
A Light-Weight Grid Workflow Execution Engine

Enabling Client and Middleware Independence⋆

Erik Elmroth, Francisco Hernández, and Johan Tordsson

Dept. of Computing Science and HPC2N
Ume̊a University, SE-901 87 Ume̊a, Sweden
{elmroth, hernandf, tordsson}@cs.umu.se

Abstract. We present a generic and light-weight Grid workflow execu-
tion engine made available as a Grid service. A long-term goal is to fa-
cilitate the rapid development of application-oriented end-user workflow
tools, while providing a high degree of Grid middleware-independence.
The workflow engine is designed for workflow execution, independent
of client tools for workflow definition. A flexible plugin-structure for
middleware-integration provides a strict separation of the workflow exe-
cution and the processing of individual tasks, such as computational jobs
or file transfers. The light-weight design is achieved by focusing on the
generic workflow execution components and by leveraging state-of-the-
art Grid technology, e.g., for state management. The current prototype
is implemented using the Globus Toolkit 4 (GT4) Java WS Core and
has support for executing workflows produced by Karajan. It also in-
cludes plugins for task execution with GT4 as well as a high-level Grid
job management framework.

1 Introduction

Motivated by the tedious work required to develop end-user workflow tools and
the lack of generic tools to facilitate such development, this contribution focus on
a light-weight and Grid-interoperable workflow execution engine made available
as a Grid service. As a point of departure, we identify important and generic
capabilities supported by well-recognized complete workflow systems [18, 15, 9,
14, 1, 10, 2] (e.g., workflow design, workflow repositories, information manage-
ment, workflow execution, workflow scheduling, fault tolerance, and data man-
agement). However, many of these projects provide similar functionality and
much work is overlapping, as the systems have been developed independently
[18].

The tool presented here is not proposed as an alternative to these more
complete workflow systems, but as a core component for developing new end-user
tools and problem solving environments. The aim is to offer a generic workflow

⋆ This research was conducted using the resources of the High Performance Comput-
ing Center North (HPC2N). Financial support has been provided by The Swedish
Research Council (VR) under contract 621-2005-3667.



2

execution engine that can be employed for building new high-level tools as well
as to provide support for both processing individual tasks on multiple Grid
middlewares and accepting different workflow languages as input. The engine is
light-weight as it focuses only on workflow execution (i.e., selecting tasks that
are ready to execute) and its corresponding state management.

The engine is developed with a strict focus on Grid resources for task process-
ing and makes efficient use of state-of-the-art Web and Grid services technology.
The current prototype is implemented using the Java WS Core from the Globus
Toolkit 4 (GT4) [7]. The service has support for executing workflows expressed
either in its native workflow language or the Karajan [16] format. It includes
plugins for arbitrary Grid tasks, e.g., for execution of computational tasks in
GT4 and in the high-level Grid Job Management Framework (GJMF) [3, 5], as
well as GridFTP file transfers.

2 System and Design Requirements

The general system requirements follow directly from the aim and motivation for
the proposed workflow engine. As it is developed with a general aim to provide an
efficient and reusable tool for managing workflows in Grid environments, overall
requirements include client and middleware independence, modularity, customiz-
ability, and separation of concerns [4]. A set of high-level design requirements
for Grid workflow systems includes the following.

– The workflow execution should be separated from the workflow definition.
The former must be done by the engine, the latter can be done, e.g., by an
application specific GUI or a Web portal. Furthermore, workflow repositories
and application specific information should not be managed by the service.

– The workflow engine should be independent of the Grid middleware used to
execute the tasks, with middleware-specific interactions performed by plug-
ins. The plugins should in turn be unaware of the context (the workflow) to
which individual Grid jobs belong.

– The design can and should to a large extent leverage state-of-the-art Grid
technology and emerging standards, e.g., by making use of general features of
the Web Services Resource Framework (WSRF) [13] instead of implementing
their workflow-specific counterparts.

– The engine should have a clean separation between the state management
and the handling of task dependencies.

In addition to the high-level design requirements, the following specific system
requirements are highlighted. The workflow system should:

– provide support for executing workflows, managing workflow state, and paus-
ing and resuming execution. This enables restart of partially completed work-
flows stored on disk, and provides a foundation for fault tolerant workflow
execution.



3

– provide support for both abstract (resources unspecified) and concrete work-
flows (resources specified on a per-task level) as well as arbitrary nestings of
workflows.

– provide support for dynamic workflows, i.e., making it possible to modify an
already executing workflow, by pausing the execution before modification.

– provide support for workflow monitoring, both synchronously and by asyn-
chronous notifications.

– provide support for notifications of different granularity, e.g., enabling asyn-
chronous status updates on both a per workflow and a per task basis.

These requirements are in agreement with and extend on the requirements
of Grid workflow engines presented in [6]. How the requirements are mapped to
the actual implementation is presented in Section 3.

3 Design and Implementation

The design requirements of customizability and ability for integration with dif-
ferent client tools and middlewares are met by use of appropriate plugin points.
The chain-of-responsibility design pattern allows concurrent usage of multiple
implementations of a particular plugin. The three main responsibilities of the
workflow service, namely management of task dependencies (i.e., deciding the
task execution order), execution of workflow tasks on Grid resources, and man-
agement of workflow state, are each performed by separate modules.

Reuse, in a broad sense, is a key issue in the design. The workflow service
reuses ideas from an architecture for interoperable Grid components [5] and
builds on a framework for managing stateful Web services and notifications [13].
Exploiting the capabilities offered by GT4 Java WS Core (e.g., security and
persistency) also simplifies the design and implementation of the service.

3.1 Modelling Workflows with the WSRF

The workflow engine uses the tools provided by GT4 Java WS Core to make the
engine available as a Grid service and to manage the workflow state. Building
the engine on top of Java WS Core should not be interpreted as built primar-
ily for GT4-based Grids. Integration with different middlewares is provided by
middleware-specific plugins which are independent from the workflow execution.

By careful design, the service can handle arbitrarily many workflows concur-
rently without these interfering with each other. Multiple users can share the
same workflow service, but only the creator of a workflow instance can monitor
and control that workflow. Each workflow is modelled as a WS-Resource and
all information about a workflow, including task descriptions, inter-task depen-
dencies and workflow state, is stored as WS-ResourceProperties. The default
behavior is to store each WS-Resource in a separate file, although alternative
implementations such as persistency via database can be added easily. Reuse of



4

the Java WS Core persistency mechanisms makes workflow state handling triv-
ial. Workflow state management enables the control of long-running workflows
and the recovery of workflows, e.g., upon service failures.

The states handled include default, ready, running, and completed, which
apply to both tasks and (sub)workflows. Tasks can also be failed whereas
workflows can be disabled. All newly created tasks and workflows have the
default state. A task/workflow is ready to be started when all tasks on which
it depends are completed. Running tasks are processed by some Grid resource
until they become either completed or failed. A running workflow has at least
one task that is not completed and no failed task, whereas completed workflows
only contain completed tasks/subworkflows. A workflow becomes disabled either
if a task fails or if the user requests the workflow to be paused. No new tasks are
initiated for disabled workflows. A resume request from the user is required to
make a disabled workflow running again. If the workflow becomes disabled due
to task failure, the user must modify the workflow (to correct the failed task)
before issuing the resume request.

3.2 Architecture of the Workflow Engine

The workflow service implements operations to (i) create a new workflow, (ii)
suspend the execution of a workflow, (iii) resume execution of a workflow, (iv)
modify a workflow, and (v) cancel a workflow. The service also supports mon-
itoring of workflows, either by explicit status requests or by asynchronous no-
tifications of updates. To support a wide range of client requirements, different
granularities of notifications are available, ranging from a single message upon
workflow completion to detailed updates every time a task changes its state. As
Java WS Core contains mechanisms for managing WS-Resources (in this case
workflows), the monitoring functionality as well as operations (iv) and (v) are
trivial to implement (using WS-Notifications [8], and WSRF [13], respectively).

The architecture of the workflow engine is shown in Figure 1. User credentials
are delegated from clients to the workflow service to be used when interacting
with Grid resources. This requires the Web service interface to perform authen-
tication and authorization of clients. All incoming requests are forwarded to
the Coordinator, which organizes and manages the execution of tasks (and sub-
workflows) in the workflow and handles workflow state. When a new workflow
is requested, the Coordinator uses the Input Converter plugin(s) to translate
the input workflow description from the native format specified by the client
to the internal workflow language. However, the Input Converters do typically
not translate the individual task descriptions, as these are only to be read by
the Grid Executor plugin(s), which the Coordinator invokes to process one (or
more) tasks.

The Grid Executor interface defines operations to initiate new tasks, to re-
connect to already initiated tasks after service restart, and to cancel tasks, cor-
responding to the create, resume and cancel operations in the Web service inter-
face. There is however no operation to pause a running task, as this functionality
generally is not supported by Grid middlewares. Computational Grid Executors



5

Grid 
Executor

Grid 
Executor

Grid 
Executor

Input 
Converter

E.g., Client APIs, End-user tools, 
Application portals

Grid Middleware(s)

Input 
Converter

Input 
Converter

...

Coordinator
Dependency

Manager

Engine

...

Workflow 
Service

Web Service Interface

Fig. 1. Overview of the workflow service architecture.

also ensure that tasks’ input and output files are transferred in compliance with
the data dependencies in the workflow, but are unaware of the context (the
workflow) to which each task belongs. This type of Grid Executor only requires
a basic job submission mechanism, e.g., WS-GRAM [7], but can also make use
of sophisticated frameworks, e.g., the GJMF [3] for resource brokering and fault
tolerant job execution, should such functionality be available. Scheduling is per-
formed on a per-task basis by the Grid Executors plugins. However, tools for
planning or pre-scheduling of workflows (e.g., Pegasus [2]) can be employed if
such functionalities are required. Moreover, support for abstract and concrete
workflows is granted via the Executor plugins and external tools respectively.

Before the Coordinator can invoke the Grid Executor(s) in order to start
new tasks, the Dependency Manager is used to select which task(s) to execute.
This module keeps track of dependencies between tasks (and subworkflows) in
a workflow, and determines when a task (or subworkflow) is ready to start. The
Coordinator invokes the Dependency Manager to get a list of tasks available for
execution when a new workflow is started, when a task in an existing workflow
completes, and when a paused workflow is resumed.

3.3 Properties of the Workflow Language

In the workflow service, workflows are described in a data flow language, defined
using XML schema. In this language, users specify task dependencies, not task
execution order. This removes the burden of figuring out which tasks can execute
in parallel as this is the responsibility of the Dependency Manager.

The workflow language supports arbitrary nesting of tasks and subworkflows
within a workflow. Each task (or workflow) specifies a set of input and output



6

ports. A (sub)workflow contains a set of links, where each link connects an output
port of one task/workflow with an input port of another. The task description
contains a field to specify how to perform the task. By having this field generic,
the usage of multiple Grid task description formats is possible. Different formats
for individual task descriptions may even be used within the same workflow.
This design also enables support for new task types, e.g., database queries and
Web service invocations, to be added by implementing Grid Executor plugins
rather than extending the workflow language.

4 Analysis and Comparison with other Systems

One of the main objectives of this work is to provide independence not only of
Grid middleware but also of input representation, the latter achieved by con-
verters that translate different workflow languages to the service’s internal data
flow language. How difficult these translations are depend on the style of the
original client’s language and the amount and type of information that can be
expressed in that language. Data flow languages with similar input/output port
structure are simple to translate. Control flow languages can also be translated
by specifying ports that represent flow of control rather than data transfers.
For example, the subset of the Karajan language [16] that performs basic inter-
actions with Grid resources (job submissions, file transfers, and sequential and
parallel definition of tasks) has been translated as described above.

Petri net languages pose more difficulties. Places and transitions representing
data flows can easily be translated to the service’s internal data flow language.
However, there is not an equivalent concept for representing loops in the service’s
language. Finally, it can also be hard to translate languages that do not have all
the information encoded in the workflow description but rely on the runtime sys-
tem to obtain the missing information (e.g., a workflow system that dynamically
queries a repository to obtain the input/output structure of workflow tasks).

While several workflow projects have been built to interact with Grid sys-
tems [15, 14, 1], many of them have not been designed for exclusive use of Grid
resources for workflow execution. Nevertheless they are integrated solutions with
sophisticated graphical environments, workflow repositories, and fault manage-
ment mechanisms. Our work does not attempt to replace those systems, but to
provide a means for accessing advanced capabilities offered by multiple Grid
middlewares. These benefits are obtained by the separation of the workflow
execution from its definition and by making use of well-established protocols.
Furthermore, implementing the workflow engine as a stateful WSRF service fa-
cilitates the management and control (including fault recovery) of long-running
workflows which are common in Grid computing.

The P-GRADE portal [12] and Karajan [16] also focus on the use of resources
from different Grids within the same workflow. P-GRADE offers a collaborative
environment in which multiple users define workflows through a client applica-
tion, and control and manage workflows through a portal. The workflows can
access resources from multiple Globus-based virtual organizations. Our work



7

goes beyond this functionality by adding the capability of using other middle-
wares besides Globus and also offering independence of input language. Karajan
also provides a level of interoperability between different execution mechanisms
(mainly GT2, GT4, Condor, and the SSH protocol) through the use of providers
that allow selection of middleware at runtime. However, while Karajan has a
stronger focus on the interaction between users and workflows, our work focuses
on handling the workflow state, delegating the interaction with users to clients
that have access to the workflow service.

There are a few projects that are using WSRF to leverage the construction
of workflow services. The Grid Workflow Execution Service (GWES) [11] uses a
Petri net language to define and control Grid workflows. Besides the differences
in workflow language type, the main difference between GWES and our work is
the ability of using multiple input representations offered by our contribution.
The Workflow Enactment Engine Project (WEEP) [17] provides a BPEL engine
for Grid Workflows. The engine is accessible as a WSRF service running in a
GT4 container. However, WEEP is focused on Web service invocations and not
on interfacing with Grid middleware.

5 Concluding Remarks

The goal of this research is to investigate how to design a light-weight workflow
engine that can be reused by different high-level tools. General requirements
for portability and interoperability are supported by the use of an appropriate
plugin-structure for workflow language formats and for interacting with different
Grid middlewares. Scalability is obtained by handling multiple workflows and by
supporting large hierarchical workflows. The workflow service performs monitor-
ing, state management, fault recovery, and it uses appropriate security mecha-
nisms to achieve user isolation. The Executor plugins handle data movement,
job submission, information retrieval, and just-in-time scheduling. External tools
can be employed for planning and pre-scheduling of workflows. We finally note
that much of the supported functionality is obtained with little or no effort by
appropriate use of the WSRF.

6 Acknowledgements

We thank P-O Östberg for fruitful discussions on workflow system design and
language constructs, and for collaboration in the integration of the GJMF [3].
We are also grateful to the anonymous referees for their constructive comments.

References

1. I. Altintas, A. Birnbaum, K. Baldridge, W. Sudholt, M. Miller, C. Amoreira,
Y. Potier, and B. Ludaescher. A framework for the design and reuse of Grid
workflows. In P. Herrero et al., editors, Intl. Workshop on Scientific Applications
on Grid Computing (SAG’04), LNCS 3458, pages 119–132. Springer-Verlag, 2005.



8

2. E. Deelman, G. Singh, M. Su, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi,
G.B. Berriman, J. Good, A. Laity, J.C. Jacob, and D.S. Katz. Pegasus: a frame-
work for mapping complex scientific workflows onto distributed systems. Scientific
Programming, 13(3):219–237, 2005.

3. E. Elmroth, P. Gardfjäll, A. Norberg, J. Tordsson, and P-O. Östberg. Designing
general, composable, and middleware-independent Grid infrastructure tools for
multi-tiered job management. In T. Priol and M. Vaneschi, editors, Towards Next
Generation Grids, pages 175–184. Springer-Verlag, 2007.

4. E. Elmroth, F. Hernández, J. Tordsson, and P-O. Östberg. Designing service-based
resource management tools for a healthy Grid ecosystem. In R. Wyrzykowski et al.,
editors, Parallel Processing and Applied Mathematics. 7th Int. Conference, PPAM
2007. Lecture Notes in Computer Science, Springer-Verlag, 2007 (to appear).

5. E. Elmroth and J. Tordsson. An interoperable, standards-based Grid resource bro-
ker and job submission service. In H. Stockinger et al., editors, First International
Conference on e-Science and Grid Computing, pages 212–220. IEEE CS Press,
2005.

6. S. Eswaran, D. Del Vecchio, G. Wasson, and M. Humphrey. Adapting and eval-
uating commercial workflow engines for e-Science. In Second IEEE International
Conference on e-Science and Grid Computing. IEEE CS Press, 2006.

7. I. Foster. Globus toolkit version 4: Software for service-oriented systems. In H. Jin
et al., editors, IFIP International Conference on Network and Parallel Computing,
LNCS 3779, pages 2–13. Springer-Verlag, 2005.

8. S. Graham, D. Hull, and B. Murray. Web Services Base Notification 1.3 (WS-
BaseNotification). http://docs.oasis-open.org/wsn/wsn-ws base notification-1.3-
spec-os.pdf, May 2007.

9. Z. Guan, F. Hernández, P. Bangalore, J. Gray, A. Skjellum, V. Velusamy, and
Y. Liu. Grid-Flow: a Grid-enabled scientific workflow system with a petri-net-
based interface. Concurrency Computat.: Pract. Exper., 18(10):1115–1140, 2006.

10. F. Hernández, P. Bangalore, J. Gray, Z. Guan, and K. Reilly. GAUGE: Grid
Automation and Generative Environment. Concurrency Computat.: Pract. Exper.,
18(10):1293–1316, 2006.

11. A. Hoheisel. User tools and languages for graph-based Grid workflows. Concur-
rency Computat.: Pract. Exper., 18(10):1101–1113, 2006.

12. P. Kacsuk and G. Sipos. Multi-grid and multi-user workflows in the P-GRADE
Grid portal. J. Grid Computing, 3(3-4):221–238, 2006.

13. OASIS. OASIS Web Services Resource Framework (WSRF) TC.
http://www.oasis-open.org/committees/wsrf/, May 2007.

14. T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood, T. Carver,
K. Glover, M.R. Pocock, A. Wipat, and P. Li. Taverna: A tool for the composi-
tion and enactment of bioinformatics workflows. Bioinformatics, 20(17):3045–3054,
2004.

15. I. Taylor, M. Shields, I. Wang, and A. Harrison. The Triana workflow environment:
architecture and applications. In I. Taylor et al., editors, Workflows for e-Science,
pages 320–339. Springer-Verlag, 2007.

16. G. von Laszewski and M. Hategan. Workflow concepts of the Java CoG Kit. J.
Grid Computing, 3(3–4):239–258, 2005.

17. WEEP. The Workflow Enactment Engine Project. http://weep.gridminer.org,
May 2007.

18. J. Yu and R. Buyya. A taxonomy of workflow management systems for Grid
computing. J. Grid Computing, 3(3–4):171–200, 2006.


