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Abstract. We derive versal deformations of the Kronecker canonical form by deriving the
tangent space and orthogonal bases for the normal space to the orbits of strictly equivalent matrix
pencils. These deformations reveal the local perturbation theory of matrix pencils related to the
Kronecker canonical form. We also obtain a new singular value bound for the distance to the orbits
of less generic pencils. The concepts, results, and their derivations are mainly expressed in the
language of numerical linear algebra. We conclude with experiments and applications.
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Notation.

‖x‖ The 2-norm of a vector x.
A A square matrix of size n× n. I or In is the identity matrix.
AT The transpose of A.
AH The conjugate transpose of A.
A The conjugate of A.
‖A‖E The Frobenius (or Euclidean) matrix norm.
σmin(A) The smallest singular value of A.
vec(A) An ordered stack of the columns of a matrix A from left to

right.
det(A) Determinant of A.
tr(A) Trace of A.
ker(A) Kernel of space spanned by the columns of A.
range(A) Range of space spanned by the columns of A.
diag(A1, . . . , Ab) A block diagonal matrix with diagonal blocks Ai.
A⊗B The Kronecker product of two matrices A and B whose (i, j)th

block element is aijB.
A− λB A matrix pencil of size m× n.
λi Eigenvalue of A or A− λB. Also, γi and α are used to denote

an eigenvalue.
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r, ri, si A − λB has r distinct eigenvalues λi of algebraic multiplicity
ri. The sizes of the Jordan blocks associated with an eigenvalue
are s1 ≥ s2 ≥ · · · ≥ sri .

Jj(γi) Jordan block of size j × j associated with γi.
Jj(γi, γ̄i) Real Jordan block of size 2j × 2j associated with a complex

conjugate pair of eigenvalues.
Nj Jordan block of size j × j associated with the infinite

eigenvalue.
Lj Singular block of right (column) minimal index of size

j × (j + 1).
LTj Singular block of left (row) minimal index of size (j + 1)× j.
〈A− λB,C − λD〉 Frobenius inner product of two matrix pairs.
orbit(A) The set of matrices similar to A.
orbit(A− λB) The set of matrix pencils equivalent to A− λB.
tan(A− λB) Tangent space of orbit(A− λB) at A− λB.
nor(A− λB) Normal space of orbit(A− λB) at A− λB.
S ⊕ T Direct sum of subspaces S and T of Rn.
S⊥ Subspace perpendicular to S. S ⊕ S⊥ is the complete space.
dim(S) Dimension of subspace S. dim(S) denotes dimension of

subspace spanned by the columns of S.
cod(S) Codimension is the dimension of the subspace complementary

to S.
P The 2mn-dimensional space of m× n matrix pencils, i.e., P =

tan(A− λB) ⊕ nor(A− λB).
V(p) Deformation or (mini)versal deformation with parameter vector

p ∈ Rl, where l ≥ 1. V(p) is also written V(p1, p2, . . . , pl). q is
also used as parameter vector.

Z(p) Deformation that spans the orthogonal complement of the orbit
of a matrix A.

ZA(p)− λZB(p) Deformation that spans the orthogonal complement of the orbit
of a pencil A− λB. Often abbreviated ZA − λZB .

1. Introduction and examples.

1.1. Introduction. Traditionally, canonical structure computations take as their
input some mathematical object, a matrix or a pencil, say, and return an equivalent
object that is perhaps simpler or makes clear the structure of the equivalence relation.
Some example equivalence relations and corresponding canonical forms are as follows.

Structure Equivalence relation Canonical form
Square matrices A ∼ X−1AX Jordan canonical form
Rectangular matrices A ∼ UAV Singular values
Rectangular matrices A ∼ XA Reduced echelon form
Matrix pencils A− λB ∼ P−1(A− λB)Q Kronecker canonical form
Analytic real functions f(x) ∼ f(φ(x)) ±xk

In the first three examples the input is a matrix. In the next example, the input
is a pencil. In these cases, X,P, and Q are presumed nonsingular and U and V are
presumed orthogonal. We presume the real functions f are analytic in a neighborhood
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of zero, f(0) = 0, φ(0) = 0, and φ(x) is monotonic and analytic near zero.

Canonical forms appear in every branch of mathematics. A few examples from
control theory may be found in [21, 20, 27, 19]. However, researchers in singularity
theory have asked what happens if you have not one object that you want to put into
a normal form, but rather a whole family of objects nearby some particular object
and you wish to put each member of the family into a canonical form in such a way
that the canonical form depends smoothly on the deformation parameters.

For example, one may have a one-parameter matrix deformation of A which is
simply an analytic function V(p) for which V(0) = A. An n parameter deformation
is defined the same way, except that p ∈ Rn. Similarly, one may have n parameter
deformations of pencils or functions. Remaining with the matrix example, we say two
deformations V1(p) and V2(p) are equivalent if V1(p) and V2(p) have the same Jordan
canonical form for each and every p. A deformation of a matrix is said to be versal if,
loosely speaking, it captures all possible Jordan form behaviors near the matrix. A
deformation is said to be miniversal if it does so with as few parameters as possible.
A more formal discussion of these definitions may be found in section 2.

The derivation of versal and miniversal deformations requires a detailed under-
standing of the perturbation theory of the objects under study. In particular, one
needs to understand the tangent space of the equivalence relation and how it is em-
bedded in the entire space. In section 2, we explain the mechanics of this perturbation
theory.

While we believe that versal deformations are interesting mathematical objects,
this work differs from others on the subject in that our primary goal is not so much the
versal deformation or the miniversal deformation, but rather the perturbation theory
and how it influences the computation of the Kronecker canonical form. As such,
we tend to be interested more in metrical information than topological information.
Therefore, we obtain new distance formulas to the space of less generic matrix pencils
in section 4. In section 5, we derive an explicit orthogonal basis for the normal space
of a Kronecker canonical form. For us a versal decomposition will be an explicit
decomposition of a perturbation into its tangential and normal components, and we
will not derive any miniversal deformations that may have simpler forms, but hide
the metric information.

Versal deformations for function spaces are discussed in [18, 25, 4, 5]. The first
application of these ideas for the matrix Jordan canonical form is due to Arnold [1].
Further references closely related to Arnold’s matrix approach are [30] and [6]. The
latter reference also includes applications to differential equations. Applications of the
matrix idea toward an understanding of companion matrix eigenvalue calculations
may be found in [13]. The only other work that we are aware of that considers
versal deformations of the Kronecker canonical form is by Berg and Kwatny [3], who
independently derived some of the normal forms considered in this paper.

Our section 2 contains a thorough explanation of versal deformations from a
linear algebra perspective. Section 3 briefly reviews matrix pencils and canonical
forms. Section 4 derives the geometry of the tangent and normal spaces to the orbits
of matrix pencils. Section 5 derives the versal deformations, while section 6 gives
applications and illustrations.

Notation is introduced and defined the first time it appears in the text. Some (but
not all) of the notation used in the paper is summarized on the previous page. For
example, the glossary of Toeplitz and Hankel matrices (section 5.2) is not repeated
there. Moreover, the definitions of different canonical forms (companion, Jordan,
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Kronecker, generalized Schur, etc.) are introduced in their context.

1.2. Geometry of matrix space. Our guiding message is very simple: matrices
should be seen in the mind’s eye geometrically as points in n2-dimensional space. A
perfect vision of numerical computation would allow us to picture computations as
moving matrices from point to point or manifold to manifold.

Abstractly, it hardly matters whether a vector is a column of numbers or a geo-
metric point in space. However, without the interplay of these two representations,
numerical linear algebra would not be the same. Imagine explaining without the
geometric viewpoint how Householder reflections transform vectors.

In contrast, in numerical linear algebra we all know that matrices are geometric
points in n2-dimensional space, but it is rare that we actually think about them this
way. Most often, matrices are thought of as either (sparse or dense) arrays of numbers,
or they are operators on vectors.

The Eckart–Young (or Schmidt–Mirsky theorem) [29, p. 210] gives a feel for the
geometric approach. The theorem states that the smallest singular value of A is the
Frobenius distance of A to the set of singular matrices. One can not help but see
a blob representing the set of singular matrices. This amorphous blob is most often
thought of as an undesirable part of town, so unfortunately numerical analysts hardly
ever study the set itself. Algebraic geometers recognize the singular matrices as a
variety, meaning that the set can be defined as the zero set of a polynomial system
(namely, det(A) = 0). It can also be “stratified” as the union of manifolds. The
most generic singular matrices are the ones with rank n − 1. These matrices form a
manifold.

Demmel helped pioneer the development of geometric techniques [7] for the analy-
sis of ill conditioning of numerical analysis problems. Shub and Smale [28] are applying
geometrical approaches toward the solution of polynomial systems.

We believe that if only we could better understand the geometry of matrix space,
our knowledge of numerical algorithms and their failures would also improve. A gen-
eral program for numerical linear algebra, then, is to transfer from pure mathemati-
cians the technology to geometrically understand the high dimensional objects that
arise in numerical linear algebra. This program may not be easy to follow. A major
difficulty is that pure mathematicians pay a price for their beautiful abstractions—
they do not always possess a deep understanding of the individual objects that we
wish to study. This makes technology transfer difficult. Even when the understanding
exists somewhere, it may be difficult to recognize or may be buried under a heavy
layer of notation. This makes technology transfer time consuming. Finally, even af-
ter expending time excavating, the knowledge may still be difficult to apply toward
the understanding or the improving of practical algorithms. This makes technology
transfer from pure mathematics frustrating.

Nevertheless, our goal as researchers is the quest for understanding which we may
then apply. In this paper, we follow our program for the understanding of the Jordan
and Kronecker canonical forms of matrices and matrix pencils, respectively. Many of
the ideas in this paper have been borrowed from the pure mathematics literature with
the goal of simplifying and applying them to the needs of numerical linear algebraists.

While this is quite a general program for numerical linear algebra, this paper
focuses on a particular goal. We analyze versal deformations from the numerical
linear algebra viewpoint and then compute normal deformations for the Kronecker
canonical form. We consider both of these as stepping stones toward the far more
difficult goal of truly understanding and improving staircase algorithms for the Jordan
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or Kronecker canonical form. These are algorithms used in systems and control theory.
The structures of these matrices or pencils reflect important physical properties of the
systems they model, such as controllability [10, 32].

The user chooses a parameter η to measure any uncertainty in the data. The
existence of a matrix or pencil with a different structure within distance η of the input
means that the actual system may have a different structure than the approximation
supplied as input. These algorithms try to perturb their input by at most η so as
to find a matrix or pencil with as high a codimension as possible. The algorithm is
said to fail if there is another perturbation of size at most η which would raise the
codimension even further. Therefore, we must understand the geometry of matrix
space to begin to understand how we can supply the correct information to the user.
With this information, we believe that we would then be able to not only correctly
provide the least generic solutions, but also understand how singularities hinder this
process. Bad solutions may then be refined so as to obtain better solutions. As the
next section illustrates, the geometry directly affects the perturbation theory.

1.3. Motivation: A singular value puzzle. Consider the following four nearly
singular matrices:

M1 =

(
0 1 + ε
0 0

)
, M2 =

(
0 1
ε 0

)
, M3 =

(
ε 1
0 −ε

)
, M4 =

(
ε 1
0 ε

)
.(1.1)

Each of these matrices are distance O(ε) from the Jordan block

J2(0) =

(
0 1
0 0

)
.

What is the smaller of the two singular values of each of M1,M2,M3, and M4? The
answer is

σmin(M1) = 0, σmin(M2) = ε, σmin(M3) ≈ ε2, and σmin(M4) ≈ ε2.

A quick way to verify this algebraically is to notice that the larger singular value of
each matrix is approximately 1 so that the smaller is approximately the (absolute)
determinant of the matrix. Another approach that bounds the smallest singular
value is the combination of the Eckart–Young theorem and the observation that these
matrices are singular:

M ′1 = M1, M ′2 =

(
0 1
0 0

)
, M ′3 =

(
ε 1
−ε2 −ε

)
, M ′4 =

(
ε 1
ε2 ε

)
.

When ε = 0 in (1.1) our four matrices become the singular 2 × 2 Jordan block
J2(0). As ε varies from 0 each of the four forms in (1.1) traces out a line in matrix
space. The geometric issue that is interesting here is that the line of matrices traced
out as ε varies is {1:In, 2:Normal, 3:Tangent, 4:Tangent} to the set of singular matrices.
Somehow, this feels like the “right” explanation for why the smaller singular values
are {1:0, 2:ε, 3:≈ ε2, 4:≈ ε2}.

Let us take a closer look at the set of singular matrices. The four parameters
found in a 2× 2 matrix M are best viewed in a transformed coordinate system:

M = (x, y, z, w) = x

(
0 1
0 0

)
+ y

(
0 0
1 0

)
+ z

(
1 0
0 −1

)
+ w

(
1 0
0 1

)
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=

(
w + z x
y w − z

)
.

In this coordinate system, the singular matrices fall on the surface described by the
equation w2 = z2 + xy. This is a three-dimensional surface in four-dimensional
space. The traceless singular matrices (w = 0) fall on the cone z2 + xy = 0 in
three-dimensional space.

Our matrix J2(0) may now be represented as (1, 0, 0, 0) and the four lines of
matrices mentioned above are

l1 = {(1 + ε, 0, 0, 0)} =

{(
0 1
0 0

)
+ ε

(
0 1
0 0

)}
,

l2 = { (1, ε, 0, 0) } =

{(
0 1
0 0

)
+ ε

(
0 0
1 0

)}
,

l3 = { (1, 0, ε, 0) } =

{(
0 1
0 0

)
+ ε

(
1 0
0 −1

)}
,

l4 = { (1, 0, 0, ε) } =

{(
0 1
0 0

)
+ ε

(
1 0
0 1

)}
.

The lines l1, l2, and l3 are all traceless; i.e., the matrices on each of these lines
may be viewed in the three-dimensional space of the cone. The line l1 is not only
tangent to the cone, but in fact it lies in the cone. The line l3 is tangent to one of the
circular cross sections of the cone.

Fig. 1.1. Cone of traceless singular matrices with “stick” representing a tangent.

Figure 1.1 illustrates l3 as a “stick” resting near the bottom of the cone. The line
l1 is a thin line on the cone through the same point.

The line l4 is normal to the cone, but it is also tangent to the variety of singular
matrices. One way to picture this in three dimensions is to take the three-dimensional
slice of {w2 = z2 + xy} corresponding to x = 1, i.e., {w2 − z2 = y}. This is a
hyperboloid with the Jordan block as a saddle point. The line is the tangent to the
parabola w2 = y which rests in the plane z = 0. Figure 1.2 illustrates this line with
a cylindrical stick whose central axis is the tangent. Finally, the line l2 is normal to
the set of singular matrices.

If we move a distance ε away from a point on a surface along a tangent, our
distance to the surface remains O(ε2). This is what the singular value corresponding
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Fig. 1.2. Variety of singular matrices. The axis of the cylindrical stick is tangent to the singular
variety.

to l3 and l4 is telling us. Alternatively, if we move normal to the surface as in l2, the
singular value changes more rapidly: O(ε).

The cone of singular matrices with w = 0 is not only a slice of a large dimensional
space, but it is also the (closure of) the set of matrices similar to J2(0) (which we
denote orbit(J2(0)) in section 2.4). The matrices similar to J2(0) are singular and
traceless. In fact, the only matrix that is singular and traceless that is not similar to
J2(0) is the 0 matrix which is the vertex of the cone. We further explore this case in
section 2.5 after we have defined versal deformations.

We conclude that the geometry of the orbit and, in particular, the directions of
the tangents and normals to the orbit directly influence the eigenvalue perturbation
theory.

2. Introduction to versal deformations. This introduction is designed to be
readable for general audiences, but we particularly target the numerical linear algebra
community.

The ideas here may be thought of as a numerical analyst’s viewpoint on ideas
that were inspired by Arnold’s work [1] on versal deformations of matrices. Further
elaboration upon Arnold’s versal deformations of matrices may be found in [6, Chap-
ters 2.9 and 2.10] and [30]. These ideas fit into a larger context of differential topology
and singularity theory. Bruce and Giblin [5] have written a wonderfully readable in-
troduction to singularity theory emphasizing the elementary geometrical viewpoint.
After reading this introduction, it is easy to be lulled into the belief that one has
mastered the subject, but a more advanced wealth of information may be found in
[18, 25, 4]. Finally, what none of these references do very well is clearly explain that
there is still much in this area that mankind does not yet fully understand.
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Singularity theory may be viewed as a branch of the study of curves and surfaces,
but its crowning application is toward the topological understanding of functions and
their behavior under perturbations. Of course, numerical analysts are very interested
in perturbations as well.

2.1. Characteristic polynomials give the “feel” of versal deformations.
Let V(p) be a differentiable one-parameter family of matrices through A ≡ V(0).
This is just a curve in matrix space. If A has a complicated Jordan canonical form,
then very likely the Jordan canonical form of V(p) is a discontinuous function of p.
(The Jordan canonical form, you will remember, can have nasty ones popping up
unexpectedly on the superdiagonal.) It is even more desirable if that function can
somehow describe the kinds of matrices that are near A.

Discontinuities are as unpleasant for pure mathematicians as they are for com-
puters. Therefore, Arnold [1] asks what kinds of functions of p are differentiable (or
many times differentiable, or analytic).

One function that comes to mind is the characteristic polynomial det(V(p)−λI).
The coefficients of det(V(p)−λI) are clearly differentiable functions of p no matter how
complicated a Jordan canonical form the matrix A might have. In numerical linear
algebra, we never compute the characteristic polynomial because the eigenvalues are
often very poorly determined by the coefficients of the characteristic polynomial.
Mathematically, the characteristic polynomial is a nice function of a matrix because
its coefficients, unlike the eigenvalues of the matrix, are analytic functions of the
entries of the matrix.

The characteristic polynomial is a reasonable representation for the Jordan canon-
ical form under the special circumstance that every matrix V(p) is nonderogatory (i.e.,
each matrix has exactly one Jordan block for each distinct eigenvalue). By a reason-
able representation, we mean here that it actually encodes the Jordan canonical form
of A. Theoretically, if you know the characteristic polynomial, then you know the
eigenvalues with appropriate multiplicities. It follows that there is a unique non-
derogatory Jordan canonical form (see Wilkinson [35, pp. 11–16 or Note 55, p. 408]).
To repeat, there is a one-to-one correspondence among the n eigenvalues of a non-
derogatory matrix, the characteristic polynomial of a nonderogatory matrix, and the
Jordan canonical form of a nonderogatory matrix, but only the characteristic poly-
nomial is a differentiable function of the perturbation parameter p. (The eigenvalues
themselves can have first-order perturbations with the nondifferentiable form p1/n,
for example, for an n × n matrix A with only one Jordan block Jn(λ). This is a
well-known example.)

In the language of numerical linear algebra, we would say that a nonderogatory
matrix A may be written in companion matrix form KCK−1 in such a way that
differentiable perturbations to the matrix A lead to differentiable perturbations to
the companion matrix C. Here the matrix K is a Krylov matrix (see [17, p. 369]).
Equivalently, first-order perturbations to the matrix A are manifested as first-order
perturbations to the companion matrix C. When A is a companion matrix, this gives
a first-order perturbation theory for the characteristic polynomials of nearby matrices.
This perturbation theory is computed in [13].

Our story would almost stop here if we were interested only in the Jordan form of
nonderogatory matrices. We say “almost” because it would be a shame to stop here
without explaining the ideas geometrically. Even if we did not discuss the geometry,
we have reasons to continue on, since matrix space is enriched with the derogatory
matrices, and also we wish to generalize these ideas about the Jordan canonical form
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to cover the more complicated case of the Kronecker canonical form.

2.2. The rational canonical form is not enough for derogatory matrices.
In the previous section we saw that n parameters were sufficient to specify the Jordan
canonical form of any matrix in a small neighborhood of a nonderogatory matrix.
What happens if the matrix is derogatory? One obvious guess turns out to be wrong.
The usual generalization of the companion matrix form for derogatory matrices is
the rational canonical form. If A is derogatory, it may be put in rational canonical
form. This form may be thought of as the direct sum of companion matrices Ci with
dimension m1 ≥ m2 ≥ · · · ≥ mk. The characteristic polynomial of each Ci divides
the characteristic polynomial of all the preceding Cj , j < i. Can any nearby matrix
be expressed as the direct sum of companion matrices with dimension m1,m2, . . . ,mk

in a nice differentiable manner? The answer is generally no; though good enough
to specify the Jordan canonical form of a matrix, the rational canonical form fails
to be powerful enough to specify the Jordan canonical forms of all matrices in a
neighborhood. This is because there are just not enough parameters in the rational
canonical form to cover all the possibilities. To have enough parameters we need a
“versal deformation.”

One simple example is the identity matrix (or the zero matrix). The rational
canonical form has m1 = · · · = mn = 1. The matrices with this form are the diagonal
matrices, and hence every one of them is nondefective (diagonalizable). However,
with an arbitrarily small perturbation of the identity, it is possible to obtain defective
matrices. The rational canonical form has n parameters, which are not enough.

2.3. Versal deformation: The linearized theory. The “linearized” picture
of a versal deformation is easy to understand. We therefore explain this picture before
plunging into the global point of view. The general case may be nonlinear, but the
linearized theory is all that really matters. For simplicity we assume that we are in
real n-dimensional Euclidean space, but this assumption is not so important.

We recall the elementary fact that if S and T are subspaces of Rn such that
S ⊕ T = Rn, then there exist linear projections πS and πT that map onto S and T ,
respectively.

Consider a point x ∈ S. We will investigate all possible perturbations y of x, but
we will not be concerned with perturbations that are within S itself. Psychologically,
we consider all the vectors in S to somehow be the same, so there will be no need to
distinguish them. Let T be any linear subspace such that S⊕T = Rn; i.e., any vector
may be written as the sum of an element of T and an element of S (not necessarily
uniquely). Clearly if t1, . . . , tk span T , then our perturbed vector x+y may be written
as

x+ y = x+

k∑
i=1

piti + (something in S),

where the pi may be chosen as linear functions of y. We see here what will turn out to
be the key idea of a versal deformation—every perturbation vector may be expressed
in terms of the pi and vectors that we are considering to all be equivalent.

We now formally introduce the local picture of versal deformations.
Definition 2.1. A linear deformation of the point x is a function defined on

p ∈ Rl:

V(p) = x+ Tp,
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where T = [t1, t2, . . . , tl] are arbitrary directions.
The choice of the word “deformation” is meant to convey the idea that we are

looking at small values of the pi, and these perturbations are small deformations of
the starting point x.

Definition 2.2. A linear deformation V1(p) of the point x is versal if for all
linear deformations V2(q) of the point x, it is possible to write

V2(q) = V1(φ(q)) + θ(q),

where φ(q) is a linear function from q1, . . . , qm to p1, . . . , pl with φ(0) = 0 and θ is a
linear function from q into S with θ(0) = 0.

We now explain why V1(p) = x +
∑l
i=1 piti is versal if and only if S ⊕ T = Rn.

Clearly V1(φ(q))+θ(q) ∈ S⊕T , and since V2(p) may be arbitrary, it is necessary that
span({ti})⊕S = Rn. It is also sufficient because we then obtain linear projections
allowing us to write V2(q) = x + πSV2(q) + πT V2(q). The functions φ and θ may be
obtained from πS and πT .

Definition 2.3. A linear deformation V(p) of the point x is universal or miniver-
sal if it is versal and has the fewest possible parameters needed for a versal deforma-
tion.

The number of parameters in a miniversal deformation is exactly the codimension
of S. Numerical analysts might prefer taking the ti to be an orthogonal basis for S⊥,
the subspace perpendicular to S. This provides one natural miniversal deformation.
Arnold [1] does not insist on using S⊥; any basis for any subspace of dimension
n − dimS will do provided that it intersects S at zero only. From the topological
point of view, this is exactly the same, though of course the numerical properties may
be quite different.

2.4. Versal deformations—the bigger picture. The previous section ex-
plained the linear or first-order theory of versal deformations. At this point, the
reader might wonder whether this is just a whole lot of jargon to merely extend a
basis for a subspace to the entire space. At the risk of delaying the motivation until
now, we decided to make sure that the linear theory be well understood.

We are still in a finite-dimensional Euclidean space Rn, but S will no longer be a
flat subspace. Instead, we wish to consider any equivalence relation ∼ such that the
orbit of x (orbit(x)≡ {y|y ∼ x}) is a sufficiently smooth submanifold. As an example
we might define x ∼ y to mean ‖x‖ = ‖y‖, in which case the orbits are spheres. In
this context the word “orbit” is quite natural. In n2-dimensional space points may
be thought of as n × n matrices, and the orbit is the set of matrices with the same
Jordan canonical form.

One final example that we must mention (because it explains the origins and
significance of singularity theory) lives in an infinite-dimensional space. The vector
space is the set of analytic functions f(x) for which f(0) = 0. We can define f ∼ g if
f(x) and g(φ(x)) have the same Taylor expansion at x = 0, where φ is a monotonic
analytic function with φ(0) = 0. The orbit of any function is some complicated
infinite-dimensional manifold, but the codimension of the manifold happens to be
finite.

Returning to Rn, we can now cast everything into a nonlinear context.
Definition 2.4. A deformation of the point x is any continuously differentiable

function

V(p1, . . . , pl)
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satisfying V(0) = x.
Definition 2.5. A deformation V1(p) of the point x is versal if for all deforma-

tions V2(q) it is possible to write

V2(q) ∼ V1(φ(q))

in an arbitrarily small neighborhood of 0, where φ(q) is a continuously differentiable
function from q1, . . . , qm to p1, . . . , pl for which φ(0) = 0.

The good news is that the inverse function theorem lets us express this nonlinear
notion in terms of the linear theory.

Theorem 2.6. A deformation V(p) of x is versal if and only if V∗(p) is a versal
linear deformation at the point x on the subspace tan(orbit(x)), where V∗(p) is the
linearization of V(p) near x (i.e., only first derivatives matter) and tan denotes the
subspace tangent to the orbit at x.

The rigorous proof may be found in [1], but the intuition should be clear: near
the point x, only linear deformations matter, and the curvature of the orbit becomes
unimportant—only the tangent plane matters. In other words, y ∼ x only if y is in
the orbit of x, but to first order y ∼ x if (roughly speaking) y = x + s, where s is a
small tangent vector to the orbit. The versality theorem (Theorem 2.6) shows that
we only have to consider versal linear deformations, which we in the following denote
V(p).

2.5. Versal deformations for the Jordan canonical form. We begin with
deformations of the matrix A = J2(0). The perturbation theory and the normal and
tangent spaces were discussed in section 1.3. We will use the same coordinate system
here.

Four parameters q = (q1, q2, q3, q4) are sufficient to describe the most general
deformation of A:

V2(q) =

(
0 1
0 0

)
+

(
q1 q2
q3 q4

)
.

The equivalence relation is that of similar matrices, and it is easy to see by
checking the trace and determinant that for sufficiently small values of q we have the
equivalence

V2(q) ∼ V1(p) ≡
(

0 1
p1 p2

)
,

where p = φ(q) is defined by p1 = q3(1 + q2) − q1q4 and p2 = q1 + q4. It is worth
emphasizing that the equivalence relation does not work if V2(q) is derogatory, but
this does not happen for small parameters q.

We then see from Definition 2.5 that the two-parameter deformation V1(p) is
versal. In fact, it is miniversal, in that one needs the two parameters. From the local
theory pictured in section 1.3, we saw that the orbit of J2(0) is the two-dimensional
cone, and therefore the tangent and normal spaces are each two dimensional. The
number of parameters in a miniversal deformation is always the dimension of the
normal space.

It is a worthwhile exercise to derive the similarity transformation S(q) (a defor-
mation of the identity matrix) for which

V2(q) = S(q)−1V1(φ(q))S(q),
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and then linearize this map for small values of q to see which directions fall along the
tangent space to the cone and which directions are normal to the cone.

Now consider deformations of A = I2 or A = 0. Both matrices are derogatory
with two eigenvalues 1 and 0, respectively. The tangent space does not exist (i.e., it
is zero dimensional). Any possible behavior may be found near I2 (or 0), including a
one-dimensional space of derogatory matrices. The miniversal deformation of I2 (or
0) is the full deformation requiring four parameters.

The general case has been worked out by Arnold [1]. The tangent vectors to the
orbit of a matrix A are those matrices that may be expressed as XA − AX. The
normal space is the adjoint of the centralizer, i.e., the set of matrices Z satisfying

AHZ = ZAH .

Definition 2.7. A deformation V(p) = A + Z(p) of a matrix A is a versal
deformation if and only if Z(p) is a basis for the orthogonal complement of orbit(A)
that intersects the orbit at A.

The formal definition of the similarity orbit of a matrix A is

orbit(A) = {S−1AS : det(S) 6= 0}.

The parameterized normal form Z(p) is the set of matrices that commute with AH

[1, 16]. For numerical properties we prefer taking Z(p) to be an orthogonal basis for
the normal space of orbit(A) at A. This choice of Z(p) also ensures that V(p) is a
miniversal deformation with one parameter for each dimension of the normal space.

Let A have r distinct eigenvalues λi, i = 1 : r with ri Jordan blocks each. Let
s1(λi) ≥ s2(λi) ≥ · · · ≥ sri(λi) denote the sizes of the Jordan blocks corresponding
to the eigenvalue λi. Then the dimension of the normal space of A is

r∑
i=1

ri∑
j=1

(2j − 1)sj(λi) =
r∑
i=1

(s1(λi) + 3s2(λi) + 5s3(λi) + · · ·).

Notice that the values of the distinct λi play no role in this formula. The dimension
of the normal space of A is determined only by the sizes of the Jordan blocks of A
associated with distinct eigenvalues. If the matrix is in Jordan canonical form, then
the normal space consists of matrices Z(p) made up of Toeplitz blocks, whose block
structure is completely determined by the sizes of the Jordan blocks for different
eigenvalues. The normal space is the same for all matrices with the same Jordan
structure independent of the values of the distinct eigenvalues, so one may as well
consider only Jordan blocks corresponding to a 0 eigenvalue. This form of the normal
space for the 0 eigenvalues is a special case in Theorem 5.3.

3. The algebra of matrix pencils–canonical forms. We saw in section 2.4
that to consider versal deformations one needs a finite- or infinite-dimensional space
and an equivalence relation on this space. For the remainder of this paper, we consider
the finite-dimensional Euclidean space of matrix pencils endowed with the Euclidean
metric (usually denoted the Frobenius metric in this context). The equivalence rela-
tion is that of the strict equivalence of pencils.

We consider a matrix pencil A−λB, where A and B are arbitrary m×n matrices
with real or complex entries. The pencil is said to be regular if m = n and det(A−λB)
is not identically zero. Indeed, the zeros of det(A − λB) = 0 are the (generalized)
eigenvalues of a regular pencil. Otherwise, i.e., if det(A − λB) is identically zero or
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m 6= n, A − λB is called singular. Two m × n pencils A1 − λB1 and A2 − λB2 are
strictly equivalent if there exist constant (independent of λ) invertible matrices P of
size m×m and Q of size n× n such that

P−1(A1 − λB1)Q = A2 − λB2.

Kronecker has shown that any matrix pencil is strictly equivalent to a canonical
diagonal form that describes the structure elements of A− λB (including generalized
eigenvalues and eigenspaces) in full detail (e.g., see [16]). This form is a generalization
of the Jordan canonical form (JCF) to general matrix pencils.

3.1. Kronecker canonical form. The Kronecker canonical form (KCF) of A−
λB exhibits the fine structure elements, including elementary divisors (Jordan blocks)
and minimal indices, and is defined as follows [16]. SupposeA,B ∈ Cm×n. Then there
exist nonsingular P ∈ Cm×m and Q ∈ Cn×n such that

P−1(A− λB)Q = Ã− λB̃,(3.1)

where Ã = diag(A1, . . . , Ab) and B̃ = diag(B1, . . . , Bb) are block diagonal. Ai − λBi
is mi × ni. We can partition the columns of P and Q into blocks corresponding to
the blocks of Ã − λB̃: P = [P1, . . . , Pb], where Pi is m ×mi, and Q = [Q1, . . . , Qb],
where Qi is n×ni. Each block Mi ≡ Ai− λBi must be of one of the following forms:
Jj(α), Nj , Lj , or LTj . First we consider

Jj(α) ≡


α− λ 1

· ·
· 1
α− λ

 and Nj ≡


1 −λ

· ·
· −λ

1

 .
Jj(α) is simply a j × j Jordan block, and α is called a finite eigenvalue. Nj is a
j × j block corresponding to an infinite eigenvalue of multiplicity j. The Jj(α) and
Nj blocks together constitute the regular structure of the pencil. All the Ai − λBi
are regular blocks if and only if A − λB is a regular pencil. σ(A − λB) denotes
the eigenvalues of the regular part of A − λB (with multiplicities) and is called the
spectrum of A− λB.

The other two types of diagonal blocks are

Lj ≡

 −λ 1
· ·
−λ 1

 and LTj ≡


−λ
1 ·
· −λ

1

 .(3.2)

The j×(j+1) block Lj is called a singular block of right (or column) minimal index j.
It has a one-dimensional right null space [1, λ, . . . , λj ]T for any λ. The (j+1)×j block
LTj is a singular block of left (or row) minimal index j and has a one-dimensional left
null space for any λ. The left and right singular blocks together constitute the singular
structure of the pencil and appear in the KCF if and only if the pencil is singular. The
regular and singular structures define the Kronecker structure of a singular pencil.

We also have a real KCF associated with real matrix pencils. If A,B ∈ Rm×n,
there exist nonsingular P ∈ Rm×m and Q ∈ Rn×n, where as before P−1(A−λB)Q =
Ã−λB̃ is block diagonal. The only difference with (3.1) is the Jordan blocks associated
with complex conjugate pairs of eigenvalues. Let α = µ+ iω, where µ, ω are real and
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ω 6= 0. If α is an eigenvalue of A − λB, then ᾱ is also an eigenvalue. Let Jj(α, ᾱ)
denote a Jordan block of size 2j × 2j associated with a complex conjugate pair of
eigenvalues, here illustrated with the case j = 3:

J3(α, ᾱ) ≡


µ− λ ω 1 0 0 0
−ω µ− λ 0 1 0 0
0 0 µ− λ ω 1 0
0 0 −ω µ− λ 0 1
0 0 0 0 µ− λ ω
0 0 0 0 −ω µ− λ

 .

The Jordan block Jj(α, ᾱ) plays the same role in the real JCF as diag(Jj(α), Jj(ᾱ))
does in the complex JCF. Notice that each pair of the 2j columns of the real P and Q
associated with a Jj(α, ᾱ) block form the real and imaginary parts of the (generalized)
principal chains corresponding to the complex conjugate pair of eigenvalues.

3.2. Generalized Schur form and reducing subspaces. In most applica-
tions it is sufficient to transfer A− λB to a generalized Schur form (e.g., to GUPTRI
form [11, 12])

PH(A− λB)Q =

 Ar − λBr ∗ ∗
0 Areg − λBreg ∗
0 0 Al − λBl

 ,(3.3)

where P (m × m) and Q (n × n) are unitary and ∗ denotes arbitrary conforming
submatrices. Here the square upper triangular block Areg − λBreg is regular and
has the same regular structure as A − λB (i.e., contains all eigenvalues (finite and
infinite) of A − λB). The rectangular blocks Ar − λBr and Al − λBl contain the
singular structure (right and left minimal indices) of the pencil and are block upper
triangular.

Ar − λBr has only right minimal indices in its KCF, indeed the same Lj blocks
as A − λB. Similarly, Al − λBl has only left minimal indices in its KCF, the same
LTj blocks as A − λB. If A − λB is singular at least one of Ar − λBr and Al − λBl
will be present in (3.3). The explicit structure of the diagonal blocks in staircase form
can be found in [12]. If A − λB is regular Ar − λBr and Al − λBl are not present
in (3.3) and the GUPTRI form reduces to the upper triangular block Areg − λBreg.
Staircase forms that reveal the Jordan structure of the zero and infinite eigenvalues
are contained in Areg − λBreg.

Given A−λB in GUPTRI form, we also know different pairs of reducing subspaces
[33, 11]. Suppose the eigenvalues on the diagonal of Areg − λBreg are ordered so that
the first k, say, are in Λ1 (a subset of the spectrum) and the remainder are outside Λ1.
Let Ar − λBr be mr × nr. Then the left and right reducing subspaces corresponding
to Λ1 are spanned by the leading mr + k columns of P and leading nr + k columns of
Q, respectively. When Λ1 is empty, the corresponding reducing subspaces are called
minimal, and when Λ1 contains the whole spectrum the reducing subspaces are called
maximal.

Several authors have proposed (staircase-type) algorithms for computing a gen-
eralized Schur form (e.g., see [2, 22, 24, 23, 31, 36]). They are numerically stable in
the sense that they compute the exact Kronecker structure (generalized Schur form
or something similar) of a nearby pencil A′ − λB′. δ ≡ ‖(A−A′, B −B′)‖E is an
upper bound on the distance to the closest (A+δA,B+δB) with the KCF of (A′, B′).
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Recently, robust software with error bounds for computing the GUPTRI form of a
singular A − λB has been published [11, 12]. Some computational experiments that
use this software will be discussed later.

3.3. Generic and nongeneric Kronecker structures. Although the KCF
looks quite complicated in the general case, most matrix pencils have a quite simple
Kronecker structure. If A−λB is m×n, where m 6= n, then for almost all A and B it
will have the same KCF, depending only on m and n. This corresponds to the generic
case when A − λB has full rank for any complex (or real) value of λ. Accordingly,
generic rectangular pencils have no regular part. The generic Kronecker structure for
A− λB with d = n−m > 0 is

diag(Lα, . . . , Lα, Lα+1, . . . , Lα+1),

where α = bm/dc, the total number of blocks is d, and the number of Lα+1 blocks
is m mod d (which is 0 when d divides m) [31, 8]. The same statement holds for
d = m − n > 0 if we replace Lα, Lα+1 in (3.2) by LTα , L

T
α+1. Square pencils are

generically regular; i.e., det(A−λB) = 0 if and only if λ is an eigenvalue. The generic
singular pencils of size n× n have the Kronecker structures [34]

diag(Lj , L
T
n−j−1), j = 0, . . . , n− 1.

Only if a singular A − λB is rank deficient (for some λ) may the associated KCF
be more complicated and possibly include a regular part, as well as right and left
singular blocks. This situation corresponds to the nongeneric or degenerate case,
which of course is the real challenge from a computational point of view.

The generic and nongeneric cases can easily be couched in terms of reducing
subspaces. For example, generic rectangular pencils have only trivial reducing sub-
spaces and no generalized eigenvalues at all. Generic square singular pencils have the
same minimal and maximal reducing subspaces. We think of a nongeneric case as an
A − λB that lies either in a submanifold (its orbit) or the bundle corresponding to
similar forms but with differing eigenvalues. In this case the pencil has nontrivial re-
ducing subspaces. Moreover, only if it is perturbed so as to move continuously within
this manifold or bundle does its reducing subspaces and generalized eigenvalues also
move continuously and satisfy interesting error bounds [9, 11, 14, 26]. These require-
ments are natural in many control and systems theoretic problems, such as computing
controllable subspaces and uncontrollable modes.

4. The geometry of matrix pencil space. In the coming sections we derive
formulas for the tangent and normal spaces of the orbit of a matrix pencil that we will
make use of in computing the versal form in section 5. We also derive new bounds
for the distance to less generic pencils.

4.1. The orbit of a matrix pencil and its tangent and normal spaces.
Any m × n matrix pair (A,B) (with real or complex entries) defines a manifold of
strictly equivalent matrix pencils in the 2mn-dimensional space P of m× n pencils:

orbit(A− λB) = {P−1(A− λB)Q : det(P )det(Q) 6= 0}.(4.1)

We may choose a special element of orbit(A−λB) that reveals the KCF of the pencil.
As usual, the dimension of orbit(A−λB) is equal to the dimension of the tangent

space to the orbit at A − λB, here denoted tan(A − λB). By considering the defor-
mation (Im + δX)(A− λB)(In − δY ) of A− λB to first-order term in δ, where δ is a
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small scalar, we obtain A − λB + δ(X(A − λB) − (A − λB)Y ) + O(δ2), from which
it is evident that tan(A − λB) consists of the pencils that can be represented in the
form

TA − λTB = (XA−AY )− λ(XB −BY ),(4.2)

where X is an m×m matrix and Y is an n× n matrix. (This may also be obtained
formally by differentiating the exponential map.)

In the language of pure mathematics the map that sends the triple (P,Q,A−λB)
to P−1(A−λB)Q is called a group action. The group is the ordered pair of nonsingular
matrices (P,Q) denoted GLm ×GLn which indicates the size of the matrices and the
fact that they are nonsingular. The group GLm × GLn then is acting on the set of
pencils.

A group action is transitive if it maps the set onto itself; i.e., if every member of
the set may be reached from every other member of the set by the map. Clearly the
group action is transitive on orbits. (This is merely a restatement of the definition of
an orbit: an orbit is a minimal transitive set with respect to the group action.)

Since the action is transitive, we immediately have that orbits are manifolds.
Intuitively, the tangent space “looks” the same at every point, since it may be moved
from any point to another point by the group action. Mathematically, the orbit is
a homogeneous space. The orbit may be equated with the quotient group obtained
by forming equivalence classes of pairs (P,Q) that map A − λB to the same point.
It is a small step to show that reducing subspaces vary smoothly if one perturbs a
pencil so that it stays on the same orbit. All one must do is lift a curve (maintaining
continuity) through a pencil back up to GLm×GLn and then project out the reducing
subspaces.

Using Kronecker products, we can represent the 2mn vectors TA−λTB ∈ tan(A−
λB) as [

vec(TA)
vec(TB)

]
=

[
AT ⊗ Im
BT ⊗ Im

]
vec(X)−

[
In ⊗A
In ⊗B

]
vec(Y ).

In this notation, we may say that the tangent space is the range of the 2mn×(m2+n2)
matrix

T ≡
[
AT ⊗ Im −In ⊗A
BT ⊗ Im −In ⊗B

]
.(4.3)

We may define the normal space nor(A − λB) as the space perpendicular to
tan(A − λB). Orthogonality in P, the 2mn-dimensional space of matrix pencils, is
defined with respect to a Frobenius inner product

〈A− λB,C − λD〉 ≡ tr(ACH +BDH),

where tr(X) denotes the trace of a square matrix X. Remembering that the space
orthogonal to the range of a matrix is the kernel of the Hermitian transpose, we have
that

nor(A− λB) = ker(TH) = ker

[
Ā⊗ Im B̄ ⊗ Im
−In ⊗AH −In ⊗BH

]
.

In ordinary matrix notation, this states that ZA − λZB is in the normal space of
A− λB if and only if

ZAA
H + ZBB

H = 0 and AHZA +BHZB = 0.(4.4)
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The conditions on ZA and ZB can easily be verified and also be derived in terms
of the Frobenius inner product, i.e.,

〈TA − λTB , ZA − λZB〉 = tr(X(AZHA +BZHB )− (ZHA A+ ZHBB)Y ).(4.5)

Verification. If conditions (4.4) are satisfied, it follows from (4.5) that the inner
product is zero.

Derivation. If 〈TA − λTB , ZA − λZB〉 = 0, then tr(X(AZHA + BZHB )− (ZHA A+
ZHBB)Y ) = 0 must hold for any X (of size m×m) and Y (of size n×n). By choosing
X ≡ 0, (4.5) reduces to tr((ZHA A+ZHBB)Y ) = 0, which holds for any Y if and only if
ZHA A+ZHBB = 0. Similarly, we can choose Y ≡ 0, which gives that AZHA +BZHB = 0.

If B = I, this reduces to ZA ∈ nor(A) if and only if ZHA ∈ centralizer(A), which is
a well-known fact (e.g., see [1]). We will see in section 5.3 that though the A-part of
the normal space is very simple when B = I, obtaining an orthonormal basis for the
B-part is particularly challenging. The requirement that ZB = −AHZA when B = I
destroys any orthogonality one may have in a basis for the A-part.

We now collect our general statements and a few obvious consequences.
Theorem 4.1. Let the m×n pencil A−λB be given. Define the 2mn×(m2 +n2)

matrix T as in (4.3). Then

tan(A− λB) = range(T ) = {(XA−AY )− λ(XB −BY )},

where X and Y are compatible square matrices, and

nor(A− λB) = ker(TH) = {ZA − λZB},

where ZAA
H + ZBB

H = 0 and AHZA +BHZB = 0.
The dimensions of these spaces are

dim(tan(A− λB)) = m2 + n2 − dim(ker(T ))(4.6)

and

dim(nor(A− λB)) = dim(ker(TH)) = dim(ker(T ))− (m− n)2.(4.7)

Of course, the tangent and normal spaces are complementary and span the com-
plete 2mn-dimensional space, i.e., P = tan(A − λB) ⊕ nor(A − λB), so that the
dimensions in (4.6) and (4.7) add up to 2mn, as they should.

Theorem 4.1 leads to one approach for computing a basis for nor(A − λB) from
the singular value decomposition (SVD) of T . Indeed, the left singular vectors corre-
sponding to the zero singular value form such a basis. The dimension of the normal
space is also known as the codimension of the orbit, here denoted cod(A− λB). Ac-
cordingly, we have the following “compact” characterization of the codimension of
orbit(A− λB).

Corollary 4.2. Let the m× n pencil A− λB be given. Then

cod(A− λB) = the number of zero singular values of T.

The corresponding result for the (square) matrix case is

cod(A) = the number of zero singular values of In ⊗A−AT ⊗ In.
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Although the SVD-based method is simple and has nice numerical properties (back-
ward stability), it is rather costly in the number of operations. Computing the SVD
of T is an O(m3n3) operation.

Knowing the Kronecker structure of A − λB, it is also possible to compute the
codimension of the orbit as the sum of separate codimensions [8]:

cod(A− λB) = cJor + cRight + cLeft + cJor,Sing + cSing.(4.8)

The different contributions in (4.8) originate from the Jordan structure of all eigen-
values (including any infinite eigenvalue), the right singular blocks (Lj ↔ Lk), the
left singular blocks (LTj ↔ LTk ), interactions of the Jordan structure with the singular

blocks (Lk and LTj ), and interactions between the left and right singular structures

(Lj ↔ LTk ), respectively. Explicit expressions for these codimensions are derived in
[8]. Assume that the given A−λB has r ≤ min (m,n) distinct eigenvalues λi, i = 1 : r
with ri Jordan blocks each. Let s1(λi) ≥ s2(λi) ≥ · · · ≥ sri(λi) denote the sizes of the
Jordan blocks corresponding to the eigenvalue λi. Then the separate codimensions of
(4.8) can be expressed as

cJor =

r∑
i=1

ri∑
j=1

(2j − 1)sj(λi) =

r∑
i=1

(s1(λi) + 3s2(λi) + 5s3(λi) + · · ·),

cRight =
∑
j>k

(j − k − 1), cLeft =
∑
j>k

(j − k − 1), cSing =
∑
j,k

(j + k + 2),

cJor,Sing = (size of complete regular part) · (number of singular blocks).

Notice that if we do not wish to specify the value of an eigenvalue λi, the codimension
count for this unspecified eigenvalue is one less, i.e.,

−1 + s1(λi) + 3s2(λi) + 5s3(λi) + · · · .

This is sometimes done in algorithms for computing the Kronecker structure of a
matrix pencil, where usually only the eigenvalues 0 and ∞ are specified and the
remaining ones are unspecified.

It is possible to extract the Kronecker structure of A − λB from a generalized
Schur decomposition in O((max(m,n))3) operations. The most reliable SVD ap-
proach for computing a generalized Schur decomposition of A− λB requires at most
O((max(m,n))4) operations, which is still small compared to computing the SVD of
T (4.3) for already moderate values of m and n (e.g., when m = n).

Speaking loosely, we refer to a pencil as having a particular codimension; when
speaking strictly we mean that the orbit of the pencil has this codimension.

For given m and n the generic pencil has codimension 0 (i.e., spans the complete
2mn-dimensional space), while the most nongeneric matrix pair (A,B)=(0m×n,0m×n)
has codimension = 2mn (i.e., defines a “point” in 2mn-dimensional space). Accord-
ingly, any m×n nongeneric pencil different from the “zero pencil” has a codimension
≥ 1 and < 2mn.
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4.2. A lower bound on the distance to a less generic pencil. The SVD
characterization of the codimension of orbit(A − λB) in Corollary 4.2 leads to the
following theorem, from which we present an interesting special case as a corollary.

Theorem 4.3. For a given m × n pencil A − λB with codimension c, a lower
bound on the distance to the closest pencil (A + δA) − λ(B + δB) with codimension
c+ d, where d ≥ 1, is given by

‖(δA, δB)‖E ≥
1√

m+ n

(
2mn∑

i=2mn−c−d+1

σ2
i (T )

)1/2

,(4.9)

where σi(T ) denotes the ith largest singular value of T (σi(T ) ≥ σi+1(T ) ≥ 0).

Proof. It follows from Corollary 4.2 that T has rank = 2mn − c if and only if
A− λB has codimension c and (A+ δA)− λ(B + δB) has codimension c+ d (d ≥ 1)
if and only if T + δT , where δT is defined as

δT ≡
[
δAT ⊗ Im −In ⊗ δA
δBT ⊗ Im −In ⊗ δB

]
,(4.10)

has rank 2mn− c− d. From the construction, it follows that

‖δT‖E =
√
m+ n‖(δA, δB)‖E

(each element δaij and δbij appears m + n times in δT ). The Eckart–Young and
Mirsky theorem for finding the closest matrix of a given rank (e.g., see [17]) gives that
the size of the smallest perturbation in Frobenius norm that reduces the rank in T
from 2mn− c to 2mn− c− d is(

2mn−c∑
i=2mn−c−d+1

σ2
i (T )

)1/2

.(4.11)

Moreover, the fact that A− λB has codimension c implies that σ2mn−c+1(T ) = · · · =
σ2mn(T ) = 0. Since ‖δT‖E must be larger than or equal to quantity (4.11), the proof is
complete.

Corollary 4.4. For a given generic m×n pencil A−λB, a lower bound on the
distance to the closest nongeneric pencil (A+ δA)− λ(B + δB) is given by

‖(δA, δB)‖E ≥
σmin(T )√
m+ n

,(4.12)

where σmin(T ) = σ2mn(T ) denotes the smallest singular value of T , which is nonzero
for a generic A− λB.

We remark that the set of m × n matrix pencils does not include orbits of all
codimensions from 1 to 2mn.

One application of Corollary 4.4 is to characterize the distance to uncontrollability
for a multiple input/multiple output linear system Eẋ(t) = Fx(t) + Gu(t), where E
and F are p× p matrices, G is p× q (p ≥ q), and E is assumed to be nonsingular. If
A− λB ≡ [G|F − λE] is generic, the linear system is controllable (i.e., the dimension
of the controllable subspace equals p) and a lower bound on the distance to the closest
uncontrollable system is given by (4.12).
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5. Versal deformations for the KCF. In the coming sections, we derive versal
deformations which for us will mean the decomposition of arbitrary perturbations into
the tangent and normal spaces of the orbits of equivalent pencils. Since the set of
pencils is itself a vector space, the tangent and normal spaces to the orbits may be
thought of as linear affine subplanes embedded in the space of pencils.

Definition 5.1. A deformation V(p) = A − λB + ZA(p) − λZB(p) of a pencil
A − λB is a versal deformation if and only if ZA(p) − λZB(p) is a basis for the
orthogonal complement of orbit(A− λB) that intersects the orbit at A− λB.

Throughout this paper we will choose ZA(p)− λZB(p) to have minimum number
of parameters and to be an orthogonal basis for the normal space of orbit(A − λB)
at A − λB. When it is clear from the context, we will drop the parameters and use
the notation ZA − λZB for the parameterized basis for the normal space.

5.1. An introductory example. We start with a small example before consid-
ering the general case. Let A−λB = L1⊕L4 with codimension = 2. (This means that
the manifold orbit(A−λB) has codimension 2 or dimension 68 in the 70-dimensional
space of 5× 7 pencils.) Since A− λB is already in KCF we know its block structure:

A− λB =


−λ 1 0 0 0 0 0
0 0 −λ 1 0 0 0
0 0 0 −λ 1 0 0
0 0 0 0 −λ 1 0
0 0 0 0 0 −λ 1

 .
From (4.2) the matrices in the tangent space are given by TA − λTB = (XA −

AY )− λ(XB −BY ), where

TA =



−y21 x11 − y22 −y23 x12 − y24 x13 − y25 x14 − y26 x15 − y27
−y41 x21 − y42 −y43 x22 − y44 x23 − y45 x24 − y46 x25 − y47

−y51 x31 − y52 −y53 x32 − y54 x33 − y55 x34 − y56 x35 − y57

−y61 x41 − y62 − y63 x42 − y64 x43 − y65 x44 − y66 x45 − y67
−y71 x51 − y72 −y73 x52 − y74 x53 − y75 x54 − y76 x55 − y77


and

TB =



x11 − y11 −y12 x12 − y13 x13 − y14 x14 − y15 x15 − y16 −y17
x21 − y31 −y32 x22 − y33 x23 − y34 x24 − y35 x25 − y36 −y37
x31 − y41 −y42 x32 − y43 x33 − y44 x34 − y45 x35 − y46 −y47

x41 − y51 −y52 x42 − y53 x43 − y54 x44 − y55 x45 − y56 −y57

x51 − y61 −y62 x52 − y63 x53 − y64 x54 − y65 x55 − y66 −y67


.

By inspection we find the following two relations between elements in TA and TB :

: ta21 + ta32 = tb31 + tb42

and

: ta31 + ta42 = tb41 + tb52,
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where taij and tbij denote the (i, j)th elements of TA and TB , respectively. These two
relations clearly show that the tangent space has codimension at least 2. It may be
verified that the other parameters may be chosen arbitrarily so that the codimension
is exactly 2.

We want to find ZA − λZB that is orthogonal to TA − λTB with respect to the
Frobenius inner product, i.e.,

0 ≡ 〈TA − λTB , ZA − λZB〉 ≡ tr(TAZ
H
A + TBZ

H
B ) ≡

∑
i,j

taijz
a
ij + tbijz

b
ij .(5.1)

This inner product is most easily envisioned as the sum of the elementwise multipli-
cation of the two pencils. Using this point of view, it is obvious that the normal space
consists of pencils of the form ZA − λZB ∈ nor(A− λB):

ZA − λZB =


0 0 0 0 0 0 0
p1 0 0 0 0 0 0
p2 p1 0 0 0 0 0
0 p2 0 0 0 0 0
0 0 0 0 0 0 0

− λ


0 0 0 0 0 0 0
0 0 0 0 0 0 0
−p1 0 0 0 0 0 0
−p2 −p1 0 0 0 0 0

0 −p2 0 0 0 0 0



=


0 0 0 0 0 0 0
p1 0 0 0 0 0 0

p2 + λ p1 p1 0 0 0 0 0
λ p2 p2 + λ p1 0 0 0 0 0

0 λ p2 0 0 0 0 0

 ,(5.2)

where p1 and p2 are arbitrary. Roughly speaking, the parameter p1 corresponds to
the doubly boxed entries ( ) and the parameter p2 corresponds to the singly boxed

entries. ( ).

Now, V(p) = A − λB + ZA − λZB may be thought of as a versal deformation,
or normal form, with minimum number of parameters (equal to the codimension of
the original pencil). It follows that any (complex) pencil close to the given A−λB in
KCF can be reduced to the two-parameter normal form V(p) = A− λB + ZA − λZB
in terms of equivalence transformations that are deformations of the identity.

5.2. Notation: A glossary of Toeplitz and Hankel matrices. The example
in the previous section shows that a nonzero block of ZA−λZB has a structured form.
Indeed, the (2, 1) block has a Toeplitz-like form with j − i = 3 nonzero diagonals
starting from the (1, 1) element of the (2, 1) block. A closer look shows that the A-
part has i−j−1 = 2 nonzero diagonals and the B-part is just the same matrix negated
and with the diagonals shifted one row downward. In general, different nonzero blocks
with Toeplitz or Hankel properties will show up in ZA − λZB ∈ nor(A − λB). To
simplify the proof of the general case we introduce some Toeplitz and Hankel matrices.
Arrows and “stops” near the matrices make clear how the matrix is defined.

Let SLs×t be a lower trapezoidal s×t Toeplitz matrix with the first nonzero diagonal
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starting at position (1, 1):

SLs×t =

↓

⊥



p1 0 0
...

. . . 0
... p1

ps−t+1

...
...

. . .
...

ps · · · ps−t+1


if s ≥ t and SLs×t =

↓

⊥

p1 0 · · · 0
...

. . .
. . .

...
ps · · · p1 0 · · · 0

 otherwise,

and let TLs×t be a lower trapezoidal s× t Toeplitz matrix with the first nonzero diag-
onal’s last element at position (s, t):

TLs×t =



0 · · · 0
...

...

0
...

p1
. . .

...
...

. . . 0
pt · · · p1


if s ≥ t and TLs×t =

pt−s+1 · · · p1 0 0
...

. . .
. . . 0

pt · · · pt−s+1 · · · p1

 otherwise.

` ←

` ←

If s < t, the entries of the last t− s columns of SLs×t are zero. Similarly, if s ≥ t, the
entries of the first s− t rows of TLs×t are zero.

Let SBs×t be a banded lower trapezoidal s× t Toeplitz with last row 0:

SBs×t =

↓

⊥



p1 0 0
...

. . . 0
... p1

ps−t
...

0
. . .

...
...

. . . ps−t
0 · · · 0


if s > t and SBs×t = 0 otherwise,

and let TBs×t be another banded lower trapezoidal s× t Toeplitz matrix, this time with
last column 0:

` ←

TBs×t =

pt−s · · · p1 0 · · · 0

0
. . .

. . .
. . .

...
0 0 pt−s · · · p1 0

 if s < t and TBs×t = 0 otherwise.

Notice that the last row of SBs×t (if s > t) and the last column of TBs×t (if s < t) have
all entries equal to zero.
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Moreover, let HL
s×t be a lower trapezoidal s × t Hankel matrix with the first

nonzero diagonal starting at position (1, t):

HL
s×t =



0 0 p1

0 .·.
...

p1

...
... ps−t+1

... .·.
...

ps−t+1 · · · ps



↓

⊥

if s ≥ t and HL
s×t =

0 · · · 0 p1

... .·. .·.
...

0 · · · 0 p1 · · · ps

↓
⊥
otherwise,

and let HU
s×t be a similar upper trapezoidal s× t Hankel matrix:

` ←

` ←

HU
s×t =



pt · · · p1

... .·. 0

p1 .·.
...

0
...

...
...

0 · · · 0


if s ≥ t and HU

s×t =

 pt · · · pt−s+1 · · · p1

... .·. . ·. 0
pt−s+1 · · · p1 0 0

 otherwise.

If s < t, the entries of the first t− s columns of HL
s×t are zero. Similarly, if s ≥ t, the

entries of the last s− t rows of HU
s×t are zero.

Let Hs×t be a dense s × t Hankel matrix (with the first diagonal starting at
position (1, 1)):

Hs×t =



p1 p2 p3 · · · pt

p2 .·.
...

p3

...
...

...
ps · · · ps+t−1


for both the cases s ≥ t and s < t.

The nilpotent k × k matrix

Ck =

[
0 Ik−1

0 0

]
will be used as a shift operator. For a given k × n matrix X, the rows are shifted
one row upward and downward by the operations CkX and CTk X, respectively. The
columns are shifted one column rightward and one column leftward in an n×k matrix
X by the operations XCk and XCTk , respectively. The k × (k + 1) matrices

Gk = [Ik 0] and Ĝk = [0 Ik],

will be used to pick all rows but one or all columns but one of a given matrix X in
the following way. The first k and last k rows in a (k+ 1)×n matrix X are picked by
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GkX and ĜkX, respectively. The k first and k last columns in an n× (k+ 1) matrix
X are picked by XGTk and XĜTk, respectively.

Let Îk denote the k × k matrix obtained by reversing the order of the columns
in the k × k identity matrix. It follows that for an n × k matrix X, the order of the
columns is reversed by the multiplication XÎk.

So far, the matrices introduced are rectangular Toeplitz and Hankel matrices with
a special structure, e.g., lower trapezoidal (SL, TL, HL), banded lower trapezoidal
(SB , TB), upper trapezoidal (HU ), or dense (H). The matrices C and G, Ĝ that will
be used as “shift” and “pick” operators, respectively, are Toeplitz matrices with only
one nonzero diagonal. In the next section we will see that versal deformations for
all combinations of different blocks in the KCF, except Jordan blocks with nonzero
finite eigenvalues, can be expressed in terms of these matrices. To cope with nonzero
finite Jordan blocks Jk(γ), γ 6= 0 we need to introduce three more matrices. First, we
introduce two lower triangular Toeplitz matrices DL and EL, which are involved in
the case with two Jk(γ) blocks. Finally, we introduce the “monstrous” matrix FD,
which captures the cases with a (left or right) singular block and a Jk(γ) block.

Given γ 6= {0,∞}, define two infinite sequences of numbers di and ei by the
recursion [

di
γei

]
= −

[
1 1
1 2− 1/i

] [
γdi−1

ei−1

]
(5.3)

starting with [
d1

e1

]
=

[
γ
1

]
.

Given sizes s and t, for 1 ≤ q ≤ min{s, t}, we define Ds×t[q] and Es×t[q] as lower
triangular Toeplitz matrices with q diagonals in terms of d1, . . . , dq and e1, . . . , eq−1

and a boundary value e∗q = −γdq:

Ds×t[q] =



0 · · · 0
dq

dq−1
. . .

...
. . .

. . .
...

d2
. . .

. . .
d1 d2 · · · dq−1 dq 0


and Es×t[q] =



0 · · · 0
e∗q

eq−1
. . .

...
. . .

. . .
...

e2
. . .

. . .
e1 e2 · · · eq−1 e

∗
q 0


.

We take linear combinations with parameters pj to form the matrices

DL
s×t =

min{s,t}∑
i=1

pjDs×t[i]π(i) and ELs×t =

min{s,t}∑
i=1

pjEs×t[i]π(i),(5.4)

where j = min{s, t}−i+1 and π(i) = −
∏i−1
k=2 kγ/(1−2k) is defined to be 1/γ and −1

for i = 1 and i = 2, respectively. The parameter index j and the scaling function π(i)
are chosen to satisfy DL

s×t = SLs×t and ELs×t = −CTs SLs×t for γ = 0 in Theorem 5.3 (see
Tables 5.1 and 5.2). By simplifying (5.4) using i = j and π(i) = 1, this consistency
will be lost, but we will still have valid expressions for the versal deformations.
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The relations between the elements of DL
s×t and ELs×t are most readily shown by

an example:

DL
4,3 =



0 0 0

p1

(
2|γ|4

3
+ 4|γ|2

3
+1
)

0 0

p1

(
−2γ|γ|2

3
− 2γ

3

)
+p2

(
|γ|2+1

)
p1

(
2|γ|4

3
+ 4|γ|2

3
+1
)

0

p1
2γ2

3
−p2γ+p3 p1

(
−2γ|γ|2

3
− 2γ

3

)
+p2

(
|γ|2+1

)
p1

(
2|γ|4

3
+ 4|γ|2

3
+1
)


and

EL4,3 =



0 0 0

p1

(
−2γ|γ|4

3
− 4γ|γ|2

3
−γ
)

0 0

p1

(
−2|γ|2

3
−1
)

+p2

(
−γ|γ|2−γ

)
p1

(
−2γ|γ|4

3
− 4γ|γ|2

3
−γ
)

0

p1
2γ
3
−p2−p3γ p1

(
−2|γ|2

3
−1
)

+p2

(
−γ|γ|2−γ

)
p1

(
−2γ|γ|4

3
− 4γ|γ|2

3
−γ
)

 .

Let FDs×t (D for dense) be defined as

FDs×t =
s∑
i=1

ps−i+1 Fs×t[i],

where Fs×t[q] has the q last rows nonzero and defined as

fs−q+1,j = γj−1 for j = 1, . . . , t,
fi,j = γfi,j−1 + fi−1,j−1 for i = s− q + 2, . . . , s, j = 2, . . . , t,

(5.5)

and fi,1 for i = s− q + 2, . . . , s is defined as the solution to

〈Fs×t[q]GTt−1 − λFs×t[q]ĜTt−1, Fs×t[s− i+ 1]GTt−1 − λFs×t[s− i+ 1]ĜTt−1〉 ≡ 0.

Notice that fi,1 is used as an unknown in the generation of elements in (5.5). In
the definition of Fs×t[q], the solutions for fi,1 for i = s − q + 2, . . . , s ensure that

Fs×t[q]G
T
t−1 − λFs×t[q]Ĝ

T
t−1 is orthogonal to Fs×t[q̂]G

T
t−1 − λFs×t[q̂]Ĝ

T
t−1 for q̂ =

1, . . . , q − 1.
Also here we show a small example to facilitate the interpretation of the defini-

tion:

FD3×2 =


p1 p1γ

p2 − p1
(|γ|2+1)γ

|γ|4+2|γ|2+2
p2γ + p1

|γ|2+2

|γ|4+2|γ|2+2

p3 − p2
γ

|γ|2+1
+ p1

γ2

|γ|4+2|γ|2+2
p3γ + p2

1
|γ|2+1

− p1
γ

|γ|4+2|γ|2+2

 .
5.3. Versal deformations—the general case. Without loss of generality as-

sume that A− λB is already in KCF, M = diag(M1,M2, . . . ,Mb), where each Mk is
either a Jordan block associated with a finite or infinite eigenvalue or a singular block
corresponding to a left or right minimal index. A pencil TA − λTB = XM −MY
in the tangent space can be partitioned conformally with the pencil M so that
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TAij − λTBij = XijMj − MiYij , where Mk is mk × nk, Xij is mi × mj , and Yij is
ni × nj : X11 · · · X1b

...
. . .

...
Xb1 · · · Xbb


 M1

. . .

Mb

−
 M1

. . .

Mb


 Y11 · · · Y1b

...
. . .

...
Yb1 · · · Ybb

 .
Since the blocks TAij −λTBij , i, j = 1, . . . , b are mutually independent, we can study

the different blocks of TA−λTB separately. Let ZAij−λZBij be conformally sized blocks
of ZA − λZB . From (4.4) we know that ZA − λZB is in the normal space if and only
if AHZA + BHZB = 0 and ZAA

H + ZBB
H = 0. We obtain a simple result since A

and B are block diagonal.
Proposition 5.2. Assume that

M = A− λB = diag(A1, A2, . . . , Ab)− λdiag(B1, B2, . . . , Bb)

is in KCF, where each block Ai − λBi ≡ Mi represents one block in the Kronecker
structure. Then ZA − λZB ∈ nor(A− λB) if and only if

AHj Z
A
ji = −BHj ZBji and ZAjiA

H
i = −ZBjiBHi for i = 1, . . . , b and j = 1, . . . , b.

The mutual independency of the (i, j) blocks of ZA and ZB implies that we only
have to consider two Mk blocks at a time:

TA[i, j]− λTB [i, j] =

[
Xii Xij

Xji Xjj

] [
Mi 0
0 Mj

]
−
[
Mi 0
0 Mj

] [
Yii Yij
Yji Yjj

]
=

[
TAii TAij

TAji TAjj

]
− λ

[
TBii TBij

TBji TBjj

]

and

ZA[i, j]− λZB [i, j] =

[
ZAii ZAij

ZAji ZAjj

]
− λ

[
ZBii ZBij

ZBji ZBjj

]
.(5.6)

Notably, by interchanging the blocks Mi = Ai − λBi and Mj = Aj − λBj in the
KCF, we only have to interchange the corresponding blocks in ZA−λZB accordingly.
For example, if ZA[i, j]− λZB [i, j] in (5.6) belongs to nor(diag(Mi,Mj)), then[

ZAjj ZAji

ZAij ZAii

]
− λ

[
ZBjj ZBji

ZBij ZBii

]
∈ nor(diag(Mj ,Mi)).

This implies that given two blocks Mi and Mj , it is sufficient to consider the case
diag(Mi,Mj). In the following we will order the blocks in the KCF so that ZA−λZB
is block lower triangular.

Theorem 5.3. Let A− λB = diag(A1, A2, . . . , Ab)− λdiag(B1, B2, . . . , Bb) be in
KCF with the structure blocks Mi = Ai−λBi ordered as follows: Lk, Jk(0), Jk(γ) (for
γ 6= {0,∞}), Nk, and LTk , where the ordering within each block type is in increasing
order of size, except for the LTk blocks, which are ordered by decreasing order of size.

For all i and j, let the (i, j), (j, i) and (i, i), (j, j) blocks of ZA(p) − λZB(p) cor-
responding to diag(Mi,Mj) be built from Table 5.1 and Table 5.2, respectively.



VERSAL DEFORMATIONS OF MATRIX PENCILS 679

Table 5.1

Blocks in ZA − λZB ∈ nor(A − λB), where for Lα ⊕ Lβ , Jα(0) ⊕ Jβ(0), Jα(γ) ⊕ Jβ(γ), and

Nα ⊕Nβ it is assumed that α ≤ β. For LTα ⊕ LTβ , α ≥ β is assumed. Also γ1 6= γ2 is assumed.

KCF:Mi⊕Mj ZAij ZBij ZAji ZBji

Lα⊕Lβ 0 0 SB
β×(α+1)

−CTβ S
B
β×(α+1)

Lα⊕Jβ(0) 0 0 SL
β×(α+1)

−CTβ S
L
β×(α+1)

Lα⊕Jβ(γ) 0 0 FD
β×(α+2)

GTα+1 −FD
β×(α+2)

ĜTα+1

Lα⊕Nβ 0 0 CTβ H
L
β×(α+1)

−HL
β×(α+1)

Lα⊕LTβ 0 0 Gβ+1H(β+2)×(α+1) −Ĝβ+1H(β+2)×(α+1)

Jα(0)⊕Jβ(0) SLα×β −CTα SLα×β TLβ×α −CTβ T
L
β×α

Jα(0)⊕LTβ 0 0 HU
(β+1)×α −HU

(β+1)×αC
T
α

Jα(γ)⊕Jβ(γ) DLα×β ELα×β DLβ×α ELβ×α

Jα(γ)⊕LTβ 0 0 Gβ+1(ÎαFDα×(β+2)
)T −Ĝβ+1(ÎαFDα×(β+2)

)T

Nα⊕Nβ CTα S
L
α×β −SLα×β CTβ T

L
β×α −TLβ×α

Nα⊕LTβ 0 0 TL
(β+1)×αC

T
α −TL

(β+1)×α

LTα⊕LTβ 0 0 TB
(β+1)×α −TB

(β+1)×αCα

Jα(0)⊕Jβ(γ) 0 0 0 0

Jα(0)⊕Nβ 0 0 0 0

Jα(γ1)⊕Jβ(γ2) 0 0 0 0

Jα(γ)⊕Nβ 0 0 0 0

Table 5.2

The diagonal blocks in ZA − λZB ∈ nor(A− λB).

KCF:Mi ZAii ZBii

Lα 0 0

Jα(0) SLα×α −CTα SLα×α
Jα(γ) DLα×α ELα×α

Nα CTα S
L
α×α −SLα×α

LTα 0 0

Then ZA(p)− λZB(p) gives an orthogonal basis for nor(A− λB) with minimum
number of parameters; i.e., V(p) = A− λB + ZA(p)− λZB(p) is a miniversal defor-
mation of A− λB.

The superscripts B,L,U , and D of the matrices in Tables 5.1 and 5.2 are parts
of the matrix definitions in section 5.2. The superscript T is the matrix transpose.
All subscripts, e.g., α× β, refer to the sizes of the matrices.

Notice that the diagonal blocks (i, i) and (j, j) of ZA−λZB can also be obtained
from Table 5.1 by setting i = j. For clarity we also display the expressions for the
(i, i) and (j, j) blocks of ZA − λZB corresponding to all kinds of structure blocks Mi

in Table 5.2. Of course, the (j, j) blocks corresponding to Mj are read from Table 5.2
by substituting α with β.
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The proof of Theorem 5.3 consists of three parts.

1. The blocks of ZA−λZB displayed in Table 5.1 fulfill the conditions in Propo-
sition 5.2, which imply that ZA − λZB ∈ nor(A − λB) is orthogonal to an
arbitrary TA − λTB ∈ tan(A− λB).

2. The number of independent parameters in ZA−λZB is equal to the codimen-
sion of orbit(A−λB), which implies that the parameterized normal form has
minimum number of parameters.

3. Each block in Table 5.1 defines an orthogonal basis; i.e., the basis for each
parameter pi is orthogonal to the basis for each other parameter pj , i 6= j.

We start by proving part 3 and then prove parts 1 and 2 for the 16 different
cases diag(Mi,Mj) corresponding to different combinations of structure blocks in the
KCF. In Table 5.3 we display the codimension for these 16 cases and the number of
parameters in the (i, i), (i, j), (j, i), and (j, j) blocks of ZA − λZB . The codimensions
are computed from (4.8), which is the minimum number of parameters required to
span the corresponding normal space. For the ordering and the sizes of the blocks
in A − λB we have made the same assumptions in Table 5.3 as in Table 5.1. Notice
that the codimension counts for Lα ⊕ Lβ and LTα⊕LTβ are 0 if α = β. The number
of parameters required in each of the (i, i), (i, j), (j, i), and (j, j) blocks of ZA − λZB
follows from the proof given below.

Table 5.3

The number of parameters in the (i, i), (i, j), (j, i), and (j, j) blocks of ZA − λZB ∈ nor(Mi ⊕
Mj).

KCF:Mi⊕Mj cod(Mi⊕Mj) (i, i) (i, j) (j, i) (j, j)
Lα⊕Lβ β − α− 1 0 0 β − α− 1 0
Lα⊕Jβ(0) 2β 0 0 β β
Lα⊕Jβ(γ) 2β 0 0 β β
Lα⊕Nβ 2β 0 0 β β
Lα⊕LTβ α+ β + 2 0 0 α+ β + 2 0

Jα(0)⊕Jβ(0) β + 3α α α α β
Jα(0)⊕LTβ 2α α 0 α 0

Jα(γ)⊕Jβ(γ) β + 3α α α α β
Jα(γ)⊕LTβ 2α α 0 α 0

Nα⊕Nβ β + 3α α α α β
Nα⊕LTβ 2α α 0 α 0

LTα⊕LTβ α− β − 1 0 0 α− β − 1 0

Jα(0)⊕Jβ(γ) α+ β α 0 0 β
Jα(0)⊕Nβ α+ β α 0 0 β
Jα(γ1)⊕Jβ(γ2) α+ β α 0 0 β
Jα(γ)⊕Nβ α+ β α 0 0 β

To fully appreciate this rather technical proof it could be more fruitful to look
first at some examples of versal deformations in section 6.1.

Proof of part 3. We show that each matrix pencil block in Table 5.1 has all its
parameters in orthogonal directions. This is trivial for blocks built from the structured
Toeplitz and Hankel matrices SL, SB , H, HL, HU , TL, or TB (possibly involving
some kind of shift). Remember that the Frobenius inner product can be expressed in
terms of the sum of all results from elementwise multiplications as shown in (5.1). For
each of these matrices, the elementwise multiplication of the basis for one parameter
pi and the basis for another parameter pj , j 6= i only results in multiplications where
at least one of the two elements is zero. Obviously, these bases are orthogonal. For
the matrix pencil blocks built from the FD matrix, the orthogonality follows from
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construction since some of the elements are explicitly chosen so that the Frobenius
inner product is zero.

For the proof for the blocks of type DL−λEL we define sq in terms of the di and
ei in (5.3) to be

sq =

q∑
i=1

i|di|2 +

q−1∑
i=1

i|ei|2 − qγdqeq.

Independent of s and t, the number sq is the inner product of the qth basis vector
with the rth, where q < r.

We show by induction that sq = 0 for q = 1, 2, . . . . Clearly s1 = |γ|2 − γγ = 0.
We now show that sq+1 − sq = 0, from which the result follows:

qγdqeq + (q + 1)|dq+1|2 + q|eq|2 − (q + 1)γdq+1eq+1

= qeq(γdq + eq) + (q + 1)dq+1(dq+1 − γ eq+1)

= dq+1((q + 1)(dq+1 − γ eq+1)− qeq)

= dq+1

(
(q + 1)

(
−γdq − eq + γdq + 2eq −

eq
q + 1

)
− qeq

)
= dq+1((q + 1)eq − eq − qeq) = 0.

Since ZA − λZB is built from b2 mutually independent blocks in Table 5.1, each
associated with ci parameters, it follows that ZA − λZB is an orthogonal basis for a
(c1 + c2 + · · ·+ cb2)-dimensional space, with one parameter for each dimension.

Proof of parts 1 and 2. Now, it remains to show that ZA − λZB is orthogonal to
tan(A − λB) and that the number of parameters in ZA − λZB is equal to cod(A −
λB). Since the number of parameters in orthogonal directions cannot exceed the
codimension, it is sufficient to show that we have found them all. The orthogonality
between ZA − λZB and tan(A − λB) is shown by proving that each pair of blocks
fulfills the conditions AHj Z

A
ji = −BHj ZBji and ZAjiA

H
i = −ZBjiBHi in Proposition 5.2.

In the following we refer to these as the first and second conditions, respectively.
We carry out the proofs for all 16 cases Mi⊕Mj in Table 5.1, starting with blocks

where Mi and Mj are of the same kind.
Jα(0)⊕ Jβ(0): We note that Jk(0) = Ck − λIk. First condition for the (j, i)

block:

AHj Z
A
ji = CTβ T

L
β×α = IβC

T
β T

L
β×α = −BHj ZBji .

Second condition for the (j, i) block:

ZAjiA
H
i = TLβ×αC

T
α = TLβ×αC

T
α Iα = CTβ T

L
β×αIα = −ZBjiBHi ,

where we used that TLβ×αC
T
α = CTβ T

L
β×α for β ≥ α. Similarly for the (i, j) block,

AHi Z
A
ij = CTαS

L
α×β = IαC

T
αS

L
α×β = −BHi ZBij

and

ZAijA
H
j = SLα×βC

T
β = SLα×βC

T
β Iβ = CTαS

L
α×βIβ = −ZBijBHj .

Here we used that SLα×βC
T
β = CTαS

L
α×β for β ≥ α.
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Since the (i, i), (i, j), and (j, i) blocks of ZA − λZB have α parameters each and
the (j, j) block has β parameters, the total number of parameters in ZA − λZB is
equal to cod(Jα(0)⊕ Jβ(0)) = β + 3α.

Nα ⊕Nβ : Since there is a symmetry between Jk(0) = Ck−λIk and Nk = Ik−λCk
and there is a corresponding symmetry between blocks in ZA−λZB for Jk(0) and Nk
blocks, the proof for Nα ⊕Nβ is similar to the case Jα(0)⊕ Jβ(0).

Jα(γ)⊕ Jβ(γ): Here the (j, i) block and the (i, j) block are defined similarly (see
Table 5.1), and therefore it is sufficient to prove one of them with no constraints on
α and β. We note that Jk(γ) = γIk + Ck − λIk. We show that the first and second
conditions hold for ZAji = Dβ×α[q] and ZBji = Eβ×α[q] for q = 1, . . . ,min{α, β}. First
condition:

AHj Z
A
ji = (γIβ + Cβ)HDβ×α[q] = γDβ×α[q] + CTβ Dβ×α[q].

Remember that Dβ×α[q] has all elements zero, except for the q lower left diagonals,
where all elements in each diagonal are identical and defined by the element in the first
column. For q = 1 the proof is trivial. For q > 1, AHj Z

A
ji gives the following matrix.

All diagonals starting at position (u, 1) for 1 ≤ u ≤ β − q are zero. The elements in
the diagonal starting at position (β − q + 1, 1) are γdq, which by definition is equal
to −e∗q , which in turn defines the corresponding diagonal in −Eβ×α[q]. The elements
in the diagonals starting at positions (β − u + 1, 1), where 1 ≤ u < q, are equal to
γdu + du+1. Since du+1 is defined as −γdu − eu, the elements in these diagonals are
equal to −eu, which defines the elements in the corresponding diagonals in −Eβ×α[q].
Since −Eβ×α[q] = −BHj ZBji , we have proved the first condition.

Second condition: Since Dβ×α[q] only has q ≤ min{s, t} nonzero diagonals in the
lower left corner of the matrix, a shift of rows downward gives the same result as a
shift of columns leftward, i.e., CTβ Dβ×α[q] = Dβ×α[q]CTα . Using information from the
first part, we obtain

ZAjiA
H
i = Dβ×α[q](γIα + Cα)H = γDβ×α[q] +Dβ×α[q]CTα = γDβ×α[q] + CTβ Dβ×α[q]

= AHj Z
A
ji = −Eβ×α[q] = −ZBjiBHi

since Bi is the identity matrix.
Also here, the number of parameters in ZAjj−λZBjj is β, and there are α parameters

in each of the other three blocks, giving β + 3α in total.
Even though the (i, i), (j, i), (i, j), and (j, j) blocks look rather complicated, they

reduce for γ = 0 to the corresponding blocks for Jα(0)⊕ Jβ(0) in Table 5.1.

Lα ⊕ Lβ : Here we use Lk = Ĝk − λGk. First condition for the (j, i) block:

AHj Z
A
ji = ĜTβS

B
β×(α+1) =

[
0

SBβ×(α+1)

]
=

[
CTβ S

B
β×(α+1)

0

]
= GTβC

T
β S

B
β×(α+1) =−BHj ZBji .

Second condition for the (j, i) block:

ZAjiA
H
i =SBβ×(α+1)Ĝ

T
β =

[
0

SBβ×(α+1)

]
=

[
CTβ S

B
β×(α+1)

0

]
=CTβ S

B
β×(α+1)G

T
β =−ZBjiBHi .

Since the contribution from Lα⊕Lβ to the codimension is β−α−1 and the (j, i) block
has β − α− 1 independent parameters, we deduce that all other blocks in ZA − λZB
are zero.
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LT
α ⊕ LT

β : Since this case is just the transpose of Lα⊕Lβ , the proof is almost the
same, and therefore we omit the technical details here.

So far we have proved all cases where both blocks are of the same type. Since
the diagonal blocks in ZA − λZB always correspond to such cases (see Table 5.3 for
the number of parameters in these blocks), from now on we only have to consider the
(i, j) and (j, i) blocks, where i 6= j for the remaining cases.

Lα ⊕ Jβ(0): First condition for the (j, i) block:

AHj Z
A
ji = CTβ S

L
β×(α+1) = IβC

T
β S

L
β×(α+1) = −BHj ZBji .

Second condition for the (j, i) block:

ZAjiA
H
i = SLβ×(α+1)Ĝ

T
α = CTβ S

L
β×(α+1)G

T
α = −ZBjiBHi .

The (i, i) and (j, j) blocks contribute with zero and β parameters, respectively.
Since the (j, i) block gives another β parameters, we have found all 2β parameters,
and therefore it follows that ZAij = λZBij = 0.

Lα ⊕ Jβ(γ): First condition for the (j, i) block:

AHj Z
A
ji = (γIβ + Cβ)HFDβ×(β+2)G

T
α+1 = γFDβ×(β+2)G

T
α+1 + CTβ F

D
β×(β+2)G

T
α+1.

By inspection we see that the (u, v) element of this matrix is γfdu,v + fdu−1,v if u > 1

and γfdu,v if u = 1 (where fdu,v denotes the (u, v) element of FD). The right-hand side
of the same condition is

−BHj ZBji = IβF
D
β×(β+2)Ĝ

T
α+1,

which simply is the β leftmost columns of FDβ×(β+2). The (u, v) element of this matrix

is then fdu,v+1, which is defined as γfdu,v + fdu−1,v if u > 1 and γfdu,v if u = 1.
Second condition for the (j, i) block:

ZAjiA
H
i Ĝ

T
α = FDβ×(α+2)G

T
α+1Ĝ

T
α = FDβ×(α+2)

 0
Iα
0

 = FDβ×(α+2)Ĝα+1G
T
α = −ZBjiBHi .

As in the previous case, the (i, i) and (j, j) blocks contribute with zero and β
parameters, respectively. Since the (j, i) block gives the remaining β parameters, the
(i, j) block is the zero pencil.

Notably, for γ = 0, the “monstrous” (j, i) block reduces to the (j, i) block for
Lα ⊕ Jβ(0) in Table 5.1.

Lα ⊕Nβ : First condition for the (j, i) block:

AHj Z
A
ji = IβC

T
βH

L
β×(α+1) = CTβH

L
β×(α+1) = −BHj ZBji .

Second condition for the (j, i) block:

ZAjiA
H
i Ĝ

T
α = CTβH

L
β×(α+1) =

[
0

HL
(β−1)×α

]
= HL

β×(α+1)G
T
α = −ZBjiBHi .

Also here, the (i, i) and (j, j) blocks contribute with zero and β parameters,
respectively. Since the (j, i) block gives the remaining β parameters, the (i, j) block
is the zero pencil.
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Lα ⊕ LT
β : For this case the (i, i) and (j, j) blocks are zero pencils. First condition

for the (j, i) block:

AHj Z
A
ji = ĜβGβ+1H(β+2)×(α+1) = [0 Iβ 0]H(β+2)×(α+1)

= GβĜβ+1H(β+2)×(α+1) = −BHj ZBji .

Second condition for the (j, i) block:

ZAjiA
H
i = Gβ+1H(β+2)×(α+1)Ĝ

T
α ,

which is a matrix consisting of the β+1 first rows and α last columns of H(β+2)×(α+1).
This matrix is identical to the one given by the β + 1 last rows and α first columns
of H(β+2)×(α+1), i.e.,

Ĝβ+1H(β+2)×(α+1)G
T
α = −ZBjiBHi .

Since this block has all α+β+ 2 parameters, it follows that the (i, j) block is the
zero pencil.

Jα(0)⊕ LT
β : First condition for the (j, i) block:

AHj Z
A
ji = ĜβH

U
(β+1)×α,

which simply is the last β rows in HU
(β+1)×α. Another way to construct this matrix

is to shift the columns in HU
(β+1)×α one column leftward and pick the β first columns

of the matrix, which can be written as

GβH
U
(β+1)×αC

T
α = −BHj ZBji .

Second condition for the (j, i) block:

ZAjiA
H
i = HU

(β+1)×αC
T
α = HU

(β+1)×αC
T
α Iα = −ZBjiBHi .

The (i, i) and (j, j) blocks contribute with α and zero parameters, respectively.
Since the (j, i) block gives another α parameters, we conclude that the (i, j) block is
the zero pencil.

Jα(γ)⊕ LT
β : Since the proof for this case is similar to the one for the case Lα ⊕

Jβ(γ), we omit the technical details here. It follows that for γ = 0, the (j, i) block
reduces to the (j, i) block for Jα(0)⊕ LTβ in Table 5.1.

Nα ⊕ LT
β : First condition for the (j, i) block:

AHj Z
A
ji = ĜβT

L
(β+1)×αC

T
α ,

which is the last β rows in TL(β+1)×α shifted one column leftward. This matrix is

identical to the one given by the β first rows in TL(β+1)×α, which is

GβT
L
(β+1)×α = −BHj ZBji .

Second condition for the (j, i) block:

ZAjiA
H
i = TL(β+1)×αC

T
α Iα = TL(β+1)×αC

T
α = −ZBjiBHi .
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The (i, i) and (j, j) blocks in ZA − λZB contribute with α and zero parameters,
respectively. Since the (j, i) block gives another α parameters, we conclude that the
(i, j) block is the zero pencil.

Jα(0)⊕ Jβ(γ), Jα(0)⊕Nβ , Jα(γ1)⊕ Jβ(γ2), and Jα(γ)⊕Nβ : In these four cases
the (i, i) and (j, j) blocks contribute with α and β parameters, respectively, and there-
fore the (j, i) and (i, j) blocks are zero pencils.

Since we have considered all possible cases of Mi and Mj blocks, the proof is
complete.

6. Applications and examples.

6.1. Some examples of versal deformations of matrix pencils in KCF.
In the following we show three examples of versal deformations of matrix pencils. For
the 7× 8 pencil A− λB = L2 ⊕ J2(0)⊕ J3(0) with codimension 14, the 14-parameter
versal deformation V(p) = A− λB + ZA − λZB , where ZA − λZB ∈ nor(A− λB), is
given by

ZA =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
p1 0 0 p6 0 p10 0 0
p2 p1 0 p7 p6 p11 p10 0
p3 0 0 0 0 p12 0 0
p4 p3 0 p8 0 p13 p12 0
p5 p4 p3 p9 p8 p14 p13 p12


and

ZB =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
−p1 0 0 −p6 0 −p10 0 0

0 0 0 0 0 0 0 0
−p3 0 0 0 0 −p12 0 0
−p4 −p3 0 −p8 0 −p13 −p12 0


.

For the 3×4 pencil A−λB = L1⊕J2(γ) with codimension 4, the four-parameter
versal deformation V(p) = A− λB + ZA − λZB , where ZA − λZB ∈ nor(A− λB), is
given by

ZA =

 0 0 0 0

p1 p1γ p3(|γ|2 + 1) 0

p2 − p1
2γ
|γ|2+1

p2γ − p1
|γ|2−1

|γ|2+1
−p3γ + p4 p3(|γ|2 + 1)


and

ZB =

 0 0 0 0

−p1γ −p1γ
2 −p3(|γ|2γ + γ) 0

−p2γ + p1
|γ|2−1

|γ|2+1
−p2γ

2 − p1
2γ
|γ|2+1

−p3 − p4γ −p3(|γ|2γ + γ)

 .
For the 11× 11 pencil A− λB = L1 ⊕ J3(0)⊕N4 ⊕LT2 with codimension 26, the

26-parameter versal deformation V(p) = A − λB + ZA − λZB , where ZA − λZB ∈
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nor(A− λB), is given by

ZA =



0 0 0 0 0 0 0 0 0 0 0
p1 0 p13 0 0 0 0 0 0 0 0
p2 p1 p14 p13 0 0 0 0 0 0 0
p3 p2 p15 p14 p13 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 p4 0 0 0 p19 0 0 0 0 0
p4 p5 0 0 0 p20 p19 0 0 0 0
p5 p6 0 0 0 p21 p20 p19 0 0 0
p8 p9 p18 p17 p16 p23 0 0 0 0 0
p9 p10 p17 p16 0 p24 p23 0 0 0 0
p10 p11 p16 0 0 p25 p24 p23 0 0 0


and

ZB =



0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
−p1 0 −p13 0 0 0 0 0 0 0 0
−p2 −p1 −p14 −p13 0 0 0 0 0 0 0

0 −p4 0 0 0 −p19 0 0 0 0 0
−p4 −p5 0 0 0 −p20 −p19 0 0 0 0
−p5 −p6 0 0 0 −p21 −p20 −p19 0 0 0
−p6 −p7 0 0 0 −p22 −p21 −p20 −p19 0 0
−p9 −p10 −p17 −p16 0 −p24 −p23 0 0 0 0
−p10 −p11 −p16 0 0 −p25 −p24 −p23 0 0 0
−p11 −p12 0 0 0 −p26 −p25 −p24 −p23 0 0


.

6.2. Versal deformations of the set of 2 × 3 matrix pencils. In [15], the
algebraic and geometric characteristics of the set of 2×3 matrix pencils were examined
in full detail, including the complete closure hierarchy. There, all nonzero and finite
eigenvalues were considered as unspecified. R2 was used to denote a 2× 2 block with
nonzero finite eigenvalues, i.e., any of the three structures J1(α)⊕J1(β), J1(α)⊕J1(α),
and J2(α), where α, β 6= {0,∞}. However, in the context of versal deformations all
these forms are considered separately and with the eigenvalues specified (known).
Consequently, we now have 20 different Kronecker structures to investigate. For
example, the versal deformation of A − λB = L0 ⊕ J2(γ), γ 6= {0,∞}, is found by
computing ZA − λZB =

(6.1)[
p1 + λ γ p1 p3(|γ|2 + 1) + p3(|γ|2γ + γ) 0

p2 − p1γ

|γ|2+1
+ λ(p2γ + p1

|γ|2+1
) −p3γ + p4 + λ(p3 + p4γ) p3(|γ|2 + 1) + p3(|γ|2γ + γ)

]
.

In Table 6.1 we show the versal deformations for all different Kronecker structures
for this set of matrix pencils. The different structures are displayed in increasing
codimension order.

6.2.1. Using GUPTRI in a random walk in tangent and normal direc-
tions of nongeneric pencils. To illustrate how perturbations in the tangent space
and the normal space affect the Kronecker structure computed by a staircase algo-
rithm, we have performed a set of tests on nongeneric 2× 3 matrix pencils. Since the
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Table 6.1

Versal deformations V(p) = A− λB + ZA − λZB of the set of 2× 3 matrix pencils.

KCF A− λB ZA − λZB

L2

[
−λ 1 0
0 −λ 1

] [
0 0 0
0 0 0

]
L1 ⊕ J1(γ)

[
−λ 1 0
0 0 γ − λ

] [
0 0 0

p1 + λ γ p1 γ p1 + λ γ2p1 p2 + λ γ p2

]
L1 ⊕ J1(0)

[
−λ 1 0
0 0 −λ

] [
0 0 0
p1 0 p2

]
L1 ⊕N1

[
−λ 1 0
0 0 1

] [
0 0 0
0 λ p1 λ p2

]
L0 ⊕ J1(γ1)⊕ J1(γ2)

[
0 γ1 − λ 0
0 0 γ2 − λ

] [
p1 + λ γ1 p1 p3 + λ γ1 p3 0
p2 + λ γ2 p2 0 p4 + λ γ2 p4

]
L0 ⊕ J2(γ)

[
0 γ − λ 1
0 0 γ − λ

]
See (6.1)

L0 ⊕ 2J1(γ)

[
0 γ − λ 0
0 0 γ − λ

] [
p1 + λ γ p1 p3 + λ γ p3 p5 + λ γ p5

p2 + λ γ p2 p4 + λ γ p4 p6 + λ γ p6

]
L0 ⊕ J1(0)⊕ J1(γ)

[
0 −λ 0
0 0 γ − λ

] [
p1 p3 0

p2 + λ γ p2 0 p4 + λ γ p4

]
L0 ⊕ J1(γ)⊕N1

[
0 γ − λ 0
0 0 1

] [
p1 + λ γ p1 p3 + λ γ p3 0

λ p2 0 λ p4

]
L0 ⊕ J2(0)

[
0 −λ 1
0 0 −λ

] [
p1 p3 0

p2 + λ p1 p4 + λ p3 p3

]
L0 ⊕N2

[
0 1 −λ
0 0 1

] [
λ p1 λ p3 0

p1 + λ p2 p3 + λ p4 λ p3

]
L0 ⊕ J1(0)⊕N1

[
0 −λ 0
0 0 1

] [
p1 p3 0
λ p2 0 λ p4

]
L0 ⊕ L1 ⊕ LT0

[
0 −λ 1
0 0 0

] [
0 0 0

p1 + λ p2 p3 + λ p4 p4 + λ p5

]
L0 ⊕ 2J1(0)

[
0 −λ 0
0 0 −λ

] [
p1 p3 p5

p2 p4 p6

]
L0 ⊕ 2N1

[
0 1 0
0 0 1

] [
λ p1 λ p3 λ p5

λ p2 λ p4 λ p6

]
2L0 ⊕ LT1

[
0 0 −λ
0 0 1

] [
p1 + λ p2 p4 + λ p5 0
p2 + λ p3 p5 + λ p6 0

]
2L0 ⊕ J1(γ)⊕ LT0

[
0 0 γ − λ
0 0 0

] [
p1 + λ γ p1 p4 + λ γ p4 p7 + λ γ p7

p2 + λ p3 p5 + λ p6 p8 + λ γ p8

]
2L0 ⊕ J1(0)⊕ LT0

[
0 0 −λ
0 0 0

] [
p1 p4 p7

p2 + λ p3 p5 + λ p6 p8

]
2L0 ⊕N1 ⊕ LT0

[
0 0 1
0 0 0

] [
λ p1 λ p4 λ p7

p2 + λ p3 p5 + λ p6 λ p8

]
3L0 ⊕ 2LT0

[
0 0 0
0 0 0

] [
p1 + λ p2 p5 + λ p6 p9 + λ p10

p3 + λ p4 p7 + λ p8 p11 + λ p12

]

staircase algorithm considers all nonzero finite eigenvalues as unspecified, we have not
included these cases in the test.

For the remaining 12 nongeneric cases a random perturbation EA − λEB , with
entries eaij , e

b
ij , has been decomposed into two parts TA − λTB ∈ tan(A − λB) and
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ZA − λZB ∈ nor(A− λB) such that

EA = TA + ZA and EB = TB + ZB .

We illustrate the decomposition of EA−λEB with A−λB = L0⊕J2(0). From Table
6.1 we get

ZA =

[
p1 p3 0
p2 p4 p3

]
, ZB =

[
0 0 0
−p1 −p3 0

]
.

Let TA − λTB = (EA − λEB)− (ZA − λZB). Now, the parameters pi are determined
by computing the component of EA − λEB in each of the four orthogonal (but not
orthonormal) directions that span the normal space:

Z1 =
1

2

([
1 0 0
0 0 0

]
− λ

[
0 0 0
−1 0 0

])
,

Z2 = 1

([
0 0 0
1 0 0

]
− λ

[
0 0 0
0 0 0

])
,

Z3 =
1

3

([
0 1 0
0 0 1

]
− λ

[
0 0 0
0 −1 0

])
,

Z4 = 1

([
0 0 0
0 1 0

]
− λ

[
0 0 0
0 0 0

])
.

We conclude that

p1 =
ea11 − eb21

2
, p2 = ea21, p3 =

ea12 + ea23 − eb22
3

, p4 = ea22.

It is easily verified that 〈TA − λTB , ZA − λZB〉 = 0.
GUPTRI [11, 12] has been used to compute the Kronecker structure of the perturbed

pencils A− λB + ε(EA − λEB), A− λB + ε(ZA − λZB), and A− λB + ε(TA − λTB)
for ε = 10−16, 10−15, . . . , 100. We investigate how far we can move in the tangent and
normal directions before GUPTRI reports the generic Kronecker structure.

The procedure has been repeated for all cases and for 100 random perturbations
(EA, EB), where ‖(EA, EB)‖F = 1 and ‖EA‖F = ‖EB‖F . The entries of (EA, EB) are
uniformly distributed in (−0.5, 0.5). For each case and for each perturbation EA−λEB
we record the size of ε when GUPTRI reports the generic Kronecker structure. In Table
6.2 we display the smallest, median, and maximum values of ε for the 100 random
perturbations.

Entries marked + in Table 6.2 mean that the generic structure was not found for
any size of the perturbations. All these results were for perturbations in tan(A−λB),
and they indicate that for these Kronecker structures there is little or no curvature in
the orbit at this point (pencil) in this direction. Here the tangent directions are very
close to orbit(A− λB).

Notably, the results for the perturbations ε(EA − λEB) are, except for one case,
similar to the results for ε(ZA−λZB). This is natural since the perturbation EA−λEB
implies a translation both in the tangent space and the normal space directions. The
structure changes appear more rapidly in the normal space, i.e., for smaller ε. Our
computational results extend the cone example in section 1.3 to 2× 3 matrix pencils.

Why is the smallest perturbation 10−16(ZA − λZB) sufficient to find the generic
structure for the three cases L0⊕ 2J1(0), L0⊕ 2N1, and 3L0⊕ 2LT0 ? The explanation
is connected to the procedure for determining the numerical rank of matrices.
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Table 6.2

How far we can move in tangent and normal directions before nongeneric 2× 3 matrix pencils
turn generic.

ε(ZA − λZB) ε(TA − λTB)
A− λB cod(A− λB) εmin εmedian εmax εmin εmedian εmax

L1 ⊕ J1(0) 2 10−4 10−4 10−3 10−2 10−1 10−1

L1 ⊕N1 2 10−4 10−4 10−3 10−2 10−1 100

L0 ⊕ J2(0) 4 10−4 10−4 10−3 10−2 10−1 100

L0 ⊕N2 4 10−5 10−4 10−3 10−2 10−1 10−1

L0 ⊕ J1(0)⊕N1 4 10−4 10−4 10−2 10−2 10−1 100

L0 ⊕ L1 ⊕ LT0 5 10−4 10−4 10−2 10−2 10−1 100

L0 ⊕ 2J1(0) 6 10−16 10−16 10−16 + + +
L0 ⊕ 2N1 6 10−16 10−16 10−16 + + +
2L0 ⊕ LT1 6 10−4 10−4 10−2 + + +
2L0 ⊕ J1(0)⊕ LT0 8 10−5 10−4 10−1 + + +
2L0 ⊕N1 ⊕ LT0 8 10−4 10−4 10−3 + + +
3L0 ⊕ 2LT0 12 10−16 10−16 10−16 + + +

GUPTRI has two input parameters, EPSU and GAP, which are used to make rank
decisions to determine the Kronecker structure of an input pencil A − λB. Inside
GUPTRI the absolute tolerances EPSUA = ‖A‖E · EPSU and EPSUB = ‖B‖E · EPSU are
used in all rank decisions, where the matrices A and B, respectively, are involved.
Suppose the singular values of A are computed in increasing order, i.e., 0 ≤ σ1 ≤
σ2 ≤ · · · ≤ σk ≤ σk+1 ≤ · · ·; then all singular values σk < EPSUA are interpreted
as zeros. The rank decision is made more robust in practice: if σk < EPSUA but
σk+1 ≥ EPSUA, GUPTRI insists on a gap between the two singular values such that
σk+1/σk ≥ GAP. If σk+1/σk < GAP, σk+1 is also treated as zero. This process is
repeated until an appreciable gap between the zero and nonzero singular values is
obtained. In all of our tests we have used EPSU = 10−8 and GAP = 1000.0.

For the most nongeneric case 3L0⊕2LT0 , both the A-part and the B-part are zero
matrices giving EPSUA = EPSUB = 0, which in turn leads to the decision that a full
rank perturbation EA − λEB times a very small ε is interpreted as a generic pencil.
For the other two cases, either the A-part or the B-part is full rank and the other
part is a zero matrix, which accordingly is interpreted to have full rank already for
the smallest perturbation.

6.2.2. Versal deformations and minimal perturbations for changing a
nongeneric structure. In the following we illustrate how versal deformations are
useful in the understanding of the relations between the different structures by looking
at requirements on perturbations to (A,B) for changing the Kronecker structure.
Assume that we have the following matrix pencil with the Kronecker structure L1 ⊕
J1(0):

A− λB =

[
−ε1λ ε2 0

0 0 −ε3λ

]
and ZA − λZB =

[
0 0 0
p1 0 p2

]
.(6.2)

It was shown in [15] that L1⊕J1(0) with codimension 2 is in the closure of orbit(L1⊕
J1(γ)) (γ 6= {0,∞} but otherwise unspecified) with codimension 1, which in turn is in
the closure of orbit(L2) (the generic KCF) with codimension 0. Notice that in Table
6.1, since γ is assumed specified, L1 ⊕ J1(γ) has two parameters (and codimension
= 2). In the discussion that follows we assume that γ is finite and nonzero but
unspecified.
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We will now, for this example, illustrate how perturbations in the normal space
directions can be used to find more generic Kronecker structures (going upward in the
Kronecker structure hierarchy) and how we can perturb the elements in A − λB to
find less generic matrix pencils. Since the space spanned by ZA − λZB is the normal
space, we must always first hit a more generic pencil when we move infinitesimally in
normal space directions.

The KCF remains unchanged as long as p1 = p2 = 0, but for p1 = 0 and p2 6= 0,
the KCF is changed into L1 ⊕ J1(γ) (with γ = p2). That is, by adding a component
in a normal space direction, we find a more generic pencil in the closure hierarchy.
Notably, the size of the required perturbation is equal to the smallest size of an
eigenvalue to be interpreted as nonzero. By choosing p1 nonzero (and p2 arbitrary),
the resulting pencil will be generic with the KCF L2.

To find a less generic structure, we may proceed in one of the following ways.
1. Find a less generic structure in the closure of orbit(L1 ⊕ J1(0)).
2. Go upward in the closure hierarchy to a more generic structure and then look

in that orbit’s closure for a less generic structure.
We know from the investigation in [15] that all structures with higher codimension

than A − λB = L1 ⊕ J1(0) include an L0 block in their Kronecker structures, which
in turn implies that A and B must have a common column nullspace of at least
dimension 1. Therefore, the smallest perturbation that turns L1 ⊕ J1(0) less generic
is the smallest perturbation that reduces the rank of

[
A
B

]
=


0 ε2 0
0 0 0
ε1 0 0
0 0 ε3

 .
The size of the smallest rank-reducing perturbation is equal to the smallest of the
singular values ε1, ε2, and ε3. By just deleting one εi, the corresponding perturbed
pencil is a less generic pencil within the closure of orbit(L1 ⊕ J1(0)). These three
cases correspond to approach 1 above. We summarize these perturbations and the
perturbations in the normal space in Table 6.3. Notice that approach 2 will always
require a perturbation larger than min{εi}.

Which of the nongeneric structures displayed in Table 6.3 is obtained by the
smallest perturbation to L1 ⊕ J1(0)? Mathematically, it is easy to see that the per-
turbations in the normal space always can be made smaller than a rank-reducing
perturbation εi, since p1 and p2 are parameters that can be chosen arbitrarily small,
e.g., smaller than min{εi}.

However, in finite-precision arithmetic, it is not clear that the smallest pertur-
bation required to find another structure is in the normal direction. This can be
illustrated by using GUPTRI to compute the Kronecker structures for A − λB as in
(6.2) and perturbed as in Table 6.3. For EPSU = 10−8, ε2 = 1, and ε1 = ε3 = 10−10,
GUPTRI uses different tolerances EPSUA = 10−8 and EPSUB = 10−18 for making rank
decisions in A and B, respectively. It follows that for p1 and p2 of order 10−6, GUPTRI
still computes the Kronecker structure L1 ⊕ J1(0). However, if p1 = p2 = 0 and
the B-part of the pencil is perturbed by ε1 or ε3, GUPTRI computes the less generic
structures, just as shown in Table 6.3.

7. Conclusions. In this paper, we have obtained not only versal deformations
for deformations of KCFs, but more importantly for our purposes, metrical informa-
tion for the perturbation theory of matrix pencils relevant to the KCF. We demon-
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Table 6.3

Perturbing A− λB (defined in (6.2)) yields the pencil Ã− λB̃ with more or less generic struc-
tures. The codimension of the original orbit is 2.

‖(∆A,∆B)‖F Ã− λB̃ KCF cod(Ã− λB̃)

p1

[
−ε1λ ε2 0
p1 0 −ε3λ

]
L2 0

p2

[
−ε1λ ε2 0

0 0 p2 − ε3λ

]
L1 ⊕ J1(p2) 1 (2)

ε1

[
0 ε2 0
0 0 −ε3λ

]
L0 ⊕ J1(0)⊕N1 4

ε3

[
−ε1λ ε2 0

0 0 0

]
L0 ⊕ L1 ⊕ LT0 5

ε2

[
−ε1λ 0 0

0 0 −ε3λ

]
L0 ⊕ 2J1(0) 6

strated with numerical experiments in section 6 how this theory may be used in
practice to see how computations are influenced by the geometry. In Part II of this
paper, we will explore the stratification theory of matrix pencils with the goal of
making algorithmic use of the lattice of orbits under the closure relationship [14].
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[9] J. Demmel and B. Kågström, Computing stable eigendecompositions of matrix pencils, Linear
Algebra Appl., 88/89 (1987), pp. 139–186.
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