
The Journal of Supercomputing, 18, 235–258, 2001
© 2001 Kluwer Academic Publishers. Manufactured in The Netherlands.

High Performance Computations for
Large Scale Simulations of Subsurface
Multiphase Fluid and Heat Flow
ERIK ELMROTH*, elmroth@cs.umu.se
CHRIS DING AND YU-SHU WU �chqding, yswu�@lbl.gov

Lawrence Berkeley National Laboratory, University of California, Berkeley, CA

Abstract. TOUGH2 is a widely used reservoir simulator for solving subsurface flow related problems
such as nuclear waste geologic isolation, environmental remediation of soil and groundwater contamina-
tion, and geothermal reservoir engineering. It solves a set of coupled mass and energy balance equations
using a finite volume method. This contribution presents the design and analysis of a parallel version of
TOUGH2. The parallel implementation first partitions the unstructured computational domain. For each
time step, a set of coupled non-linear equations is solved with Newton iteration. In each Newton step, a
Jacobian matrix is calculated and an ill-conditioned non-symmetric linear system is solved using a pre-
conditioned iterative solver. Communication is required for convergence tests and data exchange across
partitioning borders. Parallel performance results on Cray T3E-900 are presented for two real applica-
tion problems arising in the Yucca Mountain nuclear waste site study. The execution time is reduced
from 7504 seconds on two processors to 126 seconds on 128 processors for a 2D problem involving 52,752
equations. For a larger 3D problem with 293,928 equations the time decreases from 10,055 seconds on
16 processors to 329 seconds on 512 processors.

Keywords: groundwater flow, grid partitioning, iterative linear solvers, preconditioners, software design,
performance analysis

1. Introduction

Subsurface flow related problems touch many important areas in today’s society,
such as natural resource development, nuclear waste underground storage, envi-
ronmental remediation of groundwater contamination, and geothermal reservoir
engineering. Because of the complexity of model domains and physical processes
involved, numerical simulation play vital roles in the solutions of these problems.

This contribution presents the design and analysis of a parallel implementation of
the widely used TOUGH2 software package [9, 10] for numerical simulation of flow
and transport in porous and fractured media. The contribution includes descriptions
of algorithms and methods used in the parallel implementation and performance
evaluation for parallel simulations with up to 512 processors on a Cray T3E-900 on
two real application problems. Although the implementation and analysis is made
on Cray T3E, the use of the standard Fortran 77 programming language and the

*Present address: Department of Computing Science and High Performance Computing Center North,
Umeå University, SE-901 87 Umeå, Sweden.



236 elmroth, et al.

MPI message passing interface makes the software portable to any platform where
Fortran 77 and MPI are available.

The serial version of TOUGH2 (Transport Of Unsaturated Groundwater and
Heat version 2) is now being used by over 150 organizations in more than 20 coun-
tries (see [11] for some examples). The major application areas include geother-
mal reservoir simulation, environmental remediation, and nuclear waste isolation.
TOUGH2 is one of the official codes used in the US Department of Energy’s civil-
ian nuclear waste management for the evaluation of the Yucca Mountain site as a
repository for nuclear wastes. In this context arises the largest and most demanding
applications for TOUGH2 so far. Scientists at Lawrence Berkeley National Lab-
oratory are currently developing a 3D flow model of the Yucca Mountain site,
involving computational grids of 105 to 106 grid blocks, and related coupled equa-
tions of water and gas flow, heat transfer and radionuclide migration in subsurface
[3]. Considerably larger and more difficult applications are anticipated in the near
future, with the analysis of solute transport, with ever increasing demands on spa-
tial resolution and a comprehensive description of complex geological, physical and
chemical processes. High performance capability of the TOUGH2 code is essential
for these applications.

Some early results from this project were presented in [5].

2. The TOUGH2 simulation

The TOUGH2 simulation package solves mass and energy balance equations that
describe fluid and heat flow in general multiphase, multicomponent systems. The
fundamental balance equations have the following form:

d

dt

∫
V
M�k�dV =

∫
S

F�k� · ndS +
∫
V
q�k�dV;

where the integration is over an arbitrary volume V , which is bounded by the surface
S. Here M�k� denotes mass for the k-th component, (water, gas, heat, etc), F�k� is
the flux of fluids and heat through the surface, and q�k� is source or sink inside
V . This is a general form. All flow and mass parameters can be arbitrary non-
linear functions of the primary thermodynamic variables, such as density, pressure,
saturation, etc.

Given a computational geometry, space is discretized into many small volume
blocks. The integral on each block becomes a variable; this leads naturally to the
finite volume method, resulting in the following ordinary differential equations:

dM
�k�
n

dt
= 1
Vn

∑
m

AnmF
�k�
nm + q�k�n ;

where Vn is the volume of the block n, and Anm is the interface area bordering
between blocks n;m and Fnm is the flow between them. Note that flow terms usu-
ally contain spatial derivatives, which are replaced by simple difference between
variables defined on blocks n;m and divided by the distances between the block
centers. See Figure 1 for an illustration. On the left-hand side, a 3-dimensional



high performance computations 237

Figure 1. Space discretization and geometry data.

grid block is illustrated with arrows illustrating flow throw interface areas between
neighboring grid blocks. On the left-hand side, two neighboring blocks m and n are
illustrated by a 2-dimensional picture. Here, each block center is marked by a cross.
Included are also the variables Vm and Vn for volumes and Dm and Dn for distance
between grid block centers and the interface area.

Time is implicitly discretized as a first order difference equation:

M
�k�
n �x�t+1�� −M�k�n �x�t�� = 1t

Vn

(∑
m

AnmF
�k�
nm �x�t+1�� + Vnq�k�n

)
;

where the vector x�t� consists of prime variables at time t. Flow and source/sink
terms on the right hand side are evaluated at t + 1t for numerical stability for the
multi-phase problems. This leads to coupled nonlinear algebraic equations, which
are solved using Newton’s method.

3. Computational procedure

The main solution procedures can be schematically outlined as in Figure 2.
After reading data and setting up the problem, the time consuming parts are the

main loops for time stepping, Newton iteration, and the iterative linear solver. At
each time step, the nonlinear discretized coupled algebraic equations are solved
with the Newton method. Within each Newton iteration, the Jacobian matrix is first
calculated by numerical differentiation. The implicit system of linear equations is
then solved using a sparse linear solver with preconditioning. After several Newton
iterations, the convergence is checked by a control parameter, which measures the
maximum component of the residual in the Newton iterations. If the Newton itera-
tions converge, the time will advance one more time step, and the process repeats
until the pre-defined total time is reached.

If the Newton procedure does not converge after a preset max-Newton-iteration,
the current time step is reduced (usually by half) and the Newton procedure is tried



238 elmroth, et al.

Figure 2. Sketch of main loops for the TOUGH2 simulation.

for the reduced time step. If converged, the time will advance; otherwise, time step
is further reduced and another round of Newton iteration follows. This procedure
is repeated until convergence in the Newton iteration is reached.

The system of linear equation is usually very ill-conditioned, and requires very
robust solvers. The dynamically adjusted time step size is the key to overcome
the combination of possible convergence problems for the Newton iteration and
the linear solver. For this highly dynamic system, the trajectory is very sensitive to
variations in the convergence parameters.

Computationally, the major part (about 65%) of the execution time is spent on
solving the linear systems, and the second major part (about 30%) is the assembly
of the Jacobian matrix.

4. Designing the parallel implementation

The aim of this work is to develop a parallel prototype of TOUGH2, and to demon-
strate its ability to efficiently solve problems significantly larger than problems that
have previously been solved using the serial version of the software. The prob-
lems should be larger both in the number of blocks and the number of equations
per block. The target computer system for this prototype version of the paral-
lel TOUGH2 is the 696 processor Cray T3E-900 at NERSC, Lawrence Berkeley
National Laboratory.

In the following sections, we give an overview of the design of the main steps,
including grid partitioning, grid block reordering, assembly of the Jacobian matrix,
and solving the linear system, as well as some further details about the parallel
implementation.

4.1. Grid partitioning and grid block reordering

Given a finite domain as described in Section 2, we will in the following consider
the dual mesh (or grid), obtained by representing each block (or volume element)
by its centroid and by representing the interfaces between blocks by connections.
(The words blocks and connections are used in consistency with the original



high performance computations 239

TOUGH2 documentation [10].) The physical properties for blocks and their inter-
faces are represented by data associated with blocks and connections, respectively.

In TOUGH2 the computational domain is defined by the set of all connections
given as input data. From this information, an adjacency matrix is constructed, i.e.,
a matrix with a non-zero entry for each element �i; j� where there is a connection
between blocks i and j. In the current implementation the value 1 is always used
for non-zero elements, but different weights may be used. The adjacency matrix is
stored in a compressed row format, called CRS format, which is a slight modification
of the Harwell-Boeing format. See, e.g., [2] for descriptions of CRS and Harwell-
Boeing formats.

The actual partitioning of the grid into p almost equal-sized parts is performed
using three different partitioning algorithms, implemented in the METIS software
package version 4.0 [8]. The three algorithms are here denoted the K-way, the
VK-way and the Recursive partitioning algorithm, in consistency with the METIS
documentation.

K-way is multilevel version of a traditional graph partitioning algorithm that min-
imizes the number of edges that straddle the partitions. VK-way is a modification
of K-way that instead minimizes the actual total communication volume. Recursive
is a recursive bisection algorithm which objective is to minimize the number of
edges cut.

After partitioning the grid on the processors, the blocks (or more specifically,
the vector elements and matrix rows associated with the blocks) are reordered by
each processor to a local ordering. The blocks for which a processor computes the
results are denoted the update set of that processor. The update set can be further
partitioned into the internal set and the border set. The border set consists of blocks
with an edge to a block assigned to another processor and the internal set consists
of all other blocks in the update set. Blocks not included in the update set but
needed (read only) during the computations defines the external set.

Figure 3 illustrates how the blocks can be distributed over the processors. (The
vertices of the graph represent blocks and the edges represent connections, i.e.,
interface areas between pairs of blocks.) Table 1 shows how the blocks are classified
in the update and the external sets and how the update sets are further divided into
internal and border sets. In the table, the elements are placed in local order and
the global numbering illustrates the reordering.

In order to facilitate the communication of elements corresponding to border/
external blocks, the local renumbering of the nodes is made in a particular way. All
blocks in the update set precede the blocks in the external set, and in the update
set, all internal blocks precede the border blocks. Finally, the external blocks are
ordered internally with blocks assigned to a specific processor placed consecutively.
One possible ordering is given as an example in Table 1.

For processor 0 in this example, the grid blocks numbered 7 and 11 are internal
blocks, i.e., these blocks are updated by processor 0 and there are no dependencies
between these blocks and blocks assigned to other processors. The grid blocks 8
and 12 are border blocks for processor 0, i.e., the blocks are updated by processor
0 but there are dependencies to blocks assigned to other processors. Finally, blocks
1, 9, and 13 are external blocks for processor 0, i.e., these blocks are not updated



240 elmroth, et al.

Figure 3. A grid partitioning on 3 processors.

by processor 0 but data associated with these blocks are needed read-only during
the computations. The amounts of data that a processor is to send and receive
during the computations are approximately proportional to the number of border
and external blocks, respectively.

The consecutive ordering of the external blocks that reside on each processor
makes it possible to receive data corresponding to these blocks into appropriate
vectors without use of buffers and with no need for further reordering, provided
that the sending processor has access to the ordering information. However, it is
not possible in general to order the border blocks so that transformations can be
avoided when sending, basically because some blocks in the border set may have to
be sent to more than one processor.

4.2. Jacobian matrix calculations

A new Jacobian matrix is calculated once for each Newton step, i.e., several times
for each Time step of the algorithm. In the parallel algorithm, each processor is
responsible for computing the rows of the Jacobian matrix that correspond to blocks
in the processor’s update set. All derivatives are computed numerically.

Table 1. Example of block distribution and local ordering for the
internal, border, and external sets

Internal � Border�External

Processor 0: �7; 11 � 8; 12�1; 9; 13�
Processor 1: �2; 3 � 1; 4; 9�8; 12; 5; 10�
Processor 2: �6; 14 � 5; 10; 13�12; 4; 9�



high performance computations 241

The Jacobian matrix is stored in the Distributed Variable Block Row format
(DVBR) [7]. All matrix blocks are stored row wise, with the diagonal blocks stored
first in each block row. The scalar elements of each matrix block are stored in
column major order. The use of dense matrix blocks enables use of dense linear
algebra software, e.g., optimized level 2 (and level 3) BLAS for subproblems. The
DVBR format also allows for a variable number of equations per block.

Computation of the elements in the Jacobian matrix is basically performed in two
phases. The first phase consists of computations relating to individual blocks. At the
beginning of this phase, each processor already holds the information necessary to
perform these calculations. The second phase includes all computations relating
to interface quantities, i.e., calculations using variables corresponding to pairs of
blocks. Before performing these computations, exchange of relevant variables is
required. For a number of variables, each processor sends elements corresponding
to border blocks to appropriate processors, and it receives elements corresponding
to external blocks.

4.3. Linear systems

The non-symmetric linear systems to be solved are generally very ill-conditioned
and difficult to solve. Therefore, the parallel implementation of TOUGH2 is made
so that different iterative solvers and preconditioners easily can be tested. All
results presented here have been obtained using the stabilized bi-conjugate gradi-
ent method (BICGSTAB) [14] in the Aztec software package [7], with 3× 3 Block
Jacobi scaling and a domain decomposition based preconditioner with possibly over-
lapping subdomains, i.e., Additive Schwarz (see, e.g., [13]), using the ILUT [12]
incomplete LU factorization.

The domain decomposition based procedure can be performed with different
levels of overlapping, and for the case overlap = 0 the procedure turns into another
variant of Block Jacobi preconditioner. In order to distinguish the 3× 3 Block Jacobi
scaling from the full subdomain Block Jacobi scaling obtained by chosing overlap
= 0 in the domain decomposition preconditioning procedure, we will refer to the
former as the Block Jacobi scaling and the latter as the domain decomposition based
preconditioner, though both are of course preconditioners.

As an illustration of the difficulties arising in these linear systems, we would like
to mention a very small problem from the Yucca Mountain simulations mentioned
in the Introduction. This non-symmetric problem includes 45 blocks, 3 equations
per block, and 64 connections. When solving the linear system, the Jacobian matrix
is of size 135× 135 with 1557 non-zero elements. For the first Jacobian generated
(in the first Newton step of the first Time step), i.e., the matrix involved in the first
linear system to be solved, the largest and smallest singular values are 2:48× 1032

and 2:27× 10−12, respectively, giving the condition number 1:1× 1044.
By applying block Jacobi scaling, where each block row is multiplied by the inverse

of its 3× 3 diagonal block, the condition number is significantly reduced. The scaling
reduces the largest singular value to 7:69 × 103 and the smallest is increased to
9:83 × 10−5, altogether reducing the condition number to 7:8 × 107. This is, how-



242 elmroth, et al.

ever, still an ill-conditioned problem. Therefore, the domain decomposition based
preconditioner with incomplete LU factorization mentioned above is applied after
the block Jacobi scaling. This procedure has shown to be absolutely vital for con-
vergence on problems that are significantly larger.

4.4. Parallel implementation

In this section, we outline the parallel implementation by describing the major steps
in some important routines. In all, the parallel TOUGH2 includes about 20,000
lines of Fortran code (excluding the METIS and Aztec packages) in numerous
subroutines using MPI for message passing [6]. However, in order to understand
the main issues in the parallel implementation, it is sufficient to focus on a couple
of routines. Of course, several other routines are also modified compared to the
serial version of the software, but these details would only be distracting.

Cycit. Initially, processor 0 reads all data describing the problem to be solved,
essentially in the same way as in the serial version of the software. Then, all pro-
cessors call the routine Cycit which contains the main loops for time stepping and
Newton iterations. This routine also initiates the grid partitioning and data distri-
bution. The partitioning described in Section 4.1 defines how the input data should
be distributed on the processors. The distribution is performed in several routines
called from Cycit.

There are five categories of data to be distributed and possibly reordered. Vec-
tors with elements corresponding to grid blocks are distributed according to the
grid partitioning and reordered to the local order with Internal, Border, and Exter-
nal elements as described in Section 4.1. Vectors with elements corresponding to
connections are distributed and adjusted to the local grid block numbering after
each processor have determined which connections are involved in its own local
partition. Vectors with elements corresponding to sinks and sources are replicated
in full before each processor extracts and reorders the parts needed. There are in
addition a number of scalars and small vectors and matrices that are fully replicated,
i.e., data structures which sizes do not depend on the number of grid blocks or con-
nections. Finally, processor 0 constructs the data structure for storing the Jacobian
matrix and distributes appropriate parts to the other processors. This include all
integer vectors defining the matrix structure but not the large array for holding the
floating point numbers for the matrix elements.

As the problem is distributed, the time stepping procedure begins. A very brief
description of the routine Cycit is given in Figure 4. In this description, lots of
details have been omitted for clarity, and calls have been included to a couple of
routines that require further description.

ExchangeExternal. The routine ExchangeExternal is of particular interest for the
parallel implementation. The main loop of this routine is outlined in Figure 5.
When called by all processors with a vector and a scalar noel as arguments, an
exchange of vector elements corresponding to external grid blocks is performed



high performance computations 243

Figure 4. Outline of the routine Cycit, executed by all processors.



244 elmroth, et al.

Figure 5. Outline of the routine ExchangeExternal. When simultaneously called by all processors it
performs an exchange of noel elements per external grid block for the data in vector.

between all neighboring processors. The parameter noel is the number of vector ele-
ments exchanged per external grid block. Some additional parameters that defines
the current partition, e.g., information about neighbors etc, need also to be passed
to the routine, but we have for clarity chosen not to include them in the figure.
Though some details are omitted, we have chosen to include the full MPI syn-
tax (using Fortran interface) for the communication primitives. The routine pack,
called by ExchangeExternal, copies appropriate elements from vector into a con-
secutive work array. The external elements for a given processor are specified by
sendindex.

We remark that the elements can be stored directly into the appropriate vector
when received (since external blocks are ordered consecutively for each neighbor),
whereas the border elements to be sent need to be packed into a consecutive work
space before they are sent.

Note that we use the nonblocking MPI routines for sending and receiving data.
With use of blocking routines we would have had to assure that all messages are sent
and received in an appropriate order to avoid deadlock. When using nonblocking
primitives, the sends and receives can be made in arbitrary order. A minor incon-



high performance computations 245

venience with use of the nonblocking routines is that the work space used to store
elements to be sent need to be large enough to store all elements a processor is to
send to all its neighbors.

Multi. The routine Multi is called to set up the linear system, i.e., the main part
of the computations in Multi is for computing the elements of the Jacobian matrix.
Computationally, Multi performs three major steps. First it performs all computa-
tions that depend on individual grid blocks. This is followed by computations of
terms arising from sinks and sources.

So far all computations can be made independently by all processors. The last
computational step in Multi is for interface quantities, i.e., computations involving
pairs of grid blocks. Before performing this last step, and exchange of external vari-
ables is required for the vectors X (primary variables), DX (the last increments in
the Newton process), DELX (small increments of the X values, used to calculate
incremental parameters needed for the numerical calculation of the derivatives),
and R (the residual). The number of elements to be sent per external grid block
equals the number of equations per grid block, for all four vectors. This opera-
tion is performed by calling ExchangeExternal before performing the computations
involving interface quantities.

Eos3 and other Eos routines. The thermophysical properties of fluid mixtures
needed in assembling the governing mass and energy balance equations are pro-
vided by a routine called Eos (Equations of state). The main task for the Eos
routine is to provide values for all secondary (thermophysical) variables as func-
tions of the primary variables, though it also performs some additional important
tasks (see [10], pp. 17–26 for details).

Several Eos routines are available for TOUGH2, and new Eos routines will
become available. However, Eos3 is the only one that have been used in this paral-
lel implementation. In order to provide maximum flexibility, we strive to minimize
the number of changes that needs to be done to the Eos routine when moving from
the serial to the parallel implementation. This has been done by organizing data
and assigning appropriate values to certain variables before calling the Eos rou-
tine. In the current parallel implementation, the Eos3 routine from the serial code
can be used unmodified, with the exception of some write statements. Though, this
still needs to be verified in practice, we believe that the current parallel version of
TOUGH2 can handle also other Eos routines, with the only exception being some
write statements needing adjustments.

4.5. Cray T3E—the target parallel system

The parallel implementation of TOUGH2 is made portable through use of the
standard Fortran 77 programming language and the MPI Message Passing Interface
for interprocessor communication. The development and analysis, however, have
been performed on a 696 processor Cray T3E-900 system.

The T3E is a distributed memory computer; each processor has its own local
memory. Together with some network interface hardware, the processor (known



246 elmroth, et al.

as Digital EV-5 or Alpha) and local memory form a Processing Element (PE), is
sometimes called a node. All 696 PEs are connected by a network arranged in a
3-dimensional torus. See, e.g., [1] for details about the performance of the Cray
T3E system.

5. Performance analysis

Parallel performance evaluation have been performed for a 2D and a 3D real appli-
cation problem arising in the Yucca Mountain nuclear waste site study. Results have
been obtained for up to 512 processors of the Cray T3E-900 at NERSC, Lawrence
Berkeley National Laboratory.

The linear systems have been solved using BICGSTAB with 3 × 3 Block Jacobi
scaling and a domain decomposition based preconditioner with the ILUT incom-
plete LU factorization. Different levels of overlapping have been tried for this pro-
cedure, though all results presented are for non-overlapping tests, which in general
have shown to give good performance. The stopping criteria used for the linear
solver is ��r�2/�b�2� ≤ 10−4, where r and b denote the residual and the right hand
side, respectively.

Both test problems require simulated times of 104 to 105 years, which would
require a significant execution time also with good parallel performance and a large
number of processors. In order to investigate the parallel performance, we have
therefore limited the simulated time to 10 years for the 2D problem and 0:1 year for
the 3D problem, which still require enough time steps to perform the analysis of the
parallel performance. A shorter simulated time will of course give the initialization
phase unproportionally large impact on the performance figures. The initialization
phase is therefore excluded from the timings.

Tests have been performed using the K-way, the VK-way, and the Recursive par-
titioning algorithms in METIS. As we will see later, different orderings of the grid
blocks lead to variations in the time discretization following from the unstructured
nature of the problem. This in turn lead to variations in the number of time steps
required and thereby in the total amount of work performed. By trying all three
partitioning algorithms and chosing the one that leads to the best performance for
each problem and number of processors, we reduce these somewhat “artificial” per-
formance variations resulting from differences in the number of time steps required.
For all results presented, we indicate which partitioning algorithm have been used.

5.1. Results for 2D and 3D real application problems

The 2D problem consists of 17,584 blocks, 3 components per block and 43,815
connections between blocks, giving in total 52,752 equations. The Jacobian matrix
in the linear systems to be solved for each Newton step is of size 52,752 × 52,752
with 946,926 non-zero elements.

The topmost graph in Figure 6 illustrates the reduction in execution time for
increasing number of processors. The execution time is reduced from 7504 seconds



high performance computations 247

Figure 6. Execution time and parallel speedup on the 2D problem for 2, 4, 8, 16, 32, 64, and 128
processors on the Cray T3E-900.



248 elmroth, et al.

(i.e., 2 hours, 5 minutes, and 4 seconds) on two processors to 126 seconds (i.e., 2
minutes and 6 seconds) on 128 processors.

The parallel speedup for the 2D problem is presented in the second graph of
Figure 6. Since the problem cannot be solved on one processor with the parallel
code the speedup is normalized to be 2 on two processors, i.e., the speedup on p
processors is calculated as 2T2/Tp, where T2 and Tp denote the wall clock execution
time on 2 and p processors, respectively. For completeness we also report that the
execution time for the original serial code is 8245 seconds on the 2D problem.

The 3D problem consists of 97,976 blocks, 3 components per block and 396,770
connections between blocks, giving in total 293,928 equations. The Jacobian matrix
in the linear systems to be solved for each Newton step is of size 293,928 × 293,928
with 8,023,644 non-zero elements.

The topmost graph in Figure 7 illustrates the reduction in execution time for the
3D problem for increasing number of processors. Memory and batch system time
limits prohibits tests on less than 16 processors. Results are therefore presented
for 16, 32, 64, 128, 256, and 512 processors. The execution time is significantly
reduced as the number of processors is increased, all the way up to 512 proces-
sors. It is reduced from 10,055 seconds (i.e., 2 hours, 47 minutes, and 35 seconds)
on 16 processors to 329 seconds (i.e., 5 minutes and 29 seconds) on 512 proces-
sors. The ability to efficiently use larger number of processors is even better illus-
trated by the speedup shown in the second graph of the Figure 7. The speedup is
defined as 16T16/Tp since performance result are not available for smaller number
of processors.

The results clearly demonstrate very good parallel performance up to very large
number of processors for both problems. We observe speedups up to 119.1 on
128 processors for the 2D problem and up to 489.3 on 512 processors for the 3D
problem.

When repeatedly doubling the number of processors from 2 to 4, from 4 to 8, etc,
up to 128 processors for the 2D problem, we obtain the speedup factors 1.58, 2.85,
2.19, 1.91, 1.96, and 1.62. For the 3D problem, the corresponding speedup factors
when repeatedly doubling the number of processors from 16 to 512 processors are
2.70, 2.28, 1.95, 1.50, and 1.69.

As 2.00 would be the ideal speedup each time the number of processors is dou-
bled, the speedup, e.g., 2.70 and 2.28 for the 3D problem are often called super-
linear speedup. We will present the explanations for this in later sections.

Overall the parallel performance is very satisfactory, and we complete this analysis
by providing some insights and explaining the superlinear speedup.

5.2. An unstructured problem

In the ideal case, the problem can be evenly divided among the processors not only
with approximately the same number of internal grid blocks per processor, but also
roughly the same number of external blocks per processor. Our problems, however,
are very unstructured, which means that the partitioning can not be made even in
these both aspects.



high performance computations 249

Figure 7. Execution time and parallel speedup on 3D problem for 16, 32, 64, 128, 256 and 512 processors
on the Cray T3E-900.



250 elmroth, et al.

This leads, for example, to imbalances between the number of external elements
per processor when the internal blocks are evenly distributed. For the 3D problem
on 512 processors, the average number of external grid blocks is 234 but the maxi-
mum number of external blocks for any processor is 374. It follows that at least one
processor will have 60% higher communication volume than the average processor
(assuming the communication volume to be proportional to the number of external
blocks). Note here that the average number of internal grid blocks is 191 for the
same case. This means that the average processor actually has more external blocks
than internal blocks. Finally, the average number of neighboring processors is 12.59
and the maximum number of neighbors for any processor is 25.

Altogether this indicates that the communication pattern is irregular and that
the amount of communication is becoming significant both in terms of number
of messages and total communication volume. At the same time, the amount of
computations that can be performed without external elements is becoming fairly
small.

Despite these difficulties, the parallel implementation shows ability to efficiently
use a large number of processors: every half second wall clock time, on 512 proces-
sors, a new linear system of size 293,928 × 293,928 with 8,023,644 non-zero elements
is generated and solved. This includes the time for the numerical differentiation for
all elements of the Jacobian matrix, the 3 × 3 Block Jacobi scaling for each block
row, the ILUT factorization for the domain decomposition based preconditioner,
and a number of BICGSTAB iterations.

5.3. Analysis of work load variations

Several issues need to be considered when analyzing the performance as the number
of processors is increased. First, the sizes of the individual tasks to be performed by
the different processors is decreased, giving an increased communication to compu-
tation ratio, and the relative load imbalance is also likely to increase. In addition, we
may find variations in how the time discretization is performed (the number of time
steps) and the number of iterations in the Newton process and the linear solver. In
order to conduct a more detailed study, we present a summary of iteration counts
and timings for the two test problems in Table 2.

The table shows the average number of Newton iterations per time step, and the
average number of iterations in the linear solver per time step and per Newton
step, as well as the total number of time steps, Newton iterations, and iterations in
the linear solver. We recall that the linear system solve is the most time consuming
operation and the computation of the Jacobian matrix is the second largest time
consumer. Both of these operations are performed once for each Newton step.

For both problems we note that some variations occur in the time discretization
when the problem is solved on different number of processors. Similar behavior has
been observed, for example, when using different linear solvers in the serial ver-
sion of TOUGH2. The variations in time discretization lead to variations both in
the number of time steps needed and the number of Newton iterations required.
Notably, the 4 processors execution on the 2D problem requires 15% more time



high performance computations 251

Table 2. Iteration counts and execution times for the 2D and 3D test problems

2D problem

2 4 8 16 32 64 128 256

Partitioning algorithm VK VK K Rec. Rec. Rec. K Rec.
#Time steps 104 120 104 104 104 94 94 103
Total #Newton

iterations 645 869 669 653 663 697 620 637
#Newton iter./

Time step 6.20 7.24 6.43 6.28 6.38 7.41 6.60 6.18
Total #Lin. solv.

iterations 8640 16528 10934 9888 11011 11282 11894 19585
#Lin. solv. iter./

Newton step 13.40 19.02 16.34 15.14 16.61 18.46 19.18 30.75
#Lin. solv. iter./

Time step 83.1 137.1 105.1 95.1 105.9 120.0 126.5 190.1
Time spent on

Lin. solv. (s) 5170 3201 1040 460 242 129 85 104
Time spent on

other (s) 2334 1550 629 303 157 75 41 23
Total time (s) 7504 4750 1669 762 399 204 126 127

3D problem

16 32 64 128 256 512

Partitioning algorithm K Rec. K K Rec. Rec.
#Time steps 154 149 143 137 185 166
Total #Newton iterations 632 606 585 561 708 646
#Newton iter./Time step 4.10 4.07 4.09 4.09 3.83 3.89
Total #Lin. solv. iterations 8720 10275 9357 10362 14244 14487
#Lin. solv. iter./Newton step 13.80 16.96 15.99 18.47 20.12 22.43
#Lin. solv. iter./Time step 56.6 69.0 65.4 75.6 77.0 87.3
Time spent in Lin. solv. (s) 7470 2464 995 510 344 224
Time spent on other (s) 2585 1255 639 327 212 105
Total execution time (s) 10055 3718 1634 837 556 329

steps, 35% more Newton steps, and 91% more iterations in the linear solver com-
pared to the execution on 2 processors. This increase of work fully explains the low
speedup on 4 processors. Similar variations in the amount of work also contribute
to a very good speedup for some cases.

However, the figures in Table 2 alone do not fully explain the super-linear
speedup observed for some cases. We will therefore continue our study by looking
at the performance of the linear solver. Before doing that, however, we show some
examples that motivates this continued study, i.e., cases where the speedup actually
is higher than we would expect from looking at iteration counts only.

For example, on the 2D problem the speedup on 8 processors is 12.4% larger
than maximum expected (i.e., 8.99 vs. 8.00), but compared to the execution on two
processors, the 8 processor execution actually requires slightly more Newton iter-
ations and iterations in the linear solver. The number of time steps is the same



252 elmroth, et al.

for both tests. When doubling the number of processors from 8 to 16, we see
another factor of 2.19 in speedup, even though the reduction in number of Newton
iterations and iterations in the linear solver is only 2.4% and 9.6%, respectively.
The speedup on the 3D problem from 16 to 32 processors (2.70) and from 32
to 64 processors (2.28) is also higher than what would be expected by looking at
Table 2 alone.

So far, we can summarize the following observations for the two problems.
The unstructured nature of the problem naturally leads to variations in the work
load between different tests. This alone explains some of the speedup anomalies
observed, but for a couple of cases, it is evident that there are other issues to be
investigated. We therefore continue this study by focusing on the performance of
the linear solver and the preconditioner.

5.4. Performance of preconditioner and linear solver

A breakup of the speedup in one part for the linear solver (including precon-
ditioner) and one for all other computations (mainly assembly of the Jacobian
matrix) is presented for both problems in Figure 8. The figure illustrates that the
super-linear speedup for the whole problem follows from super-linear speedup of
the linear solver. Note that the results presented are for the total time spent on
these parts, i.e., a different number of linear systems to be solved or a differ-
ence in the number of iterations required to solve a linear system affects these
numbers.

The speedup of the “other parts” is close to p for all tests on both problems,
and this is also an indication that this part of the computation may show good
performance also for larger number of processors. The slight decrease on 256 and
512 processors for the 3D problem is due to increased number of time steps.

We conclude that the performance of “the other parts” is satisfying and that
it needs no further explanations. We continue with the study of the super-linear
speedup of the linear solver.

5.4.1. Effectiveness of the preconditioner. The preconditioner is crucial to the num-
ber of iterations per linear system solved. The domain decomposition based process
is expected to become less efficient as the number of processors increases. The best
effect of the preconditioner is expected when the whole matrix is used in the factor-
ization, but in order to achieve good parallel performance, the size for the precondi-
tioning operation on each processor is restricted to its local subdomain. On average,
the matrix used in the preconditioning by each processor is n

p
× n

p
, where n is the

size of the whole (global) matrix and p is the number of processors. The reduced
effectiveness follows naturally from the smaller subdomains, i.e., the decreased size
of the matrices used in the preconditioner, since only diagonal blocks are used to
calculate an approximate solution.

The number of iterations required per linear system for the two test problems
confirms this theory (see Table 2). For both test problems the number of iterations
required per linear system increases with the number of processors (with exceptions



high performance computations 253

Figure 8. Breakup of speedup for the 2D and 3D problems in one part for the linear solver (marked
“∇”) and one part for all other computations (marked “4”). The ideal speedup is defined by the straight
line.



254 elmroth, et al.

for going from 4 to 8 and 8 to 16 processors for the 2D problem and 32 to 64 for
the 3D problem).

We have also included the results for 256 processors on the 2D problem in
Table 2. We note an increase in the number of iterations per linear system by more
than 50% compared to 128 processors. It is clear that the preconditioner does not
perform a very good job when the number of processors is increased to 256. By
introducing one level of overlapping (Additive Schwarz) in the domain decomposi-
tion based preconditioner on 256 processors, the number of iterations in the linear
solver is reduced to the same order as for smaller number of processors. This is
however done at the additional cost for performing the overlapping and the overall
time is roughly unchanged.

Our main observation is that despite the overall increasing number of iterations
in the linear solver for increasing number of processors, the speedup of the linear
solver is higher than what would normally be expected up to a certain number of
processors. The increased number of iterations per linear system for larger number
of processors is obviously following from the reduced effectiveness of the precon-
ditioner. In the following sections, we will conclude the performance analysis by
investigating the parallel performance of the actual computations performed during
the preconditioning and linear iteration processes.

5.4.2. Performance of the preconditioner. Another effect of the decreased sizes of
the subdomains in the domain decomposition based preconditioner is that the total
amount of work to perform the incomplete LU factorizations becomes significantly
smaller as the number of processors is increased.

For example, as the number of processors is doubled, the size of each processor’s
local matrix in the ILUT factorization is decreased by a factor of 4, on average
from n

p
× n

p
to n

2p × n
2p . Hence will the amount of work per processor be reduced a

factor between 2 and 8 depending on the sparsity structure. Hence, the amount of
work per processor is reduced faster than we normally expect when we assume the
ideal speedup to be 2.

Figure 9 gives a further breakup of the speedup, now with the speedup for the
linear solver separated into one part for the preconditioner (i.e., the ILUT factor-
ization) and one for the other parts of the linear solver.

The preconditioner shows a dramatic improvement of the performance as the
number of processors increases, following naturally from the decreased work in
the ILUT factorization. As we continue, this will turn out to be the single most
important explanation for the sometimes super-linear speedup.

5.4.3. Performance of the linear iterations. We have explained the super-linear
speedup of the preconditioning part of the linear solver, presented in Figure 9,
but we also observe only a modest speedup of the other parts of the computation.

The low speedup for the other parts is partly explained by the increased number
of iterations, as seen in the previous section. Increased communication to compu-
tation ratio and slightly increased relative load imbalance are other factors.

Already the figures presented in Section 5.2 showing large number of external
elements per processor and an imbalance in the number of external elements per



high performance computations 255

Figure 9. Breakup of speedup for the 2D and 3D problems in one part for the linear solver excluding
the ILUT factorization for the preconditioner (marked “∇”), one part for ILUT factorization (marked
“*”) and one part for all other computations (marked “4”). The ideal speedup is defined by the straight
line.



256 elmroth, et al.

Table 3. Time spent on preconditioning as percentage of total time spent in linear solver

2D problem

#Processors 2 4 8 16 32 64 128
Percentage 83.5% 77.1% 73.9% 69.2% 61.6% 49.9% 36.4%

3D problem

#Processors 16 32 64 128 256 512
Percentage 88.4% 78.9% 73.0% 66.0% 58.6% 39.4%

processor presented for the 3D problem on 512 processors indicated that the com-
munication to computation ratio would eventually become large. The performance
obtained for the iteration process in the linear solver supports this observation.

5.4.4. Impacts on the overall performance. In order to fully understand the total
(combined) effect of the super-linear behavior of the preconditioner and the moder-
ate speedup of the other parts of the linear solver, we now only need to investigate
how large proportion is spent on preconditioning out of the total time required for
solving the linear systems. This is illustrated in Table 3.

As the number of processors becomes large, the amount of time spent on pre-
conditioning becomes small compared to the time spent on iterations, whereas the
relation is the opposite for 2 processors on the 2D problem and for 16 processors
on the 3D problem. For example, for 16 processors on the 3D problem 88.4% of
the time in the linear solver was spent on the factorization for the preconditioner,
whereas the corresponding number is only 39.4% for 512 processors. As long as the
preconditioner consumes a large portion of the time, its super-linear speedup will
have significant effects on the overall performance of the implementation.

It is evident, that up to a certain number of processors, the super-linear speedup
of the incomplete LU factorization in the domain decomposition based precondi-
tioner is sufficient to give super-linear speedup for the whole application. As the
number of processors becomes large, the factorization consumes a smaller propor-
tion of the execution time, and hence, its super-linear behavior has less impact on
the overall performance. Instead, there are other issues that become more critical
for large number of processors, such as the increased number of iterations in the
linear solver.

6. Conclusions

This contribution presents the design and analysis of a parallel prototype implemen-
tation of the TOUGH2 software package. The parallel implementation shows to
efficiently use up to at least 512 processors of the Cray-T3E system. The implemen-
tation is constructed to have flexibility to use different linear solvers, precondition-
ers, and grid partitioning algorithms, as well as alternative Eos modules for solving
different problems. Computational experiments on real application problems show



high performance computations 257

high speedup for up to 128 processors on a 2D problem and up to 512 processors
on a 3D problem.

The results are accompanied by an analysis that explains the good parallel per-
formance observed. It also explains some minor variations in performance following
from the unstructured nature of the problem and some super-linear speedups fol-
lowing from decreased work in the preconditioning process.

The results also illustrate the trade-off between the time spent on preconditioning
and the effect of its result. With the objective to minimize the wall clock execution
time, we note that, for these particular problems, smaller subdomains could be used,
at least on small number of processors.

We have seen some variations in performance in tests using three different par-
titioning algorithms. Some of these variations clearly follow from variations in the
amount of work required, e.g., due to differences in the time discretization. Fur-
ther analysis is required in order to determine whether these variations follow some
particular pattern or if they are only a result from unpredictable circumstances.

The problems we are targeting in the near future are larger both in terms of
number of blocks and number of equations per block. Moreover should the sim-
ulation time be significantly longer. With increased problem size we expect to be
able to efficiently use an even larger number of processors (if available), and longer
simulations should not directly affect the parallel performance.

Future investigations include studies of alternative non-linear solvers and fur-
ther studies of the interplay between the time stepping procedure, the non-linear
systems, and the linear systems. Evaluations of different linear solvers, precondi-
tioners and parameter settings would be of general interest and may help to further
improve the performance of this particular implementation. A related study of par-
titioning algorithms have recently been completed [4].

Acknowledgments

We thank Karsten Pruess, the author of the original TOUGH2 software, for valuable
discussions during this work, Horst Simon for encouragement and support, and the
anonymous referees for constructive comments and suggestions.

This work is supported by the Director, Office of Science, Office of Laboratory
Policy and Infrastructure, of the U.S. Department of Energy under contract number
DE-AC03-76SF00098. This research uses resources of the National Energy Research
Scientific Computing Center, which is supported by the Office of Science of the U.S.
Department of Energy.

References

1. E. Anderson, J. Brooks, C. Grassl, and S. Scott. Performance of the CRAY T3E multiprocessor. In
Proceedings of Supercomputing ’97, 1997.

2. R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C.
Romine, and H. V. der Vorst. Templates for the Solution of Linear Systems: Building Blocks for Iterative
Methods, 2nd ed. SIAM, Philadelphia, 1994.



258 elmroth, et al.

3. G. Bodvarsson, T. Bandurraga, and Y. Wu. The site-scale unsaturated zone model of Yucca Moun-
tain, Nevada, for the viability assessment. Yucca Mountain Characterization Project Report LBNL-
40376, UC-814, Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, Calif.,
1997.

4. E. Elmroth. On grid partitioning for a high performance groundwater simulation software. In
B. Engquist et. al., ed. Simulation and Visualization on the Grid. Lecture Notes in Computational
Science and Engineering, Vol. 13, pp. 221–234. Berlin, 2000.

5. E. Elmroth, C. Ding, Y.-S. Wu, and K. Pruess. A parallel implementation of the TOUGH2 software
package for large scale multiphase fluid and heat flow simulations. In Proceedings of Supercomputing
’99, 1999.

6. MPI Forum. A message-passing interface standard. International Journal of Supercomputing Appli-
cations and High Performance Computing 8(3–4), 1994.

7. S. Hutchinson, L. Prevost, J. Shadid, C. Tong, and R. Tuminaro. Aztec users’ guide, version 2.0.
Technical report, Massively Parallel Computing Research Center, Sandia National Laboratories,
Albuquerque, NM, 1998.

8. G. Karypsis and V. Kumar. METIS. A software package for partitioning unstructured graphs, par-
titioning meshes, and computing fill-reducing orderings of sparse matrices, version 4.0. Technical
report, Department of Computer Science, University of Minnesota.

9. K. Pruess. TOUGH users’ guide. Technical report LBNL-29400, UC-251, Earth Sciences Division,
Lawrence Berkeley National Laboratory, Berkeley, Calif., 1987.

10. K. Pruess. TOUGH2—a general-purpose numerical simulator for multiphase fluid and heat flow.
Technical report LBNL-29400, UC-251, Earth Sciences Division, Lawrence Berkeley National Lab-
oratory, Berkeley, Calif., 1991.

11. K. Pruess, ed. Proceedings of the TOUGH workshop ’98. Technical report LBNL-41995, Conf-
980559, Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, Calif., 1998.

12. Y. Saad. ILUT: a dual threshold incomplete ILU preconditioner. Numerical Linear Algebra with
Applications, 1:387–402, 1994.

13. B. Smith, P. Bjørstad, and W. Gropp. Domain Decomposition. Parallel Multilevel Methods for Elliptic
Partial Differential Equations. Cambridge University Press, 1996.

14. H. Van der Vorst. BICGSTAB: a fast and smoothly converging variant of the BI-CG for the solution
of nonsymmetric linear systems. SIAM J. Sci. Stat. Comp., 13:631–644, 1992.


