
Bounded depth data trees

Henrik Björklund⋆1 Miko laj Bojańczyk2⋆⋆

1 University of Dortmund
2 Warsaw University

Abstract. A data tree is a tree where each node has a label from a finite set,
and a data value from a possibly infinite set. We consider data trees whose
depth is bounded beforehand. By developing an appropriate automaton model,
we show that under this assumption various formalisms, including a two variable
first-order logic and a subset of XPath, have decidable emptiness problems.

1 Introduction

A data tree is a tree where each node has a label from a finite set, and a data value
from a possibly infinite set. We consider trees where there is a fixed bound on the depth
of nodes. For recognizing properties of such trees, we define an automaton model that
traverses the trees in a depth-first manner. We show that the emptiness problem for the
automata is decidable, by a reduction to reachability for priority multicounter automata,
a powerful model for recognizing word languages [32]. The automaton model is used
to show decidability of the satisfiability problem for a two-variable first-order logic,
and also for a fragment of XPath. In the logic and XPath, we allow a rich vocabulary
of navigational predicates, such as document order, thus extending the work from [6],
where only successor axes were allowed.

The main application area for this paper is static analysis tasks for XML databases.
We would like to develop tools that automatically answer questions such as: does prop-
erty a of XML documents always imply property b?; or: is property a vacuously true?

A very successful approach to static analysis has been to use tree automata.An XML
document is modeled as a tree, where the labels of the tree correspond to tag names in
the document. Many formalisms for XML can be represented as tree automata, possibly
extended with additional features, (see, e.g., [29, 23]). Using this representation, a large
body of techniques for tree automata can be applied to solving static analysis tasks.

A drawback of the tree automaton approach is that it considers only the tag names,
and ignores other content stored in the document. For instance, one cannot express key
constraints such as: “every two nodes have different values stored in their unique key

attribute”. Such constraints are clearly important for databases, and can be expressed
in, say, XPath. One way of extending the tree automata approach beyond mere tag
names is to consider data trees. In a data tree, each node has a label from a finite set,
and a data value from a possibly infinite set. The data values are used to model the
content of the document. Recently, there has been flurry of research on models with
data, including data words [19, 31, 13, 14, 5, 22, 3], and data trees [8, 1, 4, 16, 6].

The typical tool for solving logics over trees without data is a finite-state automa-
ton. When data is added, the appropriate automaton almost always involves counting:

⋆ Supported by the Deutsche Forschungsgemeinshaft Grant SCHW678/3-1 and the DAAD
Grant D/05/02223.

⋆⋆ Supported by Polish goverment grant no. N206 008 32/0810.

ranging from automata with semilinear constraints on runs [6], through vector-addition
systems [5], and on to faulty counter machines [14] and lossy channel machines [22].
Complexities are often high: non-primitive recursive, e.g. [14] and some results in [22],
or as hard as reachability in vector-addition systems [5] (a decidable problem, but not
known to be primitive recursive [26, 21]).

Due to the above, logics for objects with data are usually quite weak. For data
trees, the present cutting edge is a fragment of first-order logic, where only two vari-
ables are used, and only the child and next-sibling axes are allowed for testing spatial
relationship [6]. This logic has decidable emptiness, but most extensions are undecid-
able: adding a third variable, adding a second data value, adding order on data values.
One question left open in [6] was whether the logic remains decidable if we add their
transitive closures (i.e. descendant and following sibling)? The outlook is not optimistic,
since the extended problem subsumes reachability for tree vector-addition systems, a
difficult open problem [12].

In this paper, we try to deal with the extended axes. We show that if a fixed bound
on the depth is imposed, the logic from [6] remains decidable after the descendant
and following sibling axes (and even document order) are added to the signature. (The
following sibling axis is more interesting than the descendant axis in bounded depth
trees.) In terms of XPath, we extend the fragment from [6], by allowing all navigational
axes in Core XPath ([17]) in path expressions, and considerably stronger predicate
expressions, where the data values of two relative paths can be compared, as long as
the paths belong to the same subtree.

Another motivation to consider bounded depth trees is that the lower bounds in [6]
are somewhat artificial, using constructions alien to actual XML documents. Indeed,
many XML data bases are wide, but not very deep (see, e.g.,[9]). Therefore, considering
trees of arbitrary depth, which turns out to be a major technical difficulty, need not
reflect problems in the real world. It is, however, sometimes crucial to compare elements
on a horizontal axis (which nodes are later/earlier in the document), something that
cannot be done by the logic in [6].

What do we gain by bounding the depth? The main idea is that a bounded depth
tree actually bears more resemblance to a word than a tree. If a bounded depth tree
is written down as a string (the way XML documents are stored in text files), a finite
string automaton can recover the tree structure by using its finite control to keep track
of the path leading to the current node. This simple observation is the essence of our
approach. However, it is not immediately clear how the string automaton should deal
with data values. We discover that the appropriate model is an extension of multicounter
automata, where a limited form of zero test is allowed [32].

The paper is structured as follows. In Section 2 we define bounded depth data trees,
and some notions for discussing them. Section 3 contains the main contributions of the
paper. Here, we present our automaton model, describe its basic properties, and prove
that the corresponding emptiness problem is decidable. Section 4 describes a fragment
of first-order logic, which, thanks to the automaton model, can be shown to have a
decidable satisfiability problem. Section 5 describes applications for XPath.

2 Definitions

To simplify technicalities, we do not actually consider data trees, but data forests.
Informally, a data forest is an ordered sequence of data trees. Formally, a data forest is

a partial function
t : N

+ → Σ ×∆

with nonempty finite domain. The set Σ is called the alphabet and is required to be
finite, while the set ∆ is called the data domain, and may be infinite (usually, we use
the natural numbers for ∆). The nodes of the forest are elements of the domain of t.
The first coordinate of t(x) is called the label of the node x, while the second coordinate
of t(x) is called the data value of x. Furthermore, the set of nodes must be closed under
parents and previous siblings:

– The parent of a node a1 · · · anan+1 ∈ N
∗ is the node a1 · · · an.

– The previous sibling of a node a1 · · · an ∈ N
∗ is the node a1 · · · an−1(an − 1). (A

node with an = 0 has no previous sibling.)

Preceding siblings are defined by taking the transitive closure the previous sibling.
The opposite of previous/preceding siblings are next/following siblings. A node has at
most one previous/next sibling, but possibly many preceding/following siblings. A root
in a forest is any node without a parent; there may be many roots. The depth of a node
a1 · · · an is the number n; in particular each root has depth 1. The opposite of parent
is child. The transitive closure of the child relation is the descendant relation, similarly
ancestors are defined for parents. A leaf is a node without children.

A depth k data forest is one where all leaves have depth k. We could also consider
forests where leaves have depth at most k; however the more general type can be easily
encoded in the special one by adding dummy nodes. When considering depth k data
forests, we assume without loss of generality that the label set Σ is partitioned into k
disjoint sets Σ1, . . . , Σk such that nodes of depth i are only allowed to use labels from
Σi. This assumption can be easily ensured by expanding the alphabet.

A class of a data forest is a maximal set of nodes with the same data value.
Let t be a forest. The depth-first-search traversal (DFS traversal) of t is a sequence

v1, . . . , vn of nodes of t satisfying:

– Each non-leaf node appears twice, and each leaf appears once.
– If i < n and vi appears for the first time, i.e. vi 6∈ {v1, . . . , vi−1}, then vi+1 is the

leftmost child of vi, except if vi is a leaf, in which case vi+1 is the next sibling of vi,
or, if vi is a rightmost child, the parent of vi.

– If i < n and vi is seen for the second time, i.e. vi ∈ {v1, . . . , vi−1}, then vi+1 is the
next sibling of vi, or the parent of vi if vi is a rightmost child.

There is only one DFS traversal, and it must begin with the leftmost root and end with
the rightmost root. Later on, it will be convenient that non-leaf nodes are visited twice.
If we remove repetitions from the DFS traversal (by deleting second occurrences), we
get the document ordering on nodes of a forest.

3 Automata

This section contains the main contribution of the paper. In Section 3.1, we define an
automaton model for bounded depth data forests. After showing some properties that
can be recognized by our automata in Section 3.2, we show in Section 3.3 that the au-
tomata have decidable emptiness. The decidability proof is by reduction to reachability
in an extended model of multicounter automata (Petri nets). Therefore, we have no
primitive recursive upper bound for the complexity; lower bounds are also open.

The automaton model we define can be seen as an extension of the class memory
automata for words from [3] to bounded depth forests. These are, in turn, a variant of
the data automata from [5]. The basic idea is to use one class memory automaton per
depth level in the forest.

3.1 Class memory automata for forests of bounded depth

A depth k forest class memory automaton (k-FCMA) is defined as follows. It has k+ 1
state spaces: Q,Q1, · · · , Qk. Each has an initial and a final subset:

I, F ⊆ Q I1, F1 ⊆ Q1, · · · , Ik, Fk ⊆ Qk .

The idea is that the states Qi will be used to examine data values of nodes at depth at
least i, while the states in Q are used to examine properties that do not involve data.

The automaton runs on an input depth k forest by visiting its nodes in the DFS
sequence (in particular, non-leaf nodes are visited twice). At every moment of its run,
it keeps its current state q ∈ Q – called the global state – as well as k class memory
functions of the form

f1 : ∆→ Q1 · · · fk : ∆→ Qk .

Therefore, a configuration of the automaton consists of: a node v of the forest t, the
global state q and the class memory functions f1, . . . , fk. (Thanks to the class memory
functions, the automaton is a type of infinite-state system, which contributes to the
high complexity of emptiness. Each configuration can be finitely represented, since the
class memory functions have finite non-initial support.) At the beginning of the run, v
is the leftmost root, q is set to be a designated initial state qI ∈ Q, while all the class
memory functions f1, . . . , fk assign initial states to all data values d ∈ ∆. (If there are
many initial states, this produces nondeterminism.)

A single step of the automaton works as follows. Assume that the automaton is
in a node v of depth i with data value d. Depending on the global state, the values
of f1(d), . . . , fi(d), and the label of v, the automaton picks a new global state and
new values of f1(d), . . . , fi(d). It then advances to the next node in the DFS traversal.
Therefore, the transition function is a set of rules from

⋃

i=1,...,k

Q×Q1 × · · · ×Qi ×Σi ×Q×Q1 × · · · ×Qi

Note that since Σ is partitioned into sets Σ1, . . . , Σk, the label of a node determines its
depth. In particular, the automaton knows if it is descending into a successor, moving
to the right sibling, or ascending into the parent.

Furthermore, when the automaton has just read for the second time a rightmost
sibling v at depth i ∈ {1, . . . , k} (or for the first time, if v is a leaf), it does some further
processing on the class memory function fi, which we call a check-reset. (The check-reset
is done after the transition corresponding to the second visit in v has been applied.)
First, the automaton checks if the class memory function fi is accepting, i.e. all data
values are assigned either initial or accepting states. If this is not the case, the run is
aborted and cannot be continued. If this check succeeds, the class memory function fi

is reset, by assigning the initial state (nondeterministically, if there is more than one)
to all data values.

The automaton accepts the data forest if, after completing the DFS traversal, it has
an accepting global state (and the last-check reset has been successful). Note however,

that before this happens, a large number of memory check-resets must be successfully
carried out.

Example 1. Consider the following property of depth k forests: each data value occurs
at most once. To recognize this property, the automaton only uses the states Q1 (all
other state spaces Q and Q2, . . . , Qk contain one state q, which is both initial and final,
and is never modified). There are two states in Q1: an initial state new and a final state
old. The transition function advances new to old, while old has no outgoing transitions.
In other words, there is only one transition for each letter a ∈ Σ:

(q, new, q, · · · , q, a, q, old, q · · · , q).

3.2 Some properties of FCMA

In this section we present some properties of bounded depth data forests that can be
recognized by FCMA. Apart from being useful later on, the results in this section are
meant to give a feeling for what FCMA can do.

Fact. FCMA are closed under union and intersection.

When the depth of a data forest is limited to 1, the forest is a data word, as considered
in [5]. Furthermore, data automata, the automaton model introduced in [5] to recognize
properties of data words, coincides with the restriction of FCMA to depth 1. Lemma 1
below can be used to transfer results about data words to data forests.

Lemma 1. Let A be a data automaton. The following properties of data forests are
recognized by FCMA:

– For every node v, the children of v, when listed from left to right, form a data word
accepted by A.

– For every node v, the descendants of v, when listed in document order, form a data
word accepted by A.

Proof. Since FCMA are closed under intersection, it is sufficient to produce an FCMA
that checks the above properties only for nodes v at a given depth i.

We only present the automaton for the second property, the first one is done in a
similar way. The FCMA uses the states Qi to simulate A on the data word formed
by the descendants; the other states are not used. Note that an FCMA knows when it
visits a node for the second time (the previous node was at greater depth); therefore
the document order can be reproduced from the DFS traversal given to an FCMA. ⊓⊔

Sometimes it is convenient to see how the data value of a node is related to the
data values of its neighborhood. The profile of a node is information about which nodes
among its ancestors, previous and next siblings have the same data value. Once the
depth k of forests is fixed, there are finitely many possible profiles. The following lemma
shows that these can be tested by an automaton:

Lemma 2. For each possible profile p, there is an FCMA that recognizes the language:
“a node has label a if and only if it has profile p”.

Proof. Thanks to closure under intersection, it is sufficient to present separate automata
for the following languages:

– “A node has label a if and only if it has an ancestor at depth i with the same data
value.” Here i is a fixed depth in {1, . . . , k}. The automaton only uses the states Qi,
which can have two values: “ancestor” and “not ancestor”. The invariant is going
to be: when the automaton is in a node v of depth greater than i, the class memory
function fi assigns “ancestor” to the unique data value in the ancestor of v at depth
i. All other data values are assigned “not ancestor”. Using this information, the
language from the statement of the lemma can easily be recognized. Furthermore,
it is easy to define the automaton so that the invariant is satisfied. When a node at
depth i with data value d is entered for the first time, fi(d) is updated to “ancestor”.
When the node is visited for the second time, fi(d) is updated to “not ancestor”.
Note that it is important that each inner node is visited twice.

– “A node has label a if and only if its previous sibling (next sibling) has the same
data value.” In [3], the authors show that there is a data automaton that recognizes
the following property of data words: “a node has label a if and only if its previous
sibling has the same data value.” This gives the desired result, thanks to Lemma 1.

⊓⊔

We will also need to use FCMAs to recognize languages of the form: “for every class,
a given property holds”. Here we present a general result of this type. Note that it is
not clear what we mean when saying that a class satisfies some property, since it is not
clear how the nodes of a class should be organized once they are taken out of the data
forest. Here we use one such definition, which we call a take-out. Let t be a forest and
V a set of nodes in this forest. The nodes of the take-out are nodes of V , along with
their ancestors. The labels in the take-out are inherited from t, except we add a special
marker to distinguish if a node is from V , or just an ancestor of a node from V . The
take-out is a forest without data, where leaves may have different depths.

Lemma 3. Let L be a regular forest language (without data). An FCMA can test if the
take-out of every class belongs to L.

In the proof of this lemma, it will be convenient to use a non-standard automaton
model for bounded depth forests without data values, called a leaf automaton. Such an
automaton works over forests where all leaves are at depth at most k, where k is fixed
for the automaton. (Unlike for depth k data forests, we allow leaves at varying depths.)
The automaton only visits leaves of the forest, from left to right, i.e. in document order.
When moving from a leaf v to the next leaf w, the automaton checks the following
information:

– The label of v;
– The depth of v, and the labels of its ancestors;
– The depth of the deepest common ancestor of v and w.

(Note that in a forest, two nodes may not have a common ancestor; in which case the
answer to the last question is output as 0.) To read the information in the rightmost
leaf, we append a dummy leaf at the end of the forest. The automaton accepts if in this
dummy it has a designated accepting state. It is not difficult to see that leaf automata
are strong enough to capture all regular forest languages (over forests of bounded depth).

Proof (of Lemma 3). Let k be the depth of the forest. We assume that the regular
language L is given by a leaf automaton A. The FCMA will simulate the automaton
A. To simplify presentation, we divide the work into six passes. Using nondeterminism
and closure under intersection, these can easily be combined into a single pass of an
FCMA.

1. In the first pass, we mark each node with the labels of all its ancestors. This is easy,
since an FCMA can remember in its global state the labels on the path leading to
the current node. We will be using this feature (checking labels of ancestors) in the
subsequent passes as well.

2. In this pass, we mark each node with information about which ancestors have the
same data value. This can be done thanks to Lemma 2.

3. In this pass, we place a special marker on class leaves; here a class leaf is a node
that has no descendants in its class. With the information from the previous pass,
class leaves can be identified without looking at data values: a node at depth i is
class leaf if and only if none of its descendants has an ancestor with the same data
value at depth i.

4. In this pass, we mark a node v if it satisfies the following property (*):
(*) Some following sibling w of v has a descendant (or possibly w itself) in
the class of v.

Note that in the above, w need not be the next sibling of v, it may be further to
the right. The automaton for this pass is slightly more involved, and we relegate its
description to Lemma 4 below.

5. In this pass, we mark a class leaf v with the depth i ∈ {−1, 0, . . . , k − 1} of the
greatest common ancestor for v and the next class leaf w ∼ v to the right of v.
(The meaning of −1 is that v is rightmost in its class and thus no w exists.) This
marking can be inferred from the information gathered in the previous pass. If all
ancestors of v satisfy property (*), then the answer is i = −1. Otherwise, the answer
is i = j − 1, where j is the smallest depth at which an ancestor of v with property
(*) can be found.

6. In the last pass, we use the information gathered above to simulate A on the class
take-outs.

⊓⊔

Lemma 4. An FCMA can verify that a node has label a if and only if it satisfies
property (*) from the previous lemma.

Proof. In this lemma, it will be convenient that an FCMA visits each node twice. The
automaton we define does not use global states Q, only the states Q1, . . . , Qk for the
class memory functions f1, . . . , fk. Each state space Qi is the same, and contains three
states:

p An initial state.
q From now until the class-reset, no nodes in this class are allowed.
r From now until the class-reset, a node from this class must be seen.

The accepting states are {p, q}. The transitions of the automaton are defined as follows.
Let v be a node at depth i, with data value d.

1. When the node v is visited for the first time, the label is not read. The automaton
checks if any of the class memories f1(d), . . . , fi(d) contains the state q. If yes,
the automaton fails and the run is terminated. Otherwise, all the class memories
f1(d), . . . , fi(d) are set to the initial (and accepting) state p.

2. When the node v is visited for the second time (i.e. after the automaton has visited
the subtree of v), and v is marked by a, the automaton sets the class memory
function fi(d) to the non-accepting state r. Therefore, some node in the same class
must occur (and the state r will be changed to q, as above) before the check-reset
happens; otherwise the check-reset will fail.

3. When the node v is visited for the second time (i.e. after the automaton has visited
the subtree of v), and v is not marked by a, the automaton sets the class memory
function fi(d) to the accepting state q. However, we will not be able to read a node
in the same class until the check-reset, as described in the first item above.

It should be clear that this automaton describes the language in question. ⊓⊔

3.3 Decidable emptiness for the automata

In this section, we will show that emptiness is decidable for k-FCMA. The proof is
by reduction to emptiness of priority multicounter automata. Note that universality
is undecidable even for 1-FCMA, as it is already undecidable for data automata over
words.

Priority multicounter automata A priority multicounter automaton is an automa-
ton over words (without data) that has a number of counters, which can be incremented,
decremented and tested for zero. (Multicounter automata with zero tests correspond to
Petri nets with inhibitor arcs.) To keep the model decidable, the zero tests are restricted.
This is where the priorities come in.

More formally, a priority multicounter automaton has a set C of counters, a state
space Q and an input alphabet Σ. Furthermore, the counters come with a distinguished
chain of subsets: C1 ⊆ · · · ⊆ Cm ⊆ C.

The automaton reads a word w ∈ Σ∗ from left to right, possibly using ǫ-transitions.
At each point in its run, the automaton has a current state q ∈ Q and a non-negative
counter assignment c ∈ N

C . At the beginning, a designated initial state is used, and all
the counters are empty.

In a transition, the automaton reads a letter – possibly ǫ – from the word. Depending
on this letter the automaton changes its state, and performes a counter operations, that
is, it increases a counter, decrements a counter, or checks that all counters in Ci, for
some i, are empty.

The above operations can fail: if a decrement is done on an empty counter; or if
a zero test fails. When the counter operation fails, the transition fails and the run is
aborted. The automaton accepts if at the end of the word it has reached a designated
accepting state. The following difficult result has been shown in [32]:

Theorem 1. Emptiness is decidable for priority multicounter automata.

Note that priority multicounter automata are an extension of multicounter automata
(where the zero tests are not allowed). In particular, no primitive recursive emptiness
algorithm is known.

Reduction to priority multicounter automata We now show that emptiness for
FCMA can be reduced to emptiness of priority multicounter automata. In particular,
thanks to Theorem 1, emptiness is decidable for FCMA.

Let t be a depth k forest, and let v1, . . . , vn be its DFS traversal. Let trav(t) be
the word over Σ containing the labels of v1, . . . , vn. Since trav(t) does not use the data
values, it is irrelevant if t is a data forest or a non-data forest.

Theorem 2. Emptiness is decidable for k-FCMA, for all k ∈ N. Furthermore, for each
k-FCMA A, the set {trav(t) : t is accepted by A} is accepted by an (effectively obtained)
priority multicounter automaton.

By Theorem 1, the first clause of the theorem follows from the second one. This
section is therefore devoted to simulating a k-FCMA with a priority multicounter au-
tomaton.

We fix a k-FCMA A. We assume that in every transition

(q, q1, . . . , qi, a, r, r1, . . . , ri) ,

none of the states r1, . . . , ri are initial; and if some qj is initial, then so are qj+1, . . . , qi.
Any k-FCMA can be effectively transformed into one satisfying the above assumptions.

The priority multicounter automaton that recognizes the traversals is defined as
follows. It is a conjunction of two automata. The first one checks that the depths
indicated by the labels are consistent with a DFS traversal, i.e. the input word belongs
to {trav(t) : t is a depth k forest}. Since the latter is a regular word language, we do
not even need to use counters.

The real work is done by the second automaton, which we call B. To simplify presen-
tation, we use a slightly extended notion of transition. We will later comment on how
the extended notion can be realized by a standard priority multicounter automaton.
The control states of B are the global states Q of A. It has a counter for each of the
states in Q1, . . . , Qk used in the class memory functions (we assume these state spaces
are disjoint).

When the simulating automaton B is in state q ∈ Q, and the input letter is a ∈ Σi

(with i = 0, . . . , k) the automaton performs the following actions:

1. As preprocessing for the transition, B may nondeterministically choose to increment
any counter corresponding to an initial state.

2. In the next step, B nondeterministically picks a transition

(q, q1, . . . , qi, a, r, r1, . . . , ri)

of the simulated k-FCMA A. It decrements counters q1, . . . , qi, and then increments
the counters r1, . . . , ri.

3. In the third step, B sets its finite control to the the state r from the transition
chosen in step 2.

4. The last step corresponds to the check-reset and is carried out if the next label is
going to be from Σi−1 (this corresponds to a rightmost successor node appearing
for the second time in the DFS, or for the first time, if the node is a leaf). In this
case, the automaton B tests that all counters in

Qi \ (Fi ∪ Ii) (1)

are empty, and then empties all the counters in Qi.

We call such a sequence of actions a macrotransition. A macrotransition can be carried
out by a multicounter automaton with zero checks, by using ǫ-transitions and additional
control states. Perhaps the most delicate point is the last step in the macrotransition.
First of all, the automaton needs to know the next label. Here, we can nondeterminis-
tically guess the next label in advance; this nondeterministic guess is then validated in
the next step. (The degenerate case of j = 0 is handled by using ǫ-transitions.)

At first glance, the automaton is not a priority multicounter automaton, since the
zero checks in (1) are done for disjoint counters. But this can easily be fixed, by imposing
a chain discipline on the zero checks. Indeed, when the automaton is doing the zero check

in (1), we know that in the previous moves it has emptied the counters Qi+1, . . . , Qk.
Therefore, it could equivalently zero check the counters

Qi \ (Fi ∪ Ii) ∪ Qi+1 ∪ · · · ∪ Qk .

Furthermore, the emptying of the counters in Qi, which is done after (1), can be sim-
ulated by a sequence of nondeterministic decrements on Qi and then a zero check on
Qi ∪ · · · ∪ Qk. The automaton B accepts if it reaches an accepting global state after
processing all the nodes. It is fairly clear that if A accepts t, then B accepts trav(t).
Theorem 2 then follows once we show the converse:

Lemma 5. If t is a depth k forest whose DFS traversal is accepted by B, then t can be
labeled with data values so that the resulting data forest is accepted by A.

Proof. Consider an accepting run of B, with macrotransitionsm1, . . . ,mn. Let v1, . . . , vn

be the DFS traversal of the forest t. These nodes correspond to the macrotransitions
m1, . . . ,mn. Recall that each macrotransition corresponds (in step 2) to a transition of
the automaton A. Let then δ1, . . . , δn be the sequence of transitions of A that corre-
sponds to m1, . . . ,mn.

We will assign data values to nodes of the forest t, so that the result s is accepted
by A, using the run δ1, . . . , δn. This is done progressively for v1, . . . , vn, so that at each
intermediate step j = 0, . . . , n the following invariant is satisfied.

Assume that data values have been assigned to nodes v1, . . . , vj . The sequence δ1, . . . , δj
is a partial run of A on t (that has read nodes v1, . . . , vj) such that:

For each class memory function fi ∈ {f1, . . . , fk}, and each non-initial state
q ∈ Qi, the counter q contains the number of data values d with fi(d) = q.

This invariant can be easily shown by induction on j. ⊓⊔

4 A two-variable logic for bounded depth data forests

In this section, we define a first-order logic that can express properties of data forests.
Formulas of this logic can be effectively compiled into FCMA; in particular this logic
has decidable satisfiability thanks to Theorem 2. Variables quantify over nodes. Only
two variables, x and y, are allowed. Furthermore, data values can only be compared for
equality, via a predicate x ∼ y. On the other hand, we allow a large body of navigational
predicates.

For a fixed depth k, we define the logic FO2
k as the two-variable fragment of FO,

with the following predicates (some parameterized by i = 1, . . . , k):

di(x) x has depth i
a(x) x has label a (here a is a label from Σ)
x ↓i y y is a descendant of x and depth(y) − depth(x) = i
x ↓+ y y is a descendant of x

x+ 1 = y x is the left sibling of y
x ≺ y x comes before y in the document ordering (the ordering

produced by a pre-order traversal)
x < y x and y are siblings, and x is to the left of y
ti(x, y) x � y and the nodes x, y share the same depth i ancestor

but not the same depth i+ 1 ancestor

t0(x, y) x, y do not have a common ancestor
x ∼ y x and y have the same data value
x⊕ y y is the class successor of x, that is, x ∼ y, x comes before y

in the document ordering, and there is no z between x and y
(in the document ordering) which has the same data value.

The semantic of the logic is defined as usual. For instance, the following is a long
way of saying that all nodes have the same data value:

∀x∀y(x ↓+ y ⇒ x ∼ y) ∧ (x+ 1 = y ⇒ x ∼ y) .

The predicates di, ↓+, ↓i and < are syntactic sugar, and can be removed from the
signature without loss of expressivity. For instance, di(x) is the same as ti(x, x). In
similar ways, ↓i, ↓+ can be defined in terms of ti, and < can be defined in terms of ti
and ≺. Since we only have two variables, x + 1 = y cannot be defined in terms of <,
and x⊕ y cannot be defined in terms of ≺ and ∼.

In the following example, we show that thanks to the bounded depth assumption,
two-variable formulas can express properties that seemingly require three variables.

Example 2. We write a formula ϕ(x), which holds in a node x that has two distinct
descendants y ∼ z. The natural formula would be

ϕ(x) = ∃y∃z (y 6= z ∧ y ∼ z ∧ x ↓+ y ∧ x ↓+ z) .

The problem is that this formula uses three variables. We will show that for depth k
forests, ϕ can be written with only two variables. The idea is to do a disjunction over
the finitely many possible depths i of the node x:

ϕ(x) =
∨

i

di(x) ∧ ∃y(x ↓+ y ∧ ∃x(x 6= y ∧ x ∼ y ∧
∨

j≥i

tj(x, y))) .

In the above formula, the second existential quantifier ∃x actually corresponds to the
node z. We do not need to verify if the new node x is a descendant of the “real” node
x in the free variable; this is a consequence of ti(x, y).

Theorem 3. Every language definable in FO2
k can be recognized by a k-FCMA.

Proof. To minimize repetition from [5] and [6], we try to give an informal overview of
the translation, and only give details where something new is happening.

Any formula in FO2
k can be effectively rewritten into Scott normal form with addi-

tional unary second-order quantification at the beginning. That is, every FO2
k formula

ϕ is equivalent to one of the form

∃R1 . . . ∃Rm(∀x∀yX ∧
∧

i

∀x∃yXi),

where R1, . . . , Rm are new unary predicates, and the formulas X ,Xi are all quantifier
free. The transformation into Scott normal form is quite simple. The general idea is
that the predicates R1, . . . , Rm correspond to subformulas of the original formula ϕ,
while the conjuncts of the first-order part verify that the marking is consistent.

In our translation, we will consider formulas in Scott normal form. Since FCMA are
nondeterministic, they can easily simulate the existential quantification ∃R1, . . . , Rm.

Since FCMA are closed under intersection, we attack each conjunct separately. There-
fore, it remains to show that a k-FCMA can recognize any property defined by a formula
of either type below:

∀x∀yX ∀x∃yX X is quantifier-free . (2)

We will show that there are essentially finitely many formulas of the above type; and
each of these types can be recognized by an automaton.

In the sequel, we will assume that the signature does not contain the relations ↓i;
but it does contain ≺, ↓+ and di. (Although the latter two are syntactic sugar, they will
be convenient in the proofs.) Two nodes, x and y, of a data forest can only be related
in a finite number of ways by the signature of FO2

k. Each of the two nodes can have
a unary type (a conjunction of unary predicates and their negations). The relationship
between the nodes can be described by a data sensitive binary type (a conjunction of
the predicates ∼ and ⊕ and their negations) and a data blind binary type (a conjunction
of the other binary predicates and their negations). We will use α, β to denote unary
types, Γ for data sensitive binary types, and Λ for data blind binary types.

There are four data blind binary predicates, one of which is symmetrical. Thus in
principle we have 27 data blind binary types.3 Most of these types are inconsistent, e.g.,
x ↓+ y ∧ x + 1 = y, so the actual number of possible combinations is much smaller.
There are four data sensitive binary types: either x 6∼ y, or x ∼ y; in the latter case at
most one of x⊕ y, y ⊕ x holds.

The important thing is that we have a finite number of binary types (a conjunction
of one data sensitive and one data blind binary type). We will classify the formulas
from (2) by looking at the possible binary type relating x with y. We consider the cases
of ∀x∀y and ∀x∃y in two separate sections.

Formulas of the form ∀x∀yX . Any such formula can be rewritten as a finite con-
junction of formulas of the form

∀x∀y(Γ (x, y) ∧ Λ(x, y) → φ(x, y)),

where φ is quantifier free and uses only unary predicates. We further rewrite this formula
as

∀x∀y (Γ (x, y) ∧ Λ0(x, y) ∧ t0(x, y) → φ0(x, y)
...
∧ Γ (x, y) ∧ Λk(x, y) ∧ tk(x, y) → φk(x, y)).

We move the quantifiers into the conjunction and are left with formulas

∀x∀y(Γ (x, y) ∧ Λi(x, y) ∧ ti(x, y) → φi(x, y)) ,

where Λi does not use any tj-predicates.
If Γ contains x ∼ y, x ⊕ y, or y ⊕ x as a conjunct, such formulas express regular

properties of the take-out of each class. The only problem is that two siblings in the
take-out might have lost intermediate siblings, so that the truth value of x+ 1 = y has
changed. This is no real problem since, by Lemma 2, we can assume that each node
is marked with information about whether its next sibling belongs to the same class.
Thus, by Lemma 3, there are FCMAs that can check the formulas.

3 To be precise, we actually have more binary predicates, since we have ti for each i, but since
the ti predicates are mutually exclusive, this is not important.

We are left with the case where Γ is x 6∼ y. We separately consider each possible
combination of depths for the nodes x, y. That is, we need to present an automaton for
the following type of formula:

ϕ = ∀x∀y(x 6∼ y ∧ ti(x, y) ∧ dj(x) ∧ dl(y) → ψ(x, y)) .

If both j, l are i+ 1, then the above formula speaks about sets of siblings. Each such
property can be tested by a data automaton (see [5]). Thus, by Lemma 1, there is an
FCMA for checking the property.

In the remaining cases, neither y = x+ 1 nor y = x+ 1 can hold, so we may assume
that ψ(x, y) only uses unary relations. We transform ψ into CNF. By using standard
logic laws, and closure of FCMA under conjunction, we only need consider the case
when ψ has only one CNF conjunct; i.e. ψ is a disjunction of unary relations or their
negations, some for x, others for y:

α1(x) ∨ · · · ∨ αn(x) ∨ β1(y) ∨ · · · ∨ βm(y) .

We write A(x) for α1(x)∨ · · · ∨αn(x); likewise for B(y). Two cases need be considered:
when one of the depths j, l is i; and otherwise.

Consider first the case when j = i; the case for l = i being symmetric. The formula
ϕ says if x is a node at depth i that does not satisfy A, then all of its descendants y 6∼ x
at depth j must satisfy B. This formula can be checked by an FCMA in the following
way. For each node x at depth i, the automaton checks if x satisfies A. If this is not the
case, it uses the states in Qi+1 to check that all descendants y at depth l that belong
to another class satisfy B (whether or not a descendant y is in the same class as x can
be read from the profile of y, see Lemma 2).

Finally, we consider the case when neither j, l are i. We assume without loss of
generality that i = 0; the other cases follow thanks to the following:

Observation. Let A be a k-FCMA. An (i+ k)-FCMA can check the following property:
for every node x at depth i, the forest formed by the children of x is accepted by A.

We put the requirement on dj(x) into A by adding a disjunct ¬dj(x); likewise for
dl(y) and B. The formula ϕ now boils down to checking:

Let t1, . . . , tm be the trees in the data forest. If for some j = 1, . . . ,m, the tree tj
contains a node x that violates A, then all nodes y 6∼ x in the trees ti+1, . . . , tm
satisfy B.

We say a node is prime if it has the same data value as the first node in document order
that violates A. One can easily check that ϕ is equivalent to the following property:

Let j = 1, . . . ,m. If the tree tj contains a prime node that violates A, then all
non-prime nodes in the trees tj+1, . . . , tj satisfy B. If tj contains a non-prime
node that violates A, then all nodes in the trees tj+1, . . . , tm satisfy B.

The above property can be checked by an FCMA. The general idea is that the automaton
uses the global state as well as the class memory function f1 to keep track of which
nodes are prime, and which are not.

Formulas of the type ∀x∃yX . Following [5], we rewrite them as a disjunction

∀x∃y
∨

i

(αi(x) → βi(y) ∧ Γi(x, y) ∧ Λi(x, y)) .

To get rid of the disjunction, we introduce a new unary predicate Ri for each disjunct,
and rewrite ∀x∃yX as

∃R1∃R2 · · ·
∧

i

∀x∃y(αi(x) ∧Ri(x) → βi(y) ∧ Γi(x, y) ∧ Λi(x, y)).

Since Ri is unary, it can be incorporated into the unary type of x, and we thus only
need to consider formulas of the form

∀x∃y(α(x) → β(y) ∧ Γ (x, y) ∧ Λ(x, y)).

Again, if Γ (x, y) contains x ∼ y, x ⊕ y, or y ⊕ x, the formula is a regular property
of the take-out of each class, and can be checked by an FCMA by Lemma 3. Thus we
only worry about the case where Γ (x, y) is x 6∼ y. We proceed similarly as in the ∀x∀y
case. We only show how to do the following special case, to highlight the differences
with ∀x∀y:

ϕ = ∀x∃y(α(x) → β(y) ∧ x 6∼ y ∧ t0(x, y)).

The formula ϕ now boils down to checking:

Let t1, . . . , tm be the trees in the data forest. If for some j = 1, . . . ,m, the tree
tj contains a node x that satisfies α, then one of the trees tj+1, . . . , tm must
contain a node y 6∼ x that satisfies β.

As in the ∀x∀y case, we distinguish one class. We say a node is ultimate if it has the
same data value as the last node in document order that satisfies β. One can easily
check that ϕ is equivalent to the following property:

Let j = 1, . . . ,m. If the tree tj contains an ultimate node that satisfies α, then
one of the trees tj+1, . . . , tm contains a non-ultimate node that satisfies β. If tj
contains a non-ultimate node that satisfies α, then one of the trees tj+1, . . . , tm
contains an ultimate node that satisfies β.

⊓⊔

Corollary 1. Satisfiability is decidable for FO2
k.

5 XPath

We now apply our results to show decidability of some static analysis tasks for XML.
Our approach closely mirrors that in [6]. To avoid repetition, we only explain which
expressive power can be added to the fragment LocalDataXPath from [6], while pre-
serving decidability over bounded depth trees. Since we have the predicates ↓+ and <
in our logic, we can, unlike [6], capture the XPath axes descendant (ancestor) and
following (preceding). Also, we can allow attribute comparisons in which both sides
of the (in-)equality are relative, as long as they stay within the subtree rooted at the
node to which they are relative.

As in [6], decidability is shown by encoding XPath into two-variable logic. We first
give an example that illustrates how the bounded depth can be used to encode XPath
expressions that could not be handled in [6]. This example is similar to Example 2 in
the Section 4.

Example 3. Consider the XPath expression

child :: a/child :: b/@B1 = child :: c/next− sibling :: d/@B2.

It is not allowed in LocalDataXPath, since both sides of the equality are relative paths.
For bounded depth trees we can, however, define the corresponding first-order predicate
as ∨

i(di(x)∧ ∃y x ↓1 y ∧ a(y)∧
∃x y ↓1 x ∧ b(x)∧
∃y x ↓1 y ∧B1(y)∧
∃x x ∼ y ∧ ti(x, y) ∧B2(x)∧
∃y y ↓1 x ∧ d(y)∧
∃x x+ 1 = y ∧ c(x) ∧ di+1(x))

We now define BDXPath (Bounded Depth XPath). It is defined the same way as Lo-
calDataXPath from [6]; except that BDXPath can use all the navigational axes in Core
XPath [17]:

Axis := ancestor | ancestor− or− self | attribute | child | descendant |

descendant− or− self | following | following− sibling |

parent | preceding | preceding− sibling | self .

(The non-standard elsewhere axis from LocalDataXPath can be simulated by using
preceding and following.)

Also, in predicate expressions, we allow comparisons of attribute values with = and
6= as long as one of the following holds.

1. At least one side of the (in-)equality is an absolute location path (i.e., one starting
at the root, or document node); or

2. The comparison is relative, but safe (as defined in [6]); or
3. Both sides have location expressions that start with child or descendant and do

not use parent or ancestor.

Using the same proof, but aided by our more powerful two-variable logic, we can
upgrade the main XPath result from [6]:

Theorem 4. Over trees of bounded depth, Satisfiability and Containment for (unary
or binary) BDXPath is decidable. This holds even relative to a schema consisting of a
regular tree language and unary key and inclusion constraints.

Acknowledgements. We thank Wim Martens and Thomas Schwentick for valuable dis-
cussions.

References

1. N. Alon, T. Milo, F. Neven, D. Suciu and V. Vianu. XML with Data Values: Typechecking
Revisited. In JCSS, 66(4): 688-727 (2003).

2. M. Arenas, W. Fan and L. Libkin. Consistency of XML specifications. In Inconsistency
Tolerance, LNCS 3300, 2005, pp. 15-41.

3. H. Björklund, T. Schwentick. On notions of regularity for data languages Manuscript,
2006, available at http://lrb.cs.uni-dortmund.de/∼bjork/papers/regular-data.pdf

4. M. Benedikt, W. Fan, and F. Geerts. XPath Satisfiability in the Presence of DTDs. In
PODS’05, 2005.

5. M. Bojańczyk, C. David, A. Muscholl, T. Schwentick, and L. Segoufin. Two-variable logic
on words with data. In LICS’06, pp. 7-16, 2006.

6. M. Bojańczyk, C. David, A. Muscholl, T. Schwentick, and L. Segoufin. Two-Variable
Logic on Data Trees and XML Reasoning. In PODS’06, 2006.

7. P. Bouyer, A. Petit and D. Thérien. An algebraic approach to data languages and timed
languages. Inf. Comput., 182(2): 137-162 (2003).

8. P. Buneman, S. B. Davidson, W. Fan, C. S. Hara, W. C. Tan. Reasoning about keys for
XML. In Inf. Syst., 28(8): 1037-1063 (2003).

9. B. Choi. What are real DTDs like. In WebDB’02, pp. 43-48, 2002.
10. J. Cristau, C. Löding, W. Thomas. Deterministic Automata on Unranked Trees. In

Fundamentals of Computation Theory (FCT’05), LNCS 3623, 2005, pp. 68-79.
11. C. David. Mots et données infinis. Master thesis, Université Paris 7, LIAFA, 2004.
12. P. de Groote, B. Guillaume, and S. Salvati. Vector Addition Tree Automata. In LICS’04,

pp. 64-73, 2004.
13. S. Demri, R. Lazic, D. Nowak. On the Freeze Quantifier in Constraint LTL: Decidability

and Complexity. In TIME’05, 2005.
14. S. Demri and R. Lazic. LTL with the Freeze Quantifier and Register Automata. In

LICS’06, pp. 17-26, 2006.
15. K. Etessami, M.Y. Vardi, and Th. Wilke. First-Order Logic with Two Variables and Unary

Temporal Logic. Inf. Comput., 179(2): 279-295 (2002).
16. F. Geerts and W. Fan. Satisfiability of XPath Queries with Sibling Axes. In DBPL’05,

2005.
17. G. Gottlob, C. Koch, and R. Pichler. Efficient Algorithms for Processing XPath Queries.

In VLDB, 2002.
18. E. Grädel and M. Otto. On Logics with Two Variables. TCS, 224:73-113 (1999).
19. M. Kaminski and N. Francez. Finite memory automata. TCS, 134:329-363 (1994).
20. E. Kieroński and M. Otto. Small Substructures and Decidability Issues for First-Order

Logic with Two Variables. In LICS’05, 2005.
21. S.R. Kosaraju. Decidability of reachability in vector addition systems. In STOC’82,

pp. 267-281, 1982.
22. R. Lazić. Safely Freezing LTL. Foundations of Software Technology and Theoretical

Computer Science (FSTTCS), 2006.
23. W. Martens. Static analysis of XML transformation and schema languages. PhD Thesis,

Hasselt University, 2006.
24. W. Martens, J. Niehren. Minimizing Tree Automata for Unranked Trees. In 10th Inter-

national Symposium on Database Programming Languages, LNCS 3774, 2005.
25. M. Marx. First order paths in ordered trees. In ICDT’05, 2005.
26. E. Mayr. An algorithm for the general Petri net reachability problem. In STOC’81,

pp. 238-246, 1981.
27. M. Mortimer. On languages with two variables. Zeitschr. f. math. Logik u. Grundlagen d.

Math., 21: 135-140 (1975).
28. K. Neeraj Verma, H. Seidl, T. Schwentick. On the Complexity of Equational Horn Clauses.

In CADE’05, 2005.
29. F. Neven. Automata, Logic, and XML. In CSL’02, pp. 2-26, 2002.
30. F. Neven and T. Schwentick. XPath Containment in the Presence of Disjunction, DTDs,

and Variables. In ICDT’03, 2003.
31. F. Neven, T. Schwentick, and V. Vianu. Finite state machines for strings over infinite

alphabets. ACM Trans. Comput. Log., 15(3): 403-435 (2004).
32. K. Reinhardt. Counting as Method, Model and Task in Theoretical Computer Science.

Habilitation-thesis, 2005
33. XML Path Language (XPath), W3C Recommendation 16 November 1999. Available at

http://www.w3.org/TR/xpath.

