strate-
gies with our measure is exponential in the number of colors, shorter in comparison with
exponential in the number of vertices in [24]. Combined with Kalai’s and Ludwig’s ran-
domization schemes this limits the number of improvement steps to be: 1) at most
subexponential in the number of vertices n and, simultaneously, 2) at most exponential
in the number of colors k. The first bound is an advantage over preceding algorithms,
when there are many colors, k = §2(n'/2*¢). The second is better than the first when
colors are few.

Recently [6,1], we discovered that another subexponential randomization scheme for
linear programming suggested by Matousek-Sharir-Welzl [17,18] at the same time as
Kalai [15], can be adapted to parity games, and also gives an algorithm with similar
bounds. Similarly, we show in [1] that Gértner’s approach [11] with abstract optimiza-
tion problems yields yet another algorithm for parity games with similar bounds. A
different subexponential algorithm for parity games is described in [5].

Outline. After preliminaries in Section 2 on parity games, Section 3 presents a sim-
ple, Ludwig-style randomized algorithm, relying upon an abstract ‘quality’ measure
on strategies with certain desirable properties. Section 4 gives all the details of the
measure definition. The important properties of the measure are proved in Section 5
and 6. Section 5 provides a crucial characterization of local improvement in the mea-
sure. Section 6 shows that a strategy that cannot improve locally is optimal. Section 7
sets an upper bound on the number of strategy improvement steps, and Section 8 de-
scribes a polynomial time algorithm to find optimal strategies in a one-player game, an
important step in computing strategy values. Section 9 adapts Kalai’s randomization
scheme for linear programming to the parity game setting, providing a better subex-
ponential bound for games on graphs with unbounded outdegree. Section 10 concludes
and sketches directions for future research.

2 Parity Games

We use a conventional definition of infinite duration parity games on finite graphs. We
only consider finite explicitly represented graphs, because we are concerned with the
complexity of decision algorithms.

Definition 1 (Parity Games).
A parity game is an infinite game played on a finite directed leafless graph G =
(Vo, V1, E, k,), where:

— Vo, Vi form a partition of the graph vertices;

— E C (Vo UW;)? is the set of edges, and every vertex has at least one outgoing edge
(there are no leaves or sinks);
—keN,and c: VoUVy — {1,...,k} is a coloring function.

Starting from a vertex, the players construct an infinite path called a play. Player i
moves from a vertex in V; by selecting one of its successors. The largest vertex color j
occurring infinitely often in a play determines the winner: Player 0 wins if j is even;
Player 1 wins if j is odd. o

Convention 1 Throughout the paper we systematically use notation introduced in Def-
inition 1. We also use ng = |Vo|, n1 = |V4|, and n = ng + ny.

Positional strategies are fundamental for parity games.

Definition 2 (Positional Strategy). A positional strategy for Player 0 is a function
o : Vo — Vo UV, such that if o(v) = v, then (v,v") € E. Saying that Player 0 fixes
his positional strategy means that he deterministically chooses the successor o(v) each
time the play comes to v, independently of the history of the play. Positional strategies
for Player 1 are defined symmetrically. O

Parity games are known to be determined and solvable in positional strategies. This
means that the vertices of any parity game can be partitioned into winning sets Wy, W1
of Players 0 and 1 such that each player has a positional strategy that wins any play
that starts from a vertex in his winning set [10]. Therefore, the players can restrict
themselves to positional strategies, and it is no disadvantage to reveal the strategy to
the opponent in advance. Consequently, in the sequel by ‘strategy’ we will always mean
‘positional strategy’.

The problem we are addressing in this paper is to find the winning sets and optimal
strategies of both players. Given an optimal strategy of one player, the optimal strategy
of the other player and the winning sets can be computed in polynomial time.

All algorithms described in this paper are iterative strategy improvement algorithms,
proceeding from a current trial positional strategy to another one that is ‘better’, until
an optimal strategy is reached. They are based on the simplest possible, single switches,
when a positional strategy is changed in one vertex at a time.

Definition 3 (Single Switch). A single switch in a positional strategy of Player 0 is
a change of successor assignment in exactly one vertez. a

We use the adjective single to make a distinction with a multiple switch, when
a strategy is simultaneously changed in several vertices. We consider multiple switch
algorithms in [3,6].

In Section 4 we introduce an appropriate evaluation function on positional strategies,
and in Sections 5 — 8 demonstrate that iteratively improving a strategy by single switches
yields an optimal strategy.

Definition 4 (Subgames). A subgame is obtained from a parity game by throwing
away some edges, without creating sinks.

Let G be a parity game and o a positional strategy. The subgame G, is obtained
from G by deleting all edges going out from vertices in Vy not selected by o. O

We will first present an algorithm for binary parity games.

Definition 5 (Binary Parity Game). A binary parity game is a game where the
verter outdegree is at most two. O

3 Ludwig-Style Algorithm with a Well-Behaved Measure

To motivate further developments we start with the conceptually easier case of binary
games, describe an abstract version of the algorithm, and state the requirements needed
for its correctness and efficiency. Subsequent sections implement technical machinery to
meet these requirements.

Every positional strategy of Player 0 in a binary parity game can be associated with
a corner of the ng-dimensional Boolean hypercube H = {0, 1}"°. Suppose there is a way
of assigning ‘values’ to strategies allowing for comparing neighbor strategies in ‘H from
the viewpoint of Player 0. Then we can run any variant of the local search iterative
improvement algorithm, e.g., randomly moving to one of the better neighbors at each
iteration. Unfortunately, no subexponential upper bounds are currently known for this
algorithm [23,3,2,25].

Algorithm 1 below presents a different, randomized, subexponential iterative im-
provement algorithm to find the best strategy in a binary parity game. It is similar to
the one suggested by Ludwig [16] for simple stochastic games. The extension to non-
binary games, based on a related randomization scheme due to Kalai [15] is described
in Section 9. Other randomized algorithms for parity games are described in [6,1,5].

Algorithm 1: Ludwig-Style Algorithm for Parity Games
LupwiG(Hypercube H, initial vertex vy € H)
(D if dimension(H) =0

(2) return vg

(3) choose a random facet F' of H containing vo

(4) v*— Ludwig(F, vo)

(5) if neighbor u of v* on H \ F' (opposite facet) is better than v*

(6) return Ludwig(H \ F, u) // switch to opposite facet
(7) else

(8) return v*

To guarantee correctness and subexponential running time of Algorithm 1, the as-
signment of values to strategies cannot be completely unstructured. In subsequent sec-
tions we present a strategy evaluation function that given a strategy returns a value.
The function meets the following criteria, where the < relation is a partial order on
strategies.

Local optima are global. A strategy is a local optimum if changing its choice in
any single vertex (i.e., moving along edges of H) does not give an improvement of
the value. Every locally optimal strategy should also be globally optimal, i.e., at
least as good as any other strategy, with respect to <. This property is necessary
to guarantee that whenever the algorithm terminates, the resulting strategy has
optimal value.

Optimal corresponds to winning. Any strategy that is globally <-optimal wins in
all vertices of the winning set of Player 0. This property ensures that the strategy
returned by the algorithm actually solves the game.

Values in subgames are identical. If ¢ is a strategy in a subgame G’ of G where
only choices of Player 0 are removed, then the value of ¢ is the same in G and G'.
This property holds once choices of Player 0 not taken by the current strategy do
not affect the value.

Evaluating strategies is costly, however, so it should be avoided if possible. Imagine,
we were to evaluate all the neighbors (different in one vertex) of a current strategy at
every iteration step. This would lead to a considerable computational overhead. The
approach we use is more efficient. Our ‘strategy quality’ measure is a tuple consisting
of one value per vertex. Vertex values are linearly ordered, and strategy values are
partially ordered by comparing the vertex values componentwise. This allows us to
reason about attractive switches. A switch (changing the strategy in a single vertex,
by selecting an alternative successor of this vertex) is attractive if it selects a successor
with a better value with respect to the current strategy. The following properties of
attractive switches guide the iterative improvement, guarantee correctness, and allow
us to save on the number of strategy evaluations.

Profitability of attractive switches. Let o be a strategy and v a vertex. If the value
under o of the successor o(v) of v is worse than the value of v’s other successor (the
switch to this successor is attractive), then changing ¢ in v to this other successor
results in a better strategy (the switch is profitable). This property (attractive im-
plies profitable) ensures that the test in line (5) of Algorithm 1 can be performed
without additional strategy evaluations, and is proved for our evaluation function
as Theorem 3.

Optimality of stable strategies. If a strategy is stable, i.e., has no attractive switches,
then it is globally optimal and also winning. Consequently, the algorithm can ter-
minate as soon as it finds a stable strategy, without evaluating its neighbors. For
our evaluation function, optimality of stable strategies is shown in Theorem 4 and
Corollary 1.

Together, these two properties imply that we can let the iterative improvement
be guided by attractiveness of switches. As long as there are attractive switches, we
can make them, knowing that they are profitable. As soon as there are no attractive
switches, we know that the current strategy is globally optimal. Actually, we show in
Sections 5 and 6 that with our measure, switches are attractive if and only if they
are profitable. It follows that any strategy without profitable switches is also stable,
and thus globally optimal, and we get the property that all local optima are global.
Additionally, relying on attractiveness, rather than investigating neighbors explicitly,
does not change the behavior of our algorithms, only makes them more efficient. The
Ludwig-style Algorithm 1 together with an evaluation function satisfying the above
properties applies to solving binary parity games.

Ludwig [16] shows that his algorithm for simple stochastic games has a 2°0(/70)
upper bound on the expected number of improvement steps. With only minor modifica-
tions, the same proof shows that the Ludwig-style algorithm together with our strategy
evaluation function has the same bound for parity games [3].

As shown in Section 7, the value space of the strategy evaluation function we use
allows for at most O(n® - (n/k + 1)¥) improvement steps. Since the algorithm only
makes improving switches, the upper bound on the number of switches of the combined

approach is
; 3. (P ¥ O(y/10)
mm(O(n (k+1>),2 .

This is better than any previous algorithms (exponential in k) for binary parity

games whenever k = Q(né/2+6) for € > 0. When £k is small, the first term in the bound
makes the algorithm comparable with the previous algorithms exponential in k. Note
that the algorithms in [20] and [24] have the bounds 2°(v™0) and poly - 2™ respectively.

Any parity game reduces to a binary one. This allows for a subexponential algorithm
for games with subquadratic total vertex outdegree. For arbitrary games the reduction
may give a quadratic blow-up in the number of vertices and the Ludwig-style algo-
rithm becomes ezponential in ng. In Section 9 we achieve a subexponential bound by
employing a more involved randomization scheme due to Kalai [15].

4 Values, Comparisons, Attractive Switches

In this section we define the ‘value’ of a strategy — the target iteratively improved by
our algorithms, until a local optimum is found (which will also be proved global). Given
a strategy o of Player 0, its value is a vector of values of all vertices of the game. The
value of each vertex is computed with respect to the pair of strategies (o, 7) of Players
0 and 1, respectively, where 7 is an ‘optimal’ response counterstrategy against . The
optimality of 7 is essential for guiding Player 0 in improving o. We delay the issue of
constructing optimal counterstrategies until Section 8, assuming for now that Player 1
always responds with an optimal counterstrategy.

4.1 Vertex Values

For technical reasons to be explained shortly, each vertex is assigned a unique value,
called a tint.

Definition 6 (Tints). A bijection t : V — {1,...,n} such that
c(u) < ce(v) = t(u) < t(v)
assigns tints to vertices. The color of a tint s € {1,...,n} equals c(t~1(s)). O

Note that tints of vertices of the same color form a consecutive segment of natural
numbers. Subsequently we identify vertices with their tints, and slightly abuse notation
by writing c¢(t) for the color of the vertex with tint ¢.

Definition 7 (Winning and Losing Colors and Tints). Even colors

are called winning for Player 0 and odd colors are winning for Player 1. Tint t is
winning for Player ¢ if its color ¢(t) is winning for Player i. A color or tint is losing
for a player if it is winning for his adversary. o

Note that tints of different colors are ordered as these colors. In Section 4.2 we will
define that within the same winning (resp. losing) color the bigger (resp. smaller) tint
is better for Player 0.

When the players fix their positional strategies, the trace of a play from any vertex is
defined as the set of vertices visited: a (possibly empty) simple path leading to a simple
loop. Roughly, the value of a vertex with respect to a pair of positional strategies consists
of a loop value (largest or major tint) and a path value (a record of the numbers of
more significant colors on the path to the major, plus the length of this path), as defined
below.

Notation 2 Denote by V? the set of vertices of color i and by V>! the set of vertices
with tints numerically bigger than . m|

Definition 8 (Trace, Loop Major). Suppose the players fix positional strategies o
and T, respectively (not necessarily optimal). Then from every vertex ug the trace of
the play is the sequence of vertices visited, up to the first repetition. It takes a §-shape
form: an initial simple path (of length ¢ > 0) ending in a loop of length s — q:

U, - . - Ugs - - - Us = Ug, (1)

where all vertices u; are distinct, except uqs = us. The vertex of mazimal tint on the
loop is called the loop major. O

Definition 9 (Vertex Values and Path Values). Consider the trace of a play
UQs -+, Ug, -+ - Us = Uq determined by a pair of positional strategies o and T from ver-
tex ug as in Definition 8. Let u,, with r € {q,...,s — 1}, be the loop major. The value
Vo, (Uo) of ug with respect to a pair of positional strategies o and T has the form (¢, P, p)
and consists of:

Loopr VALUE (TINT) ¢ equal to the tint t(u,) of the loop major.
PatH CoLOR HIT RECORD RELATIVE TO t defined as a vector

P = (myg,mp—1,...,m;, 0,...,0),

7 — 1 times
where j = c(t) is the color of the magjor tint t, and
m; = |{u0,u1, ou VN V>t’

s the number of vertices of color i > j on the path beginning in ug and ending
the first time it hits the the loop major (except that for the color | of the major we
account only for the vertices with tints bigger than t.)

PATH LENGTH p=1.

Call the pair (P,p) the path value.]

Note that the path value is (0,0) for the loop major and that the color hit record is
0 for all vertices on the loop.

The reason of the complexity of this definition is to meet the criteria enumerated in
Section 3 and simultaneously obtain the ‘tightest possible’ bound on the number of iter-
ative improvements. Theorem 5 settles such a bound for the measure from Definition 9,
namely O(ngn? - (n/k + 1)%).

Vége and Jurdzinski [24] assign similar values to vertices with respect to a pair of
strategies. The difference lies in the definition of path color hit records. The evaluation
in [24] records the set of all vertices with bigger tints than the loop major, instead of
recording the number of vertices of each color. The benefit of our modification is that
instead of 2" possible path color hit records, we get at most (n/k +1)*; see Theorem 5.

4.2 Value Comparison

Now we proceed to comparison of vertex and path values. Later this allows us to define
what it means for a strategy to be ‘better’ than another, with respect to the measure. In
the sequel, when saying ‘attractive’, ‘better’, ‘worse’, ‘profitable’, etc., we consistently
take the viewpoint of Player 0.

Definition 10 (Preference Orders). The preference order on colors (as seen by
Player 0) is defined as follows:

’

ce=<ciff (=)< (=1)° - (.
The preference order on tints (as seen by Player 0) is as follows:

t=<t"iff (—1)°® .t < (=) ¢

We thus have --- <5<3<1<0<2<4<... on colors.

Definition 11 (‘Lexicographic’ Ordering). Given two vectors (indexzed in descend-
ing order from the maximal color k to some l > 1)

P = (mp,mp_1,...,m1,my),

Pl = (m;i)’ m;c—lv s 7mg+17m;)a
define P < P’ if the vector
((7].)]C c My, (71)’671 M1y e ey (71)l+1 s My, (71)1 . ml)

is lexicographically smaller (assuming the usual ordering of integers) than the vector
((_1)k : m;w (_1)k_1 : m?q—la SRR (_1)l+1 ! m;-&-lv (_1)l . m;) . O

This ordering is consistent with what we consider ‘better’ for Player 0.

Definition 12 (Path Value Comparison). For two vertex values (t,Pi,p1) and
(t, Py, p2), where t is a tint, j = c(t) is its color, and

Pl = (mlmmkfla-~'7mj+17mj7"‘7m1)u

/ li / li /
P2 = (mlwmk—la"'7mj+17mj7"'>ml)a

say that (P1,p1) <¢ (P2,p2) (pronounced: for Player 0 path value (Pa,p2) is more
attractive modulo ¢ than the path value (P1,p1)), if:

1. either (my, mp—1,...,mj1,m;) < (Mp,mp_y,...,mjq,ms),
2. or (Mg, Mg—1, ..., Mjp1,my) = (M, my_q,...,miy,m}) and
(=17 -p1 > (=1) - p. (2)

Remark 1. Note that (2) means that shorter (resp. longer) paths are better for a player
when the loop tint ¢ is winning (resp. losing) for him.

Definition 13 (Vertex Value Comparison). For two vertex values define (t1, Py, p1) <
(tQa P27p2) Zf

1. either ty < tq,
2. ort; =to =t, and (P1,p1) <¢ (P2, p2). =

Definition 14 (Vertex Values). The value v,(v) of a vertex v with respect to a
strategy o of Player 0 is the minimum of the values v, - (v), taken over all strategies T
of Player 1. a

In Section 8 we show that the ‘minimum’ in this definition can be achieved in all
vertices simultaneously by a positional strategy 7 of Player 1.

Definition 15 (Strategy Value). The value of a strategy o of Player 0 is a vector of
values of all vertices with respect to the pair of strategies (o,T), where T is an optimal
response counterstrategy of Player 1 against o; see Section 8. O

It turns out, however, that two strategies may have equal values in this sense, but
one is ‘better’ than the other. We therefore define the order on strategies in a slightly
more refined way as follows.

Definition 16 (Strategy Comparison). A strategy o’ improves o, symbolically o <
o', if:

1. V5 (v) X v (v) for all vertices v, and
2. either a) there is at least one vertex u with vy(u) < vy (u) or b) there is at least
one vertex that improves the value of a successor, i.e., Vs(o(u)) < Ve (' (w)). O

We conclude this section with a simple but important property.

Proposition 1 (Transitivity). The relations < on colors, tints, vertex values, strate-
gies, and < on path values (for each t) are transitive. O

4.3 Attractive Switches
Our algorithms proceed by single attractive switches only.

Definition 17 (Attractive Switch). Let v1, vy be successors of a vertex v, o be
a positional strategy of Player 0 with o(v) = v1, and let v,(v1) = (t1,P1,p1) and
Vo (v2) = (ta, Py, p2) be the values with respect to o of the vertices v1 and vy, respectively.
Consider a single switch in strategy o, consisting in changing the successor of v from
vy to ve. The switch is called attractive if (t1, P1,p1) < (t2, P2, p2). O

Remark 2. Note that deciding whether a switch is attractive (when comparing values
of its successors) we do not directly account for the color/tint of the current vertex.
However, this color/tint may be included in the values of successors possibly dependent
on the current vertex.

From the definition of attractiveness it is not obvious that making attractice switches
always provides for a value improvement and guarantees termination. Indeed, after mak-
ing an attractive switch the strategy changes and the values of vertices are recomputed
with respect to this new strategy and an optimal Player 1 counterstrategy. However, in
Section 5 we introduce the notion of profitability, guaranteeing that the new strategy is
better in the sense of Definition 16 and show profitability of attractive switches (actu-
ally, equivalence of attractiveness and profitability). In Section 7 we bound the maximal
possible number of attactive/profitable switches.

The algorithm terminates once attaining a strategy without attractive switches.

Definition 18 (Stable Strategy). A strategy o of Player 0 is stable if it does not
have attractive switches with respect to T(a), an optimal counterstrategy of Player 1. O

(1,(1,0,0),1) (1,0,0),1)
SOSREREO! 0
(1, (0,0,0),0) (1,(0,0,0),1) (1, (0,0,0 (0,0,0),0)
(0, (1,0,0),1) 4. (2,(0,0,0),0)
IONEIES 00
(0,(1,0,0),2)" (0, (0,0,0),0) (2, (000 000) 2)

Fig. 1. An example run of a strategy improvement algorithm.

In Section 8 we show that all optimal counterstrategies of Player 1 provide for

the same values. Thus stability of o in the previous definition may be checked after
computing any optimal counterstrategy 7(o).

Stability is another term to characterize a locally optimal strategy (with respect to

attractiveness).

FEzample 1. To illustrate the computation of the measure and the general flavor of strat-
egy improvement algorithms, Figure 1 shows an example parity game with a sequence
of improving strategies.

0.

The parity game. Player 0 owns vertices a and ¢, and Player 1 owns vertex b. In
this particular game, there are three colors and three tints, and they happen to
coincide. We will now show a run of a strategy improvement algorithm using the
measure defined earlier in this section. Steps 1-4 show the strategies in each step.
Dotted arrows are those not selected by the current strategy of Player 0 and the
corrseponding optimal counterstrategy of Player 1.

. In the initial strategy, Player 0 goes from a to a and from c to a. Player 1’s optimal

counterstrategy goes left in b, since that choice provides for a shorter path length.
The switch in a is attractive since b has a better value than a (the good color 2 is in
the color hit record) and the switch in ¢ is attractive since the path length is longer
and the loop is losing.

. Player 0 could do any one of the two attractive switches, but say he switches in b.

The optimal counterstrategy of Player 1 is still to go left, since it gives a better loop
value in b. As guaranteed by Theorem 3, the new strategy gave a better value even
after Player 1 recomputed his counterstrategy. Now the switch in ¢ is non-attractive,
but the switch in a is still attractive.

. Player 0 has now switched in a. The optimal counterstrategy of Player 1 has now

changed: going left would give a loop over a and b, with tint 2, but going right
provides the 1-better loop tint 0. The vertex values of both a and b have improved.
The switch in ¢ has become attractive, because the good color 2 appears in the color
hit record.

After switching in ¢, Player 0 has now reached a strategy with no attractive switches.
As guaranteed by Theorem 4, this means that the stategy is optimal. Note that both
Player 1’s two possible counterstrategies are equally good at this point: even if the

10

loop length is greater if he chooses to go right, this is not reflected in any vertex
value (the path length of the loop major is 0).

4.4 Are More Shallow Measures Possible?

One could imagine even tighter measures than given by Definition 9. For instance,
instead of our color hit record, one could record only one bit for every color > c¢(t),
indicating whether a vertex of this color appears on the path. However, this definition
would violate the optimality criterion of Section 3, as demonstrated by Figure 2. Round
and square vertices in Figure 2 belong to Player 0 and 1 respectively. The value of
the left successor of vertex v colored 2 would be better than the value of the right
successor, since the odd color 15 is part of the path from the vertex colored 15 to the
loop. However, switching right in v (with a worse value) would let Player 0 win in more
vertices. We thus have a stable strategy that is not optimal.

16

v /

;/G> 1

Fig. 2. Inattractive switch in v allows Player 0 to win in more vertices.

Currently we do not know any evaluation functions on strategies that would have all
the required properties and possess a more shallow value space. The existence of such
measures is not excluded.

4.5 Path Comparison Properties
Proofs in the subsequent sections rely on the following technical lemmas.

Lemma 1. If (Fy,po) =¢ (P1,p1), then (Q + Po,q + po) = (@ + P1,q + p1), where
Q + P; is vector addition.

Intuitively, by extending the paths Py and P; with the same path @, we do not change
their initial order.

Proof. The first position in which the vectors Q + Py and @ + P; differ is the same as
the first position in which Py and P; differ. If this position is one of k,...,c(t), then
(Q+ Po,q+po) =+ (Q+ P1,q+ p1), since (Po,po) =+ (P1,p1). If, on the other hand, Py
and P; coincide in all positions k, ..., c(t), then (—=1)¢®) . (¢ + po) < (—=1)°® - (g + p1)
iff (—1)¢®) . py < (=1)°® . p;, and the conclusion follows.

11

Lemma 2. Let p > 0, ¢ > 0 be integers and P, @ be path color hit records relative to
a tint t, where Q corresponds to a path with the largest tint t' > t. Then

(P,p) <t (P+Q,p+q).

Intuitively, adding a good path @ to P gives an improvement.

Proof. Assume t < t'.

If t < ¢ (numeric comparison) then ¢’ is 0-winning and the first position (counting
from the largest color k in decreasing order) where P and P 4 @ are different is ¢(t'),
and P + @ is numerically greater at this position. Hence (P, p) <; (P + Q,p + q).

If t' < t then t is O-losing and P and P+ @ coincide in all positions k, . .., ¢(t). Since
t is 0-losing, the larger path length determines that (P, p) <; (P + Q,p + q).

5 Profitability of Attractive Switches

Our algorithms proceed by making attractive single switches. Attractiveness is estab-
lished locally, by comparing values of the successors of a vertex with respect to the
current strategy; see Definition 17. In this section we prove that making an attractive
switch actually leads to an improvement, captured by the notion of profitability.

Definition 19 (Profitability). Say that a single switch in a vertez v from o to o’ is
profitable if:

1. vo(w) = v (w), for all vertices w, and
2. either a) vy (v) < vy (v), or b) Vs (0(v)) < vy (0 (V). a

Condition 1 requires that all vertices (non-strictly) improve their values after a
switch, while 2 stipulates a strict value improvement either for the switch vertex itself
(2.a), or for its successor (2.b).

Proceeding by profitable switches guarantees termination, since vertices can only
improve their values, or get better successors, a finite number of times.

Proposition 2. Every sequence of profitable switches terminates. O

Section 7 establishes an upper bound on the number of profitable switches.

Profitability of attractive switches proved in this section (Theorem 3) is a conse-
quence of the the preceding complicated definitions of values and value comparison.
On the one hand, profitability of attractive switches guarantees termination of any al-
gorithms based on attractive switches. On the other hand, it improves the efficiency
of every improvement step, since it allows our algorithms to find better neighbors by
looking only at attractive switches rather than computing the values of all neighbors,
as explained in Sections 3 and 9.

Theorem 3 (Profitability). Every attractive switch is profitable.

(Corollary 2 will show the converse, i.e., the notions of profitable and attractive are
actually equivalent.)

Proof. Consider an attractive (say left-to-right) switch in vertex v: from vertex v; with
value (t1, P1,p1) to vertex ve with value (o, P2, p2). Let o and ¢’ be the strategies before
and after the switch, respectively. Let 7 and 7' be optimal counterstrategies against o
and o’, respectively.

We start by proving that the second property of Definition 19 holds for all attractive
switches. There are two major cases.

12

Case 1. In his optimal response after the switch in v, Player 1 does not revisit v
starting from ve. Assume v,/ (v2) < v, (v2). This contradicts the fact that 7 is optimal,
since the trace taken by 7/ not going through v was available also before the switch. So
Vgr(V2) ¥ vy (v2). If t1 < to the loop value at v will improve after the switch. If ¢; = ts,
Lemma 1 implies v, (v) < v,/ (v). This finishes the proof of Case 1.

Case 2. In his optimal response after the switch in v, Player 1 does revisit v starting
from vy. Consequently, we get a loop through v and vo. We should prove that the value
of v on this loop is better for Player 0 than the value before the switch, or remains the
same while vy has a better value after the switch than v; had before the switch.

In this case, the loop values t; = t5 coincide. Indeed, Player 1 can reach v from vy,
for which the loop value before the switch is tq, so to < t1. Also, attractiveness means
that t2 t tl. Denote t := tl = tz.

Any path from vy to v could have been taken by Player 1 before the switch. Respec-
tively, we analyze cases when such a path was or was not used by Player 1 before the
switch.

Subcase 2.1. Suppose such a path was actually taken by Player 1 before the switch. By
definition, (Ps,ps) is the <;-smallest path value of any paths from vy to t.

1 If Py # P, then the largest color in P, — P; is even, since the switch is attractive.
So the largest tint ¢’ on the path from v, to v is <-better than ¢. Since 7 is optimal,
this is the worst possible path from vy to v. Hence the new loop over v and vy has
t' as the <-largest tint, so the loop tint has improved.

2 If P, = P, we first consider the case when v was on the loop over t before the
switch. This implies P, = P> = 0. Thus there is no path from vy to t or v with an
odd-colored highest tint bigger than ¢. This means that the loop after the switch
will have a major t' < ¢. If ¢(t) is odd, then p; < po, and either t/ < ¢ or t/ = ¢. If
t'" < t then we are done. If ¢ = ¢, the path length in vy will improve, since the path
from vy to t achieving (Py,p2) is l-optimal. Thus the path length in v improves,
unless v is the loop major; in any case the value of the successor of v improves.

If, on the other hand, ¢(t) is even, then py < p1, so no l-optimal path from vy to
t passes through v (unless t = v and the path ends up in v). Hence, any 1-optimal
path from vs to v passes through ¢, and such a path will be taken after the switch.
Thus the loop tint in v after the switch is ¢ and the path length is py. If v # ¢ then
the path length in v improves; if v = ¢ then v gets a better successor.

Finally, if v was not on the loop over t before the switch, then p; < py so ¢(t) is odd.
Also, by attractiveness there can be no path from vy to v with a highest tint ¢ such
that ¢(t’) is odd and ¢’ > ¢. Therefore, the loop tint after the switch is smaller than
or equal to t. If it is smaller, then it is also better, and we are done. If it is equal,
then the path value in v after the switch will be (Ps, p2) or better; any worse path
from vy to t would have been taken before the switch. Thus by Lemma 1 the value
will improve in v.

Subcase 2.2. Suppose such a path P from vs to v was not taken by Player 1 in his
optimal response before the switch (alternatively to Subcase 2.1), and Player 1 preferred
P, instead, as shown in the Figure 3 (where the round vertex belongs to Player 0, square
vertices may belong to any player, Py is a path from vs through v to the loop with major
tint t).

13

Fig. 3. Illustration to case 2.2 of the proof that attractiveness implies profitability.

In the sequel, we abuse notation and identify the paths Py, Ps, P, Py with their
color hit records. From attractiveness and optimality conditions we derive:

(t»-Plapl) =< (t7P27p2) = (t7P2/7p/2) = (taPI +P2H7p1 +p/2/)a

where (Py,p3) is the path from vs to v. The first inequality above follows from at-
tractiveness, the second says that Player 1 did not take the path through v before the
switch.

By transitivity, (¢, P1,p1) < (¢, Py + P4 ,p1 + ph). By definition of < it follows that:

— either P} contains a major color from £k, ...,¢(t) winning for Player 0 and corre-
sponding to a 0-better tint than ¢,

— or PJ does not contain a color from k, ..., c(t) (note that c(t) is odd in this case,
since pfy > 0).

In both cases, the new loop through vs and v improves the loop value of v after the
switch. This finishes the proof of the first claim.

Proof for property 1 of Definition 19. Consider any vertex w # v, and a 1-optimal trace
from w under ¢’. If the trace does not contain v it would be possible under o as well,
and thus v, (w) < vy (w). Assume the trace contains v.

Let ¢ and ¢’ be the loop values of w under o and o', respectively. We first prove
that ¢ > t. Since w reaches v after the switch, they have the same loop value, which is
better than or equal to the loop value of v before the switch (as shown above), which
is better than or equal to ¢ (since v was reachable from w before the switch).

We now prove that the path value of w does not decrease with the switch. If ¢ = t(w)
then the path value is constant (0,0) so either it did not change with the switch or the
loop tint changed, hence improved, with the switch. Assume ¢’ # t(w) and consider the
path P taken in the optimal counterstrategy of Player 1 from w to t against ¢’. If P
does not contain v then it was possible under o as well, so the 1-optimal path before
the switch was at least as bad as P. If P contains v, consider the initial segment of

14

P leading up to v. This segment was possible under o, so Lemma 1 implies that the
1-optimal path before the switch was at least as bad as P.
It follows that v, (w) = v (w).

FEzample 2. We conclude this section with a small example explaining why we need
profitability as introduced by Definition 19. Consider the game in Figure 4.

Fig. 4. Example showing the need for the complicated definition of profitability

The switch in vertex ¢ from the solid to the dashed arrow is attractive, because
a seems better than b (shorter path). However, the values of the strategies o before
and o9 after the switch are the same, namely (the three components are the values of
vertices a, b, c):
((2,0,1),(2,0,2),(2,0,1))

This example shows that comparing just values of strategies as in Definition 15 would
not provide for an improvement (profitability). According to our Definition 19, the
switch from o7 to oo described above is profitable, because the new successor of ¢ has
a better value. In the proof, this type of situation is considered in the ends of the first
and second paragraphs of Subcase 2.1.2. O

Remark 3. It would be desirable for the strategy value to reflect the improvement of
attractive switches. We note briefly that this can be achieved by adding a fourth compo-
nent to the measure, recording the loop length for any loop majors and 0 for non-major
vertices.

The fourth components of two vertex values will be compared only if the other three
are equal. In this case, similarly to the third component, longer (shorter) loop lengths
are favored when the loop tint is odd (even). As shown in the proof of Theorem 5,
any attractive switch that does not give a strict improvement in the switching vertex
improves the path length in one of its successors, which for the loop major is equal to
the loop length minus 1. Thus the modified measure has the property that a switch is
attractive if and only if it strictly improves the value.

6 Stability Implies Global Optimality

In this section we show that iterative improvement can terminate once a stable strategy
with no attractive switches is found (see Definition 18). In more general terms, every
local optimum is global. This is one of the main motivations for the complex strategy
evaluation definitions.

The theorem below states that any stable strategy has a value that is better than or
equal to the values of all other strategies. This means that any stable strategy is globally

15

optimal, which is crucial in the subexponential complexity analysis. As a consequence
of the theorem, we also derive that any stable strategy is winning from all vertices in
the winning set of Player 0 (Corollary 1), which means that it is a solution to the parity
game. This ensures correctness of the algorithms.

Theorem 4 (Optimality). Let o be a stable strategy of Player 0. Then for all strate-
gies o’ of Player 0 and all vertices v of the game, v,(v) = vy (V).

Proof. Let o be a strategy with no attractive switches with respect to 7 = 7(0), an
optimal counterstrategy of Player 1. We will show that no strategy ¢’ of Player 0 can
improve the value of any vertex, even if Player 1 fixes and continues to invariably use
his strategy .

Suppose, towards a contradiction, that there is a strategy ¢’ and a vertex wq for
which v, - (wo) < Ve - (wp). Figure 5 depicts this situation, where round vertices belong
to Player 0 and square vertices may belong to any player, bold paths are parts of the
traces determined by (o,7) where o and ¢’ coincide, dashed edges are taken only by
o’ and normal edges are taken only by o. Also, (r;,C;,¢;) and (¢, B;, b;) are values of
vertices, whereas (D;,d;) and (P;,p;) are path values, all computed with respect to
(0,7). In particular, the loop shown in Figure 5 is determined by the trace from wyq
under the pair of strategies (¢, 7). Denote this loop A.

(t, B1,b1)

O,QIO)
1,)

wo Q w1 wo

S S

(r1,C1,c1) (r2,C2,c2) (rq,Cqscq)

(ty Brm—1,bm—1)

Fig. 5. Illustration to the proof that stable strategies are optimal.

We derive the desired contradiction in several steps.

1. First, we claim that all loop values of vertices u; with respect to (o, 7) coincide
(call this value ¢, as shown in the picture). Indeed, suppose (j+1 mod m) has a O-better
loop value than w; (such a pair should exist if not all loop values of u;’s are equal).
Then switching from o in u; is attractive, contradicting the assumption that o is stable
with respect to 7.

16

2. Second, we show with a similar argument that r = 7o = -+ = 14 = 1441 = t.
Suppose not, and r; < r;41 for some i. Then the switch in w; is attractive, contradicting
the assumption that o is stable with respect to 7.

3. Now we prove that the vertex of tint ¢ actually belongs to A. Suppose not. Then
the major tint ¢’ on A must satisfy ¢’ > ¢: by assumption vy - (wo) = Ve (wp), s0 t' = 11,
and we showed that r; > t. Since none of the switches in u; (from a normal to a dashed
arrow) is attractive, we derive the following system of inequalities, one for each u;:

(Py+ Bi,p1 +b1)

(Bo, bo)
1, b1 (P2 + Ba,p2 + b) (3)

=t
(Bi.by)

(Bm—1,bm—1) =¢ (Po + Bo,po + bo)
Lemma 1 applied to this system of inequalities implies
(Bo,bo) =¢ (Po+ Py + -+ Pp1+ Bo,po +p1 + -+ pm—1 + bo) (4)

By Lemma 2, (4) is a contradiction, because the largest tint represented in Py +
P+ -+ P,_1ist',and t' = t. Thus ¢ is on \.

4. We now proceed to proving that ¢t = ¢, where ¢’ again is the loop major on A.
Suppose not. Then we know that ¢ < ¢’ (numerical comparison), since ¢’ is the major tint
on A. This also implies that ¢(t’) is even since ¢’ > t. Assume without loss of generality
that ¢ belongs to the segment of A between the successor of u,,—1 and ug (we do not
lose generality because the argument does not deal with the initial path through w;’s).
Let (P}, p}) be the path value in the vertex succeeding u,,—1 on A. We can now build
a system of inequalities similar to (3):

(Bo,bo) =¢ (PL+ B1,p1 +b1)
(B1,b1) =¢ (P2 + Ba,p2 + b2) (5)

(Bmflabmfl) tt (P(;apé))
Again applying Lemma 1 gives
(Bo,bo) =¢ (P14 -+ Po_14 Py, p1 + -+ + Pm—1 +10) (6)

The vertex succeeding ug under ¢ is part of the loop over ¢ under o and thus By must
be the all-zero vector. If ¢’ belongs to the part of A represented by (P + -+ + Pp—1 +
Py,p1+ -+ pm—1+Dp)), then (6) is a contradiction, since ¢" would be the highest tint
on this segment and ¢(t') is even. Also, if ¢’ instead lies between t and ug on A, we get
a contradiction since then ¢ and not ¢ would be the major tint on the loop under o.
Thus t =t'.

5. We proceed to demonstrating that ¢ = ¢ = r;, for all i. Indeed, since v, (wg) <
Vg r(wp), we must have t' = r1. Together with ¢ = ¢/, shown above, and the fact that
the sequence 1,79, ...,7g+1 = ¢ is nonincreasing, we obtain t = ¢/ = r;, for all 4.

6. Now we finally show the contradiction. We know that all paths from all w;’s and
u;’s, both with respect to (o, 7) and (¢',7), lead to the same major vertex t on A. Let
u;—1 be the last vertex on the path from wq to ¢t under (¢’,7) where o and ¢’ diverge.
Let (P/,p}) be the path value of its successor with respect to (o, 7).

17

On the one hand, from the assumption that (o/,7) gives a better value for wy we
obtain:

(Do + Cr,do +c1) <4
(Do+Dy+-+-4+Dg+Pi+-+P,dy+di---+dg+p1+---+p;) (7)

On the other hand, from non-attractiveness of switches, we have

(C1,c1) = (D1 4+ Co,dy + ¢c2)

(Ca,c2) =t (D2+ Cs,d2 + c3)

(C3,¢3) =1 (D3 + Cq,ds + c4)

(Cys¢cq) =t (Dg + Bo,dy + bo)

(Bo,bo) =+ (Py + B1,p1 + b1)

(B1,b1) =t (P2 + Ba,p2 + bo)
(Bi—2,bi—2) =4 (Pic1 4+ Bi—1,pi—1 + bi—1)
(Bi-1,bi—1) =¢ (P}, p;)

Applying Lemma 1 to this system, we derive:
(Ciye1) =i (Dy+ -+ Dyt Pi+--+ Plody+-+dy+p1+ - +p))
Applying Lemma 1 once again to the last inequality, we get:
(Do +Ch,do+c1) =t (Do+--+Dg+Pi+--+P.dy+ - +dg+pi+ -+,
which contradicts (7). This finishes the proof.

As consequences of Theorem 4, the strategy evaluation function presented in Sec-
tion 4 has the remaining desired property stated in Section 3:

Corollary 1 (Stable Strategies are Winning). Any stable strategy of
Player 0 is also winning from all vertices in the winning set of Player 0 and has a value
that is at least as good as that of any other strategy.

Proof. Let o be a stable strategy. Theorem 4 states that it is at least as good as all other
strategies. Moreover, all vertices with 0-winning loop values under ¢ are winning for
Player 0, since the traces from them under o and an optimal counterstrategy of Player 1
lead to O-winning loops. Also, no vertex with a 1-winning loop value with respect to o
can be winning for Player 0, since none of his other strategies gives them a better value.

This means that as soon as a stable strategy is found, the iterative improvement
algorithms may stop.
From Theorem 4, we can also derive the equivalence of profitability and attractive-

ness.

Corollary 2. Any profitable switch is also attractive.

18

Proof. Suppose that a switch in vertex v from o to ¢’ is profitable but not attractive.
Remove from G all edges leaving vertices of Player 0 except those used by ¢ and ¢’. In
the resulting graph, o is stable, and thus by Theorem 4, the other strategy ¢’ cannot
have a better value. Therefore, the only possibility is that the value in v remains the
same and v, (0(v)) < v,/ (0’ (v)). But this is a contradiction, since v, (c(v)) = v, (0’ (v))
(the switch is not attractive) and v, (o’(v)) = vy (0/(v)) (o is stable, hence optimal).

This result shows that only looking at attractive switches is no restriction compared
to actually evaluating all neighboring strategies (all strategies obtainable by a single
switch from the current strategy).

7 Complexity: Depth of the Measure Space

In this section we provide an upper bound on the maximal number of improvement
steps of any iterative improvement algorithm using our definition of strategy values.
We need the following technical lemma.

Lemma 3. If a profitable switch in v from o to o’ does not change the value in v, then
the loop walue in v under both strategies is t(v), and for all vertices w of the game,
Vo (W) = Vo (w).

Proof. Assume the switch in v from o to ¢’ does not change the value in v. Defini-
tion 19 implies that v,(o(v)) < vy (o' (v)). If v was not a loop major, its path value
would depend on its successor. Thus Lemma 1 applies and gives v,(v) < vy (v), a
contradiction.

Now consider any other vertex w. If the trace from w with respect to ¢ and an
optimal counterstrategy 7 did not go though v, the value in w does not change. Indeed,
the same trace is still available to Player 1, so v,(w) *= v,/ (w), and on the other hand
Vg (w) <X vy (w) by Theorem 4, since the switch was attractive.

If the trace from w under (o, 7) did pass through v, the loop value ¢ of w remains the
same. Also, the same paths from w to v are available to Player 1 under both strategies,
so the path value also cannot improve.

Theorem 5. The strategy evaluation function allows for at most
O(ng - n? - (n/k + 1)*) profitable switches.

Proof. For each vertex there are Hf:1(|Vi| + 1) possible color hit records. This expres-
sion takes its maximum when there are equally many vertices of each color. Thus at
most (n/k + 1)* color hit records are possible. There are also n possible loop val-
ues and n possible path lengths. Thus each vertex can improve its value at most
n?(n/k + 1)* times. Profitable switches that do not improve values are only possi-
ble in vertices v with current loop value t(v), by Lemma 3. The successor after such a
switch always has an empty color hit record, since it must be part of the loop over v.
Therefore, it can only be the path length of the new successor that is better than the
path length of the old one. This can only happen at most n times per vertex, namely
at most once per possible loop length when the value of v is (t(v),0,0). Thus only
n+n%(n/k + 1)* = O(n?(n/k + 1)*) switches are possible in each vertex of Player 0,
and we get an upper bound of O(ngn?(n/k + 1)*) on the total number of switches.

19

8 Computing Optimal Counterstrategies

In this section we present an algorithm for computing the values of strategies. Since val-
ues of strategies of Player 0 are defined as minima over all counterstrategies of Player 1,
the algorithm implicitly computes optimal counterstrategies. A counterstrategy 7 is op-
timal against o if for every vertex v in the game and every strategy 7 of Player 1,
Vg, (V) = vy (v). The correctness proof for the algorithm shows that there is at least
one counterstrategy that achieves the best possible value from every vertex. We also
show that the algorithm has polynomial time complexity.

To compute the values under a strategy o, partition vertices of G, into classes Ly
containing the vertices from which Player 1 can ensure the loop tint ¢, but cannot
guarantee any worse loop tint. This can be done by using finite reachability in G, as
follows. For each tint ¢ in <-ascending order, check whether ¢ can be reached from itself
without passing any tint ¢ > t. If so, Player 1 can form a loop with ¢ as major. Since
the tints are considered in <-ascending order, ¢ will be the best loop value Player 1 can
achieve for all vertices from which ¢ is reachable. Remove them from the graph, place
them in class L, and proceed with the next tint.

In a class L; there may be cycles that do not contain ¢. As the following property
shows, such loops must, however, have majors that are O-better than ¢. This is important
for the correctness of the algorithm.

Property 1. In every class L; the following holds. If a tint ¢’ is the biggest tint on a
cycle, then t < t'. a

Once the partition into classes L; has been accomplished, the loop value of each
vertex is known and we can proceed to computing the path values. For each class L,
Algorithm 2 below uses dynamic programming to calculate the values of 1-optimal paths
of different lengths from each vertex to ¢. For each vertex, the algorithm first computes
the optimal color hit record (abbreviated chr in the algorithm) over all paths of length
0 to the loop major (oo for each vertex except t). Then it calculates the color hit record
of optimal paths of length one, length two, and so forth. It uses the values from previous
steps in each step except the initial one.

Algorithm 2: Computing path values within a class L.
PATH-VALUES(L;)
(1) t.chr(0] < (0,...,0)
(2) foreach vertex v € L; except t
(3) v.chr[0] « oo
(4) for i —1to |Li—1
(5) t.chrli] « oo
(6) foreach vertex v € L; except t
(7) v.chr[i] < min<, {ADD-COLOR(t, v'.chr[i — 1], t(v)) :
v € Ly is a successor of v}

EN|

(8) t.pathvalue — ((0,...,0),0)
9) foreach vertex v € L; except t
(10) v.pathvalue « min, {(v.chr[i], i) : 0 < i < |L4|}

The function ADD-COLOR takes a tint, a color hit record, and a second tint. If the
second tint is bigger than the first one, then ADD-COLOR increases the position in the

20

vector representing the color of the second tint. The function always returns oo when
the second argument has value oo.

Lemma 4 (Properties of the Algorithm). Algorithm 2 has the following properties:

1. It correctly computes values of 1-optimal paths.

2. Optimal paths are simple.

3. The values computed are consistent with an actual positional strategy that guarantees
loop value t. O

Proof. First we prove clause 2 of the Lemma. Observe that following a path to ¢t with a
cycle can never yield a worse value than following the same path, but without traversing
the cycle. This is a consequence of Lemma 1. If all tints ¢ on the cycle satisfy ¢’ < ¢,
then ¢(¢) must be odd, and since traversing the loop contributes nothing to the color
hit record the shorter path will be better for Player 1. If on the other hand the major
tint ¢’ on the cycle satisfies t < t’, then ¢(#') must be even and traversing the cycle will
give a better color hit record. This proves that 1-optimal paths are simple.

Now we move on to proving clause 1. Consider the class C' of all paths p from all
vertices in L; to the major vertex t. We prove by induction on the length of such paths,
that for each vertex v the algorithm actually computes the values of the 1-optimal
paths of each length from v to ¢t. Note that these paths may be non-simple. Cycles
can be traversed a finite number of times (since the algorithm makes at most |L;| — 1
iterations). This is not a contradiction to clause 2, since the compluted paths are not
necessarily 1-optimal, only the best ones of a particular length.

Base: Path length = 0. There is just one path of length 0 in C (from ¢ to itself) and
obviously the algorithm correctly computes the optimal value in this case.

Inductive Case. Assume that the values computed for paths of all lengths j < i are the
values of the 1-optimal length j paths from each vertex to the major t. Consider any
vertex v. If no successor of v has a value other than oo for paths of length ¢ — 1 there
cannot be a path of length 4 from v to the loop major, and the value v.chrli] is correctly
set to oo.

If, on the other hand, at least one successor of v has a value for paths of length
1—1, then consider any successor v’ of v. By Lemma 1 any optimal path from v directly
via v’ coincides after the first step with the optimal path from v’. Thus the minimum
calculated on line (7) is the correct value for v.chr[i].

This finishes the proof of algorithm correctness. Finally, to prove clause 3 we first
observe that the algorithm maintains the following property:

If a value (P,p) has been computed for a vertex v other than t, then v has a
successor v' for which a value (P',p — 1) has been computed, such that P — P’
1s either the vector with all zeros, or it has all zeros except a one in the position
for color ¢(v).

Thus from every vertex except ¢t we can select one outgoing edge (positional strategy)
providing for the optimal value.

It remains to select one edge leaving ¢ to complete the description of a positional
strategy providing for optimal path values and loop value t. From at least one of the
successors of the major ¢, there must be a path to ¢ on which no tint ¢’ such that ¢ < ¢/
appears. Furthermore, by Property 1, no successor of t has a path to ¢ with biggest tint

21

t' such that ¢ < ¢t and ¢ < /. Thus there is at least one successor v of t such that the
1-optimal path from v to ¢ contains no even color bigger than ¢(t). By going from ¢ to
the successor with the worst value Player 1 can therefore ensure that the loop tint for
all vertices in L; will be ¢. Thus there is a positional strategy corresponding to the path
values computed by the algorithm.

Lemma 5 (Algorithm Complexity). The algorithm for computing an optimal coun-
terstrategy runs in time O(|V|-|E|- k), where |V| is the number of vertices of the graph,
|E| is the number of edges, and k is the number of colors.

Proof. Calculating the classes L, is straightforwardly done in time O(|V] - |E|). The
bottleneck in each call to PATH-VALUES is the double loop on lines (4) to (7). Taking
the <;-minimum over all successors of v requires one <;-comparison per edge leaving
v, and each <;-comparison requires O(k) integer comparisons. Thus the loop on line
(6) needs O(|E| - k) comparisons. It is executed), (|L¢| — 1) = O(|V|) times altogether
(counting all calls to PATH-VALUES), so the total running time is O(|V] - |E| - k).

9 Kalai-Style Randomization for Games with Unbounded
Outdegree

As discussed in Section 3, any non-binary parity game reduces to a binary one, and the
Ludwig-style algorithm applies. However, the resulting complexity gets worse and may
become exponential (rather than subexponential) due to a possibly quadratic blow-up
in the number of vertices. In this section we describe a different approach relying on the
randomization scheme of Kalai [15,12] used for Linear Programming. This results in a
subexponential randomized algorithm directly applicable to parity games of arbitrary
outdegree, without any preliminary translations. When compared with reducing to the
binary case combined with the Ludwig-style algorithm of Section 3, the algorithm of
this section provides for a better complexity when the total number of edges in the
game graph is roughly 2(nlogn).

Games, Subgames, and Facets. Let G(d, m) be the class of parity games with vertices of
Player 0 partitioned into two sets U; of outdegree one and U; of an arbitrary outdegree
6(v) > 1, with |Up| = d and m > > ;. 6(v). Thus d is a bound on the number of
vertices where Player 0 has a choice and m is a bound on the number of edges to choose
from. The numbers of vertices and edges of Player 1 are unrestricted. In the linear
programming setting, d and m correspond to the number of variables and constraints,
respectively.

Given a game G € G(d,m), a vertex v € Uy of Player 0, and an edge e leaving
v, consider the (sub)game F' obtained by fixing e and deleting all other edges leaving
v. Obviously, F € G(d — 1,m — §(v)) and also, by definition, F € G(d, m), which is
convenient when we need to consider a strategy in the subgame F' as a strategy in the
full game G in the sequel. Call the game F a facet of G. Every edge leaving a vertex in
U, uniquely defines a facet.

If o is a positional strategy and e is an edge leaving a vertex v of Player 0, then
we define ole] as the strategy coinciding with ¢ in all vertices, except possibly v, where
the choice is e. If ¢ is a strategy in G € G(d, m), then a facet F' is o-improving if some
witness strategy o’ in the game F' (considered as a member of G(d, m)) satisfies o < o”.

22

The Algorithm takes a game G € G(d, m) and an initial strategy o¢ as inputs. It uses the
subroutine COLLECT-IMPROVING-FACETS, described later, that collects a set of pairs
(F,0) of op-improving facets F and corresponding witness strategies o > 0.

Algorithm 3: Kalai-Style Optimization Algorithm
KAvLAl(game G, initial strategy og)

(1) if no vertex of Player 0 in G has more than one successor
(2) return oy

(3) M+~ COLLECT-IMPROVING-FACETS(G, o)

(4) choose a random pair (F,o1) € M

(5) o* «— KALAI(F,01)

(6) if o* has an attractive switch to some edge e in G

(7) return KALAI(G, 0*[e])

(8) else

9) return o*

The algorithm terminates because each solved subproblem starts from a strictly
better strategy. It is correct because it can only terminate by returning an optimal
strategy.

How to Find Many Improving Facets. Now we describe the subroutine COLLECT-
IMPROVING-FACETS. The goal is to find r facets that are og-improving, where r is
a parameter (Kalai uses r = max(d, m/2) to get the best complexity). To this end we
construct a sequence (G°,G',..., G"~9) of subgames of G, with G* € G(d,d + i) and
G' is a subgame of G+, All the d + i facets of G' are op-improving; we simultaneously
determine the corresponding witness strategies o/ optimal in G7. The subroutine re-
turns r facets of G, each one obtained by fixing one of the r edges in G™=% € G(d,r).
All these are ogg-improving by construction.

Let e be the target edge of an attractive switch from og. (If no attractive switch
exists, then oy is optimal in G and we are done.) Set G° to the game where all choices
are fixed as in og[e], and all other edges of Player 0 in G are deleted. Let o° be the
unique, hence optimal, strategy ogle] in GV. Fixing any of the d choices in G as in o
defines a og-improving facet of G with ¢° as a witness.

To construct Gt from G?, let e be the target edge of an attractive switch from o*
in G. (Note that ¢ is optimal in G* but not necessarily in the full game G. If it is, we
terminate.) Let G**! be the game G* with e added. Recursively apply the algorithm
to find the optimal strategy ¢'*! in G**!. Note that fixing the choice in G to any of
the d + i choices in G* defines a og-improving facet. Therefore, the final G"~¢ has r
op-improving facets facets.

Complexity Analysis. The following recurrence bounds the expected number of calls to
the algorithm solving a game in G(d, m) in the worst case:

T 1 T
T(d,m) < ZT(d,i)+T(d—1,m—2)+;ZT(d,m—i)+1
i=d =1

The first term represents the work of finding r different og-improving facets in
COLLECT-IMPROVING-FACETS. The second term comes from the first recursive call on

23

line 5.2 The last term accounts for the recursive call on line 7 and can be understood
as an average over the r equiprobable choices made on line 4, as follows. All facets of
G are partially ordered by the values of their optimal strategies (although this order is
unknown to the algorithm). Since the algorithm only visits improving strategies, it will
never again visit facets possessing optimal strategies that have values worse, equal, or
incomparable to o*. In the worst case, the algorithm selects the r worst possible facets
on line 3. Thus, in the worst case, the second recursive call solves a game in G(d, m — 1)
for i = 1,...,r, with probability 1/r. This justifies the last term.

Kalai solves the recurrence for r = max(d,m/2). The result is subexponential,
mO(/d/logd)

By symmetry, we can choose to optimize a strategy of the player possessing fewer
vertices. Let n; denote the number of vertices of player i. Since m is bounded above by
the maximal number of edges, (ng + n1)?, and d < min(ng,n), we get

min {QO(UOg"l)'\/m) 20((10g no)'W) }

as the bound on the number of calls to the algorithm. Combining it with the bound on
the maximal number of improving steps allowed by our measure yields

k
min {20((logn1)w/n0/logn0) 7 20((logn0)w/n1/logn1) 7 19) <7’l3 . (% + 1)) })
If ng = O(poly(n1)) and ny = O(poly(ng)) then this reduces to

win {20 (), 0 (), 0 (1 (1 1))},

These are the bounds on the number of recursive calls to the algorithm. Within
each recursive call, the auxiliary work is dominated by time to compute a strategy
value, multiplying the running time by O(n - |E| - k).

10 Conclusions and Further Work

We presented and justified two new discrete randomized algorithms for finding optimal
strategies in parity games. The algorithms rely on evaluating strategies and iteratively
improving their values, by making a change in one vertex at a time (single switch),
until an non-improvable strategy is obtained. This strategy is optimal and allows for
computing winning sets of both players.

The algorithms presented are the first algorithms with the two simultaneous worst-
case bounds:

A. subexponential (20(vV70) or 20(vn0log(n0))y in the number of vertices ng of Player 0,
B. exponential O(poly - (n/k + 1)*) in the number of colors.

Bound A is stronger than any currently known upper bound for other parity games
algorithms when the number of colors is unbounded (except the algorithm from [20]
that has the same bound A, but not B). Bound B makes our algorithms comparable

2 Actually, if § is the outdegree in the vertex where we fix an edge, then the second term is
T(d—1,m — §). We consider the worst case of § = 2.

24

with other parity games algorithms when the number of colors is fixed and small. It
should be noted that for all other such algorithms exponential, £2((n/k +1)®*)), worst
cases are known [7,14]. For our algorithms, which are randomized, currently there are no
known examples of exponential behavior [3,2] (experiments of [24] report the same for
their algorithm). We also believe that our bound B is ‘loose’, being based on a simple
count of the total number of values in the measure space. Is seems possible to improve
the bound A, by taking additional structure of parity games into account [6].

Both algorithms presented are discrete graph-theoretic, operating in terms of paths,
loops, colors, and directly apply to parity games without any intermediate translations.
The Ludwig-style algorithm applies to binary parity games and the Kalai-style algo-
rithm applies to games of unbounded vertex outdegree. To our knowledge, there were no
such subexponential algorithms for parity games before. The Kalai-style subexponential
algorithm from Section 9 straightforwardly extends to cover the more general class of
simple stochastic games with arbitrary vertex outdegree. Note that for such games the
algorithm of Ludwig [16] becomes exponential, requiring a preliminary translation with
a possibly quadratic increase in the number of vertices.

While presenting the algorithms, we tried to factor out abstract properties the strat-
egy evaluation function must satisfy in order for our algorithms to work correctly and
efficiently. Then we presented one such possible valuation providing for the bounds A
and B. Our valuation is close in spirit to the one used in [24]. We note in passing that
the latter measure can also be safely used with our algorithms, but it does not provide
for bound B, giving just O(2™), which is no improvement over A. The advantage of our
measure is that it is ‘more tight’, and takes only at most O(n® - (n/k + 1)¥) different
values. Since each step of the algorithms improves the value, this is an additional upper
bound B on the number of iterations. This is an improvement over bound A when the
number of colors is small.

The advantages over reducing parity games to simple stochastic games and solving
them with the algorithm of [16] are: (1) we do not have to solve Linear Programming
problems with high-precision arithmetic; (2) our small measure space allows for better
complexity when the number of colors is small; (3) our method is more direct, in the
sense that all work is done in terms of parity games without reducing to other problems.
The algorithm of [20], although it does not rely on Linear Programming, optimizes
graphs with weights represented as high-precision rational numbers. Recall that both
algorithms of [16,20] become exponential for the games of unbounded outdegree.

Let us briefly summarize directions for possible further improvements of the algo-
rithms and ideas presented in this paper.

1. For the algorithm of Section 9, we rely entirely on Kalai’s solution of a recurrence.
However, our recurrence is somewhat better than the one for the Linear Program-
ming case. Also, our measure space is partially rather than linearly ordered. It is
plausible that a closer analysis of our recurrence, maybe taking more details of the
measure into account, could give a better asymptotic bound.

2. In this paper we only showed that making one attractive switch at a time is prof-
itable. Voge and Jurdzinski’s measure allows for making many attractive switches
and still get a strategy improvement. Showing the same (Profitability of Multiple
Switches) for our measure (already proved in [6]) allows us to use it with many
other iterative improvement algorithms, including:

All Profitable Switches Algorithm simultaneously making all possible profitable
switches,

25

Random Multiple Switches Algorithm simultaneously making a random sub-
set of such switches.

The properties of our measure guarantee that these are iterative improvement al-
gorithms [6]. Note that they are not local-search type, because the neigborhood size
considered in one step is not polynomially bounded in the dimension n (number
of vertices). Intuitively, such algorithms provide for ‘more agressive’ improvement
compared with the ones based on single switches. For a description, theoretical and
practical analysis of these algorithms see [3,2]. While no subexponential bounds have
been proved for these algorithms so far, they are known to work extremely well in
practice on problems with a similar structure (completely unimodal pseudoboolean
functions) [2].

3. As a consequence, proving Profitability of Multiple Switches for our measure also
improves the O(2") upper bounds of Vége and Jurdzinski [24] to a better bound B;
this is a substantial advantage when colors are few; recall that for many colors, our
bound A is better. This also immediately sets the bound B for all algorithms in
[2] applied to parity games, and allows to improve bounds of the form O(20-7727),
O(2°46m) from [3], since the ‘tighter’ range of values can be exploited.

4. By investigating more exactly what properties of the measure are used in our proofs,
it may be possible to invent new measures having even smaller value spaces.

5. The bound given by the measure space would also be improved if we could show
that the value after a switch is ‘often’ improved ‘much’ in some vertex. For instance,
it is not difficult to see that the total number of switches in vertices on a loop is
polynomial, using the fact that the measure space for such vertices is polynomial
in size. Therefore, one would like to show that a ‘big’ fraction of all switches are in
vertices on a loop.

6. Our algorithms rely heavily on the subroutine for finding optimal response strategies
of the adversary (Section 8). Since currently the dominating theoretical factor is the
number of iterations, we are satisfied with a direct polynomial algorithm. However,
in practice, when the number of iterations is usually small, the per-improvement-
step efficiency may become dominating. It would be important to find a more effi-
cient method to calculate optimal counterstrategies, possibly incremental.

7. Parity games are polynomial time equivalent to the p-calculus Model Checking. In-
terpreting the new measure in the p-calculus terms may allow for model checking the
p-calculus formulas directly by randomized subexponential iterative improvement
algorithms.

Acknowledgements. The authors thank anonymous STACS’2003 referees for construc-
tive remarks and suggestions towards improvement of the paper.

References

1. H. Bjorklund and S. Sandberg. Algorithms for combinatorial optimization and games
adapted from linear programming. Technical Report 2003-015, Department of Information
Technology, Uppsala University, 2003. http://www.it.uu.se/research/reports/.

2. H. Bjorklund, S. Sandberg, and S. Vorobyov. An experimental study of al-
gorithms for completely unimodal optimization. Technical Report 2002-030,
Department of Information Technology, Uppsala University, October 2002.
http://www.it.uu.se/research/reports/.

3. H. Bjorklund, S. Sandberg, and S. Vorobyov. Optimization on completely unimodal hy-
percubes. Technical Report 2002-018, Uppsala University / Information Technology, May
2002. http://www.it.uu.se/research/reports/.

26

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

. H. Bjorklund, S. Sandberg, and S. Vorobyov. A discrete subexponential algorithm for parity
games. In H. Alt and M. Habib, editors, 20th International Symposium on Theoretical
Aspects of Computer Science, STACS’2008, volume 2607 of Lecture Notes in Computer
Science, pages 663—674, Berlin, 2003. Springer-Verlag.

. H. Bjorklund, S. Sandberg, and S. Vorobyov. An improved subexponential algorithm for

parity games. Technical Report 2003-017, Department of Information Technology, Uppsala

University, 2003. http://www.it.uu.se/research/reports/.

H. Bjorklund, S. Sandberg, and S. Vorobyov. On combinatorial structure and algorithms

for parity games. Technical Report 2003-002, Department of Information Technology,

Uppsala University, 2003. http://www.it.uu.se/research/reports/.

A. Browne, E. M. Clarke, S. Jha, D. E Long, and W Marrero. An improved algorithm for

the evaluation of fixpoint expressions. Theor. Comput. Sci., 178:237-255, 1997. Preliminary

version in CAV’94, LNCS’818.

E. A. Emerson. Model checking and the Mu-calculus. In N. Immerman and Ph. G. Kolaitis,

editors, DIMACS Series in Discrete Mathematics, volume 31, pages 185-214, 1997.

E. A. Emerson, C. Jutla, and A. P. Sistla. On model-checking for fragments of p-calculus.

In C. Courcoubetis, editor, Computer Aided Verification, Proc. 5th Int. Conference, volume

697, pages 385—396. Lect. Notes Comput. Sci., 1993.

E. A. Emerson and C. S. Jutla. Tree automata, u-calculus and determinacy. In Annual

IEEE Symp. on Foundations of Computer Science, pages 368-377, 1991.

B. Gértner. A subexponential algorithm for abstract optimization problems. STAM Journal

on Computing, 24:1018-1035, 1995.

Goldwasser. A survey of linear programming in randomized subexponential time.

SIGACTN: SIGACT News (ACM Special Interest Group on Automata and Computability

Theory), 26:96-104, 1995.

V. A. Gurvich, A. V. Karzanov, and L. G. Khachiyan. Cyclic games and an algorithm to

find minimax cycle means in directed graphs. U.S.S.R. Computational Mathematics and

Mathematical Physics, 28(5):85-91, 1988.

M. Jurdzinski. Small progress measures for solving parity games. In H. Reichel and

S. Tison, editors, 17th STACS, volume 1770 of Lect. Notes Comput. Sci., pages 290-301.

Springer-Verlag, 2000.

G. Kalai. A subexponential randomized simplex algorithm. In 24th ACM STOC, pages

475-482, 1992.

W. Ludwig. A subexponential randomized algorithm for the simple stochastic game prob-

lem. Information and Computation, 117:151-155, 1995.

J. Matousek, M. Sharir, and M. Welzl. A subexponential bound for linear programming.

In 8th ACM Symp. on Computational Geometry, pages 1-8, 1992.

J. Matousek, M. Sharir, and M. Welzl. A subexponential bound for linear programming.

Algorithmica, 16:498-516, 1996.

C. Papadimitriou. Algorithms, games, and the internet. In ACM Annual Symposium on

Theory of Computing, pages 749-753. ACM, July 2001.

V. Petersson and S. Vorobyov. A randomized subexponential algorithm for parity games.

Nordic Journal of Computing, 8:324-345, 2001.

N. Pisaruk. Mean cost cyclical games. Mathematics of Operations Research, 24(4):817-828,

1999.

H Seidl. Fast and simple nested fixpoints. Information Processing Letters, 59(3):303-308,

1996.

C. A. Tovey. Local improvement on discrete structures. In E. Aarts and Lenstra J. K.,

editors, Local Search in Combinatorial Optimization, pages 57-89. John Wiley & Sons,

1997.

J. Vige and M. Jurdzinski. A discrete strategy improvement algorithm for solving parity

games. In E. A. Emerson and A. P. Sistla, editors, CAV’00: Computer-Aided Verification,

volume 1855 of Lect. Notes Comput. Sci., pages 202—215. Springer-Verlag, 2000.

K. Williamson Hoke. Completely unimodal numberings of a simple polytope. Discrete

Applied Mathematics, 20:69-81, 1988.

27

26. U. Zwick and M. Paterson. The complexity of mean payoff games on graphs. Theor.
Comput. Sci., 158:343-359, 1996.

28

