MATRIX COMPUTATIONS:
FACTORIZING IN PARALLEL AND

SURFING THE KRONECKER
STRUCTURE HIERARCHIES

Erik Elmroth

e
0
NINIRERE

-2 2

Pu.D. THEsIS, 1995
DEPARTMENT OF COMPUTING SCIENCE
UMEA UNIVERSITY
SWEDEN

MATRIX COMPUTATIONS:
FACTORIZING IN PARALLEL AND

SURFING THE KRONECKER
STRUCTURE HIERARCHIES

Erik Elmroth

Pu.D. THEsIS, 1995
UMINF-95.15

w1Ve
o N
DEPARTMENT OF COMPUTING SCIENCE o w
UMEA UNIVERSITY « EEEl -
S-901 87 UMEA, SWEDEN 2, 5’
Q . &

Akademisk avhandling som med tillstand av rektorsambetet vid Umed Universitet
framldggs till offentlig granskning fredagen den 9 juni klockan 13.15 ¢ horsal C,
Samhdgllsvetarhuset, for avliggande av filosofie doktorsexamen.

UmU Tryckeri
UMINF-95.15 ISSN-0348-0542 ISBN 91-7191-065-4

Abstract

This dissertation concerns design, modeling, and evaluation of portable parallel
block matrix factorizations and certain numerical computations related to the
Kronecker canonical form (KCF) of matrix pencils.

Efficient parallel block algorithms for the LU, Cholesky, and QR factoriza-
tions, transportable over a range of shared memory multiprocessor architectures
are presented. The algorithms are evaluated from the point of view of explicit
versus implicit parallelization and dynamic versus static load balancing. Lim-
itations from software overhead and sequential bottlenecks are identified and
quantified for several different implementations on the IBM 3090VF /600J.

We present a block column wrap-mapping approach for design of parallel
block matrix factorization algorithms that are portable over and between shared
memory multiprocessors and distributed memory multicomputers. The optimal
block size and the parallel execution time are predicted by a performance model.

By viewing an m X n matrix pencil A — AB as a point in 2mn space, certain
numerical computations relating to the KCF can be viewed as moving matrix
pencils from manifold to manifold in the 2mn space. We make use of the geom-
etry of this space, to improve our knowledge of numerical algorithms and their
failures. With this knowledge our goal is to develop more robust and accurate
algorithms for computing the generalized Schur form of a general matrix pencil
and increase their functionality for solving important “nearness” problems.

A comprehensive study of the set of 2-by-3 pencils improves our understand-
ing of the “nearness” problems. The closure hierarchy of the orbits (manifolds
of strictly equivalent pencils) of all different KCFs is derived and presented in
a closure graph that show how the structures relate to each other in the 12-
dimensional space of 2-by-3 pencils. Necessary conditions on perturbations for
transiting from the orbit of one KCF to another in the closure hierarchy are
derived. We show normwise bounds for the smallest perturbations of a generic
2-by-3 pencil for finding a specific non-generic KCF. We study the behaviour of
non-generic structures under random perturbations in finite precision arithmetic.

We derive versal deformations of the KCF by deriving the tangent space and
orthogonal bases for the normal space to the orbits of strictly equivalent matrix
pencils. The deformations reveal the local perturbation theory of matrix pencils
related to the KCF. We also obtain a new singular value bound for the distance
to the orbits of less generic pencils. Experiments illustrate how versal deforma-
tions can be used to increase the understanding our “nearness” problems.

We give new interpretations of important results by Pokrzywa, for deter-
mining closure relations among orbits of KCF's, partly by generalizing classical
theorems by Gantmacher. The results are used to derive an algorithm for com-
putation of the stratification of the KCF's (i.e., the closure hierarchy).

111

iv

Preface

The thesis consists of the following five papers and an introduction including a
summary of the papers.

I. Krister Dackland, Erik Elmroth, Bo Kagstrém, and Charles Van Loan.
Parallel Block Matrix Factorizations on the Shared Memory Multiproces-
sor IBM 3090 VF/600J*. International Journal of Supercomputer Appli-
cations, Vol. 6:1, 1992.

II. Krister Dackland, Erik Elmroth, and Bo Kagstrom. A Ring-Oriented Ap-
proach for Block Matrix Factorizations on Shared and Distributed Memory
Architectures’. In R. F. Sinovec et. al. Proceedings of the Sixth SIAM
Conference on Parallel Processing for Scientific Computing, Vol 1, STAM,
Philadelphia, 1993.

III. Erik Elmroth and Bo Kéagstrom. The Set of 2-by-3 Matrix Pencils — Kro-
necker Structures and their Transitions under Perturbationst. To appear
in SIAM Journal on Matriz Analysis and its Applications.

IV. Alan Edelman, Erik Elmroth, and Bo Kagstrom. A Geometric Approach
to Perturbation Theory of Matrices and Matrix Pencils. Part I: Versal
Deformations. Report UMINF-95.09, Department of Computing Science,
Umed University, 1995. Submitted to STAM Journal on Matriz Analysis
and its Applications.

V. Erik Elmroth. On the Stratification of the Kronecker Canonical Form. Re-
port UMINF-95.14, Department of Computing Science, Umea University,
1995.

Design, modeling, and evaluation of parallel matrix factorization for shared
and distributed memory architectures are the subjects of papers I and II. Chap-
ter 1 gives an introduction to these problems together with a summary of the
two papers.

Papers III-V focus on numerical computations related to the Kronecker
canonical form. Chapters 2 and 3 give an introduction to the standard and
generalized eigenvalue problems, respectively, and Chapter 3 ends the introduc-
tion by a summary of papers ITI-V.

*Reprinted by permission of the MIT Press, Cambridge, Massachusetts. (©1992 The Mas-
sachusetts Institute of Technology.

TReprinted by permission of SIAM, Philadelphia. ©1993 The Society for Industrial and
Applied Mathematics.

fPreprinted by permission of SIAM, Philadelphia. ©1995 The Society for Industrial and
Applied Mathematics.

vi

Acknowledgements

First of all, I would like to thank my thesis advisor, professor Bo Kagstrom, for
sharing his great expertise and always making so much of his time available, for
his continuing inspiration and encouragement, and for always providing the best
of conditions for writing this thesis. Bo is also coauthor of four of the papers.

I would also like to express my gratitude to my other three coauthors. To
Krister Dackland for being a good friend while we were doing a lot of joint work
resulting in papers I and II. To Charles Van Loan for joint work on Paper I.
To Alan Edelman for bringing up many bright ideas that finally lead to our joint
Paper IV and for providing the nice picture of the manifold of singular matrices
used as cover page of this thesis, and originally presented in Paper IV.

Thanks also to the colleagues at the Department of Computing Science at Umea
University for providing a nice atmosphere and good working conditions.

Special thanks to the Swedish cross country skiing community, for being too
good competitors, thereby making it an easy choice for me to start working on
this thesis.

I would like to express additional gratitudes to Boel for always supporting me,
and for showing great interest, even when discussing matrix pencils.

Finally, T would like to thank my parents and my sister for giving me the best
of backgrounds and thereby providing me with the attitude required for writing
this thesis.

Financial support has been provided by the Swedish National Board of Industrial
and Technical Development and the Faculty of Mathematics and Natural Scien-
ces, Umed University.

Umeéa, May 3, 1995
Erik Elmroth

vii

viii

Contents

1 Parallel Matrix Factorizations 1
1.1 Block Algorithms oo 1
1.2 High Performance Software Libraries 3
1.3 Parallel Block Algorithms 3
1.4 Contributions in This Thesis 4
2 Eigenvalue Problems 7
2.1 Eigenvalues and Eigenvectors 7
2.2 The Jordan Normal Form 8
2.3 Ill-conditioning and Rank Decisions 10
2.4 Staircase Algorithms for Matrices 10
3 Generalized Eigenvalue Problems 12
3.1 Matrix Pencils o 12
3.2 The Kronecker Canonical Form 13
3.3 Generic and Non-generic Structures 15
3.4 Staircase Algorithms for Matrix Pencils 16
3.5 The Geometry of Matrix Pencil Space 18
3.6 Contributions in This Thesis 18
References 23
Paper I 29
Paper I1 71
Paper III 87
Paper IV 135
Paper V 185

ix

Chapter 1

Parallel Matrix
Factorizations

With the introduction of advanced parallel computer architectures a demand
for efficient parallel algorithms has emerged. During the last years we have seen
many research activities concerning algorithm design for different vector and
parallel architectures. Today it is well-known that block algorithms are required
to exploit the full potential of hierarchical memory computers, multiprocessors,
and multicomputers in matrix computations.

Different matrix factorizations, such as LU, Choelsky, and QR factorization,
are basic and important tools in most scientific, economic, and engineering
computational problems. Our goal is to design parallel block algorithms with
high parallel efficiency for these factorizations. The implementations should be
transportable over a wide range of parallel MIMD architectures, including both
shared and distributed memory systems.

To attain this goal we have to consider as many as possible of the parallel
processing key factors: balancing the load over the processors, maintaining the
locality of data by suitable choice of granularity, minimizing memory contention
between processors, and minimizing the number of synchronization points in a
parallel algorithm.

Block matrix factorizations provide a good platform for the development of
general design principles for parallel algorithms in the field of matrix computa-
tions.

1.1 Block Algorithms

By a block algorithm we mean one that is rich in basic matrix-matrix operations
such as matrix-matrix multiply, rank-k updates, and solving triangular systems
with multiple right-hand sides. In the blocked algorithms the entities on which

2 Chapter 1

we perform the operations are submatrices (or blocks). Let an m x n matrix A
be partitioned in p row blocks and ¢ column blocks such that

Ay - Ay

Apl qu
where block A;; has dimension m; x n; and we say that A = (4;;)isapxg
block matrix. Typically the block size is fixed so that m; = n; = nb. If A is
defined as above, B is similarly defined as a ¢-by-t block matrix and C as a
p-by-t block matrix, then the matrix multiplication C = AB can be expressed

as

q
Cij:ZAikBk:j i=1,...,p and j=1,...,t.
k=1

The methodology used to develop block algorithms for more sophisticated
matrix computational problems is to restructure well-known and stable elemen-
twise algorithms to perform block matrix-matrix operations in their inner loops.

It is well-known that block algorithms are required to exploit the full poten-
tial of hierarchical memory systems. Typically, the memory hierarchies consists
of registers (which may include vector registers) and cache memory at the top
level. On lower levels there are a main memory, an optional expanded storage
(slower but not as costly as main memory), disc and tape storage. In parallel
shared and distributed memory systems, some of these memories are either lo-
cal for each processor, shared among the processors or distributed between the
Processors.

The purpose of a memory hierarchy is to have a memory that appears to
be very large and fast, but is reasonably cheap to manufacture. If the memory
reference pattern in a program is kept local in the memory, then the mem-
ory hierarchy can be used efficiently. A drawback is that if distant data are
referenced often, access times to memory may be very long.

The crucial fact is that excessive movement of data to and from main mem-
ory decreases the performance. Since matrix-matrix operations typically in-
volves O(n?) operations on O(n?) data, which essentially gives the fraction of
arithmetic operations to data movements as O(n), block algorithms make it
possible to reuse data in cache memory and in vector registers.

High performance in the matrix-matrix operations is achieved by structuring
the code to reduce memory traffic in the hierarchy. In order to minimize the
memory traffic the data reuse is maximized at different levels in the hierarchy.
This is typically done by blocking the matrix-matrix algorithms, where the size
of each block is chosen in order to fit into the memory at a certain level in
the hierarchy. The order of the block operations is determined so as to keep
the most heavily referenced blocks at a high level in the hierarchy as long as
possible.

Parallel Matrix Factorizations 3

1.2 High Performance Software Libraries

Linear algebra software libraries such as LINPACK [4] and EISPACK [37, 21]
have been widely used for many years, but on high performance computers they
often achieve only a small fraction of the peak performance of the machines.
This mainly because of lack of ability to efficiently use the memory hierarchies
and because of very limited potential parallelism. Therefore, LAPACK [1] has
been designed to supersede LINPACK and EISPACK, principally by achieving
much greater efficiency on high performance computers. LAPACK was origi-
nally targeted to achieve good performance on single processor vector machines
and shared memory multiprocessors. This is partly carried out by performing
most operations in Level 3 Basic Linear Algebra Subprograms (BLAS) [17].

The Level 3 BLAS [17] is a small set of computational kernels that was
proposed as a standard for basic matrix-matrix operations, with the purpose to
efficiently exploit memory hierarchy computers. Computer manufacturers are
expected to provide highly optimized Level 3 kernels that can be called from
user programs to efficiently utilize the architecture and hardware organization
of the machines.

However, the performance of optimized Level 3 kernels depends on the size
and the shape of the matrix blocks participating in the operations [27, 35].
Typically they do not reach their optimal performance if the total size of the
blocks is too small since this lead to a small number of floating point operations,
or if one or more of the dimensions are very small since this may lead to poor
data reuse.

1.3 Parallel Block Algorithms

To achieve high performance on shared memory multiprocessors (SMM) and
distributed memory multicomputers (DMM) one of the major key-factors is to
reduce the communication-to-computation ratio, i.e., to keep high data locality.
This means for a DMM that we strive for algorithms that let each processor
perform as much computations as possible on data located in its own local
memory, to reduce the need for message passing between processors. On a
SMM we want different processors to work as much as possible on different data,
which, e.g. reduces the amount of memory traffic for keeping cache memories
coherent.

For matrix computations, block algorithms have shown to be the correct level
of abstraction for algorithm design, also for parallel computers. Just as block
algorithms enable data reuse in complex memory hierarches, they provide good
opportunities to achieve high data locality on parallel computers. When we, on
a single processor, have memory traffic up and down the local memory hierarchy,
we also have interprocessor communication in a parallel system. Therefore, in
order to minimize communication overhead due to data transfers, the ratio of

4 Chapter 1

O(n?®) operations to O(n?) data provided by matrix-matrix operations, is not
only desirable for systems with complex memory hierarchies but also for parallel
systems.

1.4 Contributions in This Thesis

Our objective is to develop general principles for design, implementation, mod-

eling, and evaluation of parallel algorithms for matrix computations in general,

and matrix factorizations in particular. We aim at developing general techniques

for construction of highly efficient portable block algorithms and to develop per-

formance models as well as predicting optimal block sizes and performance.
Most of these results are also presented as parts of [7].

Paper 1

Efficient parallel block algorithms for the LU, Cholesky, and QR factorizations,
transportable over a range of Shared Memory Multiprocessor (SMM) architec-
tures are presented. Explicitly parallel implementations of different block al-
gorithms that utilize optimized uniprocessor level-3 BLAS are compared with
corresponding implicitly parallelized routines of LAPACK.

Parallelism is mainly invoked implicitly in LAPACK by replacing calls to
uniprocessor level-3 kernels by calls to parallel level-3 kernels. The main ad-
vantage with this approach is that the portability of LAPACK is maintained.
However, the implicit parallelism imposes a synchronization after each level-3
operation, which means that idle processors must wait until all processors have
completed their share of work. This can be overcome by invoking the paral-
lelism explicitly at the block level of the algorithm. Then processors can work
on independent block operations which makes it possible to overlap and pipeline
different matrix-matrix operations. Further, only efficient uniprocessor level-3
kernels are required. Here, the parallelism is invoked by using parallel language
constructs.

Load balancing of the explicitly parallel block algorithms is by static or
dynamic scheduling of the work. The static scheduling utilizes cost functions
based on the number of floating point operations (flops) expressed as GEMM
equivalents. Since the different BLAS operations can be performed in different
speed, it is not enough to partition the work so that each processor is given the
same amount of work in terms of flops. Therefore we multiply the number of
flops in each BLAS operation by a factor in order to give an approximation of
the number of flops that can be computed by GEMM (GEneral Matrix Multiply
and add) in the same time, i.e., the GEMM equivalent flops. In one iteration of a
block algorithm, a cost funtion computes the total number of GEMM equivalent
flops, which is to be distributed evenly on the processors. In the dynamic
scheduling approach, any processor that is out of work is assigned new work

Parallel Matrix Factorizations 5

from a queue of tasks. As soon as all data that is required for the computation of
a new task is completed, that task is put in the queue. In the implicitly parallel
approach, the load balancing is inherited from the parallel level-3 kernels.

The implementations are done in IBM Parallel FORTRAN and performance
results for an IBM 3090VF/600J are presented. Theoretical models give up-
per bounds on the best possible speedup. For the implicitly parallel algorithms
these bounds are based on Amdahl’s law, i.e., they are derived from the per-
formance limitations given by the sequential bottlenecks of the algorithms. For
the explicitly parallel algorithms, the bounds are derived from a model of the
parallelization software overhead, including the time to create new jobs and to
terminate jobs.

Parts of this work is also presented in [5, 9].

Paper 11

A block (column) wrap-mapping approach for design of parallel block matrix
factorization algorithms that are (trans)portable over and between shared mem-
ory multiprocessors (SMM) and distributed memory multicomputers (DMM) is
presented.

By reorganizing the matrix on the SMM architecture, the same ring-oriented
algorithms can be used on both SMM and DMM systems with all machine de-
pendencies comprised to a small set of communication routines. On a SMM
system, the (simulated) communication is implemented as a change of refer-
ences for pointers to blocks in the reorganized matrix. On a DMM system, the
communication is implemented by using traditional message passing routines.
The reorganization of the matrix ensures that each processor’s references to the
matrix are made similar on both SMM and DMM, which is a requirement when
we want to use the same generic algorithm on both SMM and DMM systems.

The algorithms are described on high level with focus on performance and
portability aspects. Implementation aspects of the LU, Cholesky, and QR
factorizations and machine specific communication routines for some SMM and
DMM systems are discussed. Timing results show that our portable algorithms
have similar performance as machine specific implementations.

For DMM platforms this similarity is due to the DMM programming model
used. For the SMM environments the good performance of the ring-oriented
algorithms are explained by the reorganization of the matrix, giving each pro-
cessor block columns that are stored consecutively, and the proportionally low
synchronization costs. The consecutive storage enables updating of several block
columns in one operation, instead of one operation per block column. This im-
plies less amount of software overhead and larger matrices in the level-3 BLAS
operations.

A performance model that identifies different components of the total exe-
cution time is presented in terms of arithmetic time, communication time, and
waiting time. The modeled execution time does not only predict the execution

6 Chapter 1

time, but more important for our purposes, it also predicts the best block size
to be the same as the best one in real execution, except occasionally, when it
predicts a nearby block size which in real execution shows a performance close
to the optimal one.

More detailed presentations of the results in Paper II may be found in [6, 8].

Chapter 2

Eigenvalue Problems

From the standpoint of classical algebra, the algebraic eigenvalue problem has
been completely solved. The problem is subject of classical similarity theory, and
fundamental results are embodied in the Jordan canonical form. However, from
the standpoint of numerical analysis, the computation of the Jordan canonical
form is associated with ill-posed computational problems [10, 19, 23, 24, 29, 28,
32]. Before we turn into the numerical issues, we review some basic results of
the standard eigenvalue problem [22, 44].

2.1 Eigenvalues and Eigenvectors

The eigenvalues of an m-by-n matrix A are the n roots of the characteristic
equation p(z) = det(A — zI) = 0. The set of roots is called the spectrum and is
denoted A(A).

If A € A(A) then a non-zero n-by-1 vector z that satisfies

Ar = \x

is called a right eigenvector (or simply an eigenvector) corresponding to the
eigenvalue A. A vector y that satisfies y7 A = Ay is referred to as a left
eigenvector.

Since the multiplication Az of an eigenvector x does not alter the direction
of z, the vector z is said to be invariant with respect to multiplication by A.
The subspace S spanned by all invariant vectors is called the invariant subspace
of A.

If A has distinct eigenvalues A; with associated eigenvectors z;, then we write
in matrix notation,

AX = JX,

where J = diag(A1, A2,...A,) and X = [z1,22,...,2,]. For distinct eigenval-
ues, the set of eigenvectors is always linearly independent, that is, the set of

8 Chapter 2

eigenvalues is non-defective. If A; is a multiple eigenvalue, i.e., A; = A;, where
1 # j, then the number of identical eigenvalues is said to be the algebraic mul-
tiplicity of A;. The number of linearly independent eigenvectors corresponding
to A; is said to be the geometric multiplicity of A;. An eigenvalue J; is said to
be defective if its algebraic multiplicity exceeds its geometric multiplicity, i.e.,
if there does not exist one linearly independent eigenvector for each eigenvalue
A; = Ao A matrix with a defective eigenvalue is said to be defective.

If A is non-defective, then the eigenvector matrix X is invertible and we
write

X'AX = J,

where the eigenvalue preserving transformation X ~' AX is said to be a similarity
transformation and A is said to be diagonalizable.

For the diagonalization we require X to be the set of eigenvectors, but for a
similarity transformation in general we do only require a non-singular transfor-
mation matrix. The matrices A and B = P~ AP (for any non-singular P) are
said to be similar and the set of all matrices similar to A defines an orbit

orbit(A4) = {P7'AP : det(P) # 0}.

2.2 The Jordan Normal Form

a b
=[5
then A = a is a multiple eigenvalue and z = [1, 0]" is the only (linearly in-
dependent) eigenvector. Since there is only one eigenvector there exists no
non-singular matrix X that diagonalizes A. However, computation of a vector

@9 such that (A —al)xs = z1, gives the vector zz = [0, 1/b]1" and a full rank
matrix X such that

1 1 0 a b 1 0 a 1
=[] el e =6]

The vector zo is said to be a principal vector (of grade 2) and satisfies
(A —al)%x5 = 0. Eigenvectors are principal vectors of grade 1.

In the general case, a matrix A with p distinct eigenvalues Aq, Ag,..., A, of
algebraic multiplicities ¢, s, .. .t,, has at least one eigenvector corresponding to
each distinct eigenvalue. Let si be the geometric multiplicity of the eigenvalue
Ak, 1.e., there exists s, linearly independent eigenvectors corresponding to Ag.
If s < tg, then there is not enough eigenvectors to span the complete space,

and the eigenvalue is defective. Then we have to add ¢ — s principal vectors
forming sj chains

Let, for example,

]T

(A— 2Dz =2 for 1=1,2,..., h, (2.2.1)

Eigenvalue Problems 9

where hy, is the height of the chain and [is the grade of the principal vector. In
general, a principal vector of grade [satisfies (4 —)\kI)lmg)
the vector xgco) is the zero vector and mgcl) as an eigenvector, giving one chain
per linearly independent eigenvector. Of course, non-defective eigenvalues will
only give chains of height 1, (i.t)e., the eigenvector is the only vector in the chain
0

).

(except for the zero vector z;,
In matrix notation the chain relation (2.2.1) is written

= 0. For each chain,

AXy = X Jp, (Ar),

where X}, = [mg), mscz), .. ,a:ih’“)] and Jy, (Ag) is a hy-by-hs, Jordan block

A 1 o0
0 X 1
I (Ae) =
: . .1
0 .- 0 A |

By forming X = [X1,Xa,...,X,], where the columns of each X; are given
by the chain (2.2.1) corresponding to one of the ¢ Jordan blocks, we have the
Jordan normal form (JNF),

XTTAX =diag(J(A\1), J(A2), ..., J(A\p)),

where

J()‘k) = diag(‘]}h ()‘k)a Jhs ()‘k)a SEEE) Jhsk ()‘k))

In the Jordan normal form, the number and the sizes of the Jordan blocks
associated with each distinct eigenvalue are unique, although their ordering is
not. Since similarity transformations do not change the number or sizes of the
blocks, orbit(A) consists of all matrices with the same Jordan normal form (or
Jordan structure) as A.

A matrix A is said to be derogatory if there in its Jordan structure are more
than one Jordan block associated with one eigenvalue, i.e., A is derogatory
if the geometric multiplicity s > 1 for any eigenvalue Ag. This imply that
any diagonalizable matrix with a multiple eigenvalue is derogatory, which for
example is the case for the identity matrix.

The Weyr characteristics corresponding to an eigenvalue g is the sequence
a1, Qs, ..., where «; is the number of principal vectors of grade ¢ corresponding
to Ag [18].

The sequence of numbers given by listing the sizes of the Jordan blocks
corresponding to an eigenvalue A\, in decreasing order is known as the Segre
characteristics corresponding to the eigenvalue .

10 Chapter 2

2.3 Ill-conditioning and Rank Decisions

Almost all n-by-n matrices are diagonalizable. We say that a generic matrix
have a full set of linearly independent eigenvectors and only 1-by-1-blocks in
its Jordan canonical form. Only if the matrix lies in a manifold that exactly
satisfies some non-linear restrictions, can it have a non-trivial Jordan structure.
Mathematically these manifolds correspond to singularities, and numerically the
diagonalization process is ill-conditioned near these manifolds. The manifolds
of non-diagonal Jordan forms are mathematically a set of measure zero.

When determining the rank of a matrix using finite precision arithmetic,
we want to make “safe” rank-decisions and therefore compensate for rounding
errors by using a tolerance below which singular values are considered being
zero. Actually, by considering all such small singular values as zero, we have
thickened the manifolds so that they are no longer a set of measure zero.

In practice, the rank decisions are made even more robust. When one or
more of the singular values are interpreted as zeros, we insist on a certain gap
between the smallest non-zero singular value o, and the singular value o441
which is the largest one that is interpreted as zero. If the gap is too small,
also oy is interpreted as zero and the process is repeated by looking for an
appreciable gap between o;_; and oy, and so on.

2.4 Staircase Algorithms for Matrices

The computation of the Jordan structure is typically done by so called staircase-
type algorithms, using unitary similarity transformations [36, 29, 28]. In the
following we outline the main ideas of this type of algorithms without getting
into too much technicalities. The main step of the procedure is to compute
the nullspace of (A — X)7 for 5 = 1,2,..., for each A\ € A(A4). This can be
accomplished by a staircase algorithm, using the singular value decomposition
for successive and robust rank decisions. Small singular values are interpreted as
zero if they are smaller than a given tolerance, provided that the gap condition
is satisfied, as explained in Section 2.3.

We start by discussing the case when A only has one eigenvalue p of mul-
tiplicity n, giving that the matrix A — puI has the only eigenvalue 0. Since we
now want to work on the shifted pencil, we assume that B = A — ul is a matrix
with 0 as an eigenvalue of multiplicity n.

First, we compute the singular value decomposition of B = B(") such that

BY =3, v

and the singular values in X; are ordered in increasing order of magnitude.
Then, the matrix

B(2) B(2)

B® —vHE Y, = vEBWDYy, — 11 12
S P i

)

Eigenvalue Problems 11

has the vector norms of the columns equal to the singular values of B(). If the
first m; singular values in ¥; are smaller than the required tolerance and the
gap condition is satisfied, the corresponding first columns in B(®) are replaced

by zeros. This means that we have decided that the first m; columns Vl(l) of
W=[W”‘fwa

are the eigenvectors of B. It follows that there are m; Jordan blocks in the
computed Jordan structure of B.

The procedure is repeated on the remaining lower right (n —m) X (n —mq)
block of B(?), that is Bég), in order to determine the number of principal vectors
of grade 2 (my). This tells us that the number of J(0) blocks for k > 2 in B is
mo.

By repeatedly performing the same operations on the remaining lower right-
most block of the transformed matrix and computing the principal vectors of
grade 3,4, ..., we finally arrive at

B=wHi(B - EMW,

vghere Bis nilpotent and in staircase form. For m; = 3, ms = 2, and m3 = 2
B has the form

mia ma m3a

o8 8 8

vl
I
o olg 8 8

o8 B8 8 &
O OR 88 8 8

This decomposition tells us that there are m; eigenvectors, msy principal vectors
of grade 2, and m3 principal vectors of grade 3, which for m; = 3, my = 2, and
m3 = 2 corresponds to the Jordan structure J;(0) & J5(0) @ J5(0). It follows
that the computed the Jordan structure for A is Jy(u) ® J3(p) ® J3(p)-

Chapter 3

Generalized Eigenvalue
Problems

The generalized eigenvalue problem Axr = ABxz, where A and B are m-by-n
matrices, is a straightforward generalization of the standard eigenvalue problem,
where B = I and the matrices are square. The generalized eigenvalue problem
is often written (A — AB)z = 0, where A — AB is said to be a matriz pencil
[20]. Although the generalized eigenvalue problem looks like a simple generaliza-
tion of the standard eigenvalue problem, it exhibits some important differences.
First, it is possible for det(A — AB) to be identically zero, independent of .
Second, if A — AB is regular and B is singular the generalized eigenvalue prob-
lem has infinite eigenvalues. It follows that the Kronecker canonical form, the
generalization of the Jordan canonical form, is much more complex and that it
also include some type of blocks other than Jordan blocks.

3.1 Matrix Pencils

For m-by-n matrices A and B, the pencil A — AB is said to be regular if and
only if m = n and det(A — AB) is not identically zero. If det(4 — AB) = 0 for
any A or m #n, A — AB is said to be singular.

The equivalence transformation

P Y A—-)AB)Q =P 1AQ —A\P7'BQ = A -)\B,

does not affect the eigenvalues of the pencil. If A—AB is regular, the eigenvalues
are found by transforming the pencil by equivalence transformations into an
upper triangular pencil S — AT'. This transformation can be done with unitary
matrices and results in the generalized Schur form of a regular A — AB. Then
the eigenvalues of S — AT are equal to the eigenvalues of A — AB, and they are

12

Generalized Eigenvalue Problems 13

given by the pairs (si,tii) # (0,0). The finite eigenvalues are s;;/t;;, where
ti; # 0. The eigenvalues are infinite if s;; # 0 and ¢; = 0. If (s4,t;) = (0,0)
for some 4, then A — AB is singular, and the pair (s;;,t;;) does not correspond
to an eigenvalue.

Since the eigenvalues of A — AB are the reciprocals of the eigenvalues of
B — M\A, an infinite eigenvalue of A — AB corresponds to a zero eigenvalue of
B — MA. Therefore, the computation of an infinite eigenvalue is not more ill-
conditioned than of a zero eigenvalue. Just as in the matrix case a regular pencil
can be transformed into Weierstrass canonical form [43] to completely reveal the
Jordan structure of finite as well as infinite eigenvalues.

However, the generalized eigenvalue problem becomes more complex when
considering singular pencils. If A — AB is m-by-n and m # n then almost all
pencils have no eigenvalues at all. To be able to deal with singular pencils we
have to introduce the Kronecker canonical form [31], which is a generalization
of the Weierstrass canonical form [43] to singular pencils.

3.2 The Kronecker Canonical Form

Any m-by-n pencil A — AB can by equivalence transformations be transformed
into the Kronecker canonical form

P_I(A_)‘B)Q:diag(l‘ev v ;Lepa‘]jl (.ul): v 5ij (.u'k):Niu v 7Nik ;LT

e

T
* 5an)7

where J;(p) corresponds to a j-by-j Jordan block for a zero or non-zero fi-
nite eigenvalue p and N; corresponds to a j-by-j Jordan block for an infinite
eigenvalue:

p—A 1 1 =)
Ji(p) = .o and N, = ’)
PR | L=
n—A 1
The L; and L? blocks are singular blocks of right (column) and left (row)

indices of grade j. These blocks are of size j-by-(j +1) and (j +1)-by-7, respec-
tively, and have the form

-2
-1 1
L= and L] =

A1 o=
1

1

The singular blocks have no eigenvalues and there exists a right singular (col-

14 Chapter 3

umn) vector that for each A zeroes out the L; block identically:

1
a1 A 0
| _ |0

)1 : :

Y 0

Similarly, there exists a left singular (row) vector that zeroes out the LjT block
identically:

-2

(12 2 ..]| ! =[0 0 - 0].

If A— AB is regular, the L; and LJ-T blocks are not present in the Kronecker
canonical from.

Gantmacher [20] has shown how to identify the existence of Ly and LI blocks
in the KCF of a given pencil A — AB. Let the Gantmacher matrix R[A, B,] of
size (i + 2)m X (i + 1)n be defined by

B A 0 0 T
B A
RIAB,i = | g 0| (3:21)
: B A
| 0 0 B |

where A and B are m xn matrices. With this notation we can state the following
theorem.

Theorem 3.1 [20] The following statements are equivalent.

e A — AB is singular with a right (column) minimal index of lowest degree
k>0, i.e., A— AB has no right minimal indices of degree < k.

e A —)\B is equivalent to the pencil

L 0
[0 4B] : (3.2.2)

where Ly, is a kx(k+1) Kronecker block. A'—AB' may have right minimal
indices of higher degree.

Generalized Eigenvalue Problems 15

e R[A, B,1] has full column rank r(R[A, B,i]) = (i+1)n fori =0,1,...,k—
1, while r(R[A,B,k]) < (k + 1)n, or equivalently, the column nullity
n(R[A,B,:]) =0 fort=0,1,...,k — 1 and n(R[A, B, k]) > 0.

A dual form of Theorem 3.1 can be stated for a left (row) minimal index
of lowest degree k > 0. Then LI takes the place of Ly and L[A, B,i] of size
(1 4+ 1)m x (i + 2)n replaces R[A, B,i], where

A4 B 0 - 0
a,Bi=| % 4 B , (3.2.3)
T
0 .- 0 A4 B

and we are considering row ranks (or row nullities) of L[4, B,1].

However, most applications do not require A — AB to be transformed into
Kronecker canonical form. Most often it is enough to transfer A — AB to a
generalized Schur form or similar [3, 15, 16, 26, 30, 39, 45], which reveals the
complete Kronecker structure, e.g. to GUPTRI form [15, 16]

A, —)B, * *
PH(4 -)\B)Q = 0 Areg — AByeg * : (3.2.4)
0 0 A — \B;

where P (m-by-m) and @ (n-by-n) are unitary and * denotes arbitrary conform-
ing submatrices. Here the square upper triangular block A,.; — AB, ., is regular
and has the same regular structure as A — AB (i.e., contains all generalized
eigenvalues (finite and infinite) of A — AB). The rectangular blocks A, — AB,
and A; — AB, contain the singular structure (right and left minimal indices) of
the pencil and are block upper triangular.

Given A — AB in GUPTRI form we also know different pairs of reducing
subspaces [41, 15]. Suppose the eigenvalues on the diagonal of A,cqy — AByeq
are ordered so that the first k, say, are in A; (a subset of the spectrum of
Areg — AByeg) and the remainder are outside A;. Let A, — AB, be m,-by-n,.
Then the left and right reducing subspaces associated with A; are spanned by
the leading m,+k columns of P and the leading n..+k columns of @), respectively.
When A; is empty, the corresponding reducing subspaces are called minimal,
and when A; contains the whole spectrum the reducing subspaces are called
mazimal.

3.3 Generic and Non-generic Structures

If A— AB is m-by-n, where m # n, then for almost all A and B it will have
the same KCF, depending only on m and n (the generic case). The generic

16 Chapter 3

Kronecker structure for A — AB withd=n—m > 01is
diag(La,...,La,La+1,...,La+1), (331)

where @ = |m/d], the total number of blocks is d, and the number of L,
blocks is m mod d (which is 0 when d divides m) [39, 11]. The same statement
holds for d = m —n > 0 if we replace Lo, Loty in (3.3.1) by LT, L1 . Square
pencils are generically regular, i.e., det(4 — AB) = 0 if and only if X is an eigen-
value. The generic singular pencils of size n-by-n have the Kronecker structures
[42]:

diag(L;, LT _.), j=0,...,n—1. (3.3.2)

n—j—1

In summary, generic rectangular pencils have only trivial reducing subspaces
and no generalized eigenvalues at all. Generic square singular pencils have the
same minimal and maximal reducing subspaces. Only if A — AB satisfies a spe-
cial condition (lies in a particular manifold) does it have nontrivial reducing
subspaces and generalized eigenvalues (the non-generic case). Moreover, only if
it is perturbed so as to move continuously within that manifold do its reducing
subspaces and generalized eigenvalues also move continuously and satisfy inter-
esting error bounds [13, 15]. These requirements are natural in many control
and systems theoretic problems such as computing controllable subspaces and
uncontrollable modes [14, 40].

3.4 Staircase Algorithms for Matrix Pencils

Several authors have proposed (staircase-type) algorithms for computing a gen-
eralized Schur form (e.g. see [3, 12, 34, 30, 25, 26, 33, 39, 45]). They are numer-
ically stable in the sense that they compute the exact Kronecker structure (gen-
eralized Schur form or something similar) of a nearby pencil A’ —AB'. Let || || &
denote the Euclidean (Frobenius) matrix norm. Then § = ||(A - A", B — B')| g
is an upper bound on the distance to the closest (A + 6 A, B + éB) with the
KCF of (4, B’). Recently, robust software with error bounds for computing
the GUPTRI form of a singular A — AB has been published [15, 16]. Computa-
tional experiments that use this software will be presented in papers III — V.
The main steps of the GUPTRI algorithm [15, 16] are as follows. One phase
of the algorithm extracts, for example, the Jordan structure of the zero eigen-
value and the right singular structure of A — AB by a finite sequence of range
and nullspace separations, using unitary equivalence transformations. In step
k (= 0,1,...) of the first phase, the GUPTRI algorithm first determines mj =
dimension of the column nullspace of A*). From the singular value decomposi-
tion of A(¥), the GUPTRI algorithm obtains X4, i.e., a diagonal matrix with the
singular values in increasing order on the diagonal, and V,, the corresponding
right singular vectors. The dimension of the column nullspace of A%) = m,
is equal to the number of singular values interpreted as zero, where this deci-
sion is made by a similar process as described in Section 2.3. By computing

Generalized Eigenvalue Problems 17

[0 4s] = A®V, and [B1 Bs] = B®™V,, where B; and the zero block to the
left of A5 both have my columns, the GUPTRI algorithm extracts the part B;
of B(¥) that may contain a common column nullspace with A®*). Indeed, the
dimension of the common column nullspace of A*) and B®*) is the same as
the dimension of the column nullspace of B;. By computing the singular value
decomposition of By, the number of singular values interpreted as non-zero is
found and denoted s;. Then, the common column nullspace of A*) and B®*)
is my — s;. This completes the process for the determination of the structure
indices in step k.

Here, A(®) = A and B(® = B and (A®), B(*)) for k > 1 corresponds to the
deflated matrix pair obtained after the equivalence transformation in step k—1.
After the structure indices are determined for step k, some consideration have
to be made for the accumulation of the unitary transformations that transform
A — AB into GUPTRI form, before the computation of the indices of step k+ 1
starts on the lower rightmost block of the transformed pencil.

The structure indices display the Kronecker structure as follows:

e my; — s = number of L; blocks.
® sp — myy1 = number of Ji11(0) blocks.

Applying the same algorithm to B — p A results in the Jordan structure of the
infinite eigenvalue and the right singular structure. The Jordan structure (and
structure indices) associated with a finite but non-zero eigenvalue is obtained
by applying the algorithm to a shifted pencil. One way to find the left singular
structure is to apply the same algorithm to the transposed pencil. Another way
is to directly determine the sizes of the corresponding row nullspaces as done in
the GUPTRI algorithm, resulting in the Jordan structure of the infinite eigenvalue
and the left singular structure. Then my — s is the number of L{ blocks and
8 — Mmp41 equals the number of Nii1 = Ji41(00) blocks.

However, the existing algorithms do not guarantee that the computed gener-
alized Schur form is the “most” non-generic Kronecker structure within distance
6. However, if § is of the size O(||(A4, B)|| gz€), where € is the relative machine
precision, we know that (A4, B) is close to a matrix with the Kronecker structure
that the algorithm reports. It would of course be desirable to have algorithms
that could solve the following “nearness” problems:

e Compute the closest non-generic pencil of a generic A — AB.
e Compute the closest matrix pencil with a specified Kronecker structure.

e Compute the most non-generic pencil within a given distance 6.

18 Chapter 3

3.5 The Geometry of Matrix Pencil Space

Analogously to the matrix case, we define an orbit to be the set of strictly
equivalent pencils in 2mn dimensional space:

orbit(A — AB) = {P~1(A — AB)Q : det(P)det(Q) # 0}.

The dimension of orbit(A — AB) is equal to the dimension of the tangent space,
tan(A — AB), to the orbit of A — AB. The tangent space is defined as

F(X,Y)=X(A - AB)— (A— ABYY, (3.5.1)

where X is an m X m matrix and Y is an n X n matrix [11]. Since (3.5.1)
maps a space of dimension m? + n? linearly to a space of dimension 2mn, the
dimension of the tangent space is m?+n? —d, where d is the number of (linearly)
independent solutions of f(X,Y) = 0.

The codimension is the dimension of the space complementary to the tangent
space, i.e.,

cod(A — AB) = 2mn — dim(tan(4 — AB)) = d — (m — n)*.

The codimensions of the orbits depend only on their Kronecker structures, and
it can be computed by summing the contributions to the codimension from
different blocks in the KCF [11].

3.6 Contributions in This Thesis

By viewing an m X n matrix pencil A — AB as a point in 2mn space, certain
numerical computations relating to the Kronecker canonical form can be viewed
as moving matrix pencils from point to point or manifold to manifold in the
2mn space. Our objective is to make use of the geometry of the matrix and
matrix pencil spaces, to improve our knowledge of numerical algorithms and
their failures. Moreover, with this new knowledge our goal is to develop more
robust and accurate algorithms (and software) for computing the generalized
Schur form of a general matrix pencil and increase their functionality in order
to be able to solve some of the “nearness” problems mentioned above.

Any existing algorithm for the computation of the Jordan or Kronecker
canonical form of a matrix or pencil proceeds in stages. The most generic
matrices are nonsingular and diagonalizable, so at the start of the computation
the best possible guess is that the matrix will be diagonalizable. This notion is
subject to modification as more information from the computation is obtained.
As new information is obtained, our best guess narrows, so we may say that the
matrix (or pencil) becomes increasingly less generic. (Of course, the matrix is
not really changing, merely our knowledge about the matrix increases.)

Generalized Eigenvalue Problems 19

It is clear that the orbit of the generic m-by-n pencils spans the complete
2mn-dimensional space. It follows that all matrix pencils with other Kronecker
structures “live” in the space spanned by the orbit of the generic pencils. We
say that they are in the closure of the orbit of the generic pencils. It is just as
clear that the m-by-n zero pencil is in the closure of the orbit of any other m-
by-n pencil. However, all other closure relations between the orbits of different
m-by-n matrix pencils are not that obvious.

The problem of stratification is to understand how the orbits relate to each
other, i.e., to understand the closure hierarchy of Jordan and Kronecker struc-
tures. The algorithms move matrices (or pencils) from one orbit (or stratum) to
another. Our goal is to understand how the geometry of the orbits influence the
algorithms. To understand all possible Jordan forms, it is sufficient to consider
the case of nilpotent matrices, i.e., matrices with all eigenvalues equal to 0. We
aim at a similar understanding for the matrix pencil case.

Our geometric approach to the understanding of computations related to
the Kronecker canonical form is a complement to existing perturbation theory
for eigenvalue problems (e.g. see [38, 13]).

In the following we present short summaries of our contributions to these
problems.

Paper 111

We present a comprehensive study of the set of 2-by-3 pencils in order to get
a greater understanding of the mentioned “nearness” problems. The set (or
family) of 2-by-3 matrix pencils A — AB comprises 18 structurally different Kro-
necker structures (canonical forms). We show how all the non-generic structures
can be generated by a staircase-type algorithm, starting from the generic canon-
ical form (one Ly block). Moreover, the algebraic and geometric characteristics
of the generic and the 17 non-generic cases are examined in full detail.

All 2-by-3 pencils “live” in a 12-dimensional space spanned by the set of all
generic pencils (i.e., orbit(Lsy)). The dimension of orbit(4 — AB) is equal to the
dimension of the tangent space to the orbit and the codimension (cod(A — AB))
is the dimension of the space complementary to the tangent space (e.g. the
normal space which is the space perpendicular to tan(A — AB)). Since orbit(Ls)
with codimension zero spans the complete 12-dimensional space, it is obvious
that all other structures are in the closure of the orbit of Lo, and it is just as
obvious that 3Lo @ 2L (the zero pencil) with codimension 12 is in the closure
of the orbit of any other KCF. All other closure relations are not that obvious.
The complete closure hierarchy, or the stratification, of the orbits of all different
Kronecker structures is derived and presented in a closure graph that show how
the structures relate to each other in the 12-dimensional space spanned by the
set of 2-by-3 pencils.

Necessary conditions on perturbations for transiting from the orbit of one
Kronecker structure to another in the closure hierarchy are derived and pre-

20 Chapter 3

sented in a labeled closure graph. The node and arc labels show geometric
characteristics of an orbit’s Kronecker structure and the change of geometric
characteristics when transiting to an adjacent node, respectively.

Computable normwise bounds for the smallest perturbations (6A4,6B) of a
generic 2-by-3 pencil A — AB such that (A + §A4) — A(B + éB) has a specific
non-generic Kronecker structure are presented. First explicit expressions for the
perturbations that transfer A — AB to a specified non-generic form are derived.
In this context tractable and intractable perturbations are defined. Secondly,
a modified GUPTRI that computes a specified Kronecker structure of a generic
pencil is used. Perturbations devised to impose a certain non-generic structure
is computed in a way that guarantees to find a KCF on the closure of the
orbit of the intended KCF. Both approaches for computing perturbations to the
generic structure in order to find the non-generic structures are illustrated by
computational experiments.

Moreover, a study of the behaviour of the non-generic structures under ran-
dom perturbations in finite precision arithmetic (using the GUPTRI software
[15, 16]) show for which sizes of perturbations the structures are invariant and
also that structure transitions occur in accordance with the closure hierarchy,
i.e., all structure transitions correspond to going upwards, along the arcs in the
closure hierarchy graph.

Finally, some of the results are extended to the general m-by-(m + 1) case.

Paper 1V

The versal deformation of the Jordan normal form, derived by V. I. Arnold,
1971 [2], is an important tool for the understanding of how perturbations in
different direction in the matrix space affect the Jordan structure.

By computing the tangent space to the orbit in the point defined by a matrix
A in Jordan normal form he derived a parametrized deformation, transversal
to the orbit (and the tangent space). A versal deformation that is obtained
by adding the transversal deformation to A is then a normal form that for
all matrices close to A depends continuously on the elements in the matrix.
Of course, numerical analysts prefer a deformation in the normal space, i.e.,
orthogonal to the tangent space, instead of the transversal space.

By making use of the geometry of the matrix and matrix pencil spaces,
we believe that our knowledge of numerical algorithms and their failures can be
improved. Therefore it is not the versal deformation itself that is most important
for our purposes. We are more interested in the metrical information that it
provides for the perturbation theory of matrices and matrix pencils relevant to
the Jordan and Kronecker canonical forms.

We generalize and extend the concept of versal deformations to matrix pen-
cils (matrix pairs) and we derive a normal form to which not only one specific
matrix pencil, but an arbitrary family of matrix pencils close to it can be reduced
to by means of a mapping smoothly depending on the elements of the matrix

Generalized Eigenvalue Problems 21

pairs. The versal deformation for matrix pencils is more complicated than for
the matrix case, since the Kronecker canonical form may consist of Jordan blocks
for both finite and infinite eigenvalues as well as Kronecker blocks for right and
left minimal indices.

For A — AB in Kronecker canonical form our approach is to show how to
compute the tangent space tan(A — AB) of the orbit and a parameterized de-
formation Z4 — AZp that defines an orthogonal basis for the normal space of
orbit(A — AB). The versal deformation

(A+AB) + (Za— AZB)

is a normal form that depends continuously on the elements of A and B for
all pencils close to A — AB and it spans the complete 2mn space. Such a
versal deformation with minimum number of parameters is a called a miniversal
deformation.

We conclude by numerical experiments where we use the GUPTRI software
to compute the Kronecker structure of a given 2-by-3 matrix pencil A — AB
in KCF after adding random perturbations to it. We decompose the random
perturbations in two parts, one in tan(4A — AB) and one in nor(4 — AB). We
study how far we can move in the tangent and normal directions before the
pencil turn generic.

We also illustrate by a more detailed example how the versal deformation
can be used to find the structures above a given KCF in the Kronecker structure
hierarchy.

Paper V

Any existing algorithm for computation of the Jordan or Kronecker canonical
form proceeds in stages where each stage reduces the number of possible struc-
tures, or geometrically, reduces the matrix space or matrix pencil space to a
space that contains a smaller number of orbits. The problem of stratification
is to understand how the orbits relate to each other. More specific, since one
step of the algorithm reduces the matrix or matrix pencil space to a space that
contains a smaller number of orbits, it is of great interest to know which orbits
that are in the closure of some other orbits. For matrices, the stratification can
simply be revealed by a study of nilpotent matrices. For matrix pencils the
problem becomes more complex.

For a given matrix pencil A—AB, the Kronecker structure hierarchy shows all
structures that are within the closure of orbit(A—AB), and each structure, whose
orbit’s closure contains A — AB. In order to gain new insight in the problem
of stratification, we give new interpretations of important results by Pokrzywa,
for determining closure relations among orbits of Kronecker structures. This
is partly done by a generalization of classical theorems (Theorem 3.1 and its
dual) by Gantmacher. Using these extensions, we rewrite some of Pokrzywas

22 Chapter 3

results in terms of Weyr characteristics and the dimension of the column and row
nullspaces of the Gantmacher matrices R[A, B,i] and L[A, B,i], 1 =0,1,2,....
The results are used to derive an algorithm for computation of the complete
Kronecker structure hierarchy, or the Kronecker structure hierarchy above or
below a given structure. The algorithm is presented in terms of the rank-
decisions required in a staircase algorithm, in order to compute the Kronecker
structure hierarchy.

References

[1]

2]

3]

[4]

[5]

[7]

(8]

[0l

E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and
D. Sorensen. LAPACK Users’ Guide. Society for Industrial and Applied
Mathematics, Philadelphia, 1992.

V. 1. Arnold. On Matrices Depending on Parameters. Russian Math. Sur-
veys, pages 29—43, 1971.

T. Beelen and P. Van Dooren. An improved algorithm for the computation
of Kronecker’s canonical form of a singular pencil. Lin. Alg. Appl., 105:9—
65, 1988.

J. Bunch, J. Dongarra, C. Moler, and G. W. Stewart. LINPACK User’s
Guide. STAM, Philadelphia, PA, 1979.

K. Dackland and E. Elmroth. Parallel Computations on the IBM
3090/600E VF: Block Algorithms for Matrix Multiplication and LU Fac-
torization. Master’s thesis UMNAD-66.90, Institute of Information Pro-
cessing, University of Umea, S-901 87 Umea, Sweden, 1990. (In Swedish).

K. Dackland and E. Elmroth. Design and Performance Modeling of Parallel
Block Matrix Factorizations for Distributed Memory Multicomputers. In
Proceedings of the Industrial Mathematics Week, pages 102-116, 1992.

K. Dackland and E. Elmroth. Design, Modeling, and Evaluation of Parallel
Block Matrix Factorization Algorithms for Shared and Distributed Mem-
ory Architectures. Licentiate thesis UMINF-92.07, Institute of Information
Processing, University of Umea, S-901 87 Umea, Sweden, June 1992.

K. Dackland and E. Elmroth. Parallel Block Matrix Factorizations for
Distributed Memory Multicomputers. Report UMINF-92.03, Institute of
Information Processing, University of Umea, S-901 87 Umea, Sweden, May
1992.

K. Dackland, E. Elmroth, B. Kagstrom, and C. Van Loan. Design and
Evaluation of Parallel Block Algorithms: LU Factorization on an IBM

23

24

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

3090 VF/600J. In J. J. Dongarra et al, editor, Proceedings of the Fifth
SIAM Conference on Parallel Processing for Scientific Computing, pages
3-10, Houston, 1992. STAM Publications.

J. Demmel. The condition number of equivalence transformations that
block diagonalize matrix pencils. SIAM J. Num. Anal., 20(3):599-610,
June 1983.

J. Demmel and A. Edelman. The Dimension of Matrices (Matrix Pen-
cils) with Given Jordan (Kronecker) Canonical Forms. Report LBL-31839,
Mathematics Department, Lawrence Berkeley Laboratories, University of
California, Berkeley, CA 94720, 1992. To appear in Lin. Alg. Appl.

J. Demmel and B. Kagstrom. Stably computing the Kronecker structure
and reducing subspaces of singular pencils A — AB for uncertain data. In
Jane Cullum and Ralph A. Willoughby, editors, Large Scale Eigenvalue
Problems, pages 283-323. North-Holland, Amsterdam, 1986. Mathematics
Studies Series Vol. 127, Proceedings of the IBM Institute Workshop on
Large Scale Eigenvalue Problems, July 8-12, 1985, Oberlech, Austria.

J. Demmel and B. Kagstréom. Computing stable eigendecompositions of
matrix pencils. Lin. Alg. Appl., 88/89:139-186, April 1987.

J. Demmel and B. Kagstrom. Accurate solutions of ill-posed problems in
control theory. SIAM J. Mat. Anal. Appl., 9(1):126-145, January 1988.

J. Demmel and B. Kagstrom. The Generalized Schur Decomposition of
an Arbitrary Pencil A — AB: Robust Software with Error Bounds and
Applications. Part I: Theory and Algorithms. ACM Trans. Math. Software,
Vol.19(No. 2):160-174, June 1993.

J. Demmel and B. Kéagstrom. The Generalized Schur Decomposition of an
Arbitrary Pencil A — AB: Robust Software with Error Bounds and Appli-
cations. Part II: Software and Applications. ACM Trans. Math. Software,
Vol.19(No. 2):175-201, June 1993.

J. Dongarra, J. Du Croz, I. Duff, and S. Hammarling. A set of level 3 basic
linear algebra subprograms. ACM Trans. Math. Software, 18(1):1-17, 1990.

C.C. Mac Duffee. The Theory of Matrices. Chelsea Publishing Company,
New York, 1956.

T. F. Fairgrieve. The Application of Singularity Theory to the Computa-
tion of Jordan Canonical Form. Master’s thesis, Department of Computer
Science, University of Toronto, Toronto, Ontario, Canada, September 1986.

F. Gantmacher. The Theory of Matrices, Vol. I and II (transl.). Chelsea,
New York, 1959.

REFERENCES 25

[21]

22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

32]

[33]

B. S. Garbow, J. M. Boyle, J. J. Dongarra, and C. B. Moler. Matriz
Figensystem Routines — EISPACK Guide Extension, volume 51 of Lecture
Notes in Computer Sciences. Springer-Verlag, Berlin, 1977.

G. Golub and C. Van Loan. Matriz Computations. Second Edition. Johns
Hopkins University Press, Baltimore, MD, 1989.

G. Golub and J. H. Wilkinson. Ill-conditioned eigensystems and the com-
putation of the Jordan canonical form. SIAM Review, 18(4):578-619, 1976.

B. Kagstrom. How to compute the Jordan normal form: the choice between
similarity transformations and methods using the chain relations. Report
UMINF-91.81, Institute of Information Processing, University of Umea3,
S-901 87 Umea, Sweden, 1981.

B. Kégstrom. The generalized singular value decomposition and the general
A — A\B problem. BIT, 24:568-583, 1984.

B. Kagstrém. RGSVD - an algorithm for computing the Kronecker canon-
ical form and reducing subspaces of singular matrix pencils A —AB. SIAM
J. Sci. Stat. Comp., 7(1):185-211, 1986.

B. Kagstréom, P. Ling, and C. Van Loan. High-Performance GEMM-Based
Level-3 BLAS: Sample Routines for Double Precision Real Data. In M. Du-
rand and F. El Dabaghi, editors, High Performance Computing II, pages
269-281. Elsevier Science Publisher B.V., 1991.

B. Kagstrém and A. Ruhe. ALGORITHM 560: An algorithm for the
numerical computation of the Jordan normal form of a complex matrix
[F2]. ACM Trans. Math. Software, 6(3):437-443, 1980.

B. Kagstrom and A. Ruhe. An algorithm for the numerical computation of
the Jordan normal form of a complex matrix. ACM Trans. Math. Software,
6(3):389-419, 1980.

V. B. Khazanov and V. Kublanovskaya. Spectral problems for matrix pen-
cils. Methods and algorithms. I. Sov. J. Numer. Anal. Math. Modelling,
3:337-371, 1988.

L. Kronecker. Algebraische Reduction der Schaaren Bilinearer Formen. S.
B. Akad., 1890. pp. 763-776.

V. Kublanovskaya. On a method for solving the complex eigenvalue prob-
lem for a degenerate matrix. USSR Comput. Math. Phys., 6(4):1-14, 1968.

V. Kublanovskaya. An approach to solving the spectral problem of A —
AB. In B. Kagstrom and A. Ruhe, editors, Matriz Pencils, pages 17-29.
Springer-Verlag, Berlin, 1983. Lecture Notes in Mathematics, vol. 973,
Proceedings, Pite Havsbad, 1982.

26

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

V. Kublanovskaya. AB-algorithm and its modifications for the spectral
problem of linear pencils of matrices. Num. Math., 43:329-342, 1984.

P. Ling. A Set of High Performance Level 3 BLAS Structured and Tuned
for the IBM 3090 VF and Implemented in Fortran 77. The Journal of
Supercomputing, 7(3):323-355, September 1993.

A. Ruhe. An algorithm for numerical determination of the structure of a
general matrix. BIT, 10:196-216, 1970.

B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y. Ikebe, V. C.
Klema, and C. B. Moler. Matriz Figensystem Routines — EISPACK Guide,

volume 6 of Lecture Notes in Computer Science. Springer-Verlag, Berlin,
1976.

G. W. Stewart and J.-G. Sun. Matriz Perturbation Theory. Academic
Press, New York, 1990.

P. Van Dooren. The computation of Kronecker’s canonical form of a sin-
gular pencil. Lin. Alg. Appl., 27:103-141, 1979.

P. Van Dooren. The generalized eigenstructure problem in linear system
theory. IEEE Trans. Autom. Contr., AC-26(1):111-129, 1981.

P. Van Dooren. Reducing subspaces: Definitions, properties and algo-
rithms. In B. Kagstrom and A. Ruhe, editors, Matriz Pencils, pages 58—
73. Springer-Verlag, Berlin, 1983. Lecture Notes in Mathematics, vol. 973,
Proceedings, Pite Havsbad, 1982.

W. Waterhouse. The codimension of singular matrix pairs. Lin. Alg. Appl.,
57:227-245, 1984.

K. Weierstrass. Zur theorie der bilinearen und quadratischen Formen.
Monatsh. Akad. Wiss. Berlin, 1:310-338, 1867.

J. H. Wilkinson. The Algebraic Eigenvalue Problem. Oxford Science Pub-
lications, 1965.

J. H. Wilkinson. Linear differential equations and Kronecker’s canonical
form. In C. de Boor and G. Golub, editors, Recent Advances in Numerical
Analysis, pages 231-265. Academic Press, 1978.

Paper 1

Parallel Block Matrix Factorizations on
the Shared Memory Multiprocessor
IBM 3090 VF/600J*

Krister Dackland, Erik Elmroth?,
Bo Kagstrom, and Charles Van Loan?

Department of Computing Science, Umea University
S-901 87 Umea, Sweden.

E-mail: dacke@cs.umu.se, elmroth@cs.ume.se, bokg@cs.ume.se, cv@cs.cornell.edu

Abstract

Efficient parallel block algorithms for the LU factorization with partial
pivoting, the Cholesky factorization, and QR factorization transportable
over a range of parallel MIMD architectures are presented. Parallel imple-
mentations of different block algorithms which utilize optimized unipro-
cessor level-3 BLAS are compared with corresponding routines of LA-
PACK (under development). Parallelism is mainly invoked implicitly in
LAPACK by replacing calls to uniprocessor level-3 kernels by calls to
parallel level-3 kernels and thereby maintaining portability. However, by
parallelizing at the block level (explicitly) it is possible to overlap and
pipeline different matrix-matrix operations and thereby gain some perfor-
mance. Load balancing of the explicitly parallel block algorithms is by
static or dynamic scheduling of the work. The static scheduling utilizes
cost functions based on the number of flops expressed as GEMM equiva-
lents. The load balancing of the implicit approach is inherited from the
parallel level-3 kernels. The implementations are done in IBM Parallel
Fortran and performance results for an IBM 3090 VF/600J are presented.
Theoretical models give upper bounds on the best possible speedup of the
explicitly and implicitly parallel block algorithms for the target machine.

*From THE INTERNATIONAL JOURNAL OF SUPERCOMPUTER APPLICATIONS,
Vol. 6:1, by permission of the MIT Press, Cambridge, Massachusetts. (©1992 The Mas-
sachusetts Institute of Technology.

fPFinancial support has been received by the Swedish National Board of Industrial and
Technical Development under grant NUTEK 89-02578P.

IDepartment of Computer Science, Cornell University, Ithaca, New York 14853-7501.

29

30 Paper I

1 Introduction

With the introduction of advanced parallel computer architectures a demand
for efficient parallel algorithms has emerged. During the last five years we have
seen many research activities concerning algorithm design for different vector
and parallel architectures (e.g. see [12, 15, 1]). Today it is well-known that
block algorithms are required to exploit the full potential of hierarchical memory
computers and multiprocessors [14]. Typically, the memory hierarchy of parallel
shared memory systems consists of registers (including vector registers) and
cache memory at the top level and a global shared memory. At the lower level
we may also see an optional expanded storage (slower but not as costly as main
memory [7]), disc and tape storage. The crucial fact is that excessive movement
of data to and from main memory decreases the performance. Block algorithms
make it possible to reuse data in cache memory and in vector registers. By
suitable choices of block sizes that are both architecture and problem dependent
it is possible to obtain high performance on many of the commercially available
vector multiprocessors produced, for example, by Alliant, Cray, and IBM.

Different matrix factorizations are basic and important tools in most sci-
entific, economic, and engineering computational problems. In this paper we
focus on the LU factorization with partial pivoting of a general matrix, the
LLT (Cholesky) factorization of a positive definite matrix and the QR factor-
ization of a general matrix. Our goal is to design parallel block algorithms with
high parallel efficiency for these factorizations and that still are transportable
over a range of parallel MIMD architectures. To attain this goal we have to
consider as many as possible of the following parallel processing “key factors”:
balancing the load over the processors, maintain the locality of data by suitable
choice of granularity, minimizing memory contention between processors, and
minimizing the number of synchronization points in a parallel algorithm. Notice
that several of these factors can be contradictory.

Our contribution builds on the work of many other research groups (e.g.
[12, 14, 8, 26, 5]). The single most important source of inspiration is the LA-
PACK project [5, 2, 1] which goal is to design and implement in Fortran 77 a
portable linear algebra library for efficient use on a variety of high-performance
computers. LAPACK is based on block algorithms and therefore especially
designed to utilize the level-3 BLAS [10] as the major computational kernels.
Parallelism is mainly invoked implicitly in LAPACK by replacing calls to unipro-
cessor level-3 kernels by calls to parallel level-3 kernels. The main advantage
with this approach is that the portability of LAPACK is maintained. However,
the implicit parallelism imposes a synchronization after each level-3 operation,
which means that idle processors must wait until all processors have completed
their share of work. This can be overcome by invoking the parallelism explicitly
at the block level of the algorithm. Then processors can work on indepen-
dent block operations which makes it possible to overlap and pipeline different
matrix-matrix operations. Further, only efficient uniprocessor level-3 kernels are

Parallel Matrix Factorizations on a Shared Memory Multiprocessor 31

required. Here the parallelism is invoked by using parallel language constructs.
The proposal for standardization of such constructs in Fortran by the Parallel
Computing Forum (PCF) [25] will make it possible to write portable code too.

Although we are using the vector multiprocessor IBM 3090 VF/600J [30]
as our target architecture and IBM Parallel Fortran [29] as our implementation
language, it is possible to implement the parallel algorithms described here on
similar architectures like Alliant and Cray. The parallel language extensions
of IBM Parallel Fortran [29] that we are using (see Section 7) are functionally
equivalent to the PCF proposal [25]. Further, the data partitioning, inherent
overlapping, and pipelining at the block level, and the description of the parallel
block algorithms as node programs also make them suitable to implement as
distributed ring-oriented block algorithms with column block-wrap mapping of
the matrix to factorize.

The outline of the rest of the paper is as follows. In Section 2 block algo-
rithms and basic linear algebra subprograms are introduced. Optimized unipro-
cessor level-3 BLAS and parallel level-3 kernels are described. Section 3 de-
scribes different variants of block algorithms for the LU, LLT, and QR factor-
izations considered. Uniprocessor performances of these variants for different
matrix sizes and block sizes are also presented. In Section 4 implicit and ex-
plicit parallelism is introduced and the implemented parallel block algorithms
for the LU, LL”, and QR factorizations are described. Explicit parallelization
with static load balancing is the topic of Section 5. Cost functions based on the
number of flops expressed as GEMM equivalents and used to balance the load on
available processors are described. In a multi-user system dynamic scheduling
of the work to processors is likely to be a better approach. Section 6 presents
explicitly parallel block algorithms with dynamic load balancing. Performance
results of the parallel block algorithms discussed in sections 4—6 are presented
in Section 7. Finally, in Section 8 we draw some conclusions.

2 Block Algorithms and BLAS

By a block algorithm we mean one that is rich in basic matrix-matrix operations
such as matrix-matrix multiply, rank-k matrix updates, and solving triangular
systems with multiple right-hand sides. In a block algorithm the entities on
which we perform operations on are submatrices (or blocks). Let an m x n
matrix A be partitioned in p row blocks and ¢ column blocks such that

Ay - Ay

A Apq

pl

where block A;; has dimension m; x n; and we say that A = (4;;) isapxgq
block matrix (notation from [16]). Typically we will work with a fixed block

32 Paper I

size so that m; = n; = nb. In these cases the pth block row and the gth
block column may have non-square blocks. If nothing else is explicitly stated
we assume that m and n are even multiples of nb. This simplifies the notation
when describing block algorithms in the coming sections. (Otherwise we need
an extra if-statement that takes care of the last block row or column.) In the
following, we use the colon notation to specify columns, rows, or submatrices
of A. For example, A.; denotes the ¢th column of A and A;;; ; denotes the
entries of A in rows 7 through 7 and columns k through [.

The methodology used to develop a block algorithm for a matrix computa-
tion is to restructure well-known and stable elementwise algorithms to perform
block matrix-matrix operations in their inner loops. The most common matrix
factorizations like LU and LLT involve three loops controlled by indices i, j,
and k, respectively. Different orderings of the three loops imply different data
movements and amounts of data transferred [12]. Since the implementations
are done in Fortran [29], [23], we mainly consider column-oriented algorithms
(i.e., kji, jki or jik orderings of the loops). Further, different loop orderings
may also require different block matrix operations. Level-3 BLAS [10] and some
of the operations from level-1 BLAS [21] and level-2 BLAS [9] are enough to
implement most matrix factorizations. In the coming two subsections we will
introduce the level-3 kernels used in our work.

2.1 Optimized Uniprocessor Level-3 BLAS

The level-3 BLAS [10] is a small set of computational kernels proposed to be
a standard for basic matrix-matrix operations such as matrix-matrix multiply,
rank-k matrix updates, and solving triangular systems with multiple right-hand
sides. The large granularity of the level-3 BLAS makes it possible to reuse data
at the top of the memory hierarchy (vector registers and cache memory) and to
minimize data movements. One way of measuring this is the ratio of arithmetic
operations to memory references (see e.g. [1]). In Table 1 these ratios for a
level-1 (DAXPY), level-2 (DGEMV), and level-3 (DGEMM) operation are summarized
(vectors and matrices are of size n x 1 and n X n, respectively). We strive for as
large a ratio as possible since this implies that a piece of the data can be kept
longer in the cache memory and thereby reused more efficiently.

The performance numbers of these operations for an IBM 3090 VF (J model)
are displayed in the right-most column of Table 1 which shows the great ad-
vantage of using matrix-matrix operations. The theoretical peak performance
of the IBM 3090 VF (J model, one processor) is 138 Mflops (two instructions
executed during one clock cycle, 14.5 nsec). We define the practical peak perfor-
mance of a machine as the performance of the level-3 BLAS DGEMM which for the
J-model is around 80% of the theoretical peak performance. This degradation
in performance is due mainly to the characteristics of the vector instructions
and the memory hierarchy of the machine [30, 7].

Computer manufactures are expected to provide highly optimized implemen-

Parallel Matrix Factorizations on a Shared Memory Multiprocessor 33

Table 1: Performance of level-1, level-2 and level-3 BLAS («, 8 # 0, £1).

BLAS Op Mem Refs | Arith Ops | Ratio Ops:Refs | Performance
Level-1 BLAS
y=axr+y 3n 2n 2:3 11.9 Mflops
Level-2 BLAS
y = aAz + By n? 4 3n 2n? + 2n 2:1 78.3 Mflops
Level-3 BLAS
C =aAB + pC 4n? 2n3 + 2n? n:2 107.2 Mflops

tations of the level-3 BLAS. At present this is not always the case; for example
IBM provides only two of the six level-3 BLAS in double precision (DGEMM and
DTRSM) [17]. (The new Release 1.4 of ESSL provides also DSYRK.) Our research
group in Umed has developed a set of high performance level-3 BLAS for the
IBM 3090 VF implemented in Fortran 77 [19, 22]. High performance is achieved
by structuring and tuning the Fortran code to maximize the reuse of data in vec-
tor registers and in cache memory and to direct the compiler to use compound
vector instructions. For details of implementation and performance results see
[22]. On the basis of performance results we have chosen the best available
routines which are DGEMM from the IBM ESSL library [17] and all other routines
from [22]. These uniprocessor routines are used in the explicitly parallel block
algorithms (see Section 4) and on individual processors in the parallel level-3
kernels.

2.2 Parallel Level-3 Kernels

At present IBM is not providing any parallel kernels with the same functionality
as level-3 BLAS. (The parallel matrix multiply in Release 1.4 of ESSL does not
have the functionality of DGEMM.) Therefore we have developed some level-3
kernels in Parallel Fortran [29] which call uniprocessor level-3 BLAS. This work
is in progress and so far we have only developed parallel level-3 kernels with
the functionality required by the block algorithms discussed in Section 3. The
work of the parallel level-3 kernels is load balanced either by static scheduling
in which the distribution of the computational work onto available processors
is determined in advance (PDGEMM, PDTRSM, and PDTRMM), or dynamic scheduling
in which the work is distributed during the execution so that an idle processor
is scheduled the next available task (PDSYRK).

PDGEMM is the parallel version of the general matrix-matrix multiply-and-add
routine DGEMM. The parallelization is based on a row block partition of A and
C while B is left unblocked. A and C are partitioned into row blocks of size
VSS (= vector section size, which is the length of the vector registers in double
precision words, 256 for the J model). Typically, this will leave a row stripe with

34 Paper I

fewer than VSS rows. This stripe is partitioned columnwise in a similar way.
Now the row blocks and column blocks are distributed evenly over the number
of available processors P. For each matrix-matrix multiply-and-add operation
the optimized uniprocessor version of DGEMM is called. The performance gain
obtained by blocking in this way is overall between 5% and 10% compared
to when A and C are partitioned into P row blocks. PDGEMM is used by LU
(C = BC + aAB), LLT (C = BC + a«ABT), and QR (C = BC + aATB and
C = BC + aABT).

PDTRSM is the parallel version of the level-3 kernel for solving a triangular
system with multiple right-hand sides B = oT !B, where Bis mxn, T ism xm
and lower triangular, n > m. The matrix B of right-hand sides is partitioned
into P column blocks and each processor solves a triangular system with n/P
right hand sides by calling the optimized uniprocessor version of DTRSM. The
last processor P — 1 may solve a system with fewer right hand sides. In the
case B = aBT~ T, where B is m x n, T is n X n and lower triangular, n < m,
B is partitioned into P row blocks and processor ¢ = 0 : P — 1 performs the
operation Bs.. = aBs.e. - T71 (s=1-m/P+1,e= (i +1)-m/P) by calling
the optimized uniprocessor version of DTRSM. The last row block of B may have
fewer rows than m/P. PDTRSM is used by LU (first case) and by LL” (second
case).

PDTRMM is the parallel version of the level-3 kernel triangular matrix-matrix
multiply B = aBT, where B is m X n, T' n X n and upper triangular, m > n.
Also here B is partitioned into P row blocks and processori = 0 : P—1 performs
the operation By.. = aBge,.-T (s =1-m/P+1,e= (i +1)-m/P) by calling
the optimized uniprocessor version of DTRMM. The last row block of B may have
fewer rows than m/P. PDTRMM is only used by QR.

PDSYRK is the parallel version of the symmetric rank-k update operation
C = aAAT + BC, where C =CT is n xn, Ais n x k. For the case k < n, A
is partitioned into nbb x k block rows which means that the symmetric rank-k
update of C can be performed by symmetric rank-k updates of nbbxnbb diagonal
blocks (using DSYRK) and rectangular off-diagonal blocks are updated by DGEMM
operations which is the approach of the GEMM-based level-3 BLAS [20]. Since
each single call to these level-3 BLAS writes to different parts of C all level-3
operations can be executed in parallel. By considering the level-3 operations as a
queue of tasks the parallel work is dynamically scheduled among the processors.
The blocking and parallelization of the rank-k update are discussed in more
detail in sections 4.2 and 6.2. PDSYRK is only used by LL”.

Depending on the problem size there is a break-even point for each paral-
lel level-3 kernel when it is more profitable to solve the problem on only one
processor. Only PDGEMM and PDSYRK handles this tradeoff.

In Table 2 some sample results of the parallel level-3 kernels are presented
(performance in Mflops and speedup in relation to the uniprocessor perfor-
mance). The results presented are obtained using up to five physical processors
of a quasi-dedicated IBM 3090 VF/600J. The smallest dimension (m, n, or k)

Parallel Matrix Factorizations on a Shared Memory Multiprocessor 35

is chosen as the block size nb typically used in the block algorithms described
later. The two other dimensions are set to 1000 and the leading dimension of
A, B, and C to 1200. The results of PDSYRK for 1 to 5 processors are obtained
with nbb = 256,256,192, 128, and 96, respectively.

Table 2: Performance of parallel level-3 kernels.

Routine PDGEMM | PDGEMM | PDTRSM | PDTRSM | PDTRMM | PDSYRK
Used in LU LLT LU LLT QR LLT
Block size | k=48 | n =256 | m =48 | n=64 | n=32 | k=64
1 proc 100.9 102.2 69.9 82.6 85.1 97.5
2 proc 182.6 196.1 137.3 162.7 165.2 194.3
Speedup 1.81 1.92 1.96 1.97 1.94 1.99
3 proc 252.0 290.2 192.2 224.4 225.3 285.1
Speedup 2.50 2.84 2.75 2.72 2.65 2.92
4 proc 313.6 397.4 261.8 311.8 304.4 368.9
Speedup 3.11 3.89 3.75 3.77 3.58 3.78
5 proc 402.6 481.6 312.5 371.9 363.4 455.0
Speedup 3.99 4.72 4.47 4.50 4.27 4.67

3 Block Matrix Factorizations

This section is devoted to a unified description of different variants of block al-
gorithms for the LU, LL”, and QR factorizations considered. Block algorithms
are described in a notation quite similar to the one used in MATLAB [24] and
CONLAB [13, 18] with references to the level-3 BLAS operations to use. One
exception here is that the end of loop and control constructs are determined
by indentation of statements (operations). Uniprocessor performance results of
these variants for different matrix sizes and block sizes are also presented.

3.1 Block LU Algorithms

The LU factorization of an m X n matrix A is given by
PA=1LU,

where the m X n matrix L is unit lower trapezoidal, the n X n matrix U is upper
triangular, and P is a permutation matrix corresponding to row interchanges
of A. The basic algorithm to compute a reasonably stable LU factorization is
Gaussian elimination with partial pivoting [16]; see also [8].

36 Paper I

We have considered three column-oriented block algorithms that can be de-
rived easily from the following block-matrix equality

A Ay Ags Li; O 0 U Uz Uss
Apy Ay Ags | = | Loy Lyy O . 0 Uz Uss
Azp Azp Ass L3y L3y Lss 0 0 Uss

where we have ignored the permutations required by partial pivoting.

They have in common that a block column of the matrix is LU factorized
by a level-2 routine. Then a part of U is computed by solving a triangular
system with multiple right-hand sides, an operation that can be performed by
the level-3 BLAS routine DTRSM. Finally, a part of the matrix is updated by
a rank-k update performed by the level-3 BLAS routine DGEMM (size of k is
different for the algorithms). They differ in the order in which they perform the
above operations, which also affects the way matrix elements are referenced. A
short description of the major steps of the block algorithms that perform exactly
the same number of flops follows. The level-2 LU factorization used in all three
block algorithms is a left-looking algorithm (see below) that calls the level-2
BLAS routines DTRSV and DGEMV for solving triangular systems and multiplying
a matrix by a vector, respectively. As for the elementwise algorithms L and U
overwrite A, i.e., no extra storage is required by the block algorithms.

3.1.1 LU: Block Right - Looking

The block right-looking algorithm, which also is called the block KJI or block
SAXPY algorithm, refers data mainly on the right-hand side of the current block
column. We illustrate the main operations of the algorithm by referring to the
3 x 3 block matrix above. First, the LU factorization of the first block column
of A is computed giving Ly1, L2y, L31, and Uy;. Then Uy and U;3 are obtained
by solving Ly [Ui2, Uis] = [A12, A13]. The remaining part of A is updated with
respect to the first block column of L and block row of U:

[Azz Azs]:[Azz Azs]_[Lm

A Asg Az Asg La]'[U” Uis]

This completes one step of the block algorithm and the same operations are
now applied to the recently updated submatrix of A until the factorization is
completed.

For ¢ = 1 : min(n/nb,m/nb)

s=(i—-1)-nb+1 {Start of block to factorize}
e=1-nb {End of block to factorize}

u=e+1 {Start position for update}

1. Lsm,s:eUs:e,s:e = Asim,se {Use level-2 routine}

Ifi>1

Parallel Matrix Factorizations on a Shared Memory Multiprocessor 37

2. Pivotings are applied to Ag.e1.5—1 {From last factorization}
Ife<n

3. Pivotings are applied to As:c,u:in {From all previous factorizations}
4. Usieouin — L;;s:eAs;e,u;n {Use DTRSM to solve for part of U}
Ife<m

5. Au:m,u:n‘_Au:m,u:n_Lu:m,s:eUs:e,u:n {USG DGEMM}

Notice that the parts of L and U that have been computed are never referenced
again except in the application of pivotings from the last factorization (operation
2). The if-statement before operation 5 handles the case when m < n.

3.1.2 LU: Block Left-Looking

The block left-looking algorithm, which is also called the block JKI or block
GAXPY algorithm, refers data mainly on the left-hand side of the current block
column. It also starts by computing the LU factorization of the first block
column of A giving Ly, Loy, L3, and Uyy. Then only Uy is computed by
solving L11[U12] = [A12]. Finally, the next block column of A is updated with
all previous parts of L and U which in the first step is

Ago Az Ly
= - JU
[Aaz] [A32] [Lgl][”]
This completes one step of the block algorithm, and the same operations are

now applied to the recently updated submatrix of A until the factorization is
completed.

For ¢ =1 : min(n/nb,m/nb)

s=(—1)-nb+1 {Start of block to factorize}
e=1i-nb {End of block to factorize}
u=e+1 {Start position for update}
v=u+nb-—1 {End position for update}
1. Lsim,s:eUsie,se = Asim,sie {Use level-2 routine}
Ifie>1

2. Pivotings are applied to Ag:c 1:5—1 {From last factorization}
Ife<n

3. Pivotings are applied to A,.c u:v {From all previous factorizations}

4. Ul:e,u:'u — L;i,l:eAlle,U”J {USG DTRSM}

5. Ao — Awm,uw — Luim,1:eUtie,uv {Use DGEMM}

Ifn>m+nb

6. Pivotings are applied to Aj. m4nb+1:n {From all previous factorizations}
7. Ul:m,m+nb+1:n‘_L;:n,l;mAlzm,m+nb+1:n {Use DTRSM}

38 Paper I

The if-statement before operations 6 and 7 handles the case when m < n and
there is still parts of U to compute. In this algorithm where the triangular solve
and the update are performed on nb columns at a time, all columns on the left-
hand side of the current block column have to be referenced in the triangular
solve and in the update. This also results in a larger number of operations
performed by DTRSM and a smaller number performed by DGEMM compared to
the block right-looking algorithm.

3.1.3 LU: Block Crout

The third algorithm, which is called the block Crout algorithm, the block JIK,
or the block SDOT algorithm, is in some sense a compromise between the two
described algorithms.

For i = 1: min(n/nb, m/nb)

s=(—1)-nb+1 {Start of block to factorize}
e=1-nb {End of block to factorize}
u=e+1 {Start position for update}
v=u+nb—1 {End position for update}
1. Lom,s:eUsie,sie = Asim,sie {Use level-2 routine}
Ife>1

2. Pivotings are applied to Ag.c1:5-1 {From last factorization}
Ife<n

3. Pivotings are applied to As:c u:in {From all factorizations}

4. Asiepuin — Asiewin — Lsie 1: Ut e un {Use DGEMM}

5. Usieyun — L3} gcAsieun {Use DTRSM}

6. Au:m,u:v — Au:m,u:v - Lu:m,l:eUlze,u:v {Use DGEMM}

The block Crout algorithm performs the same number of operations in DTRSM
and DGEMM as the block right-looking algorithm. The matrix multiplication,
though, is split into two separate operations, of which the second is similar to
the one performed in the block left-looking algorithm.

3.1.4 Pivotings

It is a well-known fact that, on the IBM 3090 VF, the row swaps on a block are
done most efficiently if all permutations are applied to one column at a time
(e.g. see [2]). This means that the level-1 BLAS routine DSWAP should not be
used. We have also found it advantageous in the block right-looking algorithm
to delay the application of pivotings on the left-hand side of the factorized block
until the end of the computations. This gives a possibility to do all swaps to
each completed column in one iteration (implemented in the explicitly parallel
algorithms, discussed in sections 4-6).

Parallel Matrix Factorizations on a Shared Memory Multiprocessor 39

3.2 Block Cholesky Algorithms

The Cholesky factorization of an n X n positive definite, symmetric matrix A is
given by
A=LL"7,

where L is the unique lower triangular matrix. Since A is symmetric positive
definite no pivoting is needed to guarantee numerical stability. For a discussion
of algorithms for computing the Cholesky factorization see [16]. We consider
two column-oriented block algorithms (right- and left-looking, respectively) and
one row-oriented block algorithm (top-looking).

The three block algorithms have in common that an nb x nb diagonal block
is factorized by a level-2 routine. Then the remaining part of a block column (or
row) of L is computed by solving a triangular system with multiple right-hand
sides (DTRSM). Finally, the Cholesky factor of a block is applied to a part of A by
a symmetric rank-k update. The update work is performed by DGEMM or DSYRK,
or both of them.

The block Cholesky algorithms described below can be derived from the
block LU algorithms by replacing U with LT and removing unnecessary oper-
ations. Notice that in the block LU algorithms the level-2 routine factorizes a
complete block column, which is imposed by the partial pivoting, while in the
Cholesky algorithms only a diagonal block is factorized by a level-2 algorithm
and then DTRSM is used to compute the remaining part of a block column (or
row). The block algorithms perform exactly the same number of flops. Since
A is symmetric only its lower (or upper) triangular part is accessed and over-
written by L. In all three algorithms only the lower triangular portion of A is
referenced.

3.2.1 Cholesky: Block Right-Looking

The Cholesky block right-looking algorithm can be described as follows:

Fori=1:n/nb

s=(i—-1)-nb+1 {Start of block to factorize}
e=1i-nb {End of block to factorize}
u=e+1 {Start position for update}
1. LS:E,S;GLZZE,S:C = Asce,sie {Use level-2 routine}
Ife<n

2. Lun,sie — Aum,sie L5l .. {Use DTRSM}

3. Au:n,u:n — Au:n,u:n - Lu:n,s:eLz;n’s;e {Use DSYRK}

A is factorized one block column at a time, and the symmetric rank-nb update
is applied to all remaining block columns of A in each iteration.

40 Paper I

3.2.2 Cholesky: Block Left-Looking

The Cholesky block left-looking algorithm can be described as follows:

Fori=1:n/nb

s=(—1)-nb+1 {Start of block to factorize}
e=1-nb {End of block to factorize}
u=s+nb {Start position for update}
Ifi>1

1. As:e,s:e — As:e,s:e - Ls:e,l:s—le?e,l;s_l {Use DSYRK}
2. Ls;e,S;eLZ:e’S:e = Asce,sie {Use level-2 routine}

Ifi>1Ai<n/nb

3. Aun,sie — Aunysie — Lum1:s—1LL, 1.y {Use DGEMM}
Ifi <n/nb

4. Lu:n,s:e — Au:n,s:eL_T {Use DTRSM}

s:e,s:e

A is factorized one block column at a time. In each iteration the previous
factorized block columns are accessed in the symmetric rank-(s — 1) update of
the next block column.

3.2.3 Cholesky: Block Top-Looking

The Cholesky block top-looking algorithm can be described as follows:

Fori=1:n/nb

s=(—1)-nb+1 {Start of block to factorize}
e=1-nb {End of block to factorize}
Ifi>1

L Lyetis—1 < Asetis—1 Lty 110y {Use DTRSM}

2. As:e,s:e — As:e,s:e - Ls:e,l:s—lL,Z?e,l;s_l {Use DSYRK}
3. Ls;e,s;eLze,S:e = Asie,sie {Use level-2 routine}

A is factorized one block row at a time. In each iteration all previous factorized
block rows are accessed in the triangular solve. Rows below the current block
row remain untouched until they become the current block row to factorize.

3.3 Block QR Algorithms

The QR factorization of an m X n matrix A is given by

A=QR,

Parallel Matrix Factorizations on a Shared Memory Multiprocessor 41

where the m x m matrix @ is orthogonal and the m x n matrix R is upper
triangular (trapezoidal). The QR factorization can be computed in several
ways, e.g. by utilizing Householder transformations or Givens transformations
[16]. Here we only consider methods based on Householder transformations

H=H@w) =1-2w!,|v|,=1.
The orthogonal @ is computed as a product of Householder transformations
Q=HH --H,

such that QT A = R and H; annihilates the elements below the main diagonal
of the ¢th column of the transformed matrix A. To simplify the notation we
assume that m > n, and we can describe the Householder QR algorithm as
follows:

Fori=1:n
1. Generate Householder vector v; from A;., i
2. w A;Z;m,i:nvi
3. Ai:m,i:n — Ai:m,i:n - 2'0in

The application of a Householder transformation involves a matrix-vector multi-
ply (operation 2) and a rank-1 update (operation 3) which both are level-2 BLAS
operations. It is possible to combine several Householder transformations into
a block Householder transformation and thereby obtain a level-3 formulation of
the Householder QR algorithm [6]. Let Qy be the product of k¥ Householder
transformations

Qr=HHy---Hy.

From the structure of the Householder vectors v; it follows that Q; is a rank-k
modification of the identity matrix and can be expressed as

Qr=I-YSYT

where Y is an m x k matrix and S is a k X k upper triangular matrix [28].
This block form is called the compact WY representation. The generation of Y
and S require O(mk?) extra flops and k(k + 1)/2 extra storage. For a detailed
description see [28, 4].

Let nb be the block column width and assume that n» is an integer multiple
of nb. Then a level-3 algorithm utilizing the compact WY representation can
be described as follows:

Fori=1:n/nb
s=(—1)-nb+1 {Start of block to factorize}

42 Paper I

e =min(s+nb—1,n) {End of block to factorize}
1. [S,Y] < hshbg(As.m,s:e) {Generate S and Y}

2a. W — AL, 11.Y {Use DGEMM }

2b. W — WS {Use DTRMM }

3. As:m,e+1:n — As:m,e+1:n - YWT {Use DGEMM }

The level-3 formulation performs two major steps: level-2 QR factorization of
a block column (operation 1), and updating of the remaining block columns
(operations 2 and 3) which can be performed by level-3 BLAS operations. The
generation of S and Y in operation 1 also involves the application of the block
Householder transformation to A;.p, 5. It is the presumptive high performance
of the level-3 operations that pays off the extra work (O(m - n - nb) flops) per-
formed by the block algorithm compared to the level-2 algorithm. A is over-
written by R and the Householder vectors Y.

In the terminology left-looking and right-looking the described block algo-
rithm is right-looking. A block left-looking algorithm would delay the appli-
cation of computed block Householder transformations until a block column
becomes the next to factorize.

3.4 Uniprocessor Performance and Choice of Algorithms

Here we summarize some performance results of the block algorithms for dif-
ferent block sizes and problem sizes. All results presented are obtained from
IBM 3090 VF (J model, one processor). The codes used here are from the sec-
ond prerelease of LAPACK [2]. We also discuss the choice of block algorithms
for further parallelization. See also [3] for an evaluation of block algorithms in

LAPACK.

3.4.1 Block LU Algorithms

Tables 3-5 show the performance in Mflops for the block right-looking, block left-
looking, and block Crout variants of the LU factorization with partial pivoting.
Benchmarks of the three different level-2 algorithms show that the left-looking
and Crout variants have the best and similar performance (right-looking only
60% of their performance). We chose the left-looking level-2 algorithm in all
block variants. The numbers in boldface show the best performance for a given
problem size. The overall best block size is nb = 48. As we can see from the
results the block right-looking algorithm gives the best results, and it is the
routine that we will work on further and explicitly parallelize (see Section 4).

The block right-looking algorithm is more DGEMM-intensive than the block left
looking algorithm and it performs the DGEMM operations on larger submatrices
than the block Crout algorithm. The last column of Table 3 shows the perfor-
mance of the block LU algorithm in the ESSL library [17]. As we can see the

Parallel Matrix Factorizations on a Shared Memory Multiprocessor

43

Table 3: Performance of block right-looking LU.

Right nb ESSL
m=n 16 32 48 64 96 m=n
100 32.2 30.2 249 228 17.9 49.0
200 57.9 554 52.0 459 41.7 71.2
300 63.5 70.6 65.0 61.6 59.9 81.2
400 739 774 T7.9 703 69.8 85.3
500 774 822 83.7 771 758 87.3
1000 86.2 93.7 95.1 8&9.6 91.1 97.6

Table 4: Performance of block left-looking LU.

Left nb

m=mn 16 32 48 64 96
100 25.4 244 237 177 17.7
200 43.0 46.7 46.5 404 404
300 53.5 592 614 574 574
400 60.5 66.4 69.2 686 674
500 639 73.1 744 T75.5 733
1000 770 84.6 874 874 87.5

Table 5: Performance of block Crout LU.

Crout nb

m=mn 16 32 48 64 96
100 29.2 26.8 245 222 17.7
200 52.1 51.9 49.0 44.2 41.5
300 60.3 65.0 63.8 58.7 58.0
400 67.7 71.2 703 654 66.8
500 71.8 77.0 76.6 705 729
1000 81.2 &86.9 88.6 79.4 &4.9

44 Paper I

performance of the right-looking algorithm implemented in Fortran reaches the
performance of the hand-tuned ESSL routine for large matrices. Notice that
the ESSL routine does not perform all permutations explicitly.

3.4.2 Block Cholesky Algorithms

Tables 6—8 show the performance in Mflops for the block right looking, block
left-looking and block top-looking variants of the Cholesky factorization. We
have chosen the left-looking variant as the level-2 routine in all block variants.
The numbers in boldface show the best performance for a given problem size.
There is no single best block size nb. If nb > n the block size n is used.

Here all three algorithms give very similar results for appropriate block sizes.
We chose to explicitly parallelize the right-looking algorithm (see Section 4).
Notice that for n = 100,200 the level-2 algorithm gives the best performance
for all three variants. The last column of Table 6 shows the performance of
the block LLT algorithm in the ESSL library [17] which works on A in packed
data format (the triangular part is packed sequentially column by column in a
one-dimensional array that offers better data reuse).

Table 6: Performance of block right-looking Cholesky.

Right nb ESSL
n 32 64 96 128 160 192 224 256 288 | n
100 |30.7 323 29.1 44.9 39.0
200 |55.4 550 53.7 558 524 50.1 70.3 74.0

300 65.7 68.8 67.5 67.8 69.6 68.4 66.1 649 62.6| 84.1
400 70.6 70.0 71.2 687 76.0 73.8 T7T.7 Tr.1l 749 | 88.2
500 76.3 769 76.3 783 755 742 720 84.1 828 | 90.8
1000 | 85.1 85.6 85.2 86.8 84.3 84.6 824 89.0 87.6| 96.5

3.4.3 Block QR Algorithms

In Table 9 we display some performance results of the block right looking QR
algorithm for different block sizes nb. Notice that the Mflops numbers are based
on the number of flops of the level-2 routine as suggested in [2]. Presently, IBM
does not provide any block QR routine in ESSL.

In summary, for large matrices the right-looking variants give up to 90% of
the best DGEMM performance (the practical peak performance on one processor).

Parallel Matrix Factorizations on a Shared Memory Multiprocessor

45

Table 7: Performance of block left-looking Cholesky.

Left nb

n 32 64 96 128 160 192 224 256 288

100 26.9 31.7 28.3 44.7

200 46.3 49.5 51.3 55.7 521 50.0 T71.0

300 57.5 60.8 63.0 64.8 69.5 67.8 66.0 64.5 63.1

400 64.4 67.6 69.6 70.7 709 728 T77.3 759 75.1

500 69.7 73.4 748 780 76.2 76.2 757 84.0 81.9

1000 | 81.5 84.7 &86.3 &7.4 87.0 87.7 857 90.4 84.4
Table 8: Performance of block top-looking Cholesky.

Top nb

n 32 64 96 128 160 192 224 256 288

100 21.6 319 23.1 44.1

200 32.4 40.3 444 559 53.2 49.8 71.6

300 374 52.1 523 59.7 70.2 682 66.4 64.1 62.9

400 40.6 523 57.8 61.6 689 64.7 T7.9 763 749

500 427 593 61.8 74.0 67.0 76.1 73.1 84.0 828

1000 | 44.5 625 704 786 777 79.6 83.8 89.1 80.0

Table 9: Performance of block right-looking QR.

Right nb

m=mn | 16 32 48 64 96

100 35.8 30.5 249 23.7 18.1
200 61.2 56.8 51.3 45.0 39.0
300 72.6 714 66.2 609 534
400 77.8 76.6 73.2 693 61.7
500 80.6 82.7 79.0 748 66.9
1000 86.4 91.4 884 86.9 81.7

46 Paper I

4 Parallel Block Matrix Algorithms

Parallelism in block algorithms can be invoked in several ways, and we distin-
guish between implicit and ezplicit parallelism. The easiest way to introduce
parallelism is to replace calls to uniprocessor level-3 kernels by calls to paral-
lel level-3 kernels. Since the parallelism is invoked inside (within) the level-3
kernels we define this type of block algorithms as émplicitly parallel. Provided
that efficient parallel level-3 kernels exist this approach makes it easy to write
portable programs for parallel architectures and this approach is highlighted
in the LAPACK project [1]. However, the implicit parallelism imposes a syn-
chronization after each level-3 operation, which means that idle processors must
wait until all processors have completed their share of work. Of course, this may
lead to an unnecessary degradation of performance. The amount of degrada-
tion is determined by the efficiency of the parallel level-3 kernels and the data
dependency of the block algorithm.

The synchronization discussed above is not algorithm inherent and can there-
fore be overcome by invoking the parallelism at the block level in the algorithm.
Then processors can work on independent block operations, which e.g. makes
it possible to overlap and pipeline different matrix-matrix operations. Further,
only efficient uniprocessor level-3 kernels are required. We define this type of
block algorithm as explicitly parallel. Here the parallelism must be invoked by
using parallel language constructs. The proposal for standardization of such
constructs in Fortran by the Parallel Computing Forum (PCF) [25] will make it
possible to write portable code too. The constructs of IBM Parallel Fortran [29]
that we are using are functionally equivalent to the PCF proposal (see Section
7). It is, of course, also possible to consider a hybrid of implicit and explicit
parallelism in block algorithms.

The number of synchronization points of an explicit parallel block algorithm
is in theory only determined by the data dependency at the block level and can
therefore be chosen minimal. Further, the explicit approach makes it easy to
balance the work over available processors and it is possible to use either static
or dynamic scheduling of the work.

In the following subsections we describe the parallel block algorithms that
are implemented. Similar variants of some of these algorithms are discussed in
[8] (LU factorization) and [14, 26]. For each matrix factorization we have chosen
to implicitly parallelize the block algorithms that show the “best” uniprocessor
performance (see Section 3.4). This choice is based on the assumption that the
LAPACK project will make the choice of block algorithms from this criterion.
The parallel level-3 kernels used in these algorithms have been described in
Section 2.2. Therefore, we concentrate our description on the explicitly parallel
block algorithms for the matrix factorizations discussed in Section 3. Each
algorithm is presented as a node program that each processor me =0: P —1
will execute. Individual processors will work on different parts of A and perform
sometimes different operations. For example, processor 0 will always compute

Parallel Matrix Factorizations on a Shared Memory Multiprocessor 47

the level-2 factorizations when the parallelizable work is statically scheduled
(see also sections 5 and 6). The statement [u,v] = My_block(me, P, size, nb)
determines the start position u and the end position v of the columns that
processor me will work on at this step. (Here size denotes the current problem
size.)

4.1 Parallel Block LU Algorithms

All three block LU algorithms have been implicitly parallelized by using the
parallel level-3 kernels PDTRSM and PDGEMM. The block right-looking algorithm
has been explicitly parallelized on the basis of data dependency at the block
level. It is obvious that the level-2 factorization of a block column Aj., 5.c must
be completed before the update with respect to this block column can take
place. In the following node program there is only one synchronization needed
in each iteration.

If me=0
1. Liim 106 Utin 100 = Alim 1:mb {Use level-2 routine}
For 1 = 2 : min(n/nb, m/nb)
2. Wait for all processors {Synchronization}
s=(—2)-nb+1 {Start of last factorization}
e=(i—1)-nb {End of last factorization}
3. [u, v] = My_block(me, P, n — e, nb) {Get block indices for me}
Ifu<n
4. Apply pivotings to As.e u:v {From all factorizations}
5. Usieuso — L3} geAsie um {Use DTRSM}
Ife<m

6. Ae+1:m,u:v (_Ae-{—l:m,u:'u _Le-{—l:m,s:eUs:e,u:v{Use DGEMM}
If me=0
7. Lu:m,u:e+nqu:e+nb,u:e+nb = Au:m,u:e+nb {Use level-2 routine}

8. [s, €] = Next_columns(nb) {Get indices for next block}
While s <n —nb
9. Apply pivotings t0 Aet1:m,sie {From all factorizations}
10.[s, e] = Next_columns(nb) {Get indices for next block}

In each step i the number of columns of the remaining matrix (n — e = current
problem size) is partitioned evenly over the processors with the exception that
processor 0 is always given the leftmost block in the remaining matrix, a block
with at least nb columns (the next block to factorize). The work is shared so
that each processor computes the part of U (operation 5) that is required for
updating the remaining rows of its part of A (operation 6). This excludes any
synchronization between the triangular solve and the matrix update. Further-

48 Paper I

more, processor 0 can start the factorization of the next nb columns as soon as
it has completed its part of the update of A.

The pivotings that, so far, have not been applied to the left-hand side of
the current block columns are performed after all block columns are factorized.
This is done in parallel so that each processor applies all row interchanges to
a block consisting of nb columns. The routine Next_columns returns the start
position s and end position e for the next column block where processor me will
do the row interchanges.

It is clear that processor 0 will do more work than the other processors.
To obtain a better load balancing, the processor that performs the level-2 fac-
torization must have less work in the triangular solve and the matrix update
(operations 5 and 6) than the other processors. We will discuss this trade-off in
Section 5.

4.2 Parallel Block Cholesky Algorithms

The block right-looking algorithm has been implicitly and explicitly parallelized.
The implicit parallel version makes use of the parallel level-3 kernels PDSYRK,
PDGEMM (only the left-looking variant), and PDTRSM. The explicit parallel ver-
sion is outlined below. To invoke parallelism and possibly also achieve better
performance on one processor we have made some changes to the right-looking
algorithm given in Section 3.2.1. Rather than using only DSYRK to do the sym-
metric rank-nb update of the (n—e) x (n—e) submatrix, we partition it in several
smaller blocks, and use a number of calls to DSYRK for updating nbb x nbb di-
agonal blocks and the off-diagonal blocks are updated using DGEMM. To simplify
the notation we assume that nbb is an integer multiple of n — e which gives us
(n — e)/nbb diagonal blocks. The rank-nb update

3. Auinun — Ayinuin — Lum,s;eLf’;n’S:e {Use DSYRK to update}

can now be described as follows:

Forii=1:(n—e)/nbb

ss= (it —1)-nbb+u {Start of 7ith diagonal block}
ee = ss+nbb—1 {End of #ith diagonal block}
uu =ee+1 {Start of DGEMM-update}
3.1 Ass:ee,ss:ee <_Asszee,ss:ee _Lss:ee,s:eLz;;ee’s:e {Use DSYRK}
Ifee<n

3.2 Auu:n,ss:ee<_Auu:n,ss:ee_Luu:n,s:eLZ;;ee,s;e {Use DGEMM}

The block size nbb in the update loop can be chosen different from the block
size nb at the outer level. For one processor we may choose nbb to get as much

Parallel Matrix Factorizations on a Shared Memory Multiprocessor 49

work as possible in DGEMM and still have proper speed in DGEMM and DSYRK. Since
each single call to a level-3 BLAS in the update loop writes to different parts of
the matrix A, all level-3 operations can be executed in parallel. As soon as the
first nb columns of the (n — e) X (n — e) submatrix is updated the next block
column can be factorized by the level-2 routine. As before, processor 0 performs
the level-2 factorizations. The explicit parallel version of the block right-looking
algorithm requires only one synchronization per (n — e) X nb block column and
is described in the following node program.

If me=0
1. Lllﬂb,ll’ﬂbL{nb,lznb = Ai:nb,1:nb {Use level-2 routine}
Ifnb<n
2. Lnb+1:n,1:nb — Anb+1:n,1:nbL1_:Zb,1mb {Use DTRSM}
Fori=2:n/nb
3. Wait for all processors {Synchronization}
s=(1—2)-nb+1 {Start of last factorization}
e=(i—1)-nb {End of last factorization}
u=e+1 {Start of next factorization}
v=1-nb {End of next factorization}
If me=20
4' Au:v,u:v «— Au:v,u:'v - Lu:’U,SZCLZ;’U’s:e {Use DSYRK}
5. Luw,u:vaw,uw = Ayv,uw {Use level-2 routine}
Ifo<n
6. Av+1:n,'u.:v ‘_Av+1:n,'u.:v_Av+1:n,s:eAZ;fu,s;e {Use DGEMM}
7. Lv+1:n,u:v — Av+1:n,u:vL;’£’u;v {Use DTRSM}

8. [Syrk, Gemm, NoSyrk, NoGemm] =
My Block(me, P, n — e, nbb)

For k=1: NoSyrk {Update diagonal blocks}
l=2k—1, ss = Syrk(l), ee = Syrk(l + 1)
9. A.s‘s:ee,ss:eeHAsszee,ss:ee_Lss:ee,s:eLz’s;ee’s;e {Use DSYRK}

For k =1: NoGemm {Update off-diagonal blocks}

I =3k—2, ss = Gemm(l)
ee = Gemm(l + 1), uu = Gemm(l + 2)
10'Auu:'fb,ss:ee(—Auu:n,ss:ee_Luu:n,S:eLT {Use DGEMM}

s8s:ee,sie

In each step i the rank-nb update of the remaining (n — e) X (n — e) matrix
is partitioned over the P processors. The number of diagonal and off-diagonal
blocks processor me will update in the inner blocking of step ¢ is computed in
the routine My_Block (operation 8). NoSyrk returns the number of nbb x nbb
diagonal blocks and the index vector Syrk holds the start and end positions for
these (ss and ee). Similarly, NoGemm returns the number of off-diagonal blocks
and the index vector Gemm holds the indices for each DGEMM-update (ss, ee,

50 Paper I

and uu). Notice that the off-diagonal updates are of different size, and we can
accommodate this imbalance in the index vector Gemm. We will discuss this
trade-off in more detail in Section 5. It is also possible to implicitly parallelize
operation 2 by calling PDTRSM giving a hybrid version.

4.3 Parallel Block QR Algorithms

The block right-looking algorithm has been implicitly and explicitly parallelized.
The implicit parallel version makes use of the parallel level-3 kernels PDGEMM and
PDTRMM. The explicit parallel version is outlined in the following node program.

Fori=1:n/nb

s=(—1)nb+1 {Start of current block}
e =min(s+nb—1,n) {End of current block}
If me=0

1.[S, Y] « hshbg(As.m,s:c) {Generate S and Y}
2. [u, v] = My_block(me, P, n — e, nb)
3. Wait for all processors {Synchronization}
4aW — AL Y {Use DGEMM}
4bW «— WS {Use DTRMM}
5. Agmuw — Asmuw — YWT {Use DGEMM}

When a block Householder transformation is generated (operation 1) and Y
and S are to be applied to the rest of the matrix, different block columns of
the matrix can be updated in parallel without any synchronization between
the two DGEMM operations and the DTRMM. This is possible since each processor
can execute operations 4.a, 4.b, and 5 without any interaction with the other
processors. If in iteration 2, u and v for processor 0 are chosen so that u equals
s for iteration 7 + 1 and v of iteration 7 + 1 is at least equal to e, processor 0
can also generate the Householder transformation for iteration 7 + 1 before any
synchronization is required. In the algorithm described s and e are the first
and last column of the current block to be factorized; u and v (operation 2)
hold the first and last column, respectively, of the block column to be updated
by processor me. For simplicity we assume that all processors are given equal-
sized blocks, which implies that processor 0 will do more work than the other
processors. To obtain a better load balancing, the processor that performs the
level-2 factorization must have less work in the matrix update (operations 4.a,
4.b, and 5) than the other processors. This trade-off is discussed below.

Parallel Matrix Factorizations on a Shared Memory Multiprocessor 51

5 Explicit Parallelization and Static Load
Balancing

Since processor 0 performs all level-2 factorizations in the explicitly parallel
block algorithms described in sections 4.1 through 4.3 it will in general do more
work than processors 1 : P — 1. As mentioned earlier, to obtain a balanced
load processor 0 must have less work in the level-3 operations that perform the
update of the remaining matrix in each step ¢. This imbalance can be cured by
having a cost function incorporated in the routine My_Block (defined in Section
4) that determines the computational work that is performed in each step at
the block level. This information is then utilized to determine the start position
u and the end position v of the columns that each processor me (=0: P — 1)
will work on at the next step. The cost function that is based on the number of
flops measured (expressed) in GEMM equivalents is described below.

Table 10 shows the percentage cost in flops and real execution time of dif-
ferent suboperations in the block right-looking algorithms (m = n, nb = 48 for
LU, nb = 32 and nbb = 128 for LLT nb = 32 for QR).

Table 10: Percentage cost of suboperations in block algorithms.

Matrix size m=n=2800 | m =n =1200
Suboperation | Flops | Time | Flops | Time
Level-2 LU 4.6 8.6 3.0 5.8
Pivotings R 0.1 9.0 0.1 6.4
DTRSM 4.2 5.4 2.9 3.9
DGEMM 91.0 | 74.7 | 93.9 82.3
Pivotings_ L 0.1 2.3 0.1 1.6

Level-2 LLT 0.2 1.3 0.1 0.6

DTRSM 58 7.9 3.8 4.9
DSYRK 20.6 27.6 14.5 20.6
DGEMM 73.4 63.2 81.6 73.9
Level-2 QR 2.9 6.0 2.0 4.1
Generate S 1.5 2.2 0.9 1.4
DGEMM no. 1 47.2 45.6 48.1 47.9
DTRMM 1.4 1.8 0.9 1.2

DGEMM no. 2 47.2 44 .4 48.1 45.4

In the subtable for the block LU algorithm Pivotings R corresponds to op-
eration 4 in Section 4.1. Further, Pivotings_L corresponds to operations 8-10 in
Section 4.1. Different suboperations perform with different speed (performance),
which means, for example, that the level-2 factorizations and permutations con-
sume more time than their percentage share of the total number of flops. The

52 Paper I

level-2 operations cost relatively more when the matrix dimension decreases.
This is illustrated in Table 11, which displays the real execution time (in sec-
onds) of different suboperations in each iteration of the block right-looking LU
algorithm (m = n = 800, nb = 48). The percentage cost for the level-2 fac-
torization increases from about 5% in the second iteration to 43% in the last
iteration. Similarly, the percentage cost for the DGEMM operation decreases from
about 84% in the second iteration to about 20% in the last iteration. However,
the first iterations contribute most to the total execution time.

Table 11: Execution time of suboperations in block LU.

Itera | Matrix | Level-2 LU | Pivotings R | DGEMM | DTRSM
-tion size Secs Secs Secs Secs
1 800 0.032 0. 0. 0.

2 752 0.030 0.025 0.505 | 0.043
3 704 0.029 0.023 0.447 | 0.040
4 656 0.027 0.022 0.397 | 0.039
5 608 0.027 0.021 0.343 | 0.036
6 560 0.025 0.019 0.290 | 0.034
7 512 0.023 0.017 0.236 | 0.032
8 464 0.022 0.016 0.199 | 0.026
9 416 0.020 0.014 0.161 | 0.023
10 368 0.020 0.012 0.130 | 0.020
12 320 0.018 0.012 0.101 | 0.018
13 272 0.016 0.010 0.069 | 0.015
14 224 0.015 0.007 0.047 | 0.012
15 176 0.013 0.006 0.030 | 0.009
16 128 0.012 0.005 0.017 | 0.007
17 80 0.011 0.003 0.008 | 0.004
18 32 0.004 0.002 0.002 | 0.002

In Table 12 the operation counts (multiplications and adds) for the different
suboperations in each block iteration of the block right-looking LU algorithm
are shown together with weights I; > 1.0 computed as

1 _ Mflops_GEMM . 1 _ Mflops_GEMM

1 = Mflops_LU_2 2 = "Mflops_SWAP
__ Mflops _GEMM _ .

ls = Mflops_TRSM ° ly = 1.0

Here, SWAP corresponds to the permutations performed in each block iter-
ation (i.e., Pivotings R in Table 10). The performance in Mflops of individual
suboperations is measured on one processor. Mflops.GEMM expresses the per-
formance of DGEMM for the problem size of the corresponding suboperation. The

Parallel Matrix Factorizations on a Shared Memory Multiprocessor 53

weights are experimentally chosen and represent a weighted average of the per-
formance of the different block iterations. Now, the cost function for the block
LU algorithm is expressed as

GEMMjiops(LU) =1y - LU 2+ 1y - SWAP + I3 - TRSM + 1y - GEMM

Similar cost functions for the block right-looking LLT and QR algorithms are
given below:

GEM Mjyiops(Chol) = ¢y - Chol 2+ co - TRSM +¢3 - SYRK + ¢4 - GEMM
and
GEMMyi10ps(QR) =¢1 - QR2+ g2 - Gen_S + g3 - TRMM + qs - GEMM

The corresponding operation counts and weights are displayed in tables 13 and
14. In Table 13 k = div(n — e — nb,nbb) and r = mod(n — e — nb, nbb).

6 Explicit Parallelization and Dynamic Load
Balancing

The static mapping of work on processors as described in Section 5 will work
well on a dedicated system in which each scheduled task is guaranteed a physical
processor. However, if the program is executing in a multi-user environment,
the parallel performance may degrade since other users will compete for the
resources of the multiprocessor system (e.g. processors and shared memory).
When a system cannot be dedicated dynamic scheduling of the work to proces-
sors is likely to be a better approach. The idea is to split the parallelizable work
into a queue of tasks, and an idle processor is scheduled the next available task
in the queue. In the following subsections we describe two block matrix factor-
ization algorithms (block right-looking LU and LL") with dynamic scheduling
of tasks.

6.1 Parallel Block LU Algorithm with Dynamic Schedul-
ing

The parallelizable work in the block right-looking LU algorithm (i.e., columns
to be updated in each step) is partitioned into 2 x P tasks (P = number of
processors to be used). A larger number of tasks (with fewer columns per
block) would more likely prevent idle processors. However, it would also imply
a possible degradation of the performance of DTRSM and DGEMM. Our choice of
2 x P tasks in the queue is based on benchmark results with different sizes of
task queue. In the following node program processor me is scheduled the next
task by a call to Next_block.

54 Paper I
Table 12: Operation counts and weights of LU-cost function.
Suboperation Operation counts) l;
LU 2 (m —e)nb* — inb® — Inb® + 3nb | 1 | 1.92
SW AP (n —e)nb 2 | 120.
TRSM (n — e)nb? 3| 1.62
GEMM 2(m —e)(n —e)nb 4| 1.0
Table 13: Operation counts and weights of LLT-cost function.
Suboperation Operation counts 1 c;
Chol_2 %nb3 + %nb2 + %nb 1| 9.6
TRSM (n — e — nb)nb? 2| 1.45
SYRK nb?(nb+ 1)+ k- nb-nbb(nbb+ 1) +nb-r(r+1) | 3 | 1.45
GEMM 2(n — e — nb)nb? + k(k - nbb — nbb + 2r)nbb-nb | 4 | 1.0
Table 14: Operation counts and weights of @ R-cost function.
Suboperation Operation counts) qi
QR2 2(m — e)nb? — 2nb® + (m —e)nb+ nb”> + Linb | 1 | 1.85
Gen_S (m — e)nb? — inb® + Lnb 2185
TRMM (n — e)nb? 3| 1.3
GEMM am(n — e)nb 4] 1.0

Parallel Matrix Factorizations on a Shared Memory Multiprocessor 55

Ifme=0
1. Ll:m,l:nbUlznb,l:nb = Al:m,l:nb {Use level-2 routine}
[s,e,u,v] = Next_block(me, P,n — e,nb) {Next task from queue}
While e < n
Ifu<n
2. Wait until my block is free {Synchronization}
3. Pivotings are applied to Ag.c v {From all factorizations}
4. Usieyuso — L3} oAsie um {Use DTRSM}
Ife<m

5. Ae+1:m,u:v (_Ae+1:m,u:v _Le+1:m,s:eUs:e,u:v {Use DGEMM}
If Next factorization in my block
6. Lu:m,u:e+nbUu:e+nb,u:e+nb = Au:m,u:e+nb {Use level-2 routine}

[s, e, u,v] = Next_block(me, P,n — e,nb) {Next task from queue}
[s,e] = Next_columns(nb)
While s < n —nb

7. Pivotings are applied to Asynbim,s:e {From all factorizations}

[s, €] = Next_columns(nb)

The monitor routine Nezt_block returns necessary information for the next
task; u and v hold the start position and the end position, respectively, of the
columns for the next task; s and e hold the first and last column, respectively,
of the last factorized block column. The queue of tasks is not empty as long as
e < n. When the factorization is complete the remaining pivoting work is set
up as a new queue of tasks. The routine Next_columns works as described in
Section 4.1 and is implemented as a PARALLEL LOOP (i.e., with implicit dynamic
scheduling of the work [29]).

The algorithm described above does not require the same kind of synchro-
nization as the statically scheduled algorithm. Here different processors can
be working with operations belonging to two different block iterations z at the
same time. The synchronization (operation 2) is required to ensure that the
submatrices to be used in the triangular solve and in the matrix update are
computed and that no other processor is working on my column block.

6.2 Parallel Block Cholesky Algorithm with Dynamic
Scheduling

The columns of A to be updated in each step (i.e., the parallelizable work
of the block right-looking LL” algorithm) are partitioned into column blocks
consisting of nbb columns (inner level blocking). To start we do not put any
restriction on nbb (can be equal to, smaller than or larger than mb, the outer
level block size). Each processor takes a block column (with nbb columns) and
updates it using DSYRK for the triangular diagonal block and DGEMM for the rest
of the block column. When a processor is finished with that task it continues

56 Paper I

to update a new block column (the next task in the queue). The next level-
2 factorization is performed by the processor that updated (the last referenced
columns of) the first nb columns of the (n —e) X (n—e) submatrix. If a processor
reaches the last column n of the matrix it starts to update the first column block
of the new (n — e) X (n — e) submatrix. This goes on until the last nb columns
of A have been factorized.

In the following node program the dynamic scheduling of tasks is controlled
by the global variables s_global (start position of the last level-2 factorization)
and u_global (start position for the next update of nbb columns). It contains a
critical section (Lock ...Unlock) in which these variables are updated.

If me=0
1. lebalmbL’{:’nb,l:nb = Al:nb,1:nb {Use level-2 routine}
Ifnb<n
2. Lnb+1:n,1:nb — Anb+1:n,1:nbL1_;:b’1:nb {Use DTRSM}
3.s_global = 1 {Start of last factorization}
4.u_global = nb+1 {Start of next update}
e=mnb {End of last factorization}
5. Wait for all processors {Synchronization}
While e < n
Lock {Start of critical section}

If u_global > n
6. s_global = s_global + nb
7. u_global = s_global + nb

s = s_global
u = u_global {Start of my update}
my_nbb = min(nbb,n — u + 1) {Size of last block to update}
8. u_global = u_global + my_nbb
Unlock {End of critical section}
v=u+mymnbb—1 {End of my update}
e=s+nb—1
Ife<n
9. While Not(F'ree)
Wait until Free = True {Synchronization}
10-1471.:1),'11,:1) — A'u.:v,u:v - L'u.:v,s:eLZm,s:e {Use DSYRK}
Ifv<n
11-Av+1:n,u:v(_Av+1:n,u:v_Lv+1:n,s:eLZ;v,s;e {Use DGEMM}
If Factor
ss =s+nb {Start of next factor}
ee =e+mnb {End of next factor}
12‘LSSZEC,SSIGGLZ;:ee,ss:ee = Assice,ssiee {Use level-2 routine}
Ifee<n

13. Lee+1:n,ss:ee ‘_Aee+1:n,ss:eeL_T {Use DTRSM}

s8s:ee,ss:€ee

Parallel Matrix Factorizations on a Shared Memory Multiprocessor 57

The logical variable F'ree is true if no other processor is working in the same
area as processor me wants to write into. If two processors compete for writing
in the same memory area the one that reads from the leftmost area starts
(operations 10 and 11). This guarantees that the updates will be performed in
correct order. The logical variable Factor is true if the first nb columns of the
submatrix have been updated, i.e., it is ready to be factorized. Notice that the
two level-2 factorizations (last and next) can be completed before the updates
with respect to the first (i.e., last) factorization is completed. In this way we
obtain a pipeline between two consecutive iterations at the block level.

The best parallel efficiency is obtained by choosing nbb such that === > P.
However, the choice of nbb must also be balanced so that we obtain good perfor-
mance of the level-3 operations 10 and 11 on individual processors. As for the
static scheduled algorithm operation 2 can be implicitly parallelized by calling
PDTRSM.

7 Performance Results of Parallel Block
Algorithms

In this section we present performance results of the parallel block algorithms
described in sections 4 through 6 and implemented in IBM Parallel Fortran [29].
The parallel language extensions used are summarized below: ORIGINATE to cre-
ate tasks, TERMINATE to terminate tasks, SCHEDULE or DISPATCH to assign work
to a task (makes it possible to execute independent subroutines in parallel), WAIT
FOR to detect when a task has completed the assigned work, PARALLEL LOOP to
execute iterations of a loop concurrently, and routines from the parallel library
that handles locks and events are used to implement different synchronization
techniques. Notice that subroutine calls are not permitted within a PARALLEL
LOOP in IBM Parallel Fortran. For more details of the parallel language exten-
sions see [29] (similar parallel constructs are included in the new release 2.5 of
VS FORTRAN). Code that does not make use of parallel language constructs is
compiled with the IBM compiler VS FORTRAN 2.4, which at present has better
optimization for vectorization [23]. All results presented are obtained using up
to five physical processors of a quasi-dedicated IBM 3090 VF/600J. The SDCN
(Supercomputer Centre North) machine is located at Norrdata, Skellefted, in
Sweden. The uniprocessor performance results presented in Section 3.4 are
based on measured CPU times (IBM Fortran routine CPUTIME is used). All
results for parallel routines presented in this section are based on wall-clock
timing (IBM Fortran routine CLOCKX is used) at night. The results for a specific
parallel block algorithm are the best performance obtained from a series of tests.
Performance results, measured in Mflops, and speedup factors are presented for
implicitly parallel and explicitly parallel block algorithms. The theoretical peak
performance of IBM 3090 VF/600J for 64 bits (= 1 word) arithmetic is 828

58 Paper I

(6 -138) Mflops while its practical peak performance is around 600 Mflops (500
Mflops on 5 processors). The best result we have obtained on five processors is
482 Mflops (PDGEMM, see Table 2).

7.1 Parallel Block LU Algorithms

Table 15 shows performance results of the block right-looking and Crout vari-
ants of the LU factorization with partial pivoting. These two block algorithms
showed the best uniprocessor performance of the block LU variants (see Section
3.4). The main change we have made to the prerelease LAPACK [2] routines, is
to replace calls to level-3 BLAS by calls to the parallel level-3 kernels described
in Section 2.2. We have also modified the routine DLASWP that performs per-
mutations to a block, so that they are performed columnwise as suggested in

[2].

Table 15: Performance of implicitly parallel block LU algorithms.

Block algorithm Right Crout

Matrix size 500 1200 | 500 | 1200
1 proc 83.7 | 95.8 | 72.7 | 90.0
2 proc 104.4 | 167.4 | 90.2 | 138.7
Speedup 1.25 | 1.75 | 1.24 | 1.54
3 proc 112.0 | 217.4 | 94.4 | 169.5
Speedup 1.34 | 2.27 | 1.30 | 1.88
4 proc 110.7 | 231.2 | 92.4 | 185.3
Speedup 1.32 | 2.41 | 1.27 | 2.06
5 proc 104.5 | 253.1 | 89.2 | 191.5
Speedup 1.25 | 2.64 | 1.23 | 2.13

Table 16 shows performance results of the explicitly parallel block algorithms
with static and dynamic scheduling of the work, respectively, as described in
sections 5 and 6 (block size nb = 48). The corresponding results for the ESSL
block LU routine are also shown.

Table 17 displays the performance ratio of the explicit algorithm with static
scheduling versus the implicit algorithms of Table 15. Similar performance ratios
of the explicitly parallel algorithms in Table 16 are displayed in Table 18.

7.2 Parallel Block Cholesky Algorithms

Table 19 shows performance results of the implicitly parallel block algorithm
and the static and dynamic versions of the explicitly parallelized block right-
looking LLT algorithm. Similar results for the ESSL block Cholesky routine
are also shown. As before, the implicitly parallel algorithm is obtained by

Parallel Matrix Factorizations on a Shared Memory Multiprocessor 59

Table 16: Performance of explicitly parallel block LU algorithms.

Block algorithm Static Dynamic ESSL

Matrix size 500 | 1200 | 500 | 1200 | 500 | 1200
1 proc 83.5 | 98.4 | 84.9 | 98.1 | 88.7 | 99.0
2 proc 147.5 | 192.4 | 148.3 | 192.9 | 162.7 | 1954
Speedup 1.77 | 1.96 | 1.75 | 1.97 | 1.8%3 | 1.97
3 proc 193.7 | 276.6 | 196.4 | 277.6 | 212.2 | 292.8
Speedup 232 | 2.81 | 231 | 283 | 2.39 | 2.96
4 proc 219.8 | 355.1 | 223.4 | 355.2 | 226.9 | 377.9
Speedup 2.63 | 3.61 | 2.63 | 3.62 | 2.56 | 3.82
5 proc 234.8 | 430.2 | 239.9 | 431.0 | 257.8 | 457.2
Speedup 2.81 | 4.837 | 2.83 | 4.39 | 2.91 | 4.62

Table 17: Performance ratio of explicitly versus implicitly parallel block LU
algorithms.

m=n=1200 Number of processors
Routine 1 2 3 4 5
Ezplicit (Static) | 98.4 192.4 276.6 355.1 430.2
Implicit (Right) | 95.8 1674 217.4 231.3 253.1
Implicit (Crout) | 90.0 138.7 169.5 185.3 191.5

FEzplicit
RIz',g}"wtl 1.03 1.15 1.27 1.54 1.70
Ezplicit 1.09 1.89 1.63 1.92 2.25

Crout

Table 18: Performance ratio of explicitly parallel block LU algorithms.

m=n=1200 Number of processors
Routine 1 2 3 4 5
Dynamic (Day) | 88.2 177.8 230.8 254.3 243.8
Static (Day) 90.0 163.4 216.7 251.0 236.1
Dynamic 0.980 1.088 1.065 1.013 1.033
Dynamic (Night) | 98.1 192.9 277.6 3552 431.0
Static (Night) 98.4 1924 276.6 355.1 430.2
ESSL (Night) 98.9 1954 292.8 377.9 457.2
Dyname 0.997 1.008 1.004 1.000 1.002
Pl 1.008 1.012 1.054 1.064 1.061

60 Paper I

replacing calls to level-3 BLAS by calls to the parallel level-3 kernels described
in Section 2.2. The block size nb is kept fixed (32 for the static version, 64 for
the implicit and dynamic versions). The block size nbb is chosen according to
the discussion in Section 6.2. For one processor nbb = 256 and decreases with
increasing number of processors. For example, in the dynamic variant when
n = 1200, nbb is chosen to be 256,128,64,32, and 32 corresponding to 1,2, 3,4,
and 5 processors, respectively.

Table 20 displays performance ratios of the explicit algorithms with static
scheduling and dynamic scheduling and the ESSL routine.

Table 19: Performance results of parallel block Cholesky algorithms.

Routine Implicit Static Dynamic ESSL

Matrix size | 500 | 1200 | 500 | 1200 [500 | 1200 | 500 | 1200
1 proc 79.4 | 92.2 | 76.0 | 90.9 | 785 | 91.9 | 91.0 | 98.0
2 proc 115.4 | 170.9 | 120.6 | 173.3 | 121.0 | 173.1 | 166.9 | 191.4
speed up 1.45 | 1.85 | 1.59 | 1.91 | 1.54 | 1.88 | 1.83 | 1.95
3 proc 128.7 | 240.1 | 134.3 | 246.1 | 138.0 | 247.2 | 233.6 | 278.2
speed up 1.62 | 2,60 | 1.77 | 2.71 | 1.76 | 2.69 | 2.57 | 2.8/
4 proc 126.0 | 294.9 | 131.2 | 302.3 | 124.7 | 307.8 | 278.5 | 360.4
speed up 1.58 | 3.20 | 1.73 | 3.3%3 | 1.59 | 3.35 | 3.06 | 3.68
5 proc 115.5 | 344.0 | 116.6 | 350.9 | 108.2 | 354.4 | 314.3 | 435.2
speed up 1.45 | 3.73 | 1.53 | 3.86 | 1.39 | 3.86 | 3.45 | 4.44

Table 20: Performance ratios of parallel block Cholesky algorithms.

n = 1200 Number of processors
Routine 1 2 3 4 5
Explicit (Static) 90.9 1733 246.1 3023 350.9
Implicit (Right) 92.2 170.9 240.1 2949 3440
Explicit (Dynamic) | 91.9 173.1 247.2 307.8 354.4
ESSL 98.0 1914 278.2 360.4 435.2
Folalic 0.99 1.01 1.02 1.03 1.02
Lyuainic .01 1.00 1.00 1.02 1.01
Ptk 1.07 111 113 1.17 1.23

We have also implicitly parallelized the block left-looking variant. However,
the DSYRK operations of the left-looking variant (case k > n) did not parallelize
as well as the corresponding DSYRK operations of the right-looking variant (case
k < n, see Section 2.2). For the case k > n, A is partitioned into P column blocks

Parallel Matrix Factorizations on a Shared Memory Multiprocessor 61

and each processor computes an n X k/ P contribution of the rank-k update. The
global summation of these contributions to C' is a sequential bottleneck.

7.3 Parallel Block QR Algorithms

Table 21 shows performance results of the implicitly and explicitly parallel block
right-looking QR algorithm (block size nb = 32). Here the performance ratio
is also displayed. In agreement with the results for the LU and LL” factor-
izations we expect somewhat better performance for an explicitly parallel block
algorithm with dynamic scheduling.

Table 21: Performance results of parallel block QR algorithms.

Routine Implicit Explicit ﬁf;) Zﬁ;i
Matrix size | 500 | 1200 | 500 | 1200 1200
1 proc 72.1 94.2 71.3 94.2 1.00
2 proc 94.3 | 160.5 | 1324 | 182.9 1.14
Speedup 1.31 1.70 | 1.86 | 1.94

3 proc 101.5 | 208.2 | 176.9 | 266.0 1.28
Speedup 1.41 2.21 | 2.48 | 2.82

4 proc 103.1 | 245.5 | 203.5 | 345.2 1.41
Speedup 1.43 | 2.61 | 2.85 | 3.66

5 proc 103.7 | 268.5 | 213.8 | 413.2 1.54
Speedup 1.44 | 2.85 | 3.00 | 4.39

7.4 Discussion

The results in tables 15-21 show in summary that the explicitly parallel block
algorithms give the best performance on more than one processor. The differ-
ence in performance between the two approaches increases with the number of
processors. During daytime, when the machine normally has the heaviest load,
the dynamic scheduling of the work gave up to 9% better performance than
static scheduling of the work (LU, see Table 18). During night-time, the two
scheduling approaches gave very similar results. Notice that the load of the ma-
chine varies over time and the difference between dynamic and static scheduling
may therefore be much larger than shown here.

Two reasons why the static scheduling (contrary to intuition) is not better
than the dynamic scheduling during night-time are that the system is not com-
pletely dedicated and that the dynamic scheduling does not impose an extra
synchronization between each iteration.

The main reason for the differences in performance between the explicit
parallel implementations of LU, LLT and the corresponding routines in the

62 Paper I

ESSL library is the different amount of parallelization overhead. Further, in
the Cholesky case the ESSL routine works on a matrix in lower packed storage
mode and uses a double precision workspace of size 96 x n, offering better data
reuse on individual processors. The parallelization overhead of our parallel block
algorithms is discussed later in this section.

In this context it is interesting to study the best possible speedup of the
implicitly parallel block algorithms. Table 22 shows the real execution time
level-3 fraction (f) and real execution time level-2 fraction (1 — f) of the block
right-looking algorithms that are implicitly parallelized (numbers from Table
10). The second column of Table 22 shows the fractions for the LU factorization
if we assume that all permutations also can be performed in parallel. In the
second column all permutations are included in the level-2 fraction.

Table 22: Real execution time level-3 and level-2 fractions.

m=n=1200 LU LU(pivot //) LLT QR
f (level-3) 0.862 0.942 0.994 0.945
1— f (level-2) | 0.138 0.058 0.006 0.055

Table 23 shows the speedup factors S, of the implicitly parallel block algo-
rithms if we assume that all level-3 operations are perfectly parallelized (with no
overhead, see below) and all level-2 operations are performed on one processor.
They are computed from Amdahl’s law for parallel processing (see e.g. [11]):

_ P
Cf+(@A-f)P

If f <1, Sp is bounded by (1 — f)~! and this factor is displayed in the last
column of Table 23.

Sp

Table 23: Perfect (theoretical) speedup factors of the implicitly parallel block
algorithms.

m=n=1200 Number of processors

Routine 1 2 3 4 5 | (1—-£)71
LU 1.00 1.76 2.35 2.83 3.22 7.25
LU (pivot //) | 1.00 1.89 2.69 341 4.06| 17.24
LLT 1.00 1.99 2.96 3.93 4.88 166.7
QR 1.00 1.90 2.70 3.48 4.10 18.18

One conclusion from these numbers and tables 15-21 is that it requires
a small level-2 fraction, as in the block right-looking Cholesky algorithm, in

Parallel Matrix Factorizations on a Shared Memory Multiprocessor 63

order to be able to match the performance of the best explicitly parallel block
algorithms. Possibly, the performance of the implicitly parallel block algorithms
can be improved by also parallelizing the level-2 BLAS. Our experiences on
the IBM 3090 VF/600J are that we do not gain anything by doing so. The
granularity of the level-2 operations of the block algorithms is too small and the
overhead for parallelization is too costly. Similar results are also shown in [8].
However, some level-2 operations have successfully been parallelized on other
parallel shared memory systems [27].

7.5 Parallelization overhead

The results in tables 15, 16, 19, and 21 show very small speedup factors for
matrices of size 500 x 500. The reason is that the overhead due to synchroniza-
tion primitives is more or less constant while the work between synchroniza-
tions decreases with the size of the problem. Most overhead is associated with
ORIGINATE (and TERMINATE, but this is less costly), and therefore the creation
of tasks is done once in the beginning of the program. The overhead caused by
ORIGINATE and TERMINATE is a function of the number of tasks created and the
size of each task. The following theoretical model estimates the overhead cost
associated with originating and terminating p tasks:

TORIG(p) = (01 + 02 - S) -p

where S corresponds to the storage space in Mbytes that is allocated for each
task (including code and memory for local variables and arrays, etc). The
parameters ol and o2 in the linear model are determined from a least squares fit
of overhead (caused by ORIGINATE and TERMINATE) timings for different matrix
sizes. The values used are ol = 0.0075 sec and 02 = 0.0236 sec.

The overhead costs associated with SCHEDULE (DISPATCH) and WAIT FOR vary
between algorithms and factorizations but are normally much lower. Further,
the overhead costs associated with PARALLEL LOOP and locks and events are
negligible in this context. By considering the overhead costs associated with
ORIGINATE and TERMINATE we can predict an upper bound on the theoretical
speedup of our explicitly parallel block algorithms (see Table 24). The time on
p processors is predicted as

T:
T, = ;1 +Toric(p — 1).

Torrc(p) is of the same magnitude for the explicitly and implicitly parallel
block algorithms. However, the overhead due to SCHEDULE differs between the
two approaches. The implicitly parallel block algorithms SCHEDULE p — 1 tasks
at each call to a parallel level-3 kernel (i.e., 2(p — 1) or 3(p — 1) tasks per
block iteration). The explicitly parallel algorithms with static load balancing
SCHEDULE p — 1 tasks per block iteration, and the explicitly parallel algorithms
with dynamic load balancing SCHEDULE only p — 1 tasks totally.

64 Paper I

Table 24: Upper bounds on performance and speedup factors of the explicitly
parallel block algorithms.

m=n=1200 Number of processors
Routine 1 2 3 4 5
LU 98.1 195.0 289.2 3789 463.0
1.00 1.99 2.95 386 .72
LLT 91.9 181.2 264.5 338.9 402.6
1.00 1.97 288 3.69 4.38
QR 94.2 188.1 281.2 373.2 463.6
1.00 1.99 299 396 .92

8 Some Conclusions

Parallel block algorithms for the LU factorization with partial pivoting of a
general matrix, the LLT (Cholesky) factorization of a positive definite matrix,
and the QR factorization of a general matrix have been presented. By replac-
ing calls to level-3 BLAS in routines of the second prerelease of LAPACK [2]
implicitly parallel block algorithms are obtained. This approach is compared
to explicitly parallel block algorithms where the parallelism is invoked explic-
itly at the block level, offering the possibility to overlap and pipeline different
matrix-matrix operations.

In order to design efficient and still transportable parallel block algorithms
we have tried to fulfill the parallel key factors mentioned in the Introduction
in the following way. The load balancing of the implicit approach is inherited
from the parallel level-3 kernels. The load balancing of the explicit approach
is performed by static or dynamic scheduling of the work. The static schedul-
ing utilizes cost functions based on the number of flops expressed as GEMM
equivalents. Benchmark tests give us (architecture- and problem-dependent)
block sizes that define a suitable granularity of the block algorithms. Memory
contention between processors is minimized by partitioning the data so that
different processors work as much as possible on different parts of the matrix.
The number of synchronization points is minimized by introducing the explicitly
parallel block algorithms.

Performance results show that explicitly parallel block algorithms can reach
close to practical peak performance on one to five processors by using optimized
uniprocessor level-3 BLAS. Large problems (n = 1200 here) are required for
high performance. Although the parallel efficiency decreases as a function of
the number of processors, we have seen up to 90% parallel efficiency (defined
as speedup factor divided by number of processors) on five processors of an
IBM 3090 VF/600J system for the LU and QR factorizations and around 80%
for the LLT factorization. These results are justified by a theoretical model

Parallel Matrix Factorizations on a Shared Memory Multiprocessor 65

that predicts an upper bound on the best possible speedup with respect to
the most significant parallelization overhead of language constructs and their
implementations.

The corresponding best parallel efficiency of the implicitly parallel block al-
gorithms is 75% for the LLT factorization (just over 50% for the LU and QR
factorizations). Notice that the best implicitly parallel block algorithm will de-
pend on which parallel level-3 BLAS is best optimized, and the results presented
here are all based on the level-3 kernels described in Section 2.2. By assuming
perfect parallel speedup of the parallel level-3 BLAS we have shown that it is at
least in theory possible to obtain around 80% parallel efficiency for the implic-
itly parallel block LU and QR algorithms, and over 95% for the corresponding
implicitly parallel LLT algorithm (LU and QR have larger real execution time
level-2 fractions). The proportionately low efficiency of the implicitly parallel
block algorithms can also be explained in terms of the parallelization overhead,
which is architecture-dependent. To conclude, in order to exploit the full po-
tential of hierarchical memory multiprocessor systems implicit parallelism (as
in LAPACK) will require highly efficient parallel level-3 BLAS or explicit par-
allelism. The benefit from explicitly parallel block algorithms (compared to
the implicitly parallel ones) increases with the number of physical processors.
In general, the benefit from explicit parallelization is a function of both the
granularity (block size) and the problem size.

Acknowledgements

We are grateful to the referees for some comments that have made our manuscript
more clear.

References

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, D. Sorensen. LAPACK: A
Portable Linear Algebra Library for High-Performance Computers. Tech.
Report CS-90-105, Univ. of Tennessee, Knoxville, May 1990. (LAPACK
Working Note #20).

[2] E. Andersson and J. Dongarra. Implementation Guide for LAPACK. Tech.
Report CS-90-101, Univ. of Tennessee, Knoxville, April 1990. (LAPACK
Working Note #18).

[3] E. Andersson and J. Dongarra. Evaluating Block Algorithm Variants in
LAPACK. In J. Dongarra, P. Messina, D. Sorensen, and R. Voigt (eds),
Parallel Processing for Scientific Computing, STAM Publications, 1990, pp
3-8.

66

Paper 1

[4]

[5]

(6]

[7]

(8]

(9]

[10]

[11]

[14]

[15]

C. Bischof. Adaptive Blocking in the QR Factorization. The Journal of
Supercomputing, Vol. 3 (1989), pp 193-208.

C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Ham-
marling, A. McKenney, D. Sorensen. LAPACK Provisional Contents. Math.
Comp. Sci. Report ANL-88-38, Argonne National Lab., Argonne, Septem-
ber 1988.(LAPACK Working Note #5).

C. Bischof and C. Van Loan. The WY Representation for Products of
Householder Matrices. SIAM J. Scientific and Statistical Computing, Vol.
8, (1987), pp s2-s13.

E. Cohen, G. King, and J. Brady. Storage Hierarchies. IBM Systems Jour-
nal, Vol. 28(1) (1988) pp 62-76.

M. Daydé and I. Duff. Use of Level 3 BLAS in LU Factorization in a Mul-
tiprocessing Environment on Three Vector Multiprocessors: the ALLIANT
FX/80, the CRAY-2, and the IBM 3090 VF. Technical Report CERFACS,
August 1990.

J. Dongarra, J. Du Croz, S. Hammarling, and R. Hanson. An Extended
Set of Fortran Basic Linear Algebra Subprograms. ACM Trans. on Math-
ematical Software, Vol. 14 (1988) pp 1-17, 18-32.

J. Dongarra, J. Du Croz, S. Hammarling, and I. Duff. A Set of Level 3 Basic
Linear Algebra Subprograms. ACM Trans. on Mathematical Software, Vol.
16 (1990) pp 1-17, 18-28.

J. Dongarra, I. Duff, D. Sorensen, and H. Van der Vorst. Solving Linear
Systems on Vector and Shared Memory Computers. STAM Publications,
1991.

J. Dongarra and D. Sorensen. Linear Algebra on High-Performance Com-
puters. In U. Schendel (ed), High-Performance Computers 85, North Hol-
land, 1986, pp 3-32.

J. Eriksson, P. Jacobson, B. Kagstrom, and E. Lindstrém. The CONLAB
Environment:Algorithm Design for and Simulation of MIMD Architectures.
In J. Dongarra, P. Messina, D. Sorensen, and R. Voigt (eds), Parallel Pro-
cessing for Scientific Computing, STAM Publications, 1990, pp 406-412.

K. Gallivan, W. Jalby, U. Meier, and A. Sameh. Impact of Hierarchical
Memory Systems on Linear Algebra Algorithm Design. Int. J. Supercom-
puter Applications, Vol 2 (1988), pp 12-48.

K. Gallivan, R. Plemmons, and A. Sameh. Parallel Algorithms for Dense
Linear Algebra Computations. STAM Review, Vol. 32 (1990), pp 54-135.

Parallel Matrix Factorizations on a Shared Memory Multiprocessor 67

[16]

[17]

[18]

[19]

[20]

[21]

[28]

[29]

G. Golub and C. Van Loan. Matriz Computations. John Hopkins Press,
2nd edition, 1989.

IBM. Engineering and Scientific Subroutine Library Guide and Reference.
SC23-0184-3, November 1988.

P. Jacobson. The CONLAB Environment. Report UMINF-173.90, Inst. of
Information Processing, Univ. of Umea, S-901 87 Umea, 1990.

B. Kagstrom and P. Ling. Level 2 and 3 BLAS Routines for IBM 3090 VF:
Implementation and Experiences. In J. Dongarra, I. Duff, P. Gaffney, and
S. McKee(eds), Vector and Parallel Computing, Ellis Horwood, 1989, pp
229-240.

B. Kagstrém and C. Van Loan. GEMM-Based Level-3 BLAS. Technical
Report, Dept. of Computer Science, Cornell University, December 1989.

C. Lawson, R. Hanson, R. Kincaid, and F. Krogh. Basic Linear Algebra
Subprograms for Fortran Usage. ACM Trans. on Mathematical Software,
Vol. 5 (1979), pp 308-323.

P. Ling. A Set of High Performance Level-3 BLAS Structured and Tuned
for the IBM 3090 VF and Implemented in Fortran 77. Report UMINE-
179.90, Inst. of Information Processing, Univ. of Umea, S-901 87 Umea,
May 1990.

B. Liu and N. Strother. Programming in VS Fortran on the IBM 3090 for
Maximum Vector Performance. IEEE Computer, June (1988), pp 65-76.

C. Moler, J. Little, and S. Bangert. PRO-MATLAB User’s Guide. The
MathWorks Inc., 1987.

Parallel Computing Forum. Proposal, 1990.

G. Radicati, Y. Robert, and P. Sguazzero. Block Processing in Linear
Algebra on the IBM 3090 Vector Multiprocessor. SUPERCOMPUTER,
Vol. 5, No. 1 (1988) pp 15-25.

Q. Sheikh and J. Liu. Performance of Block Matrix Factorization Algo-
rithms and LAPACK on CRAY Y-MP and CRAY-2. Cray Research Inc.,
1990.

R. Schreiber and C. Van Loan. A Storage Efficient WY Representation for
Products of Householder Transformations. SIAM J. Scientific and Statis-
tical Computing, Vol. 10 (1989), pp 53-57.

L. Toomey, E. Plachy, R. Scarborough, R. Sahulka, J. Shaw, and A. Shan-
non. IBM Parallel Fortran. IBM Systems Journal, Vol. 27 (1988) pp 416—
435.

68 Paper I

[30] S. Tucker. The IBM 3090 System: An Overview. IBM Systems Journal,
Vol. 25(1), (1986) pp 4—20.

Paper 11

A Ring-Oriented Approach for Block Matrix

Factorizations on Shared and Distributed
Memory Architectures®

Krister Dackland®, Erik Elmrothf, and Bo Kagstrom

Department of Computing Science, Umed University
S-901 87 Umea, Sweden.
E-mail: dacke@cs.umu.se, elmroth@cs.ume.se, bokg@cs.ume.se

Abstract

A block (column) wrap-mapping approach for design of parallel block
matrix factorization algorithms that are (trans)portable over and between
shared memory multiprocessors (SMM) and distributed memory multi-
computers (DMM) is presented. By reorganizing the matrix on the SMM
architecture, the same ring-oriented algorithms can be used on both SMM
and DMM systems with all machine dependencies comprised to a small
set of communication routines. The algorithms are described on high level
with focus on portability and scalability aspects. Implementation aspects
of the LU, Cholesky, and QR factorizations and machine specific commu-
nication routines for some SMM and DMM systems are discussed. Timing
results show that our portable algorithms have similar performance as ma-
chine specific implementations.

Keywords: Block matrix factorizations, parallel algorithms, portability, scal-
ability, shared and distributed memory architectures.

*From R. F. Sinovec et. al. Proceedings of the Sizth SIAM Conference on Parallel Pro-
cessing for Scientific Computing, Vol 1, by permission of SIAM, Philadelphia. (©1993 The
Society for Industrial and Applied Mathematics.

fFinancial support has been received by the Swedish National Board of Industrial and
Technical Development under grant NUTEK 89-02578P.

71

72 Paper II

1 Introduction

With the introduction of advanced parallel computer architectures a demand
for efficient and portable algorithms has emerged. Several attempts to design
algorithms and implementations that are portable between shared memory mul-
tiprocessors (SMM) and distributed memory multicomputers (DMM) have been
made. For example, implementations of virtual shared memory on DMM ar-
chitectures [15, 21, 23] and the simulation of message passing with portable
communication libraries on SMM architectures [3, 4, 13]. A major drawback
with these attempts is that the demands for generality often deteriorates the
performance for many problems that can be efficiently solved if the portability
aspects are neglected. However, it is possible to obtain portability without loss
of performance for a restricted class of problems. In this paper we restrict our
study to parallel block matrix factorizations, such as the LU, Cholesky, and
QR factorizations [7, 11, 12]. This class of problems can most likely be enlarged
to several block algorithms, such as the ones included in LAPACK [2].

Our goal is to construct algorithms that, without loss of performance com-
pared to implementations tuned for specific machines, are portable over and
between different SMM and DMM architectures. This is done by further devel-
opment of the ring-oriented block algorithms for DMM and SMM architectures,
respectively, presented in [5, 7]. The algorithms are described on high level with
focus on the portability aspects. Results are presented for implementations on
Alliant FX2816, Intel iPSC/2 hypercube and IBM 3090 VF/600J and compared
to the machine specific results presented in [5, 7]. We also discuss the scalability
of these parallel algorithms, which is a measure of their capabilities to effectively
use an increasing number of processors [18].

The outline is as follows. A generic ring-oriented block algorithm is pre-
sented in the perspective of a DMM architecture in Section 2. The algorithm is
adapted to an SMM architecture in Section 3. The implementation of the ma-
chine specific communication routines are discussed in Section 4. Performance
results are presented in Section 5, followed by a short discussion of performance
modeling in Section 6. Finally, Section 7 discusses the results and presents some
conclusions.

2 A Generic Ring-Oriented Block Algorithm

We assume that the target DMM architecture can embed a unidirected ring
topology. The m X n matrix A to be factorized is block column wrap mapped
onto the nodes to achieve good load balancing. For a given processor k (= 0 :
p — 1), these blocks form a local matrix Ajoca1, comprising the block columns
k+1,k+1+p, k+ 1+ 2p, etc of A, where p is the number of processors.

Let nbl denote the number of block columns in A (for clarity we assume
m > n), nbljyca the number of block columns in Ajocar, and cb_index the (block)

Ring-Oriented Matrix Factorizations for SMM and DMM 73

index for the current block column. If the (local) block index ¢ is initialized to
1, then a high level generic node algorithm for computing a matrix factorization
can be described in the following way:

For i_global =1 : nbl
If (I hold block i_global)
If (i_global > 1)

UPDATE Ajocai(z) wr.t CURRENT-BLOCK(cb_index) (1)
End If
FACTORIZE Ajocai(?) & generate NEXT_-CURRENT_-BLOCK (2)
BROADCAST(NEXT_-CURRENT-BLOCK, cb_index) 3)
t=1+1
End If
If (i_global > 1)
UPDATE Aiscai(? : nbligcar) w.r.t. CURRENT_BLOCK(cb_index) (4)
End If
RECEIVE(CURRENT_BLOCK, cb_index) (5)

End For

Processor 0 starts to factorize (2) the first block column and broadcasts (3)
the factors, denoted NEXT_CURRENT_BLOCK to all other processors in the
ring. Then, all processors update their remaining blocks (4), i.e., the blocks
to the right of the last factorized block column in A, with respect to the re-
ceived CURRENT_BLOCK. Notice that the next current processor, i.e., the
right neighbour in the ring, updates (1) and factorizes (2) the next block col-
umn and broadcasts it (NEXT_-CURRENT_-BLOCK) before it completes the
update corresponding to the previous factorization (CURRENT_BLOCK). This
enables an overlapping called pipelining between iterations [5, 7).

In the implementations of the algorithms, the factorization of a block column
is performed by a call to the corresponding level-2 routine, and the update is
performed by one or more calls to level-3 BLAS [8, 19, 20]: DGEMM and DTRSM in
LU, DGEMM, DSYRK, and DTRSM in Cholesky, DGEMM and DTRMM in QR.

The only extra storage needed is a matrix to hold the current (factorized)
block. All synchronizations are implicit through the message passing of the
current blocks. Except for the current blocks, a processor only refers to Ajocal.
This gives an inherited data locality from the initial matrix distribution in the
DMM environment, such that each processor performs the work on separate
block columns. We would like to have the same data locality on an SMM
environment.

74 Paper II

Figure 1: DMM and SMM models viewed as a ring of processors.

3 Shared Memory and Ring-Oriented Block Al-
gorithms

Our approach is to use the DMM paradigm as a model and run the same fac-
torization routines on an SMM architecture viewed as a ring of processors, see
Figure 1.

To accomplish this we reorganize A into A;eorg such that consecutive block
columns of A;corg are the block columns of A interchanged in a block column
wrap mapped manner. By partitioning the work evenly over the p processors,
each processor only makes access to a logical local matrix Ajoca that refers to
a submatrix of the restructured global matrix A;corg. In Figure 1 the memory
units m; of the DMM and SMM models store the same block columns of A.
Moreover, it follows that the references to Ajoca can be made identical to the
ones in the generic DMM algorithm. The main difference is how we deal with
the current (factorized) block of A. In the DMM algorithm this block is broad-
casted to all processors that keep it as a local copy. In the SMM algorithm the
current block is a block column of A;eorg in the global shared memory, which
can be accessed by all processors. The message passing of the current block is
implemented as a change of reference for the current block to different locations
in Areorg-

4 Implementation of Communication Routines

To make the factorization routines (trans)portable over and between different
SMM and DMM environments, all machine and compiler dependencies have
been captured in communication routines with the same interfaces for both
SMM and DMM systems. These implement the broadcasting and the reception
of double precision and integer matrices on three MIMD machines using their

Ring-Oriented Matrix Factorizations for SMM and DMM 75

extensions to FORTRAN 77 for communication and synchronization. The ma-
chines and compilers used are: Alliant FX2816 and FX/FORTRAN-2800 [1],
IBM 3090 VF/600J and VS FORTRAN 2.5 [16], the Intel iPSC/2 hypercube
and {77 [17].

The implementations on the iPSC/2 consist of interfaces to iPSC/2 commu-
nication library routines. For the SMM systems Alliant and IBM the BROADCAST
and RECEIVE routines are implemented as an update of a current block pointer.
To ensure that only one processor can get access to the pointer at a time it is
synchronized by semaphores. In Figure 2 the body of the Alliant BROADCAST
and RECEIVE subroutines are displayed. The routines look the same for the IBM
system except for the syntax of the semaphores.

Figure 2: Alliant double precision BROADCAST and RECEIVE subroutine bodies.

C BROADCAST C RECEIVE
C C
IF (MSGID .EQ. CB) THEN IF (MSGID .EQ. CB) THEN
99 CALL ENTER(Q) 99 CALL ENTER()
IF (SHDATA(1) .NE. 0) THEN IF (SHDATA(O) .EQ. CBI) THEN
CALL LEAVE(Q) CALL LEAVE(Q)
GOTO 99 GOTO 99
ELSE ELSE
SHDATA(0) = LOCAL_CBI CBI = SHDATA(O)
LOCAL_CBI = LOCAL_CBI + N SHDATA(1) = SHDATA(1) - 1
SHDATA(1) =P ENDIF
ENDIF CALL LEAVEQ)
CALL LEAVEQ) ENDIF
ENDIF

The BROADCAST and RECEIVE implementations are not general, but sufficient
for the LU, Cholesky, and QR factorizations. For example, there is no need
for explicit synchronization of the pivot vector in the LU factorization, since it
is implicitly synchronized by the communication for the current block. There-
fore, the communication routines for integer matrices are implemented as quick
returns. Before calling a factorization routine, the “message passing” on the
SMM system has to be initialized by a call to an initialization routine. Further
details can be found in [6].

5 Performance results

We present performance results for the LU, Cholesky, and QR factorizations
implemented as node subprograms in FORTRAN 77 and compiled for Alliant
FX2816, Intel iPSC/2, and IBM 3090 VF/600J.

When we use these node subprograms the processors are assumed to be
allocated and the matrix A is properly distributed or reordered. The timing of

76 Paper II

the routines measures the execution time for the factorizations, which all involve
O(n?®) arithmetic operations (for m = n) and communications (excluding the
initial matrix distribution or reordering). The initial reordering of A on the
SMM platforms is an O(n?) operation which is perfectly parallelizable.

The results in Tables 1 — 3 show the performance measured in Mflops, com-
puted as the maximum time over p nodes divided by the number of floating
point operations counted as in [2]. The optimal block size nb and the parallel
efficiency, E(p), are displayed for the three algorithms. The parallel efficiency
is computed as
_ Mflops(p)/Mflops(pmin)

P/Prain

where Mflops(z) is the Mflops number for processors, and pmin is the minimum
number of nodes that could solve the problem. The value of punin is one for the
Alliant and IBM systems while it is restricted by the available storage on each
node for the iPSC/2 (at most 4 Mbytes per node including the code).

E(p)

5.1 Alliant FX2816

The SMM system consists of 16 Intel i860 processors each with a theoretical
peak performance of 40 Mflops in double precision real arithmetic. We use the
DGEMM routine from the Alliant library libalgebra 2.0 [1]. Its best uniprocessor
performance is about 35 Mflops. All other level-3 BLAS used are from the
GEMM-based library [19, 20]. In Table 1, performance results on one to eight
processors for the three routines are shown. By restricting the size of the cluster
to eight, only the two processors (of four) that have distinct cache controllers
on each processor module are used. This minimizes the memory conflicts in the
global cache.

5.2 Intel iPSC/2 Hypercube

This DMM system has 64 scalar SX nodes. Each node is equipped with an
Intel 80386, 4 Mbyte memory, and a Weitec 1167, which has a theoretical peak
performance just under 0.6 Mflops in double precision real arithmetic. The
BLAS used are the standard FORTRAN 77 implementations accompanying
[2]. The best performance obtained from the level-3 BLA routine DGEMM is
around 0.5 Mflops [5]. Results for iPSC/2 are presented in Table 2 together
with previously presented results, prev, for machine specific implementations

[5].

5.3 IBM 3090 VF/600J

The SMM system has 6 processors, each equipped with a vector facility (VF).
The theoretical peak performance is 138 Mflops per processor in double precision
real arithmetic. The practical peak performance obtained from the level-3 BLA

Ring-Oriented Matrix Factorizations for SMM and DMM

7

Table 1: Alliant FX2816: LU, Cholesky, and QR factorizations of a 1024 x 1024

matrix.
LU Cholesky QR
p | nb Mflops E(p) | nb Mflops E(p) | nb Mflops E(p)
1] 64 25.1 1.00 | 64 25.2 1.00 | 32 25.8 1.00
2 | 48 47.8 0.95 | 64 47.7 095 | 32 494 0.96
3 | 48 67.2 0.89 | 48 66.2 0.88 | 32 70.9 0.92
4 | 48 86.4 0.86 | 32 79.8 0.79 | 32 90.8 0.88
5148 102.0 0.81 | 32 90.0 0.71 | 16 109.0 0.85
6 | 32 113.3 0.75 | 32 96.0 0.63 | 16 125.5 0.81
7 32 125.7 0.72 | 16 103.6 0.59 | 16 141.7 0.79
8| 32 137.0 0.68 | 16 109.5 054 | 16 153.2 0.74

Table 2: Intel iPSC/2:

LU, Cholesky, and QR factorizations of a 1000 x 1000

matrix.
LU Cholesky QR
p |nb Mflops E(p) Prev|nb Mflops E(p) Prev|nb Mflops E(p) Prev
414 129 100 129 |8 129 1.00 1.29|4 155 1.00 1.55
812 253 098 253 |8 254 099 2532 3.06 099 3.06
162 493 096 493 |4 4838 095 483 |2 599 0.97 6.00
322 940 091 9392 873 085 839|1 11.58 0.93 11.65
641 17.10 0.83 17.02| 2 13.40 0.65 12.79| 2 21.54 0.87 21.71

Table 3: IBM 3090 VF/600J: LU, Cholesky, and QR factorizations of a 1200 x
1200 matrix.

LU

Cholesky

QR

nb Mflops E(p) Prev

nb Mflops E(p) Prev

nb Mflops E(p)

Prev

U W N R

48
32
32
32
32

97.3
188.6
275.7
356.6
427.9

1.00
0.97
0.94
0.92
0.88

98.1 256 99.6

192.9
277.6
355.2
431.0

96
64
32
48

178.5
255.0
315.8
353.8

1.00
0.90
0.85
0.79
0.71

91.9
173.1
247.2
307.8
354.4

32
32
32
32
32

92.8 1.00
183.2 0.99
267.2 0.96
345.8 0.93
402.7 0.87

94.2
182.9
266.0
345.2
413.2

78 Paper II

routine DGEMM is around 108 Mflops [7]. The level-3 BLAS used are from
ESSL [16], except for a tuned FORTRAN implementation of DTRMM [22].
Results for IBM 3090 are presented in Table 3 together with previously presented
results, prev, for machine specific implementations [7].

6 Performance Modeling

A model that identifies different components of the total execution time Tpred(p)
using p processors can be expressed as

Torea(p) = Ta(p) + Te(p) + Tw(p), (6.1)

where T}, (p) is the arithmetic time, T,(p) is the communication time, and T, (p)
is the waiting time, including both idle and busy waiting. From T},eda(p) it is, for
example, possible to estimate optimal block sizes for given matrix sizes (m,n)
and p. A reasonable simplification is to consider average times for the different
time components. The motivation is that for sufficiently large matrices and
almost optimal block sizes, the initial “matrix distribution” gives the processors
approximately the same amount of work.

6.1 Arithmetic Time

We express the average arithmetic time T,(p) of an algorithm, implemented on
a DMM or an SMM system, as

_ #ﬂops 1
~ Sa(p,nb)

where # flops is the total number of floating point operations of the matrix fac-
torization, t, is the time required for one floating point operation and S, (p, nb)
is the arithmetic speedup on p processors with block size nb (excluding the costs
for communication and waiting). Due to the memory hierarchy of the processor
node and software overhead, the arithmetic time on one processor varies for
different matrix and block sizes. The function V(m,n,nb) models this variation
in performance. It can, for example, be determined from a least squares fit of
uniprocessor timing results for different m,n and block sizes nb. As a conse-
quence also the arithmetic speedup varies and we express S,(p, nb) as the linear
speedup times a factor that models the variation of the arithmetic speedup
(p(1 + v), where |v(m,n,nb)| < 1). Accurate iPSC/2 models for V(m,n,nb)
and S, (p, nb) are presented in [5].

T.(p) V(m,n,nb), (6.2)

6.2 Communication Time

Since all communications are expressed by message passing primitives T,(p) can
be modeled in terms of the number of messages each processor communicates

Ring-Oriented Matrix Factorizations for SMM and DMM 79

(broadcasts or receives) and the cost for sending and receiving a message of a
given size. To make the discussion clearer, we assume that m = n, all block
columns have the same number of columns, i.e., n is a multiple of nb, and that
the number of block columns nbl = n/nb is a multiple of p. In Table 4 the total
message traffic of the three ring-oriented block algorithms is displayed.

Table 4: Message traffic of the ring-oriented block algorithms for m = n and
nbl = n/nb.

BROADCAST RECEIVE
Factorization | # Blocks Size (in bytes) | # Blocks Size (in bytes)
LU nbl 4(n?+n-nb) |(p—1)nbl 4(p—1)(n?+n - nbd)
nbl 8n (p—1)nbl 8(p—1)-n
Cholesky nbl—1 4(n?—n-nb) | (p—1)(nbl—1) 4(p—1)(n?—n -nb)
QR nbl 4(n?+n-nb) | (p—1)nbl 4(p—1)(n?+n - nb)
nbl 8n - nb (p—1)nbl 8(p—1)-n-nb

In each iteration of the generic algorithm one message is broadcasted and
p — 1 messages are received. For the LU factorization, the factorized block and
a part of the pivot vector are broadcasted in each iteration. In the Cholesky fac-
torization, only the factorized block is sent in each iteration (except for the last
one). The size of the current block in iteration 7 is (n —i-nb)nb for the Cholesky
factorization while it is (n — (¢ — 1)nb)nb for the LU and QR factorizations. In
the QR factorization we use a compact WY representation of the block trans-
formation in each step (see, e.g. [12]), so besides the factorized block we have
to broadcast a triangular matrix S in each block iteration. The costs for com-
municating these messages are entirely determined by our target architecture.
For a DMM environment the usual linear model + M 3 can be used, where «
is the startup cost and [is the cost per unit for communicating a message of
M Dbytes. Average time models of T,.(p) for iPSC/2 are presented in [5]. In an
SMM environment a single address space is accessible to every processor in the
system. The “message passing” is accomplished through synchronized access
of shared variables in a shared memory system. The communication costs are
determined by the memory hierarchy of the system and the costs for synchro-
nization (e.g. cache and latency effects). A modeling of the Alliant FX2800 is
under investigation.

6.3 Waiting Time

The average waiting time T,,(p) can be divided into two parts; busy waiting
time, Ty, (p), and idle waiting time, T;y,(p). Thw(p) comprises the time needed
for the first processor to factorize and “distribute” the first current block, and
the time when different processors are “waiting for” messages to arrive. The last

80 Paper 11

part exists if the current processor uses more time to produce the next factorized
block (including its broadcast) than the other processors need for the update
corresponding to the previous factorization. Essentially, T}, (p) comprises the
time some processors are idle at the end of the computations (mainly due to
imbalance of the load). In [5] an iPSC/2 model for T, (p) is discussed.

7 Discussion

The performance results in Section 5 show that the generic ring-oriented algo-
rithms are (trans)portable and give good parallel performance on both DMM
and SMM environments. The results compete favourably with previously pub-
lished results for machine specific implementations of similar algorithms on IBM
3090 VF/600J [7] and iPSC/2 [5]. To our knowledge the Alliant FX2816 results
are the best available for these three matrix factorizations programmed entirely
in FX/FORTRAN-2800. The similarity in performance on the iPSC/2 is ex-
plained by the small differences between the generic implementations and the
machine specific versions. It follows that the modeling and performance evalu-
ation in [5] also are valid for the ring-oriented algorithms discussed here. The
modeled execution time, T} eq, predicts the best block size to be the same as
the best one in real execution, except occasionally, when it predicts a nearby
block size which in real execution shows a performance close to the optimal one.
For the SMM environments the good performance of the ring-oriented algo-
rithms are explained by the reorganization of the matrix, giving each processor
block columns that are stored consecutively, and the proportionately low syn-
chronization costs. The consecutive storage enables updating of several block
columns in one operation, instead of one operation per block column. This im-
plies less amount of software overhead and larger matrices in the level-3 BLAS
operations. In [7] software overhead and level-3 fractions for parallel block ma-
trix factorizations and their impact on the performance of an SMM system are
discussed.

Due to space limits, we have only presented results for a fixed problem size
and a varying number of processors. In this case the parallel speedup is an ap-
propriate measure of the scalability of the algorithm. Both the parallel speedup
and the parallel efficiency are determined by the serial fraction of the algorithm,
as well as, communication costs and possible overhead due to redundant work.
For the number of processors we have used, the algorithm-architecture com-
binations show speedups with a linear behaviour and we can argue that the
algorithms have good scaling properties. In general, the solution time may fin-
ish to decrease (or even increase) due to the parallel overheads if we continue
to increase the number of processors while maintaining a fixed problem size. It
would then be more appropriate to consider the scaled-speedup which is defined
as the speedup obtained when the problem size is increased linearly with p [14].
For example, results for iPSC/2 in [5] show that the maximal performance per

Ring-Oriented Matrix Factorizations for SMM and DMM 81

processor is almost constant if the matrix is large enough (see also [9]).

The GEMM-based level-3 BLAS [19, 20] and a highly optimized uni-processor
DGEMM routine make the ring-oriented approach efficient on both DMM and
SMM platforms. Here demonstrated on the Alliant FX2816 system. Now,
all machine dependencies are restricted to the communication primitives, the
DGEMM routine and lower level BLAS. The implementation of the communi-
cation primitives on an SMM environment is cost effective and easy, and will be
further simplified in FORTRAN 90, which offers dynamic data structures.

We believe our approach is applicable to block algorithms in general, making
it possible to construct a complete library portable over and between DMM and
SMM platforms. This enables use of routines in sequence, hopefully without
redistribution or reorganization of the matrix between each operation. If a
reorganization is needed on a SMM system, it is an easily parallelized O(m -
n) operation. The cost for redistributing a matrix on a DMM environment
is determined by the connectivity properties of the physical interconnection
network, and is normally more expensive than on an SMM model. Moreover, it
is possible to extend our approach to a 2-dimensional mesh topology and use a
square block scattered decomposition of the matrices (e.g. see [10, 9]) for both

DMM and SMM environments.

References

[1] Alliant Computer Systems Corporation. FX/FORTRAN-2800, Program-
mer’s Handbook. FX/SERIES Linear Algebra Library. 1990.

[2] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and D.
Sorensen, LAPACK Users’ Guide, Society for Industrial and Applied Math-
ematics, Philadelphia, 1992.

[3] L. Bomans, D. Roose, and R. Hempel. The Argonne/GMD macros in
Fortran for portable programming and their implementation on the Intel
iPSC/2. Parallel Computing, 15, (1990), pp 119-132.

[4] J. Boyle, R. Butler, T. Disz, B. Glickfeld, E. Lusk, R. Overbeek, J. Pat-
terson, and R. Stevens, Portable Programs for Parallel Processing, Holt,
Rinehart, and Winston, Inc, 1987.

[5] K. Dackland and E. Elmroth. Parallel Block Matrix Factorizations for
Distributed Memory Multicomputers. Report UMINF-92.03, Inst. of Infor-
mation Processing, Univ. of Umed, S-901 87 Umed, May 1992.

[6] K. Dackland and E. Elmroth. Ring-oriented Block Matrix Factorization
Algorithms for Shared and Distributed Memory Architectures. Report

82 Paper 11

UMINF-92.04, Inst. of Information Processing, Univ. of Umea, S-901 87
Umed, June 1992.

[7] K. Dackland, E. Elmroth, B. Kagstrom, and C. Van Loan. Parallel Block
Matrix Factorizations on the Shared Memory Multiprocessor IBM 3090
VF/600J. International Journal of Supercomputer Applications, Vol 6.1,
MIT Press (1992), pp 69-97

[8] J. Dongarra, J. Du Croz, S. Hammarling, and I. Duff. A Set of Level 3 Basic
Linear Algebra Subprograms. ACM Trans. on Mathematical Software, Vol.
16 (1990) pp 1-17, 18-28.

[9] J. Dongarra, R. van de Geijn, and D. Walker. A Look at Scalable Dense
Linear Algebra Libraries. ORNL/TM-12126, Oak Ridge National Lab., Oak
Ridge, Tennessee 37831, July 1992.

[10] G. Fox, G. Lyzenga, S. Otto, J. Salmon, and D. Walker, Solving Problems
on Concurrent Processors, Vol. 1, Prentice Hall, Englewood Cliffs, N.J.,
1988.

[11] K. Gallivan, R. Plemmons, and A. Sameh. Parallel Algorithms for Dense
Linear Algebra Computations. STAM Review, Vol. 32 (1990), pp 54-135.

[12] G. Golub and C. Van Loan, Matriz Computations, 2nd edition, John Hop-
kins Press, 1989.

[13] A. Geist, M. Heath, B. Peyton, and P. Worley. PICL a Portable Instru-
mented Communication Library. Tech. Memorandum ORNL/TM-6150,
Oak Ridge National Laboratory, 1990, pp 1213-1222.

[14] J. L. Gustafson, G. R. Montry, and R. E. Benner. Development of Parallel
Methods for a 1024-Processor Hypercube. STAM J. Sci. Statist. Comput.,
Vol. 9(4) (1988), pp 609-638.

[15] H. Hellwagner. A Survey of Virtually Shared Memory Schemes. TUM-
19056, Institut fiir Informatik, Technische Universitat Miinchen, 1990.

[16] IBM. Engineering and Scientific Subroutine Library Guide and Reference.
SC23-0184-3, Nov.1988. VS FORTRAN Version 2 Release 5 Language and
Library Reference. SC26-4221-6, Dec.1990.

[17] Intel Corporation. iPSC/2 and iPSC/860, Programmer’s Reference Man-
ual. June 1990.

[18] V. Kumar and A. Gupta. Analyzing Scalability of Parallel Algorithms and
Architectures. TR 91-18, Dept. of Computer Science, Univ. of Minnesota,
Minneapolis, MN - 55455, Revised Nov. 1992.

Ring-Oriented Matrix Factorizations for SMM and DMM 83

[19]

[20]

[21]

[23]

B. Kagstrom P. Ling, and C. Van Loan. High Performance GEMM-Based
Level-3 BLAS: Sample Routines for Double Precision Real Data. In M.
Durand and F. El Dabaghi (eds.), High Performance Computing II, Elsevier
Science Publishers B.V. (North-Holland), (1991), pp 269-281.

B. Kégstrom and C. Van Loan. GEMM-Based Level-3 BLAS. Tech. Report
CTC91TR47, Cornell University, December 1989.

K. Li. IVY: A Shared Virtual Memory on Loosely Coupled Multiprocessors.
Ph.D. Thesis, Yale University, 1986.

P. Ling. A Set of High Performance Level-3 BLAS Structured and Tuned
for the IBM 3090 VF and Implemented in Fortran 77. Report UMINF-
179.90, Inst. of Information Processing, Univ. of Umea, S-901 87 Umea,
May 1990.

M. Stumm and S. Zhou. Algorithms Implementing Distributed Shared
Memory. IEEE Computer, Vol. 23, No. 5, (1989), pp 54-64.

84

Paper I1

Paper 111

The Set of 2-by-3 Matrix Pencils —
Kronecker Structures and their
Transitions under Perturbations*

Erik Elmroth and Bo Kagstrom

Department of Computing Science, Umea University,
S-901 87 Umead, Sweden.
E-mail: elmroth@cs.ume.se, bokg@cs.ume.se

Abstract

The set (or family) of 2-by-3 matrix pencils A — AB comprises 18
structurally different Kronecker structures (canonical forms). The alge-
braic and geometric characteristics of the generic and the 17 non-generic
cases are examined in full detail. The complete closure hierarchy of the
orbits of all different Kronecker structures is derived and presented in a
closure graph that show how the structures relate to each other in the
12-dimensional space spanned by the set of 2-by-3 pencils. Necessary
conditions on perturbations for transiting from the orbit of one Kronecker
structure to another in the closure hierarchy are presented in a labeled
closure graph. The node and arc labels show geometric characteristics of
an orbit’s Kronecker structure and the change of geometric characteristics
when transiting to an adjacent node, respectively. Computable normwise
bounds for the smallest perturbations (§A,8B) of a generic 2-by-3 pencil
A—)\B such that (A+6A)—\(B+3B) has a specific non-generic Kronecker
structure are presented. First explicit expressions for the perturbations
that transfer A — AB to a specified non-generic form are derived. In this
context tractable and intractable perturbations are defined. Secondly,
a modified GUPTRI that computes a specified Kronecker structure of a

*To appear in SIAM Journal on Matriz Analysis and its Applications. Preprinted by per-
mission of STAM, Philadelphia. (©1995 The Society for Industrial and Applied Mathematics.

87

88 Paper IIT

generic pencil is used. Perturbations devised to impose a certain non-
generic structure is computed in a way that guarantees to find a KCF
on the closure of the orbit of the intended KCF. Both approaches are
illustrated by computational experiments. Moreover, a study of the be-
haviour of the non-generic structures under random perturbations in finite
precision arithmetic (using the GUPTRI software) show for which sizes of
perturbations the structures are invariant and also that structure transi-
tions occur in accordance with the closure hierarchy. Finally, some of the
results are extended to the general m-by-(m + 1) case.

Keywords: Matrix pencils (2-by-3), Kronecker canonical form, generalized
Schur decomposition, orbit, codimension, Kronecker structure hierarchy, closest
non-generic structure, controllability.

1 Introduction

Singular matrix pencils A—AB, where A and B are m-by-n matrices with real or
complex entries, appear in several applications. Examples include problems in
control theory relating to a linear system Ei(t) = Fz(t)+Gu(t), where E and F'
are p-by-p matrices, and G is p-by-k. Solvability issues of a singular system (i.e.,
det(E) = 0), such as the existence of a solution, consistent initial values, and
its explicit solution can be revealed from the Kronecker structure of A — AB =
F — \E (e.g. see [9, 20]). The problems to find the controllable subspace,
uncontrollable modes or an upper bound on the distance to uncontrollability
for a controllable system Ez(t) = Fxz(t) + Gu(t) can all be formulated and
solved in terms of certain reducing subspaces of the matrix pencil A — AB =
[G F]—A0 E] (e.g. see[15,17, 18, 6]).

In most applications it is enough to transfer A — AB to a generalized Schur

form (e.g. to GUPTRI form [7, 8])

[A, — \B, * *]
PH(A - AB)Q = 0 Areg — ABreg * ; (1.1)
[0 0 A, — AB J

where P (m-by-m) and @ (n-by-n) are unitary and * denotes arbitrary conform-
ing submatrices. Here the square upper triangular block A,cq — AB;.4 is regular
and has the same regular structure as A — AB (i.e., contains all generalized
eigenvalues (finite and infinite) of A — AB). The rectangular blocks A, — AB,
and A; — AB; contain the singular structure (right and left minimal indices) of
the pencil and are block upper triangular. The singular blocks of right (column)

The Set of 2-by-3 Matrix Pencils 89

and left (row) indices of grade j are

L;= . and LT = | (1.2)
-1)

of size j-by-(j + 1) and (5 + 1)-by-j, respectively. A, — AB, has only right
minimal indices in its Kronecker canonical form (KCF), indeed the same L;
blocks as A — AB. Similarly, A; — AB; has only left minimal indices in its KCF,
the same L]-T blocks as A — AB. If A — AB is singular at least one of A, — AB,
and A; — AB; will be present in (1.1). The explicit structure of the diagonal
blocks in staircase form can be found in [8]. If A — AB is regular A, — AB, and
A; — AB; are not present in (1.1) and the GUPTRI form reduces to the upper
triangular block A,ey — AB;cq. Staircase forms that reveal the Jordan structure
of the zero and infinite eigenvalues are contained in A,.; — AB, 4.

Given A — AB in GUPTRI form we also know different pairs of reducing
subspaces [18, 7]. Suppose the eigenvalues on the diagonal of A,., — AByeq
are ordered so that the first k, say, are in A; (a subset of the spectrum of
Areg — AByeg) and the remainder are outside A;. Let A, — AB, be m,-by-n,.
Then the left and right reducing subspaces associated with A; are spanned by
the leading m,.+k columns of P and the leading n,.+k columuns of @, respectively.
When A; is empty, the corresponding reducing subspaces are called minimal,
and when A; contains the whole spectrum the reducing subspaces are called
mazimal.

If A— AB is m-by-n, where m # n, then for almost all A and B it will have
the same KCF, depending only on m and n (the generic case). The generic
Kronecker structure for A — AB withd =n—m > 0is

diag(La,...,La,La+1,...,La+1), (13)

where o = |m/d], the total number of blocks is d, and the number of Lq41
blocks is m mod d (which is 0 when d divides m) [16, 3]. The same statement
holds for d = m — n > 0 if we replace Ly, Ly41 in (1.3) by Lg,L£+1. Square
pencils are generically regular, i.e., det(A — AB) = 0 if and only if A is an eigen-
value. The generic singular pencils of size n-by-n have the Kronecker structures
[19]:

diag(L;, LY _, 4), j=0,...,n—1. (1.4)
In summary, generic rectangular pencils have only trivial reducing subspaces
and no generalized eigenvalues at all. Generic square singular pencils have the
same minimal and maximal reducing subspaces. Only if A — AB satisfies a spe-
cial condition (lies in a particular manifold) does it have nontrivial reducing
subspaces and generalized eigenvalues (the non-generic case). Moreover, only
if it is perturbed so as to move continuously within that manifold do its reduc-

ing subspaces and generalized eigenvalues also move continuously and satisfy

90 Paper IIT

interesting error bounds [5, 7]. These requirements are natural in many control
and systems theoretic problems such as computing controllable subspaces and
uncontrollable modes.

Several authors have proposed (staircase-type) algorithms for computing a
generalized Schur form (e.g. see [1, 4, 13, 14, 11, 12, 16, 20]). They are numeri-
cally stable in the sense that they compute the exact Kronecker structure (gen-
eralized Schur form or something similar) of a nearby pencil A’ —AB'. Let || ||g
denote the Euclidean (Frobenius) matrix norm. Then é = ||(A - A", B — B')| g
is an upper bound on the distance to the closest (A + 6A, B + éB) with the
KCF of (4’, B’). Recently, robust software with error bounds for computing
the GUPTRI form of a singular A — AB has been published [7, 8]. Some com-
putational experiments that use this software will be discussed later.

The existing algorithms do not guarantee that the computed generalized
Schur form is the “most” non-generic Kronecker structure within distance 6.
However, if 6 is of the size O(||(A, B)||z€), where € is the relative machine
precision, we know that (A, B) is close to a matrix with the Kronecker structure
that the algorithm reports. It would of course be desirable to have algorithms
that could solve the following “nearness” problems:

e Compute the closest non-generic pencil of a generic A — AB.
e Compute the closest matrix pencil with a specified Kronecker structure.
e Compute the most non-generic pencil within a given distance 6.

If the closest structure is not unique we are mainly interested in the most
non-generic KCF. From the perturbation theory for singular pencils [5] we know
that all these problems are ill-posed in the sense that the generalized eigenvalues
and reducing subspaces for a non-generic A — AB can change discontinuously
as a function of A and B. Therefore, to be able to solve these problems we
need to regularize them by restricting the allowable perturbations as mentioned
above. In this contribution we make a comprehensive study of the set of 2-by-3
pencils in order to get a greater understanding of () these “nearness” problems
and how to solve them, and (i7) existing algorithms/software for computing the
Kronecker structure of a singular pencil. The full implications of this “case
study” to general m-by-n pencils are topics for further research.

In the following we give a summary of our contribution and the organization
of the rest of the paper. Section 2 is devoted to algebraic and geometric charac-
teristics of the set of 2-by-3 pencils. In Section 2.1 we disclose the structurally
different Kronecker structures and show how all the non-generic structures can
be generated by a staircase-type algorithm, starting from the generic canonical
form. Some algebraic and geometric characteristics of the 18 different Kro-
necker structures are summarized in three tables. Section 2.2 introduces the
concepts of orbits of matrix pencils and their (co)dimensions. The codimen-
sions of the orbits of the 2-by-3 matrix pencils, which depend only on their

The Set of 2-by-3 Matrix Pencils 91

Kronecker structures [3], are displayed in Table 3. They vary between zero (the
generic case) and 12 (= 2mn) for the zero pencil (the most non-generic case).
Indeed, all 2-by-3 pencils “live” in a 12-dimensional space spanned by the set
of all generic pencils. In Section 2.3 we derive a graph describing the closure
hierarchy of the orbits of all 18 different Kronecker structures for the set of 2-
by-3 pencils. The closure graph is presented in Figure 1. By labeling the nodes
in the closure graph with their geometric characteristics and the arcs with the
change in geometric characteristics for transiting to an adjacent node, we get a
labeled graph showing necessary conditions on perturbations for transiting from
one Kronecker structure to another. The labeled closure graph is presented in
Figure 2 in Section 2.4.

Section 3 is devoted to an experimental study of how the non-generic Kro-
necker structures behave under random perturbations in finite precision arith-
metic, using the GUPTRI software [7, 8]. Assuming a fixed relative accuracy of
the input data, structure invariances and transitions of each non-generic case
are studied as a function of the size of the perturbations added. The results
summarized in Table 4 are discussed in terms of tolerance parameters used in
GUPTRI for determining the Kronecker structure. For large enough perturba-
tions all non-generic pencils turn generic (as expected). Some non-generic cases
transit between several non-generic structures before turning generic. These
transitions always go from higher to lower codimensions, along the arcs in the
closure graph.

In Section 4 we present computable normwise bounds for the smallest pertur-
bations (64, §B) of a generic 2-by-3 pencil A—AB such that (A+6A4)—A(B+6B)
has a specific non-generic Kronecker structure. Two approaches to impose a
non-generic structure are considered. First, explicit expressions for the per-
turbations that transfer A — AB to a specified non-generic form are derived in
Section 4.1. In this context tractable and intractable perturbations are defined.
We compute a perturbation (§4,8B) such that (A + §A4) — A(B + 6B) is guar-
anteed to be in the closure of the manifold (orbit) of a certain KCF. If the KCF
found is the intended KCF, then the perturbation is said to be tractable. If
the KCF found is even more non-generic then the perturbation is intractable.
An intractable perturbation finds any other structure within the closure of the
manifold, i.e., a structure that can be found by traveling along the arcs from
the intended KCF in the closure graph. A summary of these perturbations is
presented in a perturbation graph (Figure 3), where the path to each KCF’s
node shows the tractable perturbation required to find that KCF starting from
the generic KCF (an Ls block). After illustrating intractable perturbations we
derive some results regarding the closest non-generic Kronecker structure of a
generic 2-by-3 (and 1-by-2) pencil. In the second approach, we use a modified
GUPTRI for computing a specified Kronecker structure of a generic pencil (Sec-
tion 4.2). Computational experiments on random 2-by-3 pencils for the two
approaches are presented in Section 4.3. It is the intractable perturbations,
which impose the most non-generic structure (with highest codimension) for a

92 Paper IIT

given size of the perturbations (e.g. the relative accuracy of the data), that
are requested in applications (e.g. computing the uncontrollable subspace). Fi-
nally, in Section 5 we comment on the general case and extend our results for
the closest non-generic pencil to a generic m-by-(m + 1) pencil.

2 Algebraic and Geometric Characteristics of
the Set of 2-by-3 Matrix Pencils

In this section we disclose the structurally different Kronecker structures and
show how all the non-generic structures can be generated by a staircase-type
algorithm, starting from the generic canonical form. Moreover, we discuss the
codimensions of associated orbits and derive a closure graph, showing the Kro-
necker structure hierarchy of the set of 2-by-3 pencils.

2.1 Structurally Different Kronecker Structures

The generic case corresponds to A and B of size 2-by-3 both having full row rank
and non-intersecting column nullspaces. This implies that A — AB is strictly
equivalent to an Lo block:

_ _[-» 1 0]_Jo0o 10 100
Pl(A—)\B)QILQZ[O — 1]_[00 1]_>\[0 1 0]'

By inspection, we see that the A- and B-parts of Ly have row rank 2 and non-
intersecting 1-dimensional column nullspaces. The generic canonical form L,
can be obtained by deleting the last row of J3(0) — Al3, a 3-by-3 Jordan block
corresponding to the zero eigenvalue. J5(0) is the generic canonical form of a
3-by-3 matrix with zero as a triple eigenvalue and the associated non-generic
Jordan structures are J2(0) ® J;(0) and J;(0) ® J1(0) & J1(0) (i-e., a 3-by-3 zero
matrix). Notice that a generic 3-by-3 matrix is diagonalizable with unspecified
non-zero eigenvalues (i.e., all Jordan blocks of size 1-by-1).

In the following we disclose the structurally different non-generic singular
cases of size 2 x 3. By structurally different we mean that all cases have different
Kronecker structures (canonical forms). There exists 17 different non-generic
singular cases. The simplest way to construct all non-generic canonical forms
of size 2 X 3 is to generate all possible combinations of Ly, Ly, Jo, J1, Ry, Ny,
N, LY, and Lf blocks as in Table 1. Algorithms for computing the Kronecker
structure of a singular pencil reveal the right (or left) singular structure and the
Jordan structure of the zero (or infinite) eigenvalue simultaneously. Therefore,
we only distinguish the zero and infinite Jordan structures and put a non-zero
and finite eigenvalue in R;, a regular 1-by-1 block with an unspecified eigenvalue.
We will use Ry to denote a 2-by-2 block with non-zero finite eigenvalues, i.e.,
R, is used to denote any of the three structures Ji (o) @ J1(8), Ji(a) @ Ji(),

The Set of 2-by-3 Matrix Pencils 93

Table 1: 2 x 3 pencils built from different Kronecker and Jordan blocks.

Number of cases Block structure KCF

[=

2Lo ® {J1,Ri,N1} @ LY

I
|
-0 3

3 Mgl et R
5 [_DD] Lo @ {Ji,Ri, N} @ {J;, N1 }
3 [T]] Loels RN}
1 [] enoer
1 [| 2Leerf
[A
[

3Lo @ 2LT

and Jy(a), where a, 8 # {0,00}. Notice that if Ry = J>() then A—aB and B
has J5(0) in its KCF. It is only for the case Lo @ R, that we can have an Jo(«)
block. If we treat these three cases separately we get 19 non-generic cases, but
for our purposes it is sufficient to define R, as above.

In order to get more insight into the non-generic structures we would like
to show how all the non-generic structures can be generated by a staircase-type
algorithm. By dropping the row rank of the A-part and/or B-part of Ly (2.1)
and imposing different sizes of their “common column or row nullspace(s)” (see
Table 3) we are able to generate all 17 non-generic cases starting from the generic
canonical form (in the following denoted A — AB). Algorithmically, we keep the
rank of, for example, B constant and vary the row rank of A while imposing
possible sizes of their “common nullspace(s)”. A decrease of the row rank is done
by deleting a non-zero element (= 1) in the first or second row of A and/or B
and the dimension of the common column nullspace is imposed by permutations
of the non-zero elements. After decreasing the row rank of B by one we repeat
the procedure until the row rank of B equals zero. By doing so we can generate
12 structurally different non-generic pencils of size 2 x 3. These correspond to
cases 2-13 in Table 2, where we display a case number 4, the matrix pair (4;, B;),
r(4;),r(B;), the row ranks of A; and B;, respectively, n(4;, B;), the dimension

94 Paper IIT

of the common column nullspace of A; and B;. Finally, in the last column we
display the generalized Schur forms (GUPTRI forms) which correspond to the
Kronecker block structures displayed in Table 1.

Case 1 in Table 2 corresponds to the generic structure. Cases 2—5 are ob-
tained by keeping r(B;) = 2 and varying r(4;)(2,1,0) and n(4;, B;)(0,1). In
cases 6-10 we keep r(B;) = 1 and vary r(4;) (as before) and n(4;, B;)(0,1,2).
Finally, in cases 11-13 r(B;) = 0, r(4;) and n(A4;, B;) are varied ((0, 1, 2) and
(1, 2, 3), respectively). In cases 8, 9, 12 and 13, the matrix pairs have a common
row nullspace as well, corresponding to L blocks in their KCF. The number
of LT blocks equals the dimension of the common row nullspace (1 for cases
8, 9 and 12 and 2 for case 13). Notice that n(4;,B;) = 2 for three of these
four cases and n(A4;, B;) = 3 for case 13. However, n(4;, B;) = 2 is neither a
necessary or sufficient condition for a 2-by-3 matrix pair to have a common row
nullspace (see cases 7’ and 9’ below). If we exchange the roles of A and B in the
derivation of the non-generic forms 2-13 they will appear in a different order
with the N blocks and Ji(0) blocks exchanged.

We have five more cases to retrieve, denoted 1°, 10’, 4’, 7’ and 9’ in Table 2.
Case x’ denotes a case that has the same row-ranks and column-nullities as case
X, and is obtained from case x by permuting rows or columns.

Case 1’: By swapping columns 2 and 3 in B; we still have a matrix pair
with r(4;) = r(B;) = 2 and n(4;, B;) = 0. We denote this pencil case 1’. As
can be seen in Table 2, GUPTRI delivers the KCF L; & R; for Ay — ABy/. After
the first step of deflation in GUPTRI (which identifies that A;,7 = 1,1’ has a
1-dimensional column nullspace (n(4;) = 1) and that n(4;,B;) = 0,7 = 1,1')
we are left with the pencils:

AV aBM =T0 1]-a[1 0], AP-ABP =[0 1]-2r[0 1],
(2.2)
The difference is that n(Agl),Bil)) = 0 while n(A(l}),BS)) = 1. Is there any
algebraic explanation? We find the answer in the classical characterization of a
singular pencil with a right (column) index [9].
Let the matrix R[A, B, 1] of size (i +2)m x (i + 1)n be defined by

r A 0 0 T
B A
R[A,Byi|= | ¢ o | (2.3)
: B A
L0 0 B |

where A and B are m X n matrices. When it is clear from context we use the
abbreviated notation R[i] for R[A, B,i]. With the notation above we can state
the following theorem.

95

A
0
-
L

-2
-
-

[0

GUPTRI form

r(A4;) r(B:) n(A; Bi)

0
1-2A

0 1-2
0

0

0 1-2AX
0 1-X 0

0

0

a1
7]

00
00

B;

Table 2: Summary of the 18 structurally different 2 x 3 pencils, numbered and

presented in the order they are derived in Section 2.

The Set of 2-by-3 Matrix Pencils

96 Paper IIT

Theorem 2.1 [9] The following statements are equivalent.

e A — AB is singular with a right (column) minimal index of lowest degree
k>0, i.e., A— AB has no right minimal indices of degree < k.

e A —)\B is equivalent to the pencil

L 0
Tl (2.4

where Ly, is a k X (k+ 1) Kronecker block. A" — AB' may have indices of
higher degree.

o R[i] has full column rank r(R[i]) = (i + 1)n for i =0,1,...,k — 1, while
r(R[k]) < (k + 1)n, or equivalently, the column nullity n(R[i]) = 0 for
1=0,1,...,k—1 and n(R[k]) > 0.

By applying Theorem 2.1 to cases 1 and 1’ we see that n(R[1]) = 0,n(R[2]) =
1 for case 1 while n(R[1]) = 1,n(RJ[2]) = 2 for case 1’, which justify that case
1 has an L, block as its KCF and case 1’ has an L; block in its KCF. After
the second deflation of case 1°, GUPTRI is left with the pencil [1] — A[1] which
corresponds to Rj, a regular block of size 1 x 1.

Case 10’: By swapping columns 2 and 3 of Bjg we still get a matrix pair
with r(4;) = 2,1(B;) = 1 and n(A4,, B;) = n(R[0]) = 1. We denote this pencil
case 10’. This swapping does not change the singular structure. However, the
N3 block in case 10 is now split into two regular 1 x 1 blocks N7 and Ry, i.e.,
one infinite eigenvalue is turned non-zero.

To get the remaining three cases we will swap rows 1 and 2 in A; for ¢« = 4,7
and 9.

Case 4’: If we swap rows 1 and 2 in A4 we still get a matrix pair with
r(A;) =1,r(B;) =2 and n(4;, B;) = 1. We denote this pencil case 4’. The only
difference is that the J5(0) block in case 4 is now split into two regular 1 x 1
blocks J1(0) and Ry, i.e., one zero eigenvalue is turned non-zero.

A dual form of Theorem 2.1 can be stated for a left (row) minimal index
of lowest degree k > 0. Then LI takes the place of Ly and L[A, B,i] of size
(7 + 1)m x (i + 2)n replaces R[A, B, 1], where

A B o -+ 0

L4,Bi=|9% 4 B , (2.5)
: 0
o --- 0 A B

and we are considering row ranks (or row nullities) of L[A, B, i]. (When it is clear
from context we also here use the abbreviated notation L[i] for L[A, B,i].) We
use this dual form to characterize the last two cases. Notice that n(R[A4, B,0])

The Set of 2-by-3 Matrix Pencils 97

is equivalent to the dimension of the common column nullspace for A and B and
that n(L[A4, B, 0]) is equivalent to the dimension of the common row nullspace
for the two matrices.

Case 7’: By swapping rows 1 and 2 in A7 we still get a matrix pair with
r(4;) = 1,1(B;) = 1 and n(A4;, B;) = 1. We denote this pencil case 7’. However,
this swap imposes a common row nullspace of A7» and Bz as well, and will
therefore change the singular structure completely. The regular part (J1(0)®N;)
disappears and is replaced by L; @ Ll i.e., the generic singular structure of a
2-by-2 pencil [19]. n(A4;,B;) = n(R[0]) = 1 for 4 = 7 and 7. For case 7,
n(R[1]) = 2,n(L[0]) = 0 while n(R[1]) = 3,n(L[0]) = 1 for case 7’.

Case 9’: By swapping rows 1 and 2 in Ag we still get a matrix pair with
r(A;) = 1,7(B;) = 1 and n(4;, B;) = 2. We denote this pencil case 9’. However,
Agr and By do not have a common row nullspace. Also here the regular part
disappears and Ry © LT turns into LT, i.e., a generic 2-by-1 pencil. n(L[0]) = 1
for case 9, while n(L[0]) = 0,n(L[0]) = 1 for case 9.

In Table 3 we display ranks of A;, B; and nullities of R[k] and L[k] for some
values of k together with our structurally different singular structures of the set
of 2-by-3 pencils. The ordering of the cases is explained in Section 2.2.

Table 3: Geometric characteristics of the 18 structurally different 2 x 3 pencils.

Case[r(4;) 1(B;) n(A;, By) n(R[1]) n(R[2]) n(L[0]) n(L[I))JKCF Cod(A4; — AB;)
1] 2 2 0 0 1 0 0 |[L, 0
|2 2 0 1 2 0 0 |[Li®R, 1
211 2 0 1 2 0 0 |LioJ; 2
6 | 2 1 0 1 2 0 0 |[LioN; 2
512 2 1 2 3 0 0 |Lo®R, 2
211 2 1 2 3 0 0 |Lo®Ji®R, 3
1000 2 1 1 2 3 0 0 |Lo®N,®R; 3
411 2 1 2 3 0 0 |Lo®J, 4
102 1 1 2 3 0 0 |Lo®N, 4
711 1 1 2 3 0 0 |Lo®Ji®N, 4
711 1 3 5 1 2 |Lo®Li®Ll 5
310 2 1 2 3 0 0 |Lo®2J; 6
11|12 0 1 2 3 0 0 |Lo®2N; 6
91 1 2 4 6 0 1 |2LesLT 6
91 1 2 4 6 1 2 |2LeeRy@Li 7
8| 0 1 2 4 6 1 2 [2Ly@ S oLy 8
12| 1 0 2 4 6 1 2 [2LgeN; LT 8
13/ 0 0 3 6 9 2 4 |3Lg@2LT 12

98 Paper IIT

2.2 Orbits and Their Codimensions

Each of the 18 singular canonical forms (A;, B;) in Table 3 defines a manifold
of strictly equivalent pencils in 2mn(= 12) dimensional space:

orbit(4; — AB;) = {P7'(4; — AB,)Q; : det(P;)det(Q;) # 0}.

The dimension of orbit(A — AB) is equal to the dimension of the tangent space,
tan(A — AB), to the orbit of A — AB. The tangent space is defined as

F(X,Y) = X(A—AB) — (A— ABYY, (2.6)

where X is an m Xm matrix and Y is an nxn matrix [3]. Since (2.6) maps a space
of dimension m? +n? linearly to a space of dimension 2mn, the dimension of the
tangent space is m? + n? — d, where d is the number of (linearly) independent
solutions of f(X,Y) =0.

The codimension is the dimension of the space complementary to the tangent
space, i.e.,

cod(A — AB) = 2mn — dim(tan(4 — AB)) = d — (m — n)?.

The codimensions of the orbits depend only on their Kronecker structures. Dem-
mel and Edelman [3] show that the codimension of the orbit of an m x n pencil
A — AB can be computed as the sum of separate codimensions:

cod(A — AB) = cjor + CRight + CLeft + CJor,Sing T CSing;

where the different components are defined as follows.
The codimension of the Jordan structure is

cror = Y (@) +3a2(N)+5a:(N)+...~1)+ D (@A) +3e(X)+5¢:(A)+...),

A#0,00 A=0,00

where the summation is over all eigenvalues and ¢;(A\) > ga(A) > g3(A)...,
denote the sizes of the Jordan blocks corresponding to the eigenvalue A. The
first part of cjor corresponds to unspecified eigenvalues different from zero and
infinity, which explains the term —1 in the codimension count.

The codimension of the right and left singular blocks are

CRight = Z(] — k- 1) and Cleft = Z(J — k-]_)’

i>k i>k
respectively, where the summation for crignt is over all pairs of blocks L; and
Ly, for which 5 > k, and the summation for cy,es is over all pairs of blocks LJT
and Lg for which 7 > k.
The codimension due to interaction between the Jordan structure and the
singular blocks is

CJor,Sing = (size of complete regular part) - (number of singular blocks).

The Set of 2-by-3 Matrix Pencils 99

The codimension due to interaction between right and left singular blocks is

CSing = Z(] + k+ 2),

j,k

where the summation is over all pairs of blocks L; and Lf.

The codimensions of our 18 different canonical forms are displayed in the last
column of Table 3. We have ordered the cases by increasing codimension. In
general, we see that by making A and B more rank deficient and increasing their
“common nullspace(s)” (n(R[k]) and n(L[k]) for k > 0) we generate non-generic
pencils with higher codimension. The generic pencil has codimension 0 while
the matrix pair (4, B) = (02x3,02x3) has codimension 12 (= 2mn), i.e., defines
a “point” in 12-dimensional space.

2.3 The Closure Graph for Different Kronecker Structures

Since orbit(Lsy) spans the complete 12-dimensional space, it is obvious that all
other structures are in the closure of the orbit of Ly, and it is just as obvious
that 3Lo @ 2LI (the zero pencil) is in the closure of the orbit of any other KCF.
Since all other closure relations are not that obvious, we derive a complete
closure graph for the set of 2-by-3 matrix pencils.

Throughout the paper we display graphs such that orbits (nodes) with the
same codimension are displayed on the same horizontal level.

Theorem 2.2 For the set of 2-by-3 pencils, the directed graph in Figure 1 shows
all closure relations as follows. One KCF is in the closure of the orbit of another
KCF if and only if it exists a path to its node from the node of the KCF defining
the closure (downwards in the graph).

Proof. First we prove that each arc in the graph correspond to a closure
relation, and then we prove that these are all arcs that can exist. We prove
that one KCF is in the closure of the orbit of another KCF by showing that
the one in the closure is just a special case of the one defining the closure. We
show proofs for each arc starting from the zero pencil. Since the proof is rather
space demanding, we here limit ourselves to prove one of the arcs and refer to
appendix A for the complete proof.

Starting at the zero pencil, the first arc with non-trivial proof corresponds
to that 2Ly @ J; @ L{ is in the closure of orbit(2Ly ® Ry @ LI). This follows
from the fact that 2Ly ® J; ® Lg is the special case a = 0 of

0 0 a| A\ 0 0 8
0 0O 0 0 0}’
which is equivalent to 2Lo@®R; ® LY for all other o (assuming that 3 is non-zero).

The proofs for all other arcs are done similarly. For some of them, an equiv-
alence transformation is needed for transformation to KCF. O

100 Paper IIT

Figure 1: A graph displaying the closure hierarchy of the orbits of all 18 different
KCF for the set of 2-by-3 matrix pencils. Cod(A — AB)

(Ly) 0

The Set of 2-by-3 Matrix Pencils 101

2.4 Labeled Closure Graph Showing Necessary Conditions
on Perturbations for Transiting from One Structure to
Another

One way to interpret a relation in the closure hierarchy is that a KCF that is
in the closure of the orbit of another KCF “lives” in the space defined by that
orbit. That is, if we consider the closure of the orbit of a non-generic KCF with
certain rank-defects in Table 3, then to be in that closure a KCF must preserve or
increase these defects. For example, since L; @ J; has rank(A) = 1, no KCF with
rank(A) > 1 can be in its closure. A necessary condition for a KCF to be in the
closure of orbit(L; @ Ji) is that the geometric characteristics r(A) < 1,r(B) <
2,n(A,B) > 0,n(R[1]) > 1,n(R[2]) > 2,n([L[0]) > 0 and n([L[1]) > O are
satisfied (see Table 3). Moreover, the change in geometric characteristics from,
for example, Ly ® J; whose orbit spans a 10-dimensional space (codimension is
2), to Lo & J; @ Ry whose orbit spans a 9-dimensional space (codimension is
3), is nothing but a 1-dimensional restriction of the 10-dimensional space. We
also note that Lo @ J; @ R; is in the closure of orbit(Lg @ R»), which also spans
a 10-dimensional space. Indeed, Lo @ J; ® R; spans a 9-dimensional space in
the intersection of the two 10-dimensional spaces spanned by the closures of
orbit(Ly & Jp) and orbit(Lo & Rs).

When looking for perturbations corresponding to the arcs in the graph, a
necessary condition for these perturbations is to fulfill the change in geometric
characteristics. Indeed, by combining the geometric characteristics in Table 3
and the closure graph we get necessary conditions on perturbations (64, § B) for
transiting from one structure to another.

We introduce the following labels. Let

[0 (4),0,(B),n(4, B), n(R[1]), n(R[2]), n([L[0]), n([L[1])]

label the geometric characteristics for one node in the graph, where n,.(A) and
n,(B) denote the dimension of the row-nullspace in A and B, respectively, and
all other characteristics are as in Table 3. Moreover, we label the change in
geometric characteristics for transiting from one structure to an adjacent node
by

< n-(4),0,(B),n(4, B),n(R[1]), n(R[2]), n([L[0]), n([L[1]) > .

In Figure 2 a labeled closure graph is presented, with the geometric characteris-
tics shown for each KCF and the change in geometric characteristics shown for
each arc.

When transiting from one KCF to another, the geometric characteristics of
the source node and the geometric characteristics on the arc are added to give
the characteristics of the destination KCF. Since a KCF in the closure of another
ones orbit cannot have a smaller dimensional nullspace for any of the matrices
of the labels, the values on the arcs must all be non-negative.

102 Paper IIT

Figure 2: The labeled closure graph for all 18 different KCF for the set of 2-by-3

matrix pencils.
Cod(A — AB)

(Lo)[0.0,0,41,0,0] 0

<0,0,0,1,1,0,0>

[0,0,0,1,2,0,0] 1
<1,0,0,0,0,0,0> <0,0,1,1,1,0,0>
[1,0,0,1,20,0] 2
<0,0,1,1,1,0,03 <10,0,0,0,0,03
:
<0,0,0,0,0,0,03 <0,1,0,0,0,0,0> . £0,0,0,0,0,0,0>
[1,0,1,2,3,00] 4
<01,01,213S
<1,001,21,2>
[1,1,1,351,2] 5

<1,0,6,0,0,0,0>
<0,1,0,0,0,0,0>

[(121‘2‘&0.0](L

<10,1,2,30,1>

Y

Lo®271)

[201,23,0,0]

[1,1,24,601] <0,01,11,0,0>
<0,0,00,0,1,1>

<01,12312> [1,124612] <1,01231,2> 7

<1,0,0,6,0,0,0>

<Q1,0,0,0,0,0>

[1,224612]2Lo®N1SL]

<0,1,1,2312> <101,2312>

[2,2,3,6,9,24] 12

The Set of 2-by-3 Matrix Pencils 103

Notice that the arc from Lo® J; ® Ry to Lo® Jo and the arc from Lo® R; &Ny
to Lo ® N2 both have no change in the geometric characteristics. For these
transitions the non-zero finite eigenvalue is turned to a zero eigenvalue and to
an infinite eigenvalue, respectively. This does not affect any of the nullspaces
displayed in the labels.

To transit several levels in the closure graph we just add the labels of changes
in geometric characteristics for the arcs that are traveled during the transition.
Each label of changes in geometric characteristics define necessary conditions
on the perturbations (64,6B) to perform the transit. Later, we will derive
perturbations required to transit from Ly to any of the non-generic structures.
In our derivation, however, we for most cases transit directly to the intended
structure. There are only a few cases that require compound perturbations that
transit via another KCF.

3 Structure Invariances and Transitions of Non-
Generic Pencils under Perturbations

Since computing the Kronecker structure of a singular pencil is a potentially ill-
posed problem [5], it is interesting to see how the non-generic cases behave under
perturbations in finite precision arithmetic. We add (uniformly distributed)
random perturbations of different sizes €, (= 10719,1079,..., 1072) to all A; and
B;, corresponding to the generic and 17 non-generic cases, and compute their
generalized Schur forms using GUPTRI [7, 8] assuming a fixed relative accuracy
€.(= 1078) of the input data. We repeat this procedure 100 times and study
the structure invariances and transitions of each non-generic case as a function
of the size of the perturbations added.

GUPTRI has two input parameters EPSU (e, above) and GAP which are used to
make rank decisions in order to determine the Kronecker structure of an input
pencil A — AB. Inside GUPTRI the absolute tolerances EPSUA = || A|| g - EPSU and
EPSUB = || B||g - EPSU are used in all rank decisions, where the matrices A and
B, respectively, are involved. Suppose the singular values of A are computed in
increasing order, i.e., 0 < 01 < 03 < ... < 0 < k41 < ...; then all singular
values o < EPSUA are interpreted as zeros. The rank decision is made more
robust in practice: if oy < EPSUA but ox4; > EPSUA, GUPTRI insists on a gap
between the two singular values such that oyy1/0y > GAP. If 0441 /0% < GAP,
Ok+1 is also treated as zero. This process is repeated until an appreciable gap
between the zero and non-zero singular values is obtained. In all of our tests we
have used EPSU = 10~% and GAP = 1000.0. All computations (in sections 3 and
4) are performed on a SUN SPARC workstation in double precision complex
arithmetic with unit roundoff = O(10717).

In Table 4 we display the computed Kronecker structures of the 17 perturbed
non-generic pencils for 100 random perturbations for each ¢,. For each case all

104 Paper IIT

structure invariances and transitions are shown from left to right. The symbol

1077 indicates that the Kronecker structure is invariant under perturbations
smaller than €, = 10™7, and that the structure changes (at least for some of the
100 tests) for perturbations of size 1077. For a size of the perturbations that
has not given the same structure for all 100 tests, all KCF':s found are placed
within curly brackets with a number within parentheses after each KCF showing
the number of that particular KCF that has been found. As before, the cases
are displayed in increasing codimension order and the transit KCF forms within
curly brackets are ordered similarly.

From Table 4 we see that for large enough perturbations all non-generic
structures turn generic (as expected). GUPTRI finds the same non-generic struc-
ture as long as €, < tol = min(EPSUA, EPSUB) - GAP. This behaviour is in agree-
ment with the perturbation theory for singular pencils [5, 7]. Ounly if A — AB
lies in a particular manifold does it have a non-generic Kronecker structure with
non-trivial reducing subspaces and possibly eigenvalues. Moreover, only if it is
perturbed so as to move continuously within that manifold does its original
Kronecker structure remain. Actually, by choosing a tol > 0, we have thickened
the manifolds so that they are no longer a set of measure zero.

All transitions from the initial case to the final generic case is clearly from
cases with higher codimension to cases with lower. By a closer look we can
also see that all the transitions are performed upwards (or backwards) along
the arcs in the closure graph (Figure 1). This means that the perturbations
cure the rank deficiencies in the non-generic pencil without contributing with
any new singularities. GUPTRI increases the rank in A and B and decreases the
size of their “common nullspace(s)”, i.e., the “inverse” operations compared to
what we did in Section 2.1. In other words, when a pencil A — AB with a given
non-generic KCF is perturbed, by 6 A — A6 B then A — AB is in the closure of
orbit((A + §A) — A(B + 6B)).

Even if we see that all of the cases transit via some other non-generic struc-
tures before all 100 tests turn generic, we can also see that if we for each case
and each size of the perturbation only consider the KCF that has been found
in most tests, then it is only for cases 8 and 12 a transit KCF is found. Notice
that all tests for cases 8 and 12 find the same other non-generic KCF for the
smallest perturbation. In other words, when the perturbation is big enough to
change the KCF for most tests of a case, then the generic KCF is the most likely
to find, except for cases 8 and 12.

How can we explain the behaviour in cases 8 and 127 For these two cases one
matrix is the zero matrix. This means that tol = min(EPSUA, EPSUB) - GAP = 0
implying that €, > tol already for the smallest perturbation, which in turn
explains why case transitions occur already for the smallest perturbation. Since
either EPSUA or EPSUB is zero, all singular values in the perturbed zero matrix
will be interpreted as non-zero, explaining why A or B are interpreted as a full
rank matrix already for the smallest perturbations. Notice also the “jumps”

The Set of 2-by-3 Matrix Pencils 105

Table 4: Computed Kronecker structures and transitions of 100 perturbed non-
generic 2 x 3 pencils. The size €, of each perturbation is shown above the
corresponding arrow.

4 3 2
1':L1®R110—>{L2 (81)}10 {Lg (98)}10 Ly

Li®R; (19) Li®Ry (2)
1075 [Ly (18)}10—4{L2 (98)}10—3
2: [hJ1 — — — L
190 {Lleah (82) Lioh (2) ?
_a[L2 92)). _ _
4 3 2
6: Li®@N1"—{ Li®R: (6) O-){EZGBR (EZ?%}L)LZ
Li®N: (2) B
(L2 ©3)). (L2 (95)). _ _
4 3 2 L 99 1
5: Lo®Ry"—{ Li®R (28) p—{ L1@R: (4) 3"~ {LZGBR ((13}10‘%2
Lo®R2 (9) Lo®Ry (1) B
Lo (82)
_s | L2 (1) _ _
5 4 3
& Lo ok 2L Lior, (7) VL MOR (16) Lo,
Lo®J1®OR, (82) L&y (1)
Lo®J1®R1 (1)
Ly (90)}10—4{L2 (98)}10—3
10" : Lo®N1®R L
0®N1® 1—){L0€BN1@R1 (10) - Lo®Rs (2) b2
105 Lo (22) 10—4
4: Lo®Js — < Lo®J1®R1 (17) p— Lo
Lo®Js (61)
_5 (L2 (10) _
5 4 3
10: Lo®N2"— { Lo®N1©R; (15) 10‘){2269N (??g}lLLz
Lo® N> (75) Ofit2
s [L2 (5) [L2 (92) _
5 4 3 2
7: Lo@Ji®N1 — { Li®N; (13) o2 LioR: (6) IO_){EZGBR (?g}m—wz
Lo®J1®N; (82) LidJ; (2) L
L (3)
,. r10~°) LR, (7) 10*4{L2 (93)}10*3{L2 (98)}10*
TiLo®li®Lo = pien, (12)(Lok () Lok (2)f %2
Lo®L1®LT (78)
10—10
3: Lo®2J1 — Lo
10—10
11:L0@2N1 — Lz
Lo®Rsy (3) Lo (86)
=5) Lo®J1® R, (34) 107%) L1®R: (8) 1073
9': 2L LT10—> 01 — — L
0® L Lo®N> (15) Lo®Ry (4) 2
2Lo@LT (48) Li®J1 (2)
Ly (80)

Lo®R-> (2)
_4 | L1®R1 (17) _ _
4 3 2
Lo®J1®R1 (33)| 10 Lo®R») 107° {Lz (96)}10 Lo
Lo®N1DR, (16) L1®Ry (4)

LiaJ 1
2Lo®R1®LYT (49) L;GaJiGBRl gl%

_s|L2 (24)). _
5 4 3
8: 2000 n oLl S Lien _>{L2 (2)}“’_> Li®R; (2)52 {L2 (86)}10

71075
9: ZL(]@Rl@LO —

Li®N; (98 L1®R; (14 2
1N (98) Li®N; (54) 1®Ry (14)
. 71 Ly (18)\10=* [Lo (98)\ 1073
12: 2Lo®N1®L; —> L1®J1—>{L1$J1 (82) — Les (2) — Lo

—10
13:3Lo@2LT "2 L,

106 Paper IIT

these transitions correspond to in the closure graph. The argumentation here
also explains why the zero pencil turns generic for the smallest perturbation.

We end this section by briefly discussing how the case invariances and tran-
sitions are affected by the choice of the fixed relative accuracy of the input
data (EPSU). If we choose EPSU = ¢,, then GUPTRI will retrieve the non-generic
structure we started from for each ¢,, considered. Notice that the distance from
the input pencil to the computed Kronecker structure will normally be of size
O(EPSU-||(A4, B)||g) [8]- Increasing EPSU means that the case invariances will re-
main longer before any case transition take place. Decreasing EPSU will impose
the generic structure sooner. For example, with EPSU equal to the relative ma-
chine precision and €, > tol, GUPTRI will always extract the generic structure.
This corresponds to the fact that in infinite precision arithmetic any non-generic
A — AB can be made generic with arbitrary small perturbations. Moreover,
travelling upwards in the closure hierarchy can always be effected with arbi-
trary small perturbations, while travelling downwards may require much larger
perturbations.

4 Imposing Non-Generic Structures by Pertur-
bing a Generic Pencil

In this section we study computable normwise bounds for the smallest perturba-
tions (64, 6B) of a generic 2-by-3 pencil A— AB such that (4+6A)—A(B+6B)
has a specific non-generic Kronecker structure chosen from the 17 non-generic
cases discussed earlier. Our goal is to find the closest non-generic pencil and
the closest pencil with a specified non-generic Kronecker structure of a 2-by-3
generic pencil. We consider two approaches to impose a non-generic structure.
First we derive explicit expressions for the perturbations that transfer A — AB
to a specified non-generic form. Secondly, we have modified GUPTRI to be able
to compute a specified Kronecker structure.

4.1 Explicit Perturbations to Impose Non-Generic Struc-
tures

We have seen in Section 2 that by making A and B more rank deficient and
increasing their “common nullspace(s)” we can generate non-generic pencils
with higher codimension. Here we elaborate on this fact and derive explicit
expressions for the perturbations required to turn an arbitrary generic pencil
into each of the 17 non-generic cases. The norms of these explicit expressions
(measured as ||(64,6B)||g) are upper bounds for the smallest perturbations
required. Indeed, for 11 of the structures, the norms are the exact sizes of the
smallest perturbations required.

We need the following notation. The size of the smallest perturbations

(64,6B) such that R[A+ §A, B + 6B, 1] (2.3) of size (i + 2)m X (+ 1)n has a

The Set of 2-by-3 Matrix Pencils 107

k-dimensional column nullspace is defined as

A(RIA, B,il) = min {|(64,6B)lp : n(RIA +84, B +8B,i]) =k}, (41)

where § A and 6B vary over all m-by-n matrices with complex (or real) entries.
Similarly, we define di(L[A, B,1i]) as the size of the smallest perturbations that
impose a k-dimensional row nullspace on L[i] (2.5). When it is clear from context
we use the abbreviated notation di(R[i]) and di(L[i]). Also, let di.(A) denote
the size of the smallest perturbations such that rank(A + 6A) = min(m,n) — k.

In general, to find di(R[i]) (or di(L[i])) is a type of a structured singular
value problem. For 7 > 1 it is an open problem to find explicit expressions
for di(R[:]) and di(L[i]). The following theorem summarizes some of their
properties for the case m =2,n =3 and k = 1:

Theorem 4.1 For a generic 2-by-3 pencil (A, B) the following inequalities hold:

0= di(R[2]) < di(R[1]) < di(R[0]), (4.2)

di(R[1]) < di(A), di(R[1]) <dy(B), (4.3)

di(R[1]) < dy(L[1]) < dy(L[0)), (4.4)

di(A) < dy(A), dy(B) < da(B), di(R[0]) < da(R[0)]). (4.5)

Proof. From Theorem 2.1 it follows that d(R[2]) = 0 for all 2-by-3 pencils
(generic or non-generic). Decreasing the rank of the 4-by-3 R[A, B,0] by one
gives that R[A+6A, B+ 6B, 0] has only two linearly independent columns. The
same perturbations make the 6-by-6 matrix R[A+ 6 A, B+ 6B, 1] rank deficient
(a rank drop from six to four) showing that (4.2) holds. Similarly, decreasing the
rank of A (or B) by one means that A+ §A (or B + 6§B) only has one linearly
independent row. For the same perturbations R[A + 6A, B + 6B, 1] is rank
deficient with only one of the two first (or two last) rows linearly independent,
resulting in the inequalities (4.3).

L[1] is row rank deficient if and only if there exists at least one LI or LY block
in the KCF. Since all KCFs with at least one LY block or one LT block have both
A and B rank deficient (see Table 3), there will always exist a strictly smaller
perturbation of size d;(A4) that only lowers the rank in A. (The similar is of
course true for B.) Now applying inequality (4.3) proves the first part of (4.4).
The last part follows from similar arguments as proving d; (R[1]) < di(R[0])
above. The inequalities (4.5) follow from the definition of d(-). O

Theorem 4.1 will be used to identify the closest non-generic Kronecker struc-
ture of a generic 2-by-3 pencil. Notice that in general we cannot say anything

108 Paper IIT

about the relationship between d;(R[0]) and d;(A) or d;(B) (see explicit ex-
pressions below). By varying o and 3 in

110 [B 00O
A_[OOQ]’B_[OII]’

(i-e., a generic A — AB for non-zero @ and 3) we show that any of them can be
the smallest quantity (see Table 5).

Table 5: The quantities d;(A), d1(B) and d; (R[0]) for three examples.

Parameters di(A) di(B) di(R[0])
a=p=1 1.000 1.000 0.765
a=0.1, =1 0.100 1.000 0.451
a=1,3=0.1 1.000 0.100 0.451

The following explicit expressions, derived from the Eckart—Young and Mirsky
theorem for finding the closest matrix of a given rank (e.g. see[10]), appear in
our explicit bounds discussed next:

dy (A) = Umin(A): dy (B) = Umin(B):
dy(A) = [|Allg, d2(B) =|Bl|g,
di(R[A, B,0]) = omin(R[0]), di(L[A, B,0]) = omin(L[0]),

d>(R[A, B, 0]) = (071 (RI0]) + 075 (RIO])*/2.
Here, 0pmin(X) and omin—1(X) (with omin(X) < 0min—1(X)) denote the two
smallest non-zero singular values of (a full rank) matrix X.

4.1.1 Tractable Perturbations

In order to make the problem more tractable we (first) put restrictions on al-
lowable perturbations. We can compute a perturbation 6 A — AéB such that
(A4 6A)— (B +6B) is guaranteed to fall on the closure of the manifold (orbit)
of a certain KCF. (Necessary conditions on the required perturbations are given
in the labeled closure graph in Figure 2.) If the KCF found is the intended KCF,
then the perturbation is said to be tractable. If the KCF found is even more
non-generic (i.e., its orbit has higher codimension but belongs to the closure of
the intended manifold), then the perturbation is defined intractable. In other
words, a tractable perturbation finds the generic KCF (i.e., the least non-generic
KCF) in the closure of the manifold of the intended KCF. An intractable per-
turbation finds any other structure in the closure of the same manifold, i.e., any

The Set of 2-by-3 Matrix Pencils 109

structure that can be found by traveling along the arcs (downwards) from the
intended KCF in the closure graph in Figure 1.

When computing perturbations such that (A + §A) — A(B + 6B) is given a
non-generic KCF, we compute § A and 6 B such that one or more of the geometric
characteristics presented in Table 3 for (A 4+ §A4) — A(B + éB) differ from the
characteristics of the generic (A, B). In other words, we put restrictions on the
size of the perturbed pencil’s nullspaces so that at least one of them is larger
than for the generic case. The space given by this restriction may contain several
non-generic matrix pencils. For example, if we restrict the set of pencils to those
who have a rank deficiency in the A-part, this space contains all pencils that
fulfill the condition rank(A) < 2. However, if we compute a perturbation such
that rank(A+6A) < 2, the perturbed pencil will most likely be the generic (least
non-generic) KCF with a rank-deficient A-part, i.e., Ly @ J;. This corresponds
to the KCF with rank-deficient A-part whose orbit has the smallest codimension
and the corresponding perturbation (64, 6B) is tractable. The perturbation is
intractable if (A + 6A) — A(B + éB) has any KCF (with rank(A4) < 2) that is
more non-generic than L; @& J;. The set of possible structures are the ones that
are in the closure of orbit(L; & Ji).

Eleven of the 17 non-generic structures (2, 6, 5, 7, 7, 3, 11, 9’, 8, 12, and
13) are imposed by (minimal) tractable perturbations that effectuate one of the
following rank-decreasing operations:

e Rank drop in A and/or B by one or two.

e Rank drop in R[4, B,0] by one or two, i.e., imposing a common one or
two dimensional column nullspace.

e Rank drop in L[4, B,0] by one, i.e., imposing a common row nullspace.

In Table 6 the size of the perturbations required to impose each of the eleven
singular structures are displayed. When both d;(A) and d;(B) are involved,
the size of the total perturbations is (d?(4) + d?(B))l/Q. The singular cases
are reported in increasing codimension order (see Table 3). Since all these
perturbations are made as the smallest possible to impose the required ranks on
A, B, R[0] or L[0], these bounds are attained for each non-generic form, i.e., the
strongest possible, which is equivalent to that the bounds in Table 6 also are
lower bounds. That these perturbations really give the forms shown in the table
follows from the fact that we here only are considering tractable perturbations
and these are the least non-generic forms that have the imposed rank-deficiencies
(see Table 3). For example, by imposing a one dimensional rank drop in A we
have restricted the 12-dimensional space to a space that contains a subset of
all non-generic pencils. Since the perturbation is supposed to be tractable, the
KCF found is the least non-generic in that space, i.e., L; & J;.

The rank decreasing operations performed in Table 6 “affect the codimen-
sion(s)” in the following way: a rank drop by one in A, B or R[0] increases the

110 Paper IIT

Table 6: Minimal perturbations of a generic pencil to impose 11 of the 17 non-
generic structures.

Case KCF Cod(-) di(A) di(B) di(R[0]) d1(L[0]) d2(A) d2(B) d2(R[0])
2 L1®J1 2 X
6 L1®N1 2 X
5 Lo@Rz 2 X
7 Lo@Jl@Nl 4 X X
7 LyoLioLT 5 X
3 L0®2J1 6 X
11 Lo@ZNl 6 X
9 2LyaLT 6 X
8 2L0@J1€DL%W 8 X X
12 2LyeN;®Ll 8 X X
13 3Lo@2L{ 12 X X

Table 7: Compound perturbations: Non-generic structures imposed by transit-
ing via a non-generic form.

Case KCF Cod(-) Transit KCF d;(R[A, B,0])
4/ Lo@]l @Rl 3 LlEle X
10’ Lo@Nl @Rl 3 Ll@Nl X

codimension by two, a rank drop by one in L[0] increases the codimension by
five, and a rank drop by two in A, B or R[0] increases the codimension by six.

Two of the remaining six non-generic forms (4’ and 10’) are imposed by
transiting via a non-generic form as shown in Table 7. For example, to derive
perturbations of the generic A— AB that turn (4464, B+8§B) non-generic with
KCF Lo® J; ® Ry we have (6A4,6B) = (6A1,6B1)+(6A2,6Bs), where (6A1,6By)
is the smallest perturbation that lowers the rank of A (i.e., ||(641,6B1)|z =
dy(A), 6By = 03x3) and (6A2,6Bs) is the smallest perturbation that imposes
a common column nullspace on (A + 8§A;,B + 6By) (i.e., [[(642,6Bs)|p =
di(R[A+68A;,B+6B1,0])). In Table 7 we show how these forms are constructed.
The size of the compound (total) perturbations (64, é6B) for the two cases are
obtained by adding the perturbations in Table 6 and Table 7. A=A+64,
and B = B+ 6B, in Table 7 represent the “transit” non-generic pencil. A rank
drop by one in R[A, B, 0] in Table 7 increases the codimension by one.

The last four non-generic structures (1’, 4, 10 and 9) require perturbations
to parts of the GUPTRI form of a transiting pencil A — AB:

_)\[t11 7€12 7€13] . (4.6)

0 822 823 0 tao 23

PH(A—AB)Q = § — 3P = [S f i]

The Set of 2-by-3 Matrix Pencils 111

where some §;;,t;; may be zero. The size of the perturbations (65, 6T) imposed
on S and/or T are displayed in Table 8. Case 1°, which transits via the GUPTRI
form of Lo, is retrieved by imposing a common column nullspace of the A- and
B-parts of the deflated 1-by-2 pencil [352 893] — A[faz #23]. For cases 4 and
10 we retrieve the requested structures by setting elements 315 = 0 and #;5 = 0,
respectively, in the GUPTRI forms of A — AB (4.6). For case 4 we impose a zero
multiple eigenvalue in A — AB. Similarly, a multiple eigenvalue is imposed at
infinity for case 10. In other words, J; & R; and N; & R; in A — \B are turned
J2 and Ns, respectively. Case 9 is obtained by giving the A- and B-parts of the
L, block in A — AB a common column nullspace, which turns L; into Lo ® R;.
Since P and Q in (4.6) are unitary the perturbations imposed on A and B are
of the same size as 65 and 6§T. The size of the compound (total) perturbations
(6A, 6B) for the four cases are obtained by adding the appropriate perturbations
in tables 6, 7 and 8. The perturbations explicitly imposed for the four cases in
Table 8 increase the codimensions by one, except for case 9 where the rank drop
by one increases the codimension by two.

Table 8: Compound perturbations: Non-generic structures imposed by perturb-
ing the GUPTRI form (denoted Transit form) of the generic or some non-generic
pencils.

Case KCF Cod(-) Transit form d (522 923) di(512 %13) 312 t12
tao to3 t12 t13
1/ Ll@Rl 1 L2 X
4 Lo@Jg 4 Lo@Jl@Rl X
10 Lo@Ng 4 Lo@Nl@Rl X
9 2L0®R1®L(1; 7 L()@Ll@Lg X

The compound perturbations discussed above are all supposed to be tractable,
but are not necessarily optimal. A summary of the explicit perturbations in ta-
bles 6 - 8 is displayed in a perturbation graph in Figure 3, where the nodes are
placed at the same positions as in the closure graph (Figure 1). The paths to
a node show different ways to generate the tractable perturbation required to
find the KCF of the node, starting from a generic A — AB. Notice that some
arcs are marked with a bullet and the corresponding paths from a generic pencil
to a destination KCF generate perturbations which are not necessarily optimal
(compound perturbations from Table 7 and Table 8). All other paths correspond
to optimal perturbations from Table 6. We clarify the notation in Figure 3 with
two examples. Let (6A4;,6B;) denote the optimal perturbation of size di(A)
that for a generic A— AB gives A—AB = (A4 6A;) — A\(B+6B;) the Kronecker
structure Ly @ J;. Similarly, let (6A2,6§2) denote the optimal perturbation
of size dy (R[A, B, 0]) that moves A — AB to a pencil with Kronecker structure

112 Paper IIT

Lo® J; ® Ry. Then (64; + 8Ay,6B1 + 632) is not necessarily the optimal per-
turbation for moving a generic pencil to orbit(Lo @ J; @ R;1). Therefore the arc
to orbit(Lg @ J; & R;) is marked with a bullet. On the other hand, adding the
perturbations going from orbit(Ls) to orbit(Lg @ 2J;) via orbit(L; & J;) give us
the optimal perturbation, which is already shown in Table 6.

In order to relate our explicit perturbations to the (labeled) closure graph we
consider 2-dimensional rank drops in Table 6 as results of two 1-dimensional rank
drops. In practice, these 2-dimensional rank drops are computed directly. Some
of the perturbations in Table 6 do not give a unique path in the graph, since the
generic A — AB in some cases is perturbed in A and B simultaneously. For these
cases all alternative paths are shown in the graph, e.g. there are three different
paths to 2Lg @ J; @ LI and all of them correspond to the same perturbation
(in infinite arithmetic) of size (d3(A) + d3(B))'/?. From the construction of the
explicit perturbations it follows that each arc in the perturbation graph connects
a KCF with another KCF within its orbit’s closure. Therefore, for each arc in
the perturbation graph it exists a corresponding path in the closure graph. It
is of course possible to find other paths in the (labeled) closure graph that give
tractable perturbations.

The sizes of the perturbations are shown on the corresponding arcs in the
graph, with notation as before. The reason for perturbation sizes such as
d2(A) — d?(A) is that the total perturbation needed for this 2-dimensional
rank-drop in A is d2(A) (as shown in Table 6), but it is here shown as a further
perturbation of a case where a perturbation of size d; (A) already has imposed
a 1-dimensional rank-drop in A.

For each case in Table 6 that in Figure 3 is shown as a compound perturba-
tion, even though it can be computed directly, the size of the total perturbation
is the square root of the sum of the squares of the sizes of the components of
the perturbation. For example, the case 2L, @ J; ® LI is found by a com-
pound perturbation (6A4,6B) = (641,6B1) + (6A2,6B2) + (6A3,6Bs), where
1(641,8By)ll, = di(A), |84z, 6By)ll, = v/B(A) — B(A), and [[(54s,6Bs) |
= d;(B). The size of the total perturbation is ||(64,8B)||z = (d (A)+ (d3(A) —
d2(A)) + d3(B))'/? = (d3(A) + d3(B))'/?. Notably, since the perturbation
di(A) = omin(4) and dy(A4) = || Al = (62;,_1(A4) + 02,.(4))'/? the size

d%(A) — d3(A) is equal to opmin—1(4).

For each compound perturbation in tables 7 and 8, the size of the to-
tal perturbation is found by adding the components of the perturbation and
then computing the norm of the resulting perturbation. However, an upper
bound on the size of the compound perturbation can be achieved by adding
the sizes of the components of the perturbation. For example, Lo & J; & R,
is found by the compound perturbation (64,86B) = (6A41,6B1) + (6A2,6Bs2),
where ||(§A41,6B1)||; = di(A) and ||(§A42,6Bs)||; = di (R[4, B,0]), and an up-
per bound on ||[(64,6B)| is di(A) + di(R[A, B, 0]).

The Set of 2-by-3 Matrix Pencils 113

Figure 3: A graph displaying the tractable perturbations in tables 6 — 8 of a
generic 2-by-3 pencil.
Cod(A — AB)

S22 S:za]) 0

d
- 1([t22 23

d1(R[0])

2
dy (R[A,B,0])

3

dy (R[A,B,0])

oy
(i
)

Lo®2J 2Lo®L - Lo®2N
0®2J1 o® dl([‘?m 313]) 0H2N1 6
t12 13

d1(B) a2 (4) —d2 (4)

/2@ —-di®) d14) 7

2L08718LF 2roeN18L]) 8

1 /dg(B)_df(B) N /dg(A)—d%(A)
12

114 Paper IIT

4.1.2 Intractable Perturbations and the Closest Non-Generic Struc-
ture

The following example shows a situation where the perturbations incidentally
create extra non-generic characteristics that raise the codimension of the per-
turbed pencil further than devised.

10 & O _[e 0 0 o
A_|:0 0 62:|’ B_|:0 €4 0:|a 62—m1_1n61>0. (47)

Suppose we are looking for the minimal perturbations that impose the structure
L, ® J; (case 2). They are of size d;(A) with

00 0 00 0
6A_[0 0 —62]’ ‘53_[0 0 0]'

Incidentally, 6 A and 6B also lower the rank of R[0]. (For this example, 64
and §B are the minimal perturbations that cause the rank drop, i.e., d;(A) =
d;(R[0]) and the minima are attained for the same perturbations.) This fact
implies that the perturbations aimed to impose the non-generic structure L; ®J;
(with codimension two) result in a perturbed pencil with two zero eigenvalues
corresponding to the structure Ly @ Jo with codimension four (case 4). One
possible remedy is to further perturb the undesired non-generic pencil. To
obtain L; & J; we add, for example, the perturbations

1_600 /_006
6A_[000’6B_000’

to (A+6A, B4+6B), where § > 0 is an arbitrary small number. These perturba-
tions remove the common column nullspace (§B’) and the multiple eigenvalue
at zero (6A’), making the compound perturbations tractable. If we start to
look for the smallest perturbations of (A4, B) that impose a common column
nullspace that normally would generate the structure Ly @ Ry (case 5) we also
get intractable perturbations and (in this case) the same structure Lo ® Jo. We
can also see from the closure graph in Figure 1 that Lo ® J is in the closure of
each of the two orbits defined by Ly & J; and Lo ® Ro.

Now, we turn to the problem of finding the closest non-generic Kronecker
structure of a generic 2-by-3 pencil. Assume all inequalities relating to dy (R[1])
in Theorem 4.1 are strict. Then the corresponding R[A+ §A, B+ éB, 1] is rank
deficient, and for all perturbations of size < d; (R[1]), the (perturbed) matrices
A+8A,B+6B,R[A+8A, B+6B,0] and L[A+6A, B+6B,0] must be of full rank,
which correspond to the case Ly @ R;. Since all other non-generic cases require
rank-deficiency in at least on of the matrices A+é6A, B+6B, R[A+6A, B+6B,0]
or L[A 4+ 6A, B + 6B, 0] (see necessary conditions in the labeled closure graph
in Figure 2 or Table 3), we can formulate the following corollary.

The Set of 2-by-3 Matrix Pencils 115

Corollary 4.1 If the inequalities (4.2) and (4.3) in Theorem 4.1 are strict,
L ® R, with codimension one (case 1°) is the closest (unique) non-generic
structure on distance di(R[1]).

The presumptions of Corollary 4.1 are sufficient (but not necessary) to iden-
tify tractable perturbations that lowers the rank of R[1]. If equality holds in
any of the inequalities of Theorem 4.1 (for the same perturbations (64, 8B)) we
are faced with intractable perturbations which will result in non-generic struc-
tures with higher codimensions. We collect the different cases in the following
corollary, where we list the closest Kronecker structure and the corresponding
equality conditions. Notice that strict inequalities are assumed otherwise.

Corollary 4.2 Assume strict inequalities hold in Theorem 4.1 when nothing
else is stated. Then, if

1. dy(R[1]) = d1(R[0]), Lo & R2 (case 5) is the closest non-generic form.
2. di(R[1]) = d1(A), Ly & Jy (case 2) is the closest non-generic form.

3. dy(R[1]) = d1(B), L1 ® N1 (case 6) is the closest non-generic form.

All forms in Corollary 4.2 have codimension two. Notice that if it also exists
some perturbations on distance dy (R[1]) which do not lower the rank of R[0], A
and B, respectively, L1 @ R; is also at the same distance as Lo ® Ry, L1 & J;
and L; &® N; for the three cases considered.

Assume that we can have equality in different combinations of the inequali-
ties of Theorem 4.1. As before, we collect the possible cases in a corollary.

Corollary 4.3 Assume two inequalities in Theorem 4.1 are satisfied with equal-
ity for the same perturbations (6A,8B). Then, if

1. di(R[1]) = d1(R[0])) = d1(A), Lo® J1 D Ry (case 4’ with codimension 3) or
Lo ® J5 (case 4 with codimension /) is the closest non-generic structure.

2. di(R[1]) = di(R[0]) = di(B), Lo ® R1 & N1 (case 10’ with codimension
3) or Lo ® Na (case 10 with codimension 4) is the closest non-generic
Kronecker structure.

Notice that cases 4 and 10 have higher codimensions than cases 4’ and 10’,
respectively, but the same algebraic characteristics in terms of the rank of R[k]
and L[k] matrices as (see Table 3). The reason is that the 2-by-2 regular parts
of cases 4 and 10 have one Jordan block with both eigenvalues specified, which
increase the codimension by one compared to cases 4’ and 10’ (both with one
eigenvalue unspecified).

The remark following Corollary 4.2, regarding a non-unique closest Kro-
necker structure can also be extended to apply to Corollary 4.3.

116 Paper IIT

In applications (e.g. computing the uncontrollable subspace) we are inter-
ested to find the most non-generic structure (with highest codimension) for a
given size of the perturbations. Is it possible to find intractable perturbations
that result in a closest 2-by-3 non-generic structure with codimension > 4?7 The
answer is no since all other cases require a rank drop of at least two in A, B or
R[0] or a simultaneous rank drop in A and B. It always exists strictly smaller
perturbations that drop the rank by one (see (4.5)). Similar arguments also
exclude Ly @ J; & N; with codimension 4 from being the closest non-generic
pencil.

4.1.3 Closest Non-Generic Structures to a Generic 1-by-2 Pencil

Since we do not know any explicit expression for d; (R[1]) it is hard to construct
examples that illustrate different situations described in Section 4.1.2. By con-
sidering 1-by-2 pencils we overcome this problem. A generic 1-by-2 pencil has
the Kronecker structure Ly = [-A 1] =[0 1]—A[l 0] = A — AB. The non-
generic structures of size 1-by-2 are Lo & Ry, Lo ® J1,Lo & N1 and 2Ly & Lg
with codimensions 1, 2, 2 and 4, respectively.

Which form(s) can be the closest non-generic structure of a generic 1-by-2
pencil?

e Ly & Ry if it exists perturbations of size d; (R[0]) which do not simulta-
neously decrease the rank of A or B. This is, e.g. fulfilled if d; (R[0]) <
min (dy (A4),d;(B)).

o Lo @ Jy if dy(R[0]) = dy(A).
o Lo @ Ny if dy(R[0]) = di(B).

Moreover, 2Ly @ LI can never be the closest non-generic structure. The size
of the minimal perturbations that turn A and B to zero matrices is (d3(A) +
&(B))!/>.

The following example illustrates a case where d; (R[0]) = di1(A) = di(B)
and there exist perturbations of size d;(R[0]) that do not simultaneously de-
crease the rank of A or B. Consequently, Lo & Ry, Lo ® Ji, and Lo ® Ny are all
the closest non-generic Kronecker structure.

Let A=[1 1] and B=[-1 1]. Then R[0] has the singular value decom-
position

A

=3]-om <[YA (28]

1/V2 1/V2 0 V2 0 1

dy(R[0])(= V/2) is attained for the (minimal) perturbations

BREH!

The Set of 2-by-3 Matrix Pencils 117

while A+ 6A and B + 6B remain full rank matrices, resulting in Lo @& R; as the
closest non-generic structure. The perturbations

§A, 1 [-1 -1 §4 7 [0 0
6B | 0 0 ’ 6By | |1 -1
of the same minimal size make R[0], A and R[0], B drop rank, respectively.

These perturbations generate the non-generic structures Lo & J; and Lo & Ny,
respectively.

4.2 Using GUPTRI to Impose Non-Generic Structures

We have modified GUPTRI so that, for an m X n generic pencil A —AB as input,
it is possible to impose a generalized Schur form with a specified Kronecker
structure. (The modified GUPTRI also work for imposing a Kronecker structure
of higher codimension on any non-generic pencil.) Given the block indices that
define the specified Kronecker structure (n;’s and r;’s of the RZ-staircase and
LlI-staircase forms [8]), GUPTRI imposes the necessary rank deflations in order
to compute the specified (non-generic) structure. The perturbations induced
by these rank deflations are usually tractable. If the perturbations imposed by
GUPTRI are intractable, GUPTRI computes the corresponding non-generic struc-
ture of higher codimension. The resulting generalized Schur decomposition can
be expressed in finite arithmetic as

A, —)\B, * *
PH((A+64)— \(B+6B))Q = 0 Areg — ABreg * ,
0 0 A — AB;

(4.8)
where * denotes arbitrary conforming submatrices. Let §2 denote the sum of
the squares of all deleted singular values (imposed as zeros) during the reduc-
tion to GUPTRI form. Then §, is an accurate estimate of ||(64,6B)| g in (4.8).
One interpretation is that GUPTRI computes an exact generalized Schur decom-
position (with the specified Kronecker structure) for a pencil A" — AB’ within
distance 6, from the input pencil A — AB. Moreover, 6, is an upper bound on
the distance from A — AB to the nearest pencil with the Kronecker structure
specified as input to GUPTRI.

Furthermore, this give us a method for computing an upper bound on the
distance from a generic m-by-n pencil to the closest non-generic pencil:

e Compute the structure indices (n;’s and r;’s of the RZ-staircase and LI-
staircase forms [8]) for all ¢ structurally different non-generic GUPTRI
forms of size m X n. This is a finite integer matching problem.

e Use the modified version of GUPTRI to impose the ¢ non-generic structures:

A; = AB; = PP((A+64) - MB+6B,))Qi, i=1,...,q. (4.9)

118 Paper IIT

e Compute the matrix pairs corresponding to the ¢ non-generic structures:

A= PAQY, B;=PBQF, 1=1,....q. (4.10)
e Compute
6= 1I£1ilélq 51', 61 = ||(A — AZ,B — BI)HE (4.11)

Now, ¢ is an upper bound on the closest non-generic pencil to A — AB and
the 6;’s are upper bounds on the closest non-generic pencils with the Kronecker
structure of A; — AB; in (4.9).

The method described above is quite expensive already for moderate m and
n (see Section 5) but is perfectly parallel. In a distributed memory environment
it is possible to distribute the block indices for the different Kronecker struc-
tures evenly over the p (< g) processors. Each processor also hold A and B
and computes its local § using the method above. Finally, a global minimum
operation over all p processors gives us § in (4.11).

4.3 Computational Experiments on Random 2-by-3 Pen-
cils

We have performed computational experiments on 100 random 2-by-3 pencils
A — AB. The elements of A and B are chosen uniformly distributed in (0, 1).
For each random pencil we impose the 17 non-generic structures using the two
approaches discussed in sections 4.1 and 4.2.

Table 9 displays the mean values of perturbations required to impose each
of the 17 non-generic forms for 100 random examples. We measure the pertur-
bations for each example and non-generic form as ||(A — A, B — B)|| 5, where
A — AB denotes a non-generic pencil. The matrices A and B are normalized
such that ||A]l; = B, and (4, B)| ; = 1.

Columns 2 and 3 of Table 9 show the §;’s in (4.11) computed by modified
GUPTRI for the pencils A — AB and B — pA, respectively. Column 4 shows the
explicit perturbations of tables 6, 7 and 8. The explicit perturbations that are
proved to be the smallest possible are marked with the superscript *.

In Table 10 we display the smallest perturbations (measured as above) re-
quired to impose non-generic forms of each possible codimension for the same
100 random 2-by-3 examples. For example, we have three non-generic structures
with codimension 2, so the smallest perturbations are in this case determined
from 300 random examples. The singular structures (cases) that give the small-
est perturbations are shown in columns directly following columns 2, 4 and 6 of
Table 10.

Numbers in bold font in tables 9 and 10 indicate that the size of the per-
turbations (distances) computed by modified GUPTRI are the same as for the
explicit perturbations, which for these cases also are shown to be the minimal

The Set of 2-by-3 Matrix Pencils 119

Table 9: Mean values of perturbations (measured as ||(4 — A, B — B)||;) re-
quired to impose each of the 17 non-generic forms for 100 random A — AB of
size 2-by-3.

Case A—AB B —uA Explicit Cod(A — AB) Comment
1 0.000 0.000 0.000 0
1 0.160 0.154 0.127 1
2 0.181 0.394 0.181* 2
6 0.378 0.190 0.190* 2
5 0.235 0.227 0.140* 2
4 0.218 0.268 0.211 3
10’ 0.287 0.227 0.220 3
4 0.456 0.533 0.461 4
10 0.538 0.481 0.524 4
7 0.437 0.434 0.281* 4
7 0.589 0.602 0.326* 5
3 0.707 0.707 0.707* 6 A= 0343
11 0.707 0.707 0.707* 6 B = 0243
9’ 0.399 0.399 0.353* 6
9 0.466 0.460 0.390 7
8 0.737 0.737 0.737* 8 A = 0343
12 0.736 0.736 0.736* 8 B = 0243
13 1.000 1.000 1.000* 12 A =B =03x3

Table 10: Minimum perturbations (measured as ||(4 — A4, B — B)||;) required
to impose non-generic forms of each possible codimension for 100 random A—AB
of size 2-by-3.

Cod(A—)AB) A—AB Case B-—puA Case Explicit Case
0 0.000 1 0.000 1 0.000 1
1 2-100* 1 3.100* 1" 1-107* 1
2 0.011 2 0.010 5 0.009 5
3 0.036 4 0.037 4’ 0.036 4
4 0.111 4 0.106 10 0.106 7
5
6
7
8

0.192 d 0.119 d 0.119 d
0.163 9’ 0.163 9’ 0.153 9’
0.233 9 0.224 9 0.184 9
0.707 12 0.707 12 0.707 12
12 1.000 13 1.000 13 1.000 13

120 Paper IIT

perturbations. Numbers marked in italic font in Table 9 indicate that modi-
fied GUPTRI computed smaller upper bounds than corresponding bounds for the
explicit perturbations.

All explicit perturbations of the 100 2-by-3 random pencils turned out to
be tractable. The results show that the smallest distance from A — AB to a
non-generic structure with fixed codimension & increases with increasing k, in
accordance with the Kronecker structure hierarchy in Figure 1. Case 1’ with
KCF L; @ R; is the closest non-generic pencil. Our explicit bound for case 1’
is not proved to be the smallest possible.

5 Some Comments on the General Case

The complexity and the intricacies of the problems considered are well-exposed
in sections 2 — 4. In the following we discuss some extensions to general m-by-n
pencils. The number of different KCFs grows rapidly with increasing m and
n. Some cases are displayed in Table 11. We have been able to generate 20098
structurally different KCFs for m = 10,n = 20. Notice that for a given m the
number of different structures is fixed for n > 2m. For m > n the number of
KCFs are the same as for the transposed pencil. As an example we show all
structurally different 3-by-4 Kronecker forms in Table 12, where we as before
let Ry denote a 2-by-2 regular block with any non-zero finite eigenvalues (see
Section 2.1) and, similarly, we let R3 denote a regular 3-by-3 block.
Tt is possible to extend Theorem 4.1 to general m-by-(m + 1) pencils.

Theorem 5.1 For a generic m-by-(m + 1) pencil (A, B) the following inequal-
ttees hold:

0= dy(Rlml) < dy(R[m — 1]) < ... < dy (R[0)), (5.1)
dy(Rlm — 1)) < dy (), dy(Rfm — 1]) < dy(B), (5.2)
dy(Rlm — 1)) < dy(Llm — 1)) < ... < dy(L[0]), (5.3)

dk(A) < dk+1(A)
dk(B) <dk+1(B) k:l,,m—l (54)
di(R[0]) < dy41(R[0])

Proof. From Theorem 2.1 it follows that d; (R[m]) = 0 for all m-by-(m +1)
pencils (generic or non-generic). A perturbation that lowers the column rank in
R[k — 1] will always lower the rank in R[k], since a dependence between columns

The Set of 2-by-3 Matrix Pencils

121

Table 11: Number of structurally different Kronecker forms of size m-by-n (m <

m|n:1 2 3 4 5 6 7 8 9 10

1 4 5 5 5 5 5 5 5 5 5

2 14 18 19 19 19 19 19 19 19

3 41 54 58 59 59 59 59 59

4 110 145 159 163 164 164 164

5 271 358 397 411 415 416
Table 12: All 54 structurally different 3-by-4 pencils.

KCF

L, Lo® R, ® N 2Lo & LT

Lo® N, Lo® Rs 2Ly ® Ny ® LT

L, ® R, Lo® Js 2Lo® N, @ LT

Lo J; Lod J,® N, 2Lo ®2N; ® LT

Li®N, Lo® J, ® Ry 2Lo® Ry & LT

L ®2N; Lod J & N, 2L ® Ry ® N, @ LY

LioR ®N, LydJ, @®2N; 2Lo ® Ry ® LY

Ly ® Ry Lo®Ji®Ri &Ny 2Lo® Jo & LY

Ly® Jp Lo® Ji ® Ry 2Ly® J; ® LT

Li®Ji®ON: Lo®JidJo 2Lo® J ® N1 & LY

LieoJi®oR Lie2JioN; 2Ly ;@ Ry @ LT

Li®2J, Lo®2J,® Ry 2Ly®2J; ® LT

2L, & LT Lo & 3J; 2Lo @ Ly ® 2LT

Lo ® N3 Lo Lyo LT 3Loe L & L

Lo®N,®Ny, Lo® L ®LT 3Ly ® N; @ 2L¥

Lo® 3N, LyeLiyo N, o LY 3Lo® R, ®2LY

Lo®R ®Ny Lo@®Li ®R ©LY 3Ly Jy ®2LY

Lo®R ®2N, LyeLioJi Ll 4Ly®3LY

122 Paper IIT

in R[k — 1] will make the corresponding columns in

A 0
Rlk]= | B R[k—z]
0

linearly dependent, proving (5.1). A perturbation that reduces the rank in A
(or B) will cause a linear dependence among the m first (or last) rows of

A 0
Rm —1] =
0 B

Since R[m —1] is square (m? +m) x (m? +m), the row rank deficiency is equiva-
lent to R[m — 1] being column rank deficient, which proves (5.2). The relations
between d; (L[k]),k =0,...,m —1 in (5.3) can be proved similarly as the corre-
sponding relations between the R[k]-matrices in (5.1). For the first inequality in
(5.3) we recall the fact that a row rank deficient L[m —1] is equivalent to at least
one LT block (k= 0,..., or m—1) in the KCF. To match the dimensions of the
pencil, the KCF must contain at least one L; block (i =0, ..., or m — 2) which
is equivalent to R[i] being column rank deficient. Hence L[m — 1] row rank defi-
cient is equivalent to R[i] being column rank deficient for some i = 0,...,m —2.
Now, the first inequality of (5.3) is obtained by applying (5.1) to the relation
between R[] and R[m —1]. Asin Theorem 4.1 the inequalities (5.4) follow from
the definition of di(-). O

We can see that the closest non-generic structure to a generic m-by-(m + 1)
pencil is on distance d;(R[m — 1]). Notably, when all inequalities relating to
d;(R[m—1]) in Theorem 5.1 are strict, the equation (5.1) excludes any Ly, blocks
for k < m—1in the KCF of any pencil on distance d; (R[m—1]) from the generic
case. Similarly, the equation (5.2) excludes any J; or N; blocks, and (5.3) the
existence of Lg blocks. Altogether, this extends Corollary 4.1 to m-by-(m + 1)
pencils.

Corollary 5.1 If all inequalities relating to dy (R[m — 1]) in Theorem 5.1 are
strict, the closest non-generic structure to a generic m-by-(m + 1) pencil is
Ly—1 ® Ry (with codimension 1) on distance di(R[m — 1]).

Corollary 5.1 can be used to characterize the distance to uncontrollability for
a single input single output linear system Ei(t) = Fz(t) + Gu(t), where E and
F are p-by-p matrices, G is p-by-1, and E is assumed to be nonsingular. The
linear system is completely controllable (i.e., the dimension of the controllable
subspace equals p) if and only if A — AB = [G|F — AE] is generic. Under the
assumptions in Corollary 5.1 the closest uncontrollable system is on distance
di(R[p — 1]) corresponding to the non-generic structure L, 1 & R; (with the
eigenvalue of R; finite and non-zero but otherwise unspecified).

The Set of 2-by-3 Matrix Pencils 123

Since B has full row rank A — AB = [G|F — AE] can have neither infinite
eigenvalues nor L]T blocks in its KCF. Therefore, it can only have finite eigenval-
ues and L; blocks in its KCF (and GUPTRI form) and the number of L; blocks
is equal to the number of columns of G. For p = 2 the possible uncontrollable
systems correspond to cases 1°, 2, 5, 4’, 4 and 3 of Table 3.

Generalizations of corollaries 4.2 and 4.3 to m-by-(m+1) pencils are straight-
forward, but there are several more cases to distinguish. The formulations and
technicalities are omitted here.

Some results for general matrix pencils relating to problems studied here are
presented in [2]. Eigenvalue perturbation bounds are used to develop compu-
tational bounds on the distance from a given pencil to one with a qualitatively
different Kronecker structure.

Acknowledgements

We are grateful to Alan Edelman and the referees for constructive comments,
which have improved both the contents and the organization of the paper.

References

[1] T. Beelen and P. Van Dooren. An improved algorithm for the computation
of Kronecker’s canonical form of a singular pencil. Lin. Alg. Appl., 105:9—
65, 1988.

[2] D. L. Boley. Estimating the Sensitivity of the Algebraic Structure of Pencils
with Simple Eigenvalue Estimates. SIAM J. Matriz Anal. Appl., 11(4):632—
643, October 1990.

[3] J. Demmel and A. Edelman. The Dimension of Matrices (Matrix Pen-
cils) with Given Jordan (Kronecker) Canonical Forms. Report LBL-31839,
Mathematics Department, Lawrence Berkeley Laboratories, University of
California, Berkeley, CA 94720, 1992.

[4] J. Demmel and B. Kagstrém. Stably computing the Kronecker structure
and reducing subspaces of singular pencils A — AB for uncertain data. In
Jane Cullum and Ralph A. Willoughby, editors, Large Scale FEigenvalue
Problems, pages 283-323. North-Holland, Amsterdam, 1986. Mathematics
Studies Series Vol. 127, Proceedings of the IBM Institute Workshop on
Large Scale Eigenvalue Problems, July 8-12, 1985, Oberlech, Austria.

[5] J. Demmel and B. Kagstrom. Computing stable eigendecompositions of
matrix pencils. Lin. Alg. Appl., 88/89:139-186, April 1987.

[6] J. Demmel and B. Kagstrom. Accurate solutions of ill-posed problems in
control theory. SIAM J. Mat. Anal. Appl., 9(1):126-145, January 1988.

124

Paper 111

[7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

J. Demmel and B. Kagstrom. The Generalized Schur Decomposition of
an Arbitrary Pencil A — AB: Robust Software with Error Bounds and
Applications. Part I: Theory and Algorithms. ACM Trans. Math. Software,
Vol.19(No. 2):160-174, June 1993.

J. Demmel and B. Kagstrom. The Generalized Schur Decomposition of an
Arbitrary Pencil A — AB: Robust Software with Error Bounds and Appli-
cations. Part II: Software and Applications. ACM Trans. Math. Software,
Vol.19(No. 2):175-201, June 1993.

F. Gantmacher. The Theory of Matrices, Vol. I and II (transl.). Chelsea,
New York, 1959.

G. Golub and C. Van Loan. Matriz Computations. Second Edition. Johns
Hopkins University Press, Baltimore, MD, 1989.

B. Kéagstrom. The generalized singular value decomposition and the general
A — AB problem. BIT, 24:568-583, 1984.

B. Kagstrom. RGSVD - an algorithm for computing the Kronecker canon-
ical form and reducing subspaces of singular matrix pencils A — AB. SIAM
J. Sci. Stat. Comp., 7(1):185-211, 1986.

V. Kublanovskaya. AB-algorithm and its modifications for the spectral
problem of linear pencils of matrices. Num. Math., 43:329-342, 1984.

V. Kublanovskaya and V. B. Chazanov. Spectral problems for matrix pen-
cils: methods and algorithms, part I (in Russian). Preprint LOMI P-2-88,
USSR Academy of Sciences, Leningrad, 1988.

C. Paige. Properties of numerical algorithms related to computing control-
lability. IEEE Trans. Autom. Contr., AC-26(1):130-138, 1981.

P. Van Dooren. The computation of Kronecker’s canonical form of a sin-
gular pencil. Lin. Alg. Appl., 27:103-141, 1979.

P. Van Dooren. The generalized eigenstructure problem in linear system
theory. IEEE Trans. Autom. Contr., AC-26(1):111-129, 1981.

P. Van Dooren. Reducing subspaces: Definitions, properties and algo-
rithms. In B. Kagstrém and A. Ruhe, editors, Matriz Pencils, pages 58—
73. Springer-Verlag, Berlin, 1983. Lecture Notes in Mathematics, vol. 973,
Proceedings, Pite Havsbad, 1982.

W. Waterhouse. The codimension of singular matrix pairs. Lin. Alg. Appl.,
57:227-245, 1984.

The Set of 2-by-3 Matrix Pencils 125

[20] J. H. Wilkinson. Linear differential equations and Kronecker’s canonical
form. In C. de Boor and G. Golub, editors, Recent Advances in Numerical
Analysis, pages 231-265. Academic Press, 1978.

126 Paper IIT

A Proof of Theorem 2.2

Proof. First we prove that each arc in the graph correspond to a closure
relation, and then we prove that these are all arcs that can exist. We prove that
one KCF is in the closure of the orbit of another KCF by showing that the one
in the closure is just a special case of the one defining the closure. We show
proofs for each arc starting from the zero pencil.

Before looking at each arc we note that there is a symmetry regarding row
ranks and column nullities between the Kronecker structures with J; and N;
blocks replaced (see Table 3). From this follows that some of the proofs below
that are shown for J; blocks can be done similarly for the corresponding case
with N; blocks. Typically we have to work with specific elements in A instead
of B or vice versa. For these cases we will just mention this similarity without
repeating the computations.

In the following, «, 3, 7, 6, and € are supposed to be non-zero elements when
nothing else is stated.

e 3Ly @ 2L} is in the closure of orbit(2Lo ® J; @ L{), since 3Ly @ 2LY is
the special case a = 0 of

000] ,[0O0 a
0 0 O 0O 0 0}’
which is equivalent to 2Ly & J; & LOT for all non-zero a.

e 3Ly ® 2LY is in the closure of orbit(2Ly ® N; @© LI follows from similar
arguments based on the symmetry between J; and N; blocks.

e 2Ly®J; ® LT is in the closure of orbit(2Lo® Ry ® LY, since 2Ly ® J; ® LT
is the special case o = 0 of

00 al ,[004
00 0 00 0]

which is equivalent to 2Ly & Ry & Lg for all non-zero «.

e 2Lyd N, ® LY is in the closure of orbit(2Lo® Ry ® LY) follows from similar
arguments.

e 2Ly @ J; ® LY is in the closure of orbit(Ly @ 2J;), since 2Ly @ J; & L is
the special case a = 0 of

(00 0] _ [0 0 B8]
| 0 0 0| |0 a 0]’
which multiplied by a permutation matrix can be shown to be equivalent

to

[0 0 0] A'o a 0]
o0 0| 7|0 0 8]

The Set of 2-by-3 Matrix Pencils 127

and this pencil is equivalent to Ly @ 2J; for all non-zero «a.

e 2L, ® N; @ LY is in the closure of orbit(Ly @ 2N;) follows from similar
arguments.

e 2Ly ® Ry @ LT is in the closure of orbit(2Lg & LT), since 2Ly @ Ry & LT
is the special case 8 = 0 of

OOaAOO'y
00 B8] 7|10 o0 0]}

which for non-zero 3 is shown to be equivalent to 2Lo® LT by the following
equivalence transformation
0
Jo0e) =
1

1 —«
Y B 00af A\ 00 v
0 % 004 000
e 2Lo® R, ® LY is in the closure of orbit(Lo® L; ® LL'), since 2Lo® Ry ® LT
is the special case 8 = 0 of

[0001]_)\[057]
0 0 0 0 0 0]’

which for non-zero 3 is shown to be equivalent to Lo & L; & LI by the
following equivalence transformation

H(EHRIBHIE

e 2Ly @ LT is in the closure of orbit(Lo & J; @ Ny), since 2Lo @ LT is the
special case v = 0 of

10
01
00

o O
O WwR O
|O
™R
| N |
I
| — |
S O
oS O
S =
—_
|
>
| —— |
o O
O =

BRI

This is shown by the following equivalence transformation:

5w | ([00a]_,[008 é?g _[oo00]_,Joo01
0% oop| “|ooo 001 “loo1| “|ooo0|’

128

Paper 111

which is identical to 2Ly & LT. That the pencil (A.1) is equivalent to
Lo® J; ®N; for all non-zero v follows from the equivalence transformation:

02| -[000]- [és]

Lo tl(eos] 2 [ase])]e

o= o
~=2|l o

A2

2L GBLf is in the closure of orbit(Lo®J>), since 2Ly @Lf is a permutation
of

[0 0 a]_ [0 0 0]

0 0 0| |0 0 8|’
which is the special case v = 0 of

[0 0 o A'070'

0oo0o0| “|0oo0 B8]

and this pencil is equivalent to Lq & J5 for all non-zero ~.
2Lo® LT is in the closure of orbit(Lo® Ns) follows from similar arguments.

Ly @ Ly @ LT is in the closure of orbit(Ly @ J3), since 2Ly @ LT is the
special case 8 = 0 of

00 af A 0 ~ O
0 0 O 0 0 g\’
which is equivalent to Ly @ J5 for all non-zero 3

Lo ® Ly ® LY is in the closure of orbit(Lo & N3) follows from similar
arguments.

Lo® Ly ® LY is in the closure of orbit(Lo ® J; @ Ny), since Lo ® Ly ® LT
is the special case 8 = 0 of

IR (13)

This follows from the equivalence transformation

ERIGHR GBI

That (A.3) is equivalent to Lo @ J; @& N; for non-zero f is shown in (A.2).

oRIR O
|
2>
I
| — |
o O
S O
O =
—_
|
>
| — |
S O
S =

The Set of 2-by-3 Matrix Pencils 129

o Ly @ 2J; is in the closure of orbit(Lo @ J»), since Ly @ 2J; is the special

case a = 0 of
00a)l_,[0 B0
00 01| 00 ~ |’

which is equivalent to Ly @ J5 for all non-zero a.
e Lo®2N; is in the closure of orbit(Lg® N3) follows from similar arguments.

o Ly® Jy is in the closure of orbit(Lo @ J1 @& R;), since Lo @ Jo is the special

case 3 = 0 of
0 0 « 0 v O
[0 0 ﬂ]"A[o 0 5]’

which for non-zero 8 is shown to be equivalent to Lq & J; & Ry (with
eigenvalue (3/6) by the following equivalence transformation

Hed (R S SR R tR:

Fl
e Lo ® N; is in the closure of orbit(Lg & N; @& R;) follows from similar
arguments.

o= O

o Lo® Jy ® Ni is in the closure of orbit(Lo ® J; @ Ry), since Lo ® J; & Ny
is the special case v = 0 of

000] ,Jog o
0 0 « 0 0 ~ |’
which is equivalent to Ly & J; & R; for all non-zero +.

o Ly® J; ® N; is in the closure of orbit(Lo @& N1 @ R;) follows from similar
arguments.

o Lo ® J; ® Ry is in the closure of orbit(Ly @ Jy), since Lo ® J; ® Ry is
equivalent to Lo ® Ry & J; which is the special case a = 0 of

a g 0] A\ 0 v O
0 0 O 0 0 6|’
which for non-zero « is shown to be equivalent to L; & J; by the following
equivalence transformation
0
1|

(5 oo] (a5 3])

[ev B en}
S =

0 10
0]_A[00

o orl=
SO O
Il
/

130 Paper IIT

e Ly ® N; & Ry is in the closure of orbit(L; @ N;) follows from similar
arguments.

o Lo® J; ® R, is in the closure of orbit(Lg ® Ry), since Lo ® J; ® Ry is the
special case a = 0 of

OaO/\O'yO
00 8| “|o o0 6|

which is equivalent to Lo ® Ry for all non-zero a.

e Ly ® J; & Ry is in the closure of orbit(Ly & Ry) follows from similar
arguments.

e L; ®J; is in the closure of orbit(L; & Ry), since Ly @ J; is the special case

B =0 of
a 0 0 A\ 0 v O
00 8| 0 0 61’
which is equivalent to L; & R; for all non-zero S.

e L; ®N; is in the closure of orbit(L; ® R;) follows from similar arguments.

e Ly ® R, is in the closure of orbit(L; @ R;), since Ly @ R, is the special

case a = 0 of
a B 0) 0 6 O
0 0 ~ 0 0 €|’

which for non-zero « is shown to be equivalent to L; ® R; (with eigenvalue
v/€) by the following equivalence transformation

a5 o] 00%))

e L; ® R; is in the closure of orbit(Ls), since Ly spans the complete 12-
dimensional space.

O o>l

R
S =
o O
nlR O
—_

|

>
/
S O
O =

o ORI
o= O O
I
/

Now we have shown that all arcs in the graph are valid. It remains to show
that there are no arcs missing. This can be done by examining the KCF:s that
cannot be in the closure of each other.

First we remark that one necessary condition for a KCF to be in the closure
of the orbit of another is that it must have higher codimension than the one
defining the closure.

Since Ly & N1 ® Ry, Lo ® N5 and Ly @ 2N; all require that A has full rank
(= 2), none of them can be in the closure of orbit(L; & Jp), since that KCF
requires A to have rank = 1. (Of course this also implies that none of these

The Set of 2-by-3 Matrix Pencils 131

three KCF':s can be in the closure of the orbit of Ly @& J; & Ry, Lo ® 2J; or any
other KCF that is in the closure of orbit(L; & J1).)

From the symmetry for J; and N, blocks, we have that none of Ly & J; ® Ry,
Lo@® Jy and Lo & 2J; can be in the closure of orbit(L; & N;), since they require
B to have full rank and L1 & Ny has rank(B) = 1.

Since 2Ly ® J; ® Lg and 2Ly ® R; & Lg have a B of rank 1, none of them can
be in the closure of orbit(Lo & 2N;) since that KCF requires a 2-dimensional
rank deficiency in B. By similar arguments for the rank of A we see that
2Lo® Ny ® LY and 2Ly @ Ry @ LY cannot be in the closure of orbit(Ly @ 2.J;).
Since we have investigated all presumptive KCF:s the proof is complete. O

132 Paper IIT

Paper 1V

A Geometric Approach to Perturbation
Theory of Matrices and Matrix Pencils.
Part I: Versal Deformations*

Alan Edelman®, Erik Elmroth*, and Bo Kégstrom

Department of Computing Science, Umed University
S-901 87 Umead, Sweden.
E-mail: edelman@math.mit.edu, elmroth@cs.ume.se, bokg@cs.ume.se

Abstract

We derive versal deformations of the Kronecker canonical form by de-
riving the tangent space and orthogonal bases for the normal space to
the orbits of strictly equivalent matrix pencils. These deformations reveal
the local perturbation theory of matrix pencils related to the Kronecker
canonical form. We also obtain a new singular value bound for the dis-
tance to the orbits of less generic pencils. The concepts, results and their
derivations are mainly expressed in the language of numerical linear alge-
bra. We conclude with experiments and applications.

Keywords: Jordan canonical form, Kronecker canonical form, generalized
Schur decomposition, staircase algorithm, versal deformations, tangent and nor-
mal spaces, singularity theory, perturbation theory.

*Submitted to SIAM Journal on Matriz Analysis and its Applications.

fDepartment of Mathematics, Room 2-380, Massachusetts Institute of Technology, Cam-
bridge, MA 02139, USA, Supported by NSF grant DMS-9120852 and an Alfred P. Sloan
Foundation Research Fellowship.

In part supported by the Swedish National Board of Industrial and Technical Development
under grant 89-02578P.

135

136 Paper IV

1 Introduction and Examples

1.1 Introduction

Traditionally, canonical structure computations take as their input some math-
ematical object, a matrix or a pencil say, and return an equivalent object that is
perhaps simpler, or makes clear the structure of the equivalence relation. Some
example equivalence relations and corresponding canonical forms are:

Structure Equivalence Relation Canonical Form

Square Matrices A~ X1AX Jordan Canonical Form
Rectangular Matrices A~ UAV Singular Values
Rectangular Matrices A~ XA Reduced Echelon form
Matrix Pencils A—AB ~ P '(A—)B)Q Kronecker Canonical Form
Analytic real functions f(z) ~ f(¢(x)) +a*

In the first three examples the input is a matrix, in the next example, the
input is a pencil. In these cases, X, P, and @ are presumed nonsingular, and U
and V are presumed orthogonal. We presume the real functions f are analytic in
a neighborhood of zero, f(0) = 0, ¢(0) = 0 and ¢(z) is monotonic and analytic
near zero.

Canonical forms appear in every branch of mathematics. A few examples
from control theory may be found in [20, 19, 25, 18]. However, researchers in
singularity theory have asked the question what happens if you have not one
object that you want to put into a normal form, but rather a whole family of
objects nearby some particular object and you wish to put each member of the
family into a canonical form in such a way that the canonical form depends
smoothly on the deformation parameters.

For example, one may have, a one parameter matrix deformation of Ag which
is simply an analytic function A(\) for which A(0) = Ag. An n parameter
deformation is defined the same way, except that A € R™. Similarly, one may
have n parameter deformations of pencils or functions. Sticking with the matrix
example, we say two deformations A(A) and B(A) are equivalent if A(\) and
B()) have the same Jordan canonical form for each and every A. A deformation
of a matrix is said to be versal if, loosely speaking, it captures all possible Jordan
form behaviors, near the matrix. A deformation is said to be miniversal, if it
does so with as few parameters as possible. A more formal discussion of these
definitions may be found in Section 2.

Derivation of versal and miniversal deformations requires a detailed under-
standing of the perturbation theory of the objects under study. In particular,
one needs to understand the tangent space of the equivalence relation, and how
it is embedded in the entire space. In Section 2, we explain the mechanics of
this perturbation theory.

Versal Deformations of Matrices and Matrix Pencils 137

While we believe that versal deformations are interesting mathematical ob-
jects, this work differs from other works on the subject in that our primary
goal is not so much the versal deformation or the miniversal deformation, but
rather the perturbation theory and how it influences the computation of the
Kronecker canonical form. As such we tend to be interested more in metrical
information than topological information. Therefore, we obtain new distance
formulas to the space of less generic matrix pencils in Section 4. In Section
5, we derive an explicit orthogonal basis for the normal space of a Kronecker
canonical form. For us a versal decomposition will be an explicit decomposition
of a perturbation into its tangential and normal components, and we will not
derive any miniversal deformations that may have simpler forms, but hide the
metric information.

Versal deformations for function spaces are discussed in [17, 24, 4, 5]. The
first application of these ideas for the matrix Jordan canonical form is due to
Arnold [1]. Further references closely related to Arnold’s matrix approach are
[28] and [6]. The latter reference, [6], also includes applications to differential
equations. Applications of the matrix idea towards an understanding of com-
panion matrix eigenvalue calculations may be found in [13]. The only other
work that we are aware of that considers versal deformations of the Kronecker
canonical form is by Berg and Kwatny [3] who have independently derived some
of the normal forms considered in this paper.

Our Section 2 contains a thorough explanation of versal deformations from a
linear algebra perspective. Section 3 briefly reviews matrix pencils and canonical
forms. Section 4 derives the geometry of the tangent and normal spaces to the
orbits of matrix pencils. Section 5 derives the versal deformations, while Section
6 gives applications and illustrations.

1.2 Geometry of matrix space

Our guiding message is very simple: matrices should be seen in the mind’s eye
geometrically as points in n? dimensional space. A perfect vision of numerical
computation would allow us to picture computations as moving matrices from
point to point or manifold to manifold.

Abstractly, it hardly matters whether a vector is a column of numbers or a
geometric point in space. However, without the interplay of these two repre-
sentations, numerical linear algebra would not be the same. Imagine explaining
how Householder reflections transform vectors without the geometric viewpoint.

By contrast, in numerical linear algebra we all know that matrices are geo-
metric points in n? dimensional space, but it is far rarer that we actually think
about them this way. Most often, matrices are thought of as either (sparse or
dense) arrays of numbers, or they are operators on vectors.

The Eckart—Young (or Schmidt—Mirsky theorem) [27, p.210] gives a feel for
the geometric approach. The theorem states that the smallest singular value of
A is the Frobenius distance of A to the set of singular matrices. One can not

138 Paper IV

help but to see a blob representing the set of singular matrices. This amorphous
blob is most often thought of as an undesirable part of town, so unfortunately
numerical analysts hardly ever study the set itself.

Demmel has helped to pioneer the development of geometric techniques [7]
for the analysis of ill-conditioning of numerical analysis problems. Shub and
Smale [26] are applying geometrical approaches towards the solution of polyno-
mial systems.

We believe that if only we could better understand the geometry of matrix
space, our knowledge of numerical algorithms and their failures would also im-
prove. A general program for numerical linear algebra, then, is to transfer from
pure mathematicians the technology to understand geometrically the high di-
mensional objects that arise in numerical linear algebra. This program may not
be easy to follow. A major difficulty is that pure mathematicians pay a price for
their beautiful abstractions — they do not always possess a deep understanding
of the individual objects that we wish to study. This makes technology transfer
difficult. Even when the understanding exists somewhere, it may be difficult
to recognize or may be buried under a heavy layer of notation. This makes
technology transfer time consuming. Finally, even after putting in the time for
the excavation, the knowledge may still be difficult to apply towards the un-
derstanding or the improving of practical algorithms. This makes technology
transfer from pure mathematics frustrating.

Nevertheless, our goal as researchers is the quest for understanding which
we may then apply. In this paper, we follow our program for the understanding
of the Jordan and Kronecker canonical forms of matrices and matrix pencils,
respectively. Many of the ideas to be found in this paper have been borrowed
from the pure mathematics literature with the goal of simplifying and applying
to the needs of numerical linear algebraists.

While this is quite a general program for numerical linear algebra, this paper
focuses on a particular goal. We analyze versal deformations from the numerical
linear algebra viewpoint, and then compute normal deformations for the Kro-
necker canonical form. We consider both of these as stepping stones towards
the far more difficult goal of truly understanding and improving upon staircase
algorithms for the Jordan or Kronecker canonical form. These are algorithms
used in systems and control theory. The structures of these matrices or pen-
cils reflect important physical properties of the systems they model, such as
controllability [10, 30].

The user chooses a parameter 1 to measure any uncertainty in the data. The
existence of a matrix or pencil with a different structure within distance n of
the input means that the actual system may have a different structure than the
approximation supplied as input. These algorithms try to perturb their input
by at most 7 so as to find a matrix or pencil with as high a codimension as
possible. The algorithm is said to fail if there is another perturbation of size
at most 7 which would raise the codimension even further. Therefore, we need
to understand the geometry of matrix space in order to begin to understand

Versal Deformations of Matrices and Matrix Pencils 139

how we can supply the correct information to the user. With this information,
we believe that we would then be able to not only correctly provide the least
generic solutions, but also understand how singularities hinder this process.
Bad solutions may then be refined so as to obtain better solutions. As the next
subsection illustrates, the geometry directly affects the perturbation theory.

1.3 Motivation: a singular value puzzle

Consider the following four nearly singular matrices:

(0 1+e€ (01 _fe 1 _f(el
R Ui B G R R B O
(1.1)
Each of these matrices are distance O(e) from the Jordan block

JQ(O):(S (1))

What is the smaller of the two singular values of each of My, Ma, M3 and M,?
The answer is

Omin(M1) =0, omin(Mz) =€, omin(M3) =~ e and Omin(My) = €.

A quick way to verify this algebraically is to notice that the larger singular
value of each matrix is approximately 1 so that the smaller is approximately
the (absolute) determinant of the matrix. Another approach that bounds the
smallest singular value is the combination of the Eckart—Young theorem and the
observation that these matrices are singular:

0 1 € 1 e 1
M{ZMI’ Mé:(O 0)’ M§=(_€2 —6)’ Mi=<€2 6)'

When ¢ = 0 in (1.1) our four matrices become the singular 2 x 2 Jordan
block J5(0). As € varies from 0 each of the four forms in (1.1) traces out a line
in matrix space. The geometric issue that is interesting here is that the line of
matrices traced out as € varies is { 1:In 2:Normal 3:Tangent 4:Tangent } to the
set of singular matrices. Somehow, this feels like the “right” explanation for
why the smaller singular values are { 1:0, 2:¢, 3:~ €2, 4:x €2 }.

Let us take a closer look at the set of singular matrices. The four parameters
found in a 2 x 2 matrix M are best viewed in a transformed coordinate system:

M=) = 0 1Y, (00) (1 0Y, /10
T\IHYSW)I=TR g 0 YV1 0 Lo -1 Yo 1

140 Paper IV

_ w+ 2z x
- Y w—2z |

In this coordinate system, the singular matrices fall on the surface described
by the equation w? = 22 + zy. This is a three dimensional surface in four
dimensional space. The traceless singular matrices (w = 0) fall on the cone
22 + 2y = 0 in three dimensional space.
Our matrix J2(0) may now be represented as (1,0,0,0) and the four lines of

matrices mentioned above are

)

0)

o))
)
)

The lines Iy, 15 and I3 are all traceless, i.e., the matrices on each of these lines
may be viewed in the three dimensional space of the cone. The line l; is not only
tangent to the cone, but in fact it lies in the cone. The line I3 is tangent to one of
the circular cross-sections of the cone.

Lh={ (140,00 }= {(

{(
(0

u=(oow 1={(;

+
o
/N
o o

oo oo

lo = { (17y7070) }

+
o
/N
= O

o

Is={ (1,0,2,0) }

O~ Ok OMF= O
e e N
+ 4+
2 o
NN
O = O

Figure 1: Cone of traceless singular matrices with “stick” representing a tangent.

Figure 1 illustrates I3 as a “stick” resting near the bottom of the cone. The
line /; is a thin line on the cone through the same point.

The line l4 is normal to the cone but it is also tangent to the manifold
of singular matrices. One way to picture this in three dimensions is to take

Versal Deformations of Matrices and Matrix Pencils 141

the three dimensional slice of {w? = 22 + zy} corresponding to z = 1, i.e.,
{w? — 22 = y}. This is a hyperboloid with the Jordan block as a saddle point.
The line is the tangent to the parabola w? = y which rests in the plane z = 0.
Figure 2 illustrates this line with a cylindrical stick whose central axis is the
tangent. Lastly, the line 5 is normal to the set of singular matrices.

Figure 2: Manifold of singular matrices. The axis of the cylindrical stick is
tangent to the manifold.

-2

If we move a distance € away from a point on a surface along a tangent,
our distance to the surface remains O(e?). This is what the singular value
corresponding to I3 and l4 is telling us. Alternatively, if we move normal to the
surface as in Iz, the singular value changes more rapidly: O(e).

The cone of singular matrices with w = 0 is not only a slice of a large
dimensional space, but it is also the (closure of) the set of matrices similar to
J2(0) (which we denote orbit(J2(0)) in Section 2.4). The matrices similar to
J2(0) are singular and traceless. In fact, the only matrix that is singular and
traceless that is not similar to J2(0) is the 0 matrix which is the vertex of the
cone. We further explore this case in Section 2.5 after we have defined versal
deformations.

We conclude that the geometry of the orbit and in particular the directions
of the tangents and normals to the orbit directly influence the eigenvalue per-
turbation theory.

142 Paper IV

2 Introduction to Versal Deformations

This introduction is designed to be readable for general audiences, but we par-
ticularly target the numerical linear algebra community.

The ideas here may be thought of as a numerical analyst’s viewpoint on
ideas that were inspired by Arnold’s work [1] on versal deformations of matri-
ces. Further elaboration upon Arnold’s versal deformations of matrices may be
found in [6, Chapter 2.9 and 2.10] and [28]. These ideas fit into a larger context
of differential topology and singularity theory. Bruce and Giblin [5] have writ-
ten a wonderfully readable introduction to singularity theory emphasizing the
elementary geometrical viewpoint. After reading this introduction, it is easy to
be lulled into the belief that one has mastered the subject, but a whole further
more advanced wealth of information may be found in [17, 24, 4]. Finally, what
none of these references do very well is explain clearly that there is still much
in this area that mankind does not yet fully understand.

Singularity theory may be viewed as a branch of the study of curves and
surfaces, but its crowning application is towards the topological understand-
ing of functions and their behavior under perturbations. Of course, numerical
analysts are very interested in perturbations as well.

2.1 Characteristic polynomials give the “feel” of versal
deformations

Let A()) be a differentiable one parameter family of matrices through 4q =
A(0). This is just a curve in matrix space. If Ay has a complicated Jordan
canonical form, then very likely, the Jordan canonical form of A()) is a dis-
continuous function of A. (The Jordan canonical form, you will remember, can
have nasty ones popping up unexpectedly on the superdiagonal.) It is even more
desirable if that function can somehow describe the kinds of matrices that are
near Ag.

Discontinuities are as unpleasant for pure mathematicians as they are for
computers. Therefore Arnold [1] asks what kinds functions of A are differen-
tiable? (or many times differentiable, or analytic.)

One function that comes to mind is the characteristic polynomial p,(t) =
det(A(X) — tI). The coefficients of p) are clearly differentiable functions of A
no matter how complicated a Jordan canonical form the matrix Ay might have.
In numerical linear algebra, we never compute the characteristic polynomial,
because the eigenvalues are often very poorly determined by the coefficients of
the characteristic polynomial. Mathematically, the characteristic polynomial is
a nice function of a matrix because its coeflicients, unlike the eigenvalues of the
matrix, are analytic functions of the entries of the matrix.

The characteristic polynomial is a reasonable representation for the Jordan
canonical form under the special circumstance that every matrix A()) is non-
derogatory (i.e., each matrix has exactly one Jordan block for each distinct eigen-

Versal Deformations of Matrices and Matrix Pencils 143

value). By a reasonable representation, we mean here that it actually encodes
the Jordan canonical form of Ag. Theoretically, if you know the characteris-
tic polynomial, then you know the eigenvalues with appropriate multiplicities.
It follows that there is a unique non-derogatory Jordan canonical form. (See
Wilkinson [33, pp.11-16 or Note 55, p.408]). To repeat, there is a one-to-one
correspondence among the n eigenvalues of a non-derogatory matrix, the char-
acteristic polynomial of a non-derogatory matrix, and the Jordan canonical form
of a non-derogatory matrix, but only the characteristic polynomial is a differ-
entiable function of the perturbation parameter A. (The eigenvalues themselves
can have first order perturbations with the non-differentiable form A/™, for ex-
ample, for an n X n matrix Ao with only one Jordan block J,(\). This is a well
known example.)

In the language of numerical linear algebra, we would say that a non-
derogatory matrix Ap may be written in companion matrix form KCK™!, in
such a way that differentiable perturbations to the matrix Aq lead to differen-
tiable perturbations to the companion matrix C. Here the matrix K is a Krylov
matrix. (See [16, p. 369]). Equivalently, first order perturbations to the ma-
trix Ao are manifested as first order perturbations to the companion matrix C'.
When Ay is a companion matrix, this gives a first order perturbation theory for
the characteristic polynomials of nearby matrices. This perturbation theory is
computed in [13].

Our story would almost stop here if we were only interested in the Jordan
form of non-derogatory matrices. We use “almost” because it would be a shame
to stop here without explaining the ideas geometrically. Even if we did not
discuss the geometry, we have reasons to continue on, since matrix space is
enriched with the derogatory matrices, and also we wish to generalize these
ideas about the Jordan canonical form to cover the more complicated case of
the Kronecker canonical form.

2.2 The rational canonical form is not enough for deroga-
tory matrices

In the previous subsection we saw that n parameters were sufficient to specify
the Jordan canonical form of any matrix in a small neighborhood of a non-
derogatory matrix. What happens if the matrix is derogatory? One obvious
guess turns out to be wrong. The usual generalization of the companion matrix
form for derogatory matrices is the rational canonical form. If A is derogatory,
it may be put in rational canonical form. This form may be thought of as the
direct sum of companion matrices C; with dimension mq, > mo > ... > my. The
characteristic polynomial of each C; divides the characteristic polynomial of all
the preceding C},5 < 7. Can any nearby matrix be expressed as the direct sum
of companion matrices with dimension mj,ms,...,m; in a nice differentiable
manner? The answer is generally no; though good enough to specify the Jordan
canonical form of a matrix, the rational canonical form fails to be powerful

144 Paper IV

enough to specify the Jordan canonical forms of all matrices in a neighborhood.
The reason is that there are just not enough parameters in the rational canonical
form to cover all the possibilities. To have enough parameters we need a “versal
deformation”.

2.3 Versal deformation: the linearized theory

The “linearized” picture of a versal deformation is easy to understand. We
therefore explain this picture before plunging into the global point of view.
The general case may be nonlinear, but the linearized theory is all that really
matters. For simplicity we assume that we are in real n dimensional Euclidean
space, but this assumption is not so important.

We recall the elementary fact that if S and 7 are subspaces of R™ such that
S +7 = R", then there exist linear projections 7s and 77 that map onto S
and 7, respectively.

Consider a point x € §. We will investigate all possible perturbations y
of z, but we will not be concerned with perturbations that are within S itself.
Psychologically, we consider all the vectors in S to somehow be the same so
there will be no need to distinguish them. Let 7 be any linear subspace such
that S +7 = R™, i.e., any vector may be written as the sum of an element of
T and an element of S (not necessarily uniquely). Clearly if ¢;,...,t; span 7T,
then our perturbed vector z + y may be written as

k
z+y=z+ Z Ait; + (something in S),
=1

where the A; may be chosen as linear functions of y. We see here what will turn
out to be the key idea of a versal deformation, every perturbation vector may
be expressed in terms of the A; and vectors that we are considering to all be
equivalent.

We now formally introduce the local picture of versal deformations.

Definition 2.1 A linear deformation of the point x is a function defined on
e R
AN) =z + T,

where T = [t1to ... 1] are arbitrary directions.

The choice of the word “deformation” is meant to convey the idea that we are
looking at small values of the A;, and these perturbations are small deformations
of the starting point z.

Definition 2.2 A linear deformation A(\) of the point x is versal if for all
linear deformations B(p) of the point x, it is possible to write

B(u) = A(¢(n)) +0(n),

Versal Deformations of Matrices and Matrix Pencils 145

where ¢(p) is a linear function from py, ..., fhm to A1, ..., A with $(0) =0, and
6 is a linear function from p into S, with S(0) = 0.

We now explain why A(\) = x—}—Zi:l Ait; is versal if and only if S+7 = R™.
Clearly A(¢(p)) +60(pn) € S+ T and since B may be arbitrary, it is necessary
that span({t;})+S = R™. It is also sufficient, because we then obtain linear
projections allowing us to write B(u) = = + s B(p) + 77 B(p). The functions
¢ and 6 may be obtained from 7ws and 77.

Definition 2.3 A linear deformation A(X) of the point x is universal or miniver-
sal if it is versal, and has the fewest possible parameters needed for a versal
deformation.

The number of parameters in a miniversal deformation is exactly the codi-
mension of §. Numerical analysts might prefer taking the ¢; to be an orthog-
onal basis for S*, the subspace perpendicular to S. This provides one natural
miniversal deformation. Arnold [1] does not insist on using St, any basis for
any subspace of dimension n — dim S will do provided that it intersects S at
zero only. From the topological point of view, this is exactly the same, though
of course the numerical properties may be quite different.

2.4 Versal deformations the bigger picture

The previous subsection explained the linear or first order theory of versal de-
formations. At this point, the reader might wonder whether this is just a whole
lot of jargon to merely extend a basis for a subspace to the entire space. At
the risk of delaying the motivation until now, we decided to make sure that the
linear theory is well understood.

We are still in a finite dimensional Euclidean space R™, but S will no longer
be a flat subspace. Instead, we wish to consider any equivalence relation ~,
such that the orbit of z (orbit(z)= {y|y ~ z}) is a smooth submanifold. As an
example we might define z ~ y to mean ||z|| = ||y||, in which case the orbits are
spheres. In this context the word “orbit” is quite natural. In n? dimensional
space, points may be thought of as n X n matrices, and the orbit is the set of
matrices with the same Jordan canonical form.

One final example that we must mention (because it explains the origins and
significance of singularity theory) lives in an infinite dimensional space. The
vector space is the set of analytic functions f(z) for which f(0) = 0. We can
define f ~ g, if f(z) and g(¢(z)) have the same Taylor expansion at z = 0, where
¢ is a monotonic analytic function with ¢(0) = 0. The orbit of any function
is some complicated infinite dimensional manifold, but the codimension of the
manifold happens to be finite.

Returning to R™, we can now cast everything into a nonlinear context.

146 Paper IV

Definition 2.4 A deformation of the point x is any differentiable function
A(Ala" '7)‘l)
satisfying A(0) = z.

Definition 2.5 A deformation A(X) of the point x is versal if for all deforma-
tions B(u), it is possible to write

B(u) ~ A(p(n))

in an arbitrarily small neighborhood of 0, where ¢(u) is a differentiable function
from py, ..., pm to Ar, ..., A for which $(0) =0.

The good news is that the inverse function theorem lets us express this
nonlinear notion in terms of the linear theory:

Theorem 2.1 A deformation A(\) of z is versal if and only if A.(\) is a
linear deformation at the point x on the subspace tan(orbit(z)), where A, is the
linearization of A near x (i.e. only first derivatives matter), and tan denotes
the subspace tangent to the orbit at x.

The rigorous proof may be found in [1], but the intuition should be clear:
near the point z, only linear deformations matter, and the curvature of the orbit
becomes unimportant: only the tangent plane matters. In other words y ~ =
only if y is in the orbit of z, but to first order, y ~ z if (roughly speaking)
y =z + s, where s is a small tangent vector to the orbit.

2.5 Versal deformations for the Jordan canonical form

We begin with deformations of the matrix Ag = J5(0). The perturbation theory
and the normal and tangent spaces were discussed in Section 1.3. We will use
the same coordinate system here.

Four parameters p = (p1, o, pi3, pa) are sufficient to describe the most gen-
eral deformation of Ag:

w=(38)+ (2 2)

The equivalence relation is that of similar matrices, and it is easy to see by
checking the trace and determinant, that for sufficiently small values of u, we
have the equivalence,

aw~s0=(4)

Versal Deformations of Matrices and Matrix Pencils 147

where A = ¢(u) is defined by Ay = p3(1+4po) — p1pg and Ao = pg +pg. It is worth
emphasizing that the equivalence relation does not work if A(p) is derogatory,
but this does not happen for small parameters p.

We then see from Definition 2.5, that the two parameter deformation B(A)
is versal. In fact, it is miniversal, in that one needs the two parameters. From
the local theory pictured in Section 1.3, we saw that the orbit of J5(0) is the
two dimensional cone, and therefore the tangent and normal spaces are each two
dimensional. The number of parameters in a miniversal deformation is always
the dimension of the normal space.

It is a worthwhile exercise to derive the similarity transformation C(u) for

which
A(p) = C(p) ™' B(¢(1))C (1),

and then linearize this map for small values of u to see which directions fall
along the tangent space to the cone, and which directions are normal to the
cone.

Now consider deformations of Ag = I or Ay = 0. Both matrices are deroga-
tory with 2 eigenvalues 1 and 0, respectively. The tangent space does not exist
(i-e., it is zero dimensional). Any possible behavior may be found near I» (or
0) including a one dimensional space of derogatory matrices. The miniversal
deformation of I (or 0) is the full deformation requiring four parameters.

The general case has been worked out by Arnold [1]. The tangent vectors to
the orbit of a matrix Ay are those matrices that may be expressed as X Ag— Ay X.
The normal space is the adjoint of the centralizer, i.e., the set of matrices Z
satisfying

Az = zAH.

Let Ay has p distinct eigenvalues A;,7 = 1 : p with p; Jordan blocks each.
Let q1(Ai) > g2(X;) > ... > gp,(X;) denote the sizes of the Jordan blocks
corresponding to the eigenvalue \;. Then the dimension of the normal space of

A(] is

14

35005 - Dg00) = 3 (@) + 30(0) + 5as(A) +).

=1 j=1 1=1

Notice that the values of the distint \; play no role in this formula. The dimen-
sion of the normal space of Ay is determined only by the sizes of the Jordan
blocks of Ay associated with distinct eigenvalues. If the matrix is in Jordan
canonical form, then the normal space consists of matrices made up of Toeplitz
blocks, whose block structure is completely determined by the sizes of the Jordan
blocks for different eigenvalues. The normal space is the same for all matrices
with the same Jordan structure independent of the values of the distinct eigen-
values, so one may as well consider only Jordan blocks corresponding to a 0
eigenvalue. This form of the normal space for the zero eigenvalues is a special
case in Theorem 5.1.

148 Paper IV

3 The Algebra of Matrix Pencils — Canonical
Forms

We saw in Section 2.4 that to consider versal deformations, one needs a fi-
nite or infinite dimensional space, and an equivalence relation on this space.
For the remainder of this paper, we consider the finite dimensional Euclidean
space of matrix pencils endowed with the Euclidean metric (usually denoted the
Frobenius metric in this context). The equivalence relation is that of the strict
equivalence of pencils.

We consider a matrix pencil A — AB, where A and B are arbitrary m X n
matrices with real or complex entries. The pencil is said to be regular if m =n
and det(A—AB) is not identically zero. Indeed, the zeros of det(A—AB) = 0 are
the (generalized) eigenvalues of a regular pencil. Otherwise, i.e., if det(A—AB) is
identically zero or m # n, A— B is called singular. Two m xn pencils A; —AB;
and As — ABs are strictly equivalent if there exist constant (independent of \)
invertible matrices P of size m X m and Q of size n X n such that

P_I(A]_ -)\B]_)Q == A2 -)\B2

Kronecker has shown that any matrix pencil is strictly equivalent to a canonical
diagonal form that describes the structure elements of A — AB (including gen-
eralized eigenvalues and eigenspaces) in full detail (e.g. see [15]). This form is
a generalization of the Jordan canonical form (JCF) to general matrix pencils.

3.1 Kronecker canonical form

The Kronecker canonical form (KCF) of A — AB exhibits the fine structure ele-
ments, including elementary divisors (Jordan blocks) and minimal indices, and
is defined as follows [15]. Suppose A, B € C™*™. Then there exist nonsingular
P e C™*™ and Q € C™*™ such that

P Y(A—AB)Q = S — AT, (3.1)

where S = diag (S11,--.,Sm) and T = diag (T11,...,Tsw) are block diagonal.
S — AT;; is m; X m;. We can partition the columns of P and @ into blocks
corresponding to the blocks of S — AT: P = [P,..., P)] where P; is m x m,,
and Q = [Q1, ..., Q] where Q; is n X n,;. Each block M; = S;; — A\T;; must be

of one of the following forms: J;(a), N;, L; or Lf. First we consider
a—X 1 1 =X

Ji(a) = ' 1 and N, = ' .
oa— A 1

(3.2)

J;() is simply a j X j Jordan block, and « is called a finite eigenvalue. N; is a
J % j block corresponding to an infinite eigenvalue of multiplicity j. The J;(«)

Versal Deformations of Matrices and Matrix Pencils 149

and N; blocks together constitute the regular structure of the pencil. All the
Si: — AT, are regular blocks if and only if A— AB is a regular pencil. (A —AB)
denotes the eigenvalues of the regular part of A — AB (with multiplicities), and
is called the spectrum of A — AB.

The other two types of diagonal blocks are

The j x (j + 1) block L; is called a singular block of right (or column) minimal
indez j. It has a one dimensional right null space, [1,], ..., M]T, for any A. The
(j +1) x 7 block L]T is a singular block of left (or row) minimal index j, and has
a one dimensional left null space for any A. The left and right singular blocks
together constitute the singular structure of the pencil, and appear in the KCF
if and only if the pencil is singular. The regular and singular structures define
the Kronecker structure of a singular pencil.

We also have a real KCF associated with real matrix pencils. If A,B €
R™*™ there exist nonsingular P € R™*™ and @Q € R™*"™, where as before
P~1(A - AB)Q = S —)T is block diagonal. The only difference with (3.1) is
the Jordan blocks associated with complex conjugate pairs of eigenvalues. Let
a = p + iw, where p,w are real and w # 0. If « is an eigenvalue of A — AB,
then also @ is an eigenvalue. Let J;(«, &) denote a Jordan block of size 25 x 2j
associated with a complex conjugate pair of eigenvalues, here illustrated with
the case 7 = 3:

w— A w 1 0 0 0

—w p—A 0 1 0 0

N\ 0 0 ©w—A w 1 0
J3(a,a) = 0 0 w p—2 0 1 (3.4)

0 0 0 0 w—A w

0 0 0 0 —w p—A

The Jordan block J; (e, &) plays the same role in the real Jordan canonical form
as diag(J;(a), J;(@)) does in the complex JCF. Notice that each pair of the
27 columns of the real P and @ associated with a J;(a, @) block form the real
and imaginary parts of the (generalized) principal chains corresponding to the
complex conjugate pair of eigenvalues.

150 Paper IV

3.2 Generalized Schur form and reducing subspaces

In most applications it is enough to transfer A — AB to a generalized Schur form

(e.g. to GUPTRI form [11, 12])

A, —)\B, * *
PH(4-)B)Q = 0 Areg — ABiey * , (3.5)
0 0 A; — AB

where P (m xm) and @ (n x n) are unitary and * denotes arbitrary conforming
submatrices. Here the square upper triangular block A, — AB,., is regular
and has the same regular structure as A — AB (i.e., contains all eigenvalues
(finite and infinite) of A — AB). The rectangular blocks A, — AB, and A; — AB;
contain the singular structure (right and left minimal indices) of the pencil and
are block upper triangular.

A, — AB, has only right minimal indices in its Kronecker canonical form
(KCF), indeed the same L; blocks as A — AB. Similarly, A; — AB; has only
left minimal indices in its KCF, the same L]-T blocks as A — AB. If A — AB is
singular at least one of A, — AB, and A; — AB; will be present in (3.5). The
explicit structure of the diagonal blocks in staircase form can be found in [12].
If A— AB is regular A, — AB, and A; — AB; are not present in (3.5) and the
GUPTRI form reduces to the upper triangular block A,cq — ABreq. Staircase
forms that reveal the Jordan structure of the zero and infinite eigenvalues are
contained in A,cqy — ABjeq.

Given A — AB in GUPTRI form we also know different pairs of reducing
subspaces [31, 11]. Suppose the eigenvalues on the diagonal of A,y — AB, 4
are ordered so that the first k, say, are in Ay (a subset of the spectrum) and
the remainder are outside A;. Let A, — AB, be m, X n,. Then the left and
right reducing subspaces corresponding to A; are spanned by the leading m, + k
columns of P and leading n, + k columns of @, respectively. When A; is empty,
the corresponding reducing subspaces are called minimal, and when A; contains
the whole spectrum the reducing subspaces are called mazimal.

Several authors have proposed (staircase-type) algorithms for computing a
generalized Schur form (e.g. see [2, 21, 23, 22, 29, 34]). They are numer-
ically stable in the sense that they compute the exact Kronecker structure
(generalized Schur form or something similar) of a nearby pencil A’ — AB’.
6 = |[(A—A',B—B')||g is an upper bound on the distance to the closest
(A + 8A,B + 6B) with the KCF of (4’, B"). Recently, robust software with
error bounds for computing the GUPTRI form of a singular A — AB has been
published [11, 12]. Some computational experiments that use this software will
be discussed later.

Versal Deformations of Matrices and Matrix Pencils 151

3.3 Generic and non-generic Kronecker structures

Although, the KCF looks quite complicated in the general case, most matrix
pencils have a quite simple Kronecker structure. If A — AB is m X n, where
m # n, then for almost all A and B it will have the same KCF, depending only
on m and n. This corresponds to the generic case when A — AB has full rank for
any complex (or real) value of A. Accordingly, generic rectangular pencils have
no regular part. The generic Kronecker structure for A—AB withd =n—m >0
is

diag(La, ey La, La+1, ey La+1), (36)

where a = |m/d], the total number of blocks is d, and the number of L4
blocks is m mod d (which is 0 when d divides m) [29, 8]. The same statement
holds for d = m —n > 0 if we replace Lq, Loy1 in (3.3) by LL, LT, . Square
pencils are generically regular, i.e., det(A — AB) = 0 if and only if A is an eigen-
value. The generic singular pencils of size n-by-n have the Kronecker structures
[32]:

diag(L;,L._;_4), j=0,...,n—1. (3.7)

Ouly if a singular A — AB is rank deficient (for some A) may the associated KCF
be more complicated and possibly include a regular part, as well as, right and
left singular blocks. This situation corresponds to the non-generic case, which
of course is the real challenge from a computational point of view.

The generic and non-generic cases can easily be couched in terms of reducing
subspaces. For example, generic rectangular pencils have only trivial reducing
subspaces and no generalized eigenvalues at all. Generic square singular pencils
have the same minimal and maximal reducing subspaces. A non-generic case
corresponds to that A — AB lies in a particular manifold of the matrix pencil
space and that the pencil has nontrivial reducing subspaces. Moreover, only if
it is perturbed so as to move continuously within that manifold do its reducing
subspaces and generalized eigenvalues also move continuously and satisfy inter-
esting error bounds [9, 11]. These requirements are natural in many control
and systems theoretic problems such as computing controllable subspaces and
uncontrollable modes.

4 The Geometry of Matrix Pencil Space

In this section we derive formulas for the tangent and normal spaces of the orbit
of a matrix pencil that we will make use of in order to compute the versal form
in the next section. We also derive new bounds for the distance to less generic
pencils.

152 Paper IV

4.1 The orbit of a matrix pencil and its tangent and nor-
mal spaces

Any m X n matrix pair (A4, B) (with real or complex entries) defines a manifold
of strictly equivalent matrix pencils in the 2mn dimensional space P of m-by-n
pencils:

orbit(A — AB) = {P™'(A — AB)Q : det(P)det(Q) # 0}. (4.1)

We may choose a special element of orbit(A — AB) that reveals the KCF of the
pencil.

As usual the dimension of orbit(A — AB) is equal to the dimension of the
tangent space to the orbit at A— AB, here denoted tan(A —AB). By considering
the deformation (I, + 6X)(A—AB)(I, — 6Y) of A— AB to first order term in 6,
where § is a small scalar, we obtain A—AB+68§(X(A—AB)—(A—AB)Y)+0(§?),
from which it is evident that tan(A — AB) consists of the pencils that can be
represented in the form

Ty — ATy = (XA— AY) — A(XB — BY), (4.2)

where X is an m X m matrix and Y is an n X n matrix.
Using Kronecker products we can represent the 2mmn-vectors Ty — AT €
tan(A — AB) as

[l [A2 ey - [194 et

In this notation, we may say that the tangent space is the range of the 2mn X
(m? + n?) matrix
_[AT®I, -I,®A
T:[BT@)Im L. ®B | (4.3)
We may define the normal space, nor(A — AB), as the space perpendicular to

tan(A — AB). Orthogonality in P, the 2mn dimensional space of matrix pencils
is defined with respect to a Frobenius inner product

<A—)\B,C —AD > =tr(AC¥ + BD"), (4.4)

where tr(X) denotes the trace of a square matrix X. Remembering that the
space orthogonal to the range of a matrix is the kernel of the Hermitian trans-
pose, we have that

ARI, B®I,

p— = H =
nor(A — AB) =ker(I'"") =ker | /"o 'hn _j o pH

In ordinary matrix notation, this states that Z4, — AZp is in the normal space

of A — AB if and only if
ZpA" + ZpBH =0 and A¥Z,+BYZp=o0. (4.5)

Versal Deformations of Matrices and Matrix Pencils 153

The conditions on Z4 and Zp can easily be verified and also be derived in
terms of the Frobenius inner product, i.e.,

<Ta—XT,Z4 —AZp > =tr(X(AZY + BZE) — (ZH A+ ZEB)Y). (4.6)

Verification: if the conditions (4.5) are satisfied, it follows from (4.6) that the
inner product is zero. Derivation: if < Ty — AXTg,Z4 — AZp > = 0, then
tr(X(AZE +BZE)— (ZH A+ ZE B)Y) = 0 must hold for any X (of size m x m)
and Y (of size nxn). By choosing X = 0, (4.6) reduces to tr((Z{ A+ ZEB)Y) =
0, which holds for any Y if and only if Z#A + ZEB = 0. Similarly, we can
chose Y = 0, which gives that AZ¥ + BZH =o.

If B = I, this reduces to Z4 € nor(A) if and only if Z{ € centralizer(4),
which is a well-known fact (e.g. see [1]). We will see in Section 5.3 that though
the A-part of the normal space is very simple when B = I, obtaining an or-
thonormal basis for the B-part is particularly challenging. The requirement that
Zp = —A" Z, when B = I destroys any orthogonality one may have in a basis
for the A-part.

We now collect our general statements and a few obvious consequences:

Theorem 4.1 Let the mxn pencil A—AB be given. Define the 2mn x (m?+n?)
matriz T as in (4.3). Then

tan(A — AB) =range(T) = {(XA — AY) — A(XB — BY)},
where X and Y are compatible square matrices, and
nor(A — AB) = ker(TH) = {Z4 — \Zp},

where ZoaAH + ZgB® =0 and AHZ,+ BHZg =0.
The dimensions of these spaces are

dim(tan(A — AB)) = m? 4+ n? — dim(ker(T)), (4.7)
and
dim(nor(A — AB)) = dim(ker(T#)) = dim(ker(T)) — (m — n)?. (4.8)

Of course, the tangent and normal spaces are complementary and span the
complete 2mn dimensional space, i.e., P = tan(A — AB) ® nor(A — AB), so that
the dimensions in (4.7) and (4.8) add up to 2mn as they should.

Theorem 4.1 leads to one approach for computing a basis for nor(A — AB)
from the singular value decomposition (SVD) of T'. Indeed, the left singular vec-
tors corresponding to the zero singular value form such a basis. The dimension
of the normal space is also known as the codimension of the orbit, here denoted
cod(A — AB). Accordingly, we have the following “compact” characterization
of the codimension of orbit(4 — AB).

154 Paper IV

Corollary 4.1 Let the m x n pencil A — AB be given. Then,
cod(A — AB) = the number of zero singular values of T (4.9)
The corresponding result for the (square) matrix case is
cod(A) = the number of zero singular values of I, ® A — AT @ I,,.

Although, the SVD-based method is simple and has nice numerical properties
(backward stability), it is rather costly in the number of operations. Computing
the SVD of T is an O(m3n3) operation.

Knowing the Kronecker structure of A — AB, it is also possible to compute
the codimension of the orbit as the sum of separate codimensions [8]:

cod(A — AB) = Cjor + CRight + CLeft + Clor,Sing + CSing- (4.10)

The different contributions in (4.10) originate from the Jordan structure of
all eigenvalues (including any infinite eigenvalue), the right singular blocks
(L; < Ly), the left singular blocks (LT « L), interactions of the Jordan
structure with the singular blocks (Lj and L]T) and interactions between the
left and right singular structures (L; < L{), respectively. Explicit expressions
for these codimensions are derived in [8]. Assume that the given A — AB has
p < min (m,n) distinct eigenvalues A;,2 = 1 : p with p; Jordan blocks each.
Let g1(A;) > g2(Xs) > ... > ¢p, (A;) denote the sizes of the Jordan blocks corre-
sponding to the eigenvalue ;. Then the separate codimensions of (4.10) can be
expressed as

P P p
Clor = Z Z(Z] - 1)qj()\i) = Z((h()\z) + 3q2(>\¢) + 5q3()\i) +.. .),
=1 j=1 1=1
CRight = Z(] —k—1), ClLett = Z(J —k—1), csing= Z(J +k+2),
>k >k gk

CJor,Sing = (size of complete regular part) - (number of singular blocks).

Notice that if we do not wish to specify the value of an eigenvalue \;, the
codimension count for this unspecified eigenvalue is one less, i.e.,

—14 @1 (\) 4 3g2(Mi) + 5g3(N) + . ..

This is sometimes done in algorithms for computing the Kronecker structure of
a matrix pencil, where usually only the eigenvalues 0 and oo are specified and
the remaining ones are unspecified.

It is possible to extract the Kronecker structure of A—AB from a generalized
Schur decomposition in O((max(m,n))3) operations. The most reliable SVD-
approach for computing a generalized Schur decomposition of A—AB requires at

Versal Deformations of Matrices and Matrix Pencils 155

most O((max(m,n))?) operations, which is still small compared to computing
the SVD of T (4.3) for already moderate values of m and n (e.g. when m = n).

For given m and n the generic pencil has codimension 0 (i.e., span the com-
plete 2mn dimensional space) while the most non-generic matrix pair (4, B) =
(01, Omxn) has codimension = 2mn (i.e., defines a “point” in 2mn dimen-
sional space). Accordingly, any m X n non-generic pencil different from the “zero
pencil” has a codimension > 1 and < 2mn.

4.2 A lower bound on the distance to a less generic pencil

The SVD characterization of the codimension of orbit(A — AB) in Corollary 4.1
leads to the following theorem from which we present an interesting special case
as a corollary.

Theorem 4.2 For a given m X n pencil A — AB with codimension c, a lower
bound on the distance to the closest pencil (A+68A)—A(B+8B) with codimension
c+d, where d > 1 is given by

2mn 1/2

1

I(64,6B)||lg > \/mi—{—n (Z U?(T)>) (4.11)
1=2mn—c—d+1

where o;(T') denotes the ith largest singular value of T (o;(T) > o,41(T) > 0).

Proof. It follows from Corollary 4.1 that T has rank = 2mn — ¢ if and only
if A— AB has codimension ¢ and (A + §A) — A(B + éB) has codimension ¢ + d,
(d > 1) if and only if T + 6T, where 6T is defined as

AT ® I, —I,R6A

T=\ sgTol. —I 6B |’

(4.12)

has rank 2mn — ¢ — d. From the construction, it follows that ||§T||g = v/m +n
|(6A4,6B)||g (each element éa,; and 6b;; appears m + n times in 6T). The
Eckart—Young and Mirsky theorem for finding the closest matrix of a given
rank (e.g. see [16]), gives that the size of the smallest perturbation in Frobenius
norm that reduces the rank in T' from 2mn — ¢ to 2mn —c —d is

2mn—c 1/2
(> af(T)) . (4.13)

1=2mn—c—d+1

Moreover, A—AB has codimension ¢ implies that oomn—c41(T) = ... = domn(T)
= 0. Since ||6T|| g must be larger than or equal to the quantity (4.13), the proof
is complete. O

156 Paper IV

Corollary 4.2 For a given generic m x n pencil A— AB, a lower bound on the
distance to the closest non-generic pencil (A + §A) — A(B + 6B) is given by

Umin(T)
vm + n’

where Omin(T) = O2mn(T) denotes the smallest singular value of T, which is
non-zero for a generic A — AB.

I(6A,6B)||g > (4.14)

We remark that the set of m x n matrix pencils does not include orbits of
all codimensions from 1 to 2mn.

One application of Corollary 4.2 is to characterize the distance to uncon-
trollability for a multiple input multiple output linear system Ei(t) = Fz(t) +
Gu(t), where E and F are p-by-p matrices, G is p-by-q (p > ¢), and E is as-
sumed to be nonsingular. If A — AB = [G|F — AE] is generic, the linear system
is controllable (i.e., the dimension of the controllable subspace equals p) and
a lower bound on the distance to the closest uncontrollable system is given by
(4.14).

5 Versal Deformations for the Kronecker Canon-
ical Form

In this section, we derive versal deformations which for us will mean the decom-
position of arbitrary perturbations into the tangent and normal spaces of the
orbits of equivalent pencils.

5.1 An introductory example

We start with a small example before considering the general case. Let A—\B =
L, ® Ly with codimension = 2. (This means that the manifold orbit(A — AB)
has codimension 2 or dimension 68 in the 70 dimensional space of 5 x 7 pencils.)
Since A — AB already is in KCF we know its block structure:

-A 1|0 0 0 0
0 0[-A 1 0 0 0O
A-AB=| 0 0/ 0 —-x 1 0 0
0 0/0 0 —=x 1 0
0 0/]0 0 0 -Xx1

From (4.2) the matrices in the tangent space are given by Ty — AT =

Versal Deformations of Matrices and Matrix Pencils 157

(XA— AX)— MXB — BX), where

—Y21 11— Y22 —Y23 T12—Y24 T13— Y25 Ti14—Y26 T15 Y21
21— Y42 —Y43 T227Y44 T23 Y45 T24— Y46 T25 Y47
Ta= ‘ —Ys1 ‘ ‘1731 —Ys2 ‘ —Ys53 T32—Ys4 X33 —"Yss T34—Yse T35 Y57
—Ye1 41— Y62 — Y63 T42—Ye4 T43 Y65 T44—Ye6 T45 Y67
L —Yn1 51— Y72 —Yr3 Ts2—Yr4 T3~ Y715 Ts4— Y16 Tss5 Y17 |
and
Z11 —Y11 —Y12 ZT12—Y13 T13— Y14 Tia—Y15 Tis5—Yie —Yi7
Z21—Y31 —Y32 T22—Y33 T23—Y34 T24—Y35 T25—Y36 Y37
—Ya2 T32—Ya3 X33 —Ya4a T34 —Ya5 L35 —Ya6 —Yar
Tg=
‘ 41— Y51 ‘ ‘ —Ys2 ‘ T42 —Y53 Ta3—Ys4 Ta4—Ys55 T45—Ys6 Y57
T51 — Y61 T52 Y63 Ts53—Yea Ts4a—Ye5 Iss—Yee —Yer

By inspection we find the following two relations between elements in 74 and
TB:
@ D t5) 5 = 15, +thy,
and
[]: ty +th =14, + 12
31 T lyg = Tgq T lsg
where ¢7; and ti-’]- denote the (4, j)-th elements of T4 and T, respectively. These
two relations show clearly that the tangent space has codimension at least two.
It may be verified that the other parameters may be chosen arbitrarily so that
the codimension is exactly two.
We want to find Z, — Zpg that is orthogonal to Ty — ATg with respect to
the Frobenius inner product, i.e.,
0=<Ta—Mp,Za— N2 > =te(TaZ] +TpZf) = Y t47% +130,. (5.1)
4]
This inner product is most easily envisioned as the sum of the elementwise

multiplication of the two pencils. Using this point of view it is obvious that the
normal space consists of pencils of the form Z4 — AZp € nor(A — AB):

0 0/00000O 0 0]00000
p1 0]/0 0 0 0 0 0 0]0000O0O0
Za—Mpg=|ps pp|00000|-X|—-p, 01]00000
0 p|0 00 0O —ps —p1|0 0 0 0 0
0 0/0000O00 0 —p|0 0000

158 Paper IV

0 0 [0000D00O
2 0 0000O
= P2+ Ap D1 0000 0f{,
Ap2 p2+Ap1 |0 0 0 0 O
0 Ap, |0 0 0 0 O

where p; and p, are arbitrary. Roughly speaking the parameter p; corresponds
to the doubly boxed entries (@) and the parameter ps corresponds to the singly

boxed entries (D)

Now, A — AB + Z4 — AZp may be thought of as a versal deformation, or
normal form, with minimum number of parameters (equal to the codimension
of the original pencil). It follows that any (complex) pencil close to the given
A — AB can be reduced to the 2-parameter normal form A — AB + Z, — AZp,
where A — AB is in Kronecker canonical form.

5.2 Notation: a glossary of Toeplitz and Hankel matrices

The example in the previous section shows that a non-zero block of Z4 — AZp
has a structured form. Indeed, the (2,1) block has a Toeplitz-like form with
j — i = 3 non-zero diagonals starting from the (1,1)-element of the (2,1) block.
A closer look shows that the A-part has ¢+ — j — 1 = 2 non-zero diagonals and
the B-part is just the same matrix negated and with the diagonals shifted one
row downwards. In general, different non-zero blocks with Toeplitz or Hankel
properties will show up in Z4 — AZp € nor(4 — AB). To simplify the proof of
the general case we introduce some Toeplitz and Hankel matrices. Arrows and
“stops” near the matrices make clear how the matrix is defined.

Let SL , be a lower trapezoidal s-by-t Toeplitz matrix with the first non-zero
diagonal starting at position (1,1):

l- P1 0 0
: 0
. l pl 0 oo 0
SE ., = : Pt it s>t and SE, = | @ . |
Ps—t+1 : Llps---p1 0 ---0
1L Ps o Ps—tt1]

otherwise, and let TL , be a lower trapezoidal s-by-t Toeplitz matrix with the

Versal Deformations of Matrices and Matrix Pencils 159

first non-zero diagonal’s last element at position (s,t):

0---0
0 : Pt—s+1 -+ p1 0 0
TL = ~|ifs>t, and TL = .. 0 |, otherwise.
Pyt Pt Pi—st1c D1
g = —
LDt =P
F —

If s < t, the entries of the last t — s columns of Ssth are zero. Similarly, if s > t,
the entries of the first s — ¢ rows of TSth are zero.

Let SB , be a banded lower trapezoidal s-by-t Toeplitz with last row O:

I[P 0 0]
: 0
Y41
SB = : if s>t and SB, =0, otherwise
sxt_J_ Ps—t N ’ sXt — Y ’
0
Ps—t
L 0O - 0 |

and let 7B, be another banded lower trapezoidal s-by-t Toeplitz matrix, this
time with last column 0:

= —
Pies - p1 0 -0
T3 0o - | if s<t, and T£<t =0, otherwise.

sxt —

0 0 pis--- PO

Notice that the last row of SB, (if s > t) and the last column of T3 , (if s < t)
have all entries equal to zero.

Moreover, let HZ , be a lower trapezoidal s-by-t Hankel matrix with the first

160 Paper IV

non-zero diagonal starting at position (1,1t):

i 0 0 71 1 l
0 .
. 0 0 P l
Hsth = h ’ if s >t, and Hsth =1: RO
Ds—t+1 0---0py -~ ps| L
LPs—t4+1 **+ DPs 1L

otherwise, and let HY, , be a similar upper trapezoidal s-by-t Hankel matrix:

+ —_
bt - D1
. 0 n -
) : pt PPN pt_s+1 PPN pl
Hstt= ppo if s >t, and HSUX,5= 0>
0 : Pi—st1 "°° D1 0 0
[0 -+ 0]

otherwise. If s < t, the entries of the first ¢ — s columns of HL , are zero.
Similarly, if s > ¢, the entries of the last s — t rows of HY, , are zero.

Let Hsxt be a dense s-by-t Hankel matrix (with the first diagonal starting
at position (1,1)):

[p1 P2 p3--- pe

D2 '
Hgyxy = 3)

| Ds Tt Ds+t-1 |

for both the cases s >t and s < t.
The nilpotent k-by-k matrix

10—y
Cr = [0 0] ’
will be used as a shift operator. For a given k-by-n matrix X, the rows are
shifted one row upwards and downwards by the operations CyX and C’kTX ,
respectively. The columns are shifted one column rightwards and one column
leftwards in an n-by-k matrix X by the operations X C}, and XC,?, respectively.

The k-by-(k + 1) matrices
Gk = [Ik 0] and é’k = [0 Ik],

Versal Deformations of Matrices and Matrix Pencils 161

will be used to pick all rows but one or all columns but one of a given matrix
X in the following way. The first k and last k rows in a (k + 1)-by-n matrix X
are picked by G X and GrX , respectively. The k first and k last columns in an
n-by-(k + 1) matrix X are picked by XGT and Xé;f, respectively.

Let I denote the k-by-k matrix obtained by reversing the order of the
columns in the k-by-k identity matrix. It follows that for an n-by-k matrix X,
the order of the columns is reversed by the multiplication XT.

So far, the matrices introduced are rectangular Toeplitz and Hankel matrices
with a special structure, e.g. lower trapezoidal (S*,T% H¥), banded lower
trapezoidal (SB,T¥), upper trapezoidal (HY) or dense (H). The matrices C
and G,é’ that will be used as “shift” and “pick” operators, respectively, are
Toeplitz matrices with only one non-zero diagonal. In the next section we will
see that versal deformations for all combinations of different blocks in the KCF,
except Jordan blocks with non-zero, finite eigenvalues, can be expressed in terms
of these matrices. To cope with non-zero, finite Jordan blocks Ji(v),v # 0 we
need to introduce three more matrices. First, two lower triangular Toeplitz
matrices DY and E* which are involved in the case with two Ji(y) blocks.
Finally, the “monstrous” matrix FP, which captures the cases with a (left or
right) singular block and a Ji(y) block.

Given v # {0, 00}, define two infinite sequences of numbers d; and e; by the

recursion
di _ 1 1 Wdi—l
e =0]] 62

=10

Given sizes s and t, for 1 < ¢ < min{s,t}, we define D;x:[q] and E;x:[q] as

starting with

lower triangular Toeplitz matrices with g diagonals in terms of dy,...,d, and
€1,...,eq—1 and a boundary value e; = —7d,.
) . 0] [0 e 0]
dg ey
— dq—l _ €q—1 .
Doxilgl = | 7% and Eoxifgl = | 97 .
do . . es . .
L dl d2 s dq—l dq 0_ | €1 €2 €41 6; 0_

We take linear combinations with parameters p; to form the matrices

min{s,t} min{s,t}

Dfxtzz pjDsx:[i] 7(z), and Efxt :Z P Esxi[i] w(3), (5.3)

=1 =1

162 Paper IV

where j = min{s,t} — i 4+ 1 and 7(i) = — [[4_5 kv/(1 — 2k) is defined to be
1/y and —1 for s = 1 and i = 2, respectively. The parameter index j and the
scaling function 7(i) are chosen to satisfy DL, = SL , and EL , = —CTSL ,

for v = 0 in Theorem 5.1 (see tables 1 and 2). By simplifying (5.3) using ¢ = j
and 7(z) = 1 this consistency will be lost, but we will still have valid expressions

for the versal deformations.
The relations between the elements of DL , and EL_ , are most readily shown

by an example:

D‘f,3 =
0 0 0
4 2
- (2|—§| 14 +1) 0 0
2 2 20yt | 4]y|2 ,
P <—%—2%) +p2 (|72 +1) Pl(a4l +1) 0
2 2 2 2 4 4 2
P12 —pay+ps P1 <f%72§)+p2 (Iv12+1) p1(= 4 41 +1)
and
Ei’,g =
0 0 0
Zi 4 a2
(- s) : ;
2]~/? = = 274* 472
p1 (*%—1) +p2 ((F1°-7) m (—%—%—7) 0
_ 2]/? = = 27|v* A o
P13 —p2—ps7 p1 (*%—1) +p2 (11*-7) m (f%—%—v)
Let FZ, (D for dense) be defined as

S

F5, = Zps—H-l Fyy4[d],

=1
where Fx:[q] has the ¢ last rows non-zero and defined as:

fs—q—l—l,j =7j_1 forj: 1,...,t,
fi; =Ffijo1+ fic1jo1 fori=s—q+2,....8 j=2,...,t,

and f;; fori =s—q+2,...,sis defined as the solution to
< FaxilqlGE | = AFyi[q)GL |, Foxe[s —i+1)GE, —AFoxy[s—i+1]GL, > =0.

Notice that f; 1 is used as an unknown in the generation of elements in (5.4).
In the definition of Fsx¢[g], the solutions for f; 1 fori=s—q¢+2,...,s ensure
that Fix:[q]GL | — AFux:[q]GL_, is orthogonal to Fyx:[§]GI_; — AFsx:[q]GL_,
forg=1,...,q—1.

Versal Deformations of Matrices and Matrix Pencils 163

Also here we show a small example to facilitate the interpretation of the
definition:

P1 Py

D _ — py 2Dy o 742
Fsio = P2~ PG s) T P+ P T

2
B . 5 = i v
Ps =P YR GEnnre PP o TP nEan e

5.3 Versal deformations — the general case

Without loss of generality assume that A— AB already is in Kronecker canonical
form, M = diag(My, Ms,..., M), where each M}, is either a Jordan block
associated with a finite or infinite eigenvalue or a singular block corresponding
to a left or right minimal index. A pencil Ty —ATp = XM — MY in the tangent
space can be partitioned conformally with the pencil M so that Ti’? -)\Tf; =
Xi; M; — M;Y;;, where My, is myg-by-ni, X;; is m;-by-m; and Y;; is ni-by-n;:

X -0 X My M,y Yii --- Y
Xp1 - Xpp M, M, Yor oo+ Yo
Since the blocks Ti? - /\Tg, 1,7 = 1,...,b are mutually independent, we can

study the different blocks of T'y — AT'p separately. Let Z{; —)\Zg be conformally
sized blocks of Z4 — AZp. From (4.5) we know that Z, — AZp is in the normal
space if and only if AR Z, + BEZg =0 and Z4AY + ZgBY = 0. We obtain a
simple result since A and B are block diagonal.

Proposition 5.1 Assume that M = A—AB = diag(Ay, Aa, ..., Ap) — Adiag(By,
Bs,...,By) is in Kronecker canonical form, where each block A; — AB; = M;
represents one block in the Kronecker structure. Then Z4—AZp € nor(A— AB)
if and only if

Alz4=-Bl'zZl and ZLAF =-Z0Bf fori=1,...,b andj=1,...,b.

The mutual independency of the (4, 7) blocks of Z4 and Zp implies that we
only have to consider two M} blocks at a time:

TA[%]] -)‘TB[ZJJ] =
[Xn' Xij] [Mz 0] B [Mz 0] [Yii Yz‘j] _ [TfTﬁ] Y [Ti? TiB]
X;i X5 | 0 M; M;| |V Y55 T} T;; TRT;]

and

Zi ZA]—,\[Z‘B Z'B']. (5.4)

Zali, 31 — AMBli, 7] = [ZA Z%,
71 73

164 Paper IV

Notably, by interchanging the blocks M; = A; — AB; and M; = A; —
AB; in the KCF, we only have to interchange the corresponding blocks in
Z 4 — M p accordingly. For example, if Zali,j] — AZp[i,j] in (5.4) belongs
to nor(diag(M;, M;)), then

:] € nor(diag(M;, M;)).

This implies that given two blocks M; and Mj, it is enough to consider the
case diag(M;, M;). In the following we will order the blocks in the KCF so that
Z o — AZp is block lower triangular.

Theorem 5.1 Let A — AB = diag(A;, As, ..., Ay) — Mdiag(By, Bs,...,By) be
in KCF with the structure blocks M; = A; — AB; ordered as follows: Ly, Ji(0),
Ji(v) (for v # {0,00}), Ny, and LT, where the ordering within each block-type
is in increasing order of size, except for the Lf blocks which are ordered by
decreasing order of size.

For all i and j, let the (3,3),(4,7) and (¢,1),(4,7) blocks of Za — A\Zp corre-
sponding to diag(M;, M;) be built from Table 1 and Table 2, respectively.

Then Zs — AZp gives an orthogonal basis for nor(A — AB) with minimum
number of parameters.

The superscripts B, L,U, and D of the matrices in tables 1 and 2 are parts
of the matrix definitions in Section 5.2. The superscript T is matrix transpose.
All subscripts, e.g. a X 3, refer to the sizes of the matrices.

Notice that the diagonal blocks (7,7) and (4,) of Za — AZp can also be ob-
tained from Table 1 by setting ¢« = j. For clarity we also display the expressions
for the (¢,4) and (j, 7) blocks of Z4 — AZp corresponding to all kinds of structure
blocks M; in Table 2. Of course, the (3, j) blocks corresponding to M, are read
from Table 2 by substituting a with 3.

The proof of Theorem 5.1 consists of three parts:

1. The blocks of Z4 — AZp displayed in Table 1 fulfill the conditions in
Proposition 5.1, which imply that Z4 — AZp € nor(A — AB) is orthogonal
to an arbitrary Ty — AXTp € tan(A — AB).

2. The number of independent parameters in Z4 — AZp is equal to the codi-
mension of orbit(A — AB), which implies that the parameterized normal
form has minimum number of parameters.

3. Each block in Table 1 defines an orthogonal basis, i.e., the basis for each
parameter p; is orthogonal to the basis for each other parameter p;, ¢ # j.

We start by proving part 3, followed by proving parts 1 and 2 for the 16
different cases diag(M;, M;) corresponding to different combinations of structure
blocks in the KCF. In Table 3 we display the codimension for these 16 cases and

Versal Deformations of Matrices and Matrix Pencils

165

Table 1: Blocksin Z4—AZp € nor(A—AB), where it for L, ® Lg, J.(0)® Jz(0),
Ju(v) ® Js(7), and N, & Ng, is assumed that o < 8. For LY @ LY, o > B is
assumed. Also 1 # 2 is assumed.

KCF:M;®oM; | Z{ zEB zZA zZf
L,®Lg 0 0 S,él’gx(a+1) —CZ,"S[?X(QH)
Lo ®J5(0) 0 0 Sk asn) ~C5 Sh(as1)
La®Js(v) 0 0 Fg (a2 Gatt ~F ot Gl
Lo®Nj 0 0 CHHE, (at1) —HE, (a41)
Lo®L} 0 0 | GpriHprox(as1) | Gor1Hprayx(etn)
Jo (0)® J5(0) Séxﬁ _C?;S(fxﬁ Tﬁan _CgTﬂLm
Ja(0)& L 0 0 H{g 1 1)xa ~H{p1yxaCa
Joa(v)®Jp(7) Déx,@ chxﬁ Dém EﬁLm
Ja(m)®LE 0 0 |Gori(aF5, (5127 |=Gor1(IaF5, (5,5)"
No.®Ng CaSks| —Skes C5Tsva ~T5va
Na®Lj 0 0 T41)xaCa ~Tlh1)xa
LioLj 0 0 Ti1)xa ~TG+1)xaCa
Jo(0)® J5(7) 0 0 0 0

Jo(0)® N5 0 0 0 0
Julp)®Js(12)| 0O 0 0 0

Ju(7)® N 0 0 0 0

166 Paper IV

Table 2: The diagonal blocks in Z4 — AZp € nor(A — AB).

KCF : M; zZ4 zB

L, 0 0
Ja(0) Sexa | —CaS&xa
Ja(7) Dive | Eiva
Na CaSixa | —Sixa
LT 0 0

the number of parameters in the (4,1), (¢,7), (7,4) and (j, j) blocks of Z4, — A\Zp.
The codimensions are computed from (4.10), which is the minimum number of
parameters required to span the corresponding normal space. For the ordering
and the sizes of the blocks in A — AB we have made the same assumptions
in Table 3 as in Table 1. Notice that the codimension counts for L, & Lg
and LZZGBL% are 0 if « = B. The number of parameters required in each of
the (4,7),(%,7), (4,7) and (4, j) blocks of Z4 — AZp follows from the proof given
below.

Proof of part 3. We show that each matrix pencil block in Table 1 has
all its parameters in orthogonal directions. This is trivial for blocks built from
the structured Toeplitz and Hankel matrices S*, S, H, HY, HY, TL, or T®
(possibly involving some kind of shift). Remember that the Frobenius inner
product can be expressed in terms of the sum of all results from elementwise
multiplications as shown in (5.1). For each of these matrices, the elementwise
multiplication of the basis for one parameter p; and the basis for another pa-
rameter p;,j # ¢ only results in multiplications where at least one of the two
elements is zero. Obviously, these bases are orthogonal. For the matrix pencil
blocks built from the F” matrix, the orthogonality follows from construction,
since some of the elements are explicitly chosen so that the Frobenius inner
product is zero.

For the proof for the blocks of type DT — AEL we define 84 in terms of the
d; and e; in (5.2) to be

q q—1
8q = Zi|di|2 + Zi|ei|2 — q7dq€q.
i=1 i=1

Independent of s and ¢, the number s, is the inner product of the gth basis
vector with the rth, where ¢ < r.
We show by induction that s, = 0forg = 1,2,.... Clearly s; = |y|>—~v7 = 0.

167

Versal Deformations of Matrices and Matrix Pencils

Table 3: The number of parameters in the (3,4), (¢,7), (4,%), and (j, 7) blocks of
Za— AZp € nor(M; & M;).

KCFMZ@MJ COd(MZ@MJ) i,’i (’L,]) (],’L) (],])
L,®Lg B—a-1 0 0 |B—a-—-1 0
Lo®J5(0) 20 0 0 B B
Lo®J5(7) 26 0| o0 B s
L,®Ng 203 0 0 8 I}
Lo®L} a+f+2 0 0 |a+pB+2| O
Jo(0)® J5(0) B+ 3a « ! a Jé]
Jo(0)® LY 20 a 0 a 0
JameJsv) | B+3a | a | a a 8
Jo(v)®LY 2a o 0 a 0
Ny®Ng 8+ 3« «@ «a «a I]
N, @LT 2 « 0 a 0
Lg@Lg" a—f3-1 0 0 |la—pB—-1| 0
J.(0)®J5(v) a+p a 0 0 B
Jo(0)®Ng a+pf a 0 0 B
Jo(m)®J5(72) a+p « 0 0 B
Jo(v)®Ng a+pf a 0 0 B

We now show that s;41 — s; = 0 from which the result follows.

gYydqe, + (g + 1)|dq+1|2 + q|eq|2 —(g+ 1)¥dgt18041 =

qeq(Vdq +eq) + (g + 1)dgy1(dgs1 — 7 €gq1) =

dq+1((q + 1)(dq+1 - €q+1) - qéq) =

— - e
dq+1((q + 1)(_'qu — &t qu + 2€4 — qﬁ) - qéq) =

do+1((q +1)2q — &g — q&;) = 0.

Since Z4 — AZp is built from 4% mutually independent blocks in Table 1,
each associated with ¢; parameters, it follows that Z4 — AZp is an orthogonal
basis for a ¢; + ¢o + ... + ¢;2 dimensional space, with one parameter for each
dimension. O

Proof of parts 1 and 2. Now, it remains to show that Z4 — AZp is
orthogonal to tan(A — AB) and that the number of parameters in Z4 — AZp is
equal to cod(A — AB). Since the number of parameters in orthogonal directions
cannot exceed the codimension, it is sufficient to show that we have found
them all. The orthogonality between Z4 — AZp and tan(A — AB) is shown by
proving that each pair of blocks fulfills the conditions A]H Zﬁ = —Bf Zﬁ and
ZﬁA{I = —ZﬁBZH in Proposition 5.1. In the following we refer to these as the
first and second conditions, respectively.

168 Paper IV

We carry out the proofs for all 16 cases M; ® M; in Table 1, starting with
blocks where M; and M; are of the same kind.

Jo(0) ® Jp(0): We note that J;(0) = Cr — Al;. First condition for the (j,4)
block:
HyA _ ~TpL _ TmL _ _pHyB
Second condition for the (7,7) block:
A H _mpL ~T _mL ~Typ _ ~TpL
ZjiAi - Tﬁxacoz - TEXQCOC I = CﬁT

Bxata

I, =-ZB],

where we used that TE CT = CTTL

3xaCa Bxar for B > a. Similarly for the (7, j)
block:

HrzA T H 7B
Aflzd =cTst ,=1,0Tst ;= -BIZE,

and

AqH _ gL L Ty _ ~T oL _ BpH
Here we used that SL C’T crst . for B> a.

axpf?
Since the (3,1), (,j) and (4,i) blocks of Z4 — AZp, have a parameters
each and the (7, j) block has 3 parameters, the total number of parameters in

Za — AZp is equal to cod(J.(0) ® J3(0)) = B + 3a.

N, ® Ng: Since there is a symmetry between Ji(0) = Cy — Al and N =
I, — AC}, and there is a corresponding symmetry between blocks in Z4 — AZpg
for Ji.(0) and Ny, blocks, the proof for N, @ Nj is similar to the case J,(0)®J3(0).

Jo(v) ® Js(v): Here the (j,) block and the (4, 7) block are defined similarly (see
Table 1), and therefore it is sufficient to prove one of them with no constraints on
a and 8. We note that Ji(v) = vI;,+Cr— M. We show that the first and second
conditions hold for Zﬁ = Dgxqlg] and Zﬁ = Epgxqlg] for ¢ =1,...,min{e, 5}.
First condition:

AR 78 = (vIg + Cp)" Dgxald] = ¥Dpxald] + Cj Dpxaldl-

Remember that Dgx[g] has all elements zero, except for the g lower left diago-
nals, where all elements in each diagonal are identical and defined by the element
in the first column. For ¢ = 1 the proof is trivial. For ¢ > 1, AHZA gives the
following matrix. All diagonals starting at position (u,1) for 1 S U S B — q are
zero. The elements in the diagonal starting at position (8—g+1, 1) are 7d, which
by definition is equal to —ej, which in turn defines the corresponding diagonal
in —Egxa[g]- The elements in the diagonals starting at positions (8 —u +1,1),
where 1 < u < g are equal to Fd, + dyy1. Since d, 41 is defined as —7d,, — e,
the elements in these diagonals are equal to —e,, which defines the elements in
the corresponding diagonals in —Egyx«[g]. Since —Egyxq[g] = —B Z]“ we have
proved the first condition.

Second condition: Since Dgxq[q] only has ¢ < min{s, ¢} non-zero diagonals in
the lower left corner of the matrix, a shift of rows downwards gives the same

Versal Deformations of Matrices and Matrix Pencils 169

result as a shift of columns leftwards, i.e., Cf Dpxalg] = Dpxalg]CL. Using
information from the first part we obtain

Z; Al = Dpxalg)(v1a + Ca)” = FDpxald] + Dpxald]Ca
ZWDBXa[q] +CgDﬁ><a[q] = Afzﬁ = _Eﬂxa[q] = _ZﬁBzHa

since B; is the identity matrix.

Also here, the number of parameters in Z]-“; — /\Zf; is B and it is a parameters
in each of the other three blocks, giving 8 + 3« in total.

Even though the (z,7), (,1), (2,7), and (7, 7) blocks look rather complicated,
they reduce for v = 0 to the corresponding blocks for J,(0) & J(0) in Table 1.

L., ® Lg: Here we use Ly = Gr — MGy, First condition for the (7,1) block:

. 0 cTskB
Al za - GLsE = [] = [B ﬂx(a+1)]
j 45 BPBx(a+1) ng(a+1) 0

— T AT gB — H 7B
= G303 Spx(asr) = —B5 Z;.-

Second condition for the (j,4) block:

B
Sax (at1) 0

_ TgB T _ B nH
=05 Spx(at1)Gs = —Z;: B

~ 0 cTgB
ZiiAflzsgx(amGg = [] = [B ﬁx(a+1)]

Since the contribution from L, ® Lg to the codimension is 8 — a — 1 and the
(4,1) block has 8—a—1 independent parameters we deduce that all other blocks
in Z4 — AZp are zero.

LaT @ LﬁT: Since this case is just the transpose of L, @ Lg the proof is almost
the same, and therefore we omit the technical details here.

So far, we have proved all cases where both blocks are of the same type.
Since the diagonal blocks in Z4 — AZp always correspond to such cases (see
Table 3 for the number of parameters in these blocks), we from now on only
have to consider the (4, 7) and (7,4) blocks, where ¢ # j for the remaining cases.

L, ® J3(0): First condition for the (j,7) block:
HpyA _ ~AT oL _ T gL _ _pHyB
Second condition for the (4,7) block:
A4H _ oL AT _ ~T oL T _ _BpH
Z]lAl - SBX(a-I—l)GOc - Cﬂ Sﬂx(a-{—l)Ga - _Z]’L‘31 -

The (4,7) and (j,7) blocks contribute with zero and 3 parameters, respec-
tively. Since the (j,7) block gives another 3 parameters, we have found all 23
parameters, and therefore it follows that Z{; =)\Zg =0.

170 Paper IV

L, ® J5(v): First condition for the (,¢) block:
AT Z5 = (VIs + C) " F5l (542)Gatr = TFix(+2)Gatr + C5 Fix(s42)Gatr-

By inspection we see that the (u,v)-element of this matrix is Wfl‘f,v + f;f_l’v if
u > 1 and ¥f¢, if u = 1 (where f¢, denotes the (u,v)-element of FP). The
right hand side of the same condition is

H»B _ D AT
_Bj ij‘ = IﬂFﬁx(,@+2)Ga+1a

which simply is the 8 leftmost columns of Fﬁ?x(ﬁ+2)' The (u,v)-element of this
matrix is then fZ ., which is defined as ¥fZ, + f2_; , if u > 1 and 7f2, if
u=1.

Second condition for the (7,7) block:

0
A 4HAT D T AT D
ZjiAi G, :Fﬁx(a+2)Ga+1Ga = FBX(a-I—Z) I(;x

D A T B nH
zFﬁx(a+2)Ga+1Ga = _ZjiBi -

As in the previous case, the (,4) and (7, 7) blocks contribute with zero and 3
parameters, respectively. Since the (7,7) block gives the remaining 3 parameters,
the (7, 7) block is the zero pencil.

Notably, for v = 0, the “monstrous” (j,%) block reduces to the (j,¢) block
for Ly ® J3(0) in Table 1.

L, ® Ng: First condition for the (j,) block:

HyA _ T 7L — TrlL _ _pHyB
4725 = 1505 Hg(at1) = O Hgx(atn) = =B Zji-
Second condition for the (7,7) block:
0

V] HL

ZAAHGT = cTHE = [
B Hpx(at1) (1) xa

— L T __ B nH
:| - H,@x(oc+1)Ga - _ZjiBi .

Also here, the (7,7) and (j, j) blocks contribute with zero and 8 parameters,
respectively. Since the (7,4) block gives the remaining 3 parameters, the (4, 7)
block is the zero pencil.

L,® LﬂT: For this case the (4,4) and (j,7) blocks are zero pencils. First condi-
tion for the (7,7) block:

Aj'Z]i = GaGaai Hipso)x(esn) = [0 Is OH(g42)x (et 1)
= GpGor1Hipro)x(atn) = ~BJ 2]},
Second condition for the (7,7) block:

ZAAT = Gp1H(proyx(as1)GEs

Versal Deformations of Matrices and Matrix Pencils 171

which is a matrix consisting of the 8 + 1 first rows and « last columns of
H(s42)x(at1)- This matrix is identical to the one given by the § + 1 last rows
and « first columns of Hgy9)x(at1)s 1-€-

Gpr1H(groyx(arnGa = —Z[IBf.

Since this block has all a + 8 + 2 parameters, it follows that the (7, 7) block
is the zero pencil.

J.(0) ® LﬁT: First condition for the (7,7) block:

HzA _ A U
Aj Zji = GﬁH(,B+1)><av

which simply is the last 8 rows in H(%’+1)><a'

matrix is to shift the columns in H[/]3+1)><a one column leftwards and pick the
[first columns of that matrix, which can be written as

Another way to construct this

GﬁH(%H)XacT =-BIZ].

(3

Second condition for the (7,7) block:

A pH _ U T __ U T _ B nH
25 A7 = Higr1ywaCo = HigpyxaCala = =25 B;7.

[e3

The (i,4) and (7, 7) blocks contribute with « and zero parameters, respec-
tively. Since the (7,7) block gives another a parameters, we conclude that the
(7, 7) block is the zero pencil.

J.(v)® L,BT: Since the proof for this case is similar to the one for the case
Ly & Js(7y), we omit the technical details here. It follows that for v = 0, the
(4,4) block reduces to the (j,7) block for J,(0) @ L} in Table 1.

N, ® LﬂT: First condition for the (j,7) block:
HpyA _ A mL T
Aj Zji B GﬂT(ﬁ+1)><aCa:

which is the last 3 rows in T(Lﬂ +)xa shifted one column leftwards. This matrix

is identical to the one given by the 3 first rows in T([[‘,,Jrl)xa, which is
GoTls41yxa = —Bf Z]}.
Second condition for the (j,7) block:

A 4H _ mL Tr _ mL T _ BpH
Z5i A7 =Tipr1yxaCala = Tig1)xaCa = =25 B
The (4,7) and (4, 7) blocks in Z4 — AZp contribute with a and zero parame-
ters, respectively. Since the (j,7) block gives another a parameters, we conclude
that the (4, 7) block is the zero pencil.

172 Paper IV

Jo(0) ®JIp(v), Ja(0) ®Ng, Jo(11) ®Is(v2), and Jo(v)®Ng: In these four
cases the (¢,4) and (7,) blocks contribute with « and 8 parameters, respectively,
and therefore the (j,7) and (7, j) blocks are zero pencils.

Since we have considered all possible cases of M; and M; blocks the proof is
complete. O

6 Applications and Examples

6.1 Some examples of versal deformations of matrix pencils
in KCF

In the following we show three examples of versal deformations of matrix pencils.
For the 7 x 8 pencil A — AB = Lo ® J2(0) & J3(0) with codimension 14, the 14-
parameter versal deformation A—AB+Z4—AZg, where Zy—AZp € nor(A—AB)
is given by

0O 0 0|0 OO 0 0
0O 0 0|0 OO 0 0
P1 0 0 Ps 0 P1o 0 0
Za=|p2 pr O0|pr ps|P11 Po O |,
ps 0 0|0 O|p2 O 0
Ps p3 0 |ps O |p13 pr12 O
| Ps P4 P3| P9 DPs|Pia P13 P12 |
and _ }
0 0O 0| 0 O 0 0 0
0 0O 0] 0 O 0 0 0
0 0O 0] 0 O 0 0 0
Zp=|-p 0 O0|-ps O|—po O O
0 0O 0] 0 O 0 0 0
—ps 0 0| 0 O|—p2 0 0
—ps —p3 O0|—ps O|—p13 —p12 O |

For the 3x4 pencil A—AB = L; ® Ja(~y) with codimension 4, the 4-parameter
versal deformation A — AB + Z4 — AZp, where Z4 — AZp € nor(A — AB) is
given by

0 0 | 0 0
Z4 = P1 Py ps([y° +1) 0 ,
D2 —Plhfzﬁ PzV—lez—;i —p3v+ps pa(yfP+1)
and
0 0 | 0 0
Zp = —p1y —p17? —ps(17[*7 +7) 0

— -1 — 25
Pyt P mz+1 —P2Y ~ PR

—ps—p7 —ps([V[F+7F)

Versal Deformations of Matrices and Matrix Pencils 173

For the 11 x 11 pencil A— AB = L; @ J3(0) @ N4 @ L% with codimension 26,
the 26-parameter versal deformation A — AB + Z4 — AZp, where Z4 — A\Zp €
nor(A — AB) is given by

0 0 0 0 0 0 0 0O 0|0 O
pr 0 |pz O 0 0 0 0 00 O
P2 p1 |pa p13 0|0 O O 0[O0 O
pP3 P2 |P1s Pia P3| 0 0 0 00 O
0 0 0 0 0 0 0 0 0|0 O
Za= 0 po.| 0 0O O|poe O O 0|0 0],
pa ps | 0 0 0 |ppo po 0O 0|00
ps ps | 0 0 0 |pa po po 0/0 O
P8 P9 |Ps Pir Pis|pPe3 O 0 000
Po Pro|P1z pie O |pag p23 0 00 O
L pro P11 |Pe O O |pas pas pas 0|0 O
and
[0 0 0 0 0 0 0 0 0 0 0]
0 0 0 0 0 0 0 0 0 00
—m 0 —P13 0O 0] O 0 0 0 |00
—p2 —p1|—pa —p13 0| O 0 0 0 |00
0 —P4 0 0 Of—pio 0 0 0 |00
Zp=| -p+ -ps| O 0 O|—-p2o —-ps O 0 |00
—Ps —Ds 0 0 Of-par —p2 —P9 0 (0O
-ps —pr| O 0 O|—p2 —par —Paog —P19|0 O
—py —po|—Pir —Pe O0|—p2s —p23 O 0 |00
—pro —p11|—Pe 0 O|—pas —pag —p3 0 |0 O
| —p11 —p12| O 0 O0|—p2e —p25 —p2a —p23|0 0]

6.2 Versal deformations of the set of 2-by-3 matrix pencils

In [14], the algebraic and geometric characteristics of the set of 2-by-3 matrix
pencils were examined in full detail, including the complete closure hierarchy.
There, all non-zero and finite eigenvalues were considered as unspecified. Ry was
used to denote a 2-by-2 block with non-zero finite eigenvalues, i.e., any of the
three structures Ji (o) ® J1(8), Ji(a) ® Ji (), and J5(a), where a, 8 # {0, 0}.
However, in the context of versal deformations all these forms are considered
separately and with the eigenvalues specified (known). Consequently, we now
have 20 different Kronecker structures to investigate. For example, the versal
deformation of A — AB = Lo @ J2(v), v # {0,000}, is found by computing
Za—Ap =

P+ NP1 pa(PP+D) +pa(p54+7) 0
P2 — T APV +) —psy + patA(pstpay) ps(1) +ps(IvIF+7)
(6.1)

174 Paper IV

In Table 4 we show the versal deformations for all different Kronecker structures
for this set of matrix pencils. The different structures are displayed in increasing
codimension order.

6.2.1 Using GUPTRI in a random walk in tangent and normal di-
rections of non-generic pencils

In order to illustrate how perturbations in the tangent space and in the normal
space affect the Kronecker structure computed by a staircase algorithm, we have
performed a set of tests on non-generic 2-by-3 matrix pencils. Since the staircase
algorithm considers all non-zero finite eigenvalues as unspecified, we have not
included these cases in the test.

For the remaining 12 non-generic cases a random perturbation K4 — AEp,
with entries ef;, e’i’j, has been decomposed into two parts, Ta — AT'p € tan(A4 —

AB), and Z4 — AZp € nor(A — AB), such that
Ep=Ts+Z, and Eg=Tp+ Zp.

We illustrate the decomposition of E4 — AEp with A —AB = Lo ® J2(0). From
Table 4 we get

0 0 0 O
ZA=[p1 D3], ZBZ[]
P2 P4 D3 -p1 —p3 O

Let Ta — Mg = (Ea — AEB) — (Za4 — MZp). Now, the parameters p; are
determined by computing the component of E4 — AEp in each of the four
orthogonal (but not orthonormal) directions that span the normal space:

a-y([as a2 08))
S(RHRIHH)
n=3([5 5020 % 3))
s (80 0] a2 0 o).
We conclude that
Plle_egla P2 = €5y, PBZM’ P4 = €hp-

2 3

It is easily verified that < Ty — AXTg,Zs — AZp > = 0.
GUPTRI [11, 12] has been used to compute the Kronecker structure of the
perturbed pencils A — AB + €(E4 — AEg), A — AB + €(Z4 — A\Zp), and A —

Versal Deformations of Matrices and Matrix Pencils

175

Table 4: Versal deformations A — AB + Z4 — AZp of 2-by-3 matrix pencils.

KCF A—)B Za—Np
. [—x 1 0] [0 0 0]

| 0 —x1] 000
Li® Ji(y) [_0/\ (1) v 8 ,\] p1 +2\7P1 iz +0/\72p1 P2 +(;\7P2
Li@ 5(0) o0 o]
0] 63500
Lo ® Ji(m1) @ J1(72) [8 MO_A 720_ A] [i;igﬁl pHE\)%m P +g%p4]
Lo ® J2(7) [8”?75] See (6:1)
mome) [0050,0] R ez
Lo @ Ji1(0) & Ji(7) [8 _0>\ ’YEA [pz +p>1\7p2 %3 P4 +(1\7P4]
Lo®i(7) ® Ns [gvgml) [mt;jpl p3+OWp3 A(;4]
Lo @ J2(0) [8 _OA _&] [pz flxpl P -]:3>\p3 ;)3]
Lo ® N> _8 (1) _1>\: [pl /—\i—p;\pz p3ip§104 /\(1:73:|
Lo ® J1(0) @& Ny 8 _OA (1) [AP;Z o)\(;)4:|
Lo Li® L] 8 _0/\ é p1 +0/\p2 p3 +0)\p4 P4 +O>\p5
Lo @241(0) [8 o _OA] [ﬁl ” gZ]
[019] frviee
00 S
2Lo ® Ji(7) ® Lg [8 8 ! E ’ [p;2++)\>7p];1 p;f)i/\jp? Z; i giz]
2Lo @ J1(0) ® LY :8 8 _OA: [pz -Il-H)\ps s '1:4>\p6 Z]
2Lo® N1 @ L§ [88(1)] [pg/-\i-p;\pg psf\l-p;pa ig;]
BH st we

176 Paper IV

AB+¢€(Ta—ATg), for e = 10716 10715 ... 10°. We investigate how far we can
move in the tangent and normal directions before GUPTRI reports the generic
Kronecker structure.

The procedure has been repeated for all cases and for 100 random pertur-
bations (Ea, Eg), where ||[(Ea,EB)||lr = 1 and ||E4||r = ||EB||r. The entries
of (E4, Ep) are uniformly distributed in (—0.5,0.5). For each case and for each
perturbation E4 — AEp we record the size of € when GUPTRI reports the generic
Kronecker structure. In Table 5 we display the smallest, median, and maximum
values of € for the 100 random perturbations.

Table 5: How far we can move in tangent and normal directions before non-
generic 2-by-3 matrix pencils turn generic.

€(Za— AZp) e(Ta — A\Tp)
A— AB COd(A - AB) €min €median €max €min €median €max
L, ® J1(0) 2 10-* 10=* 1073 [10=2 107! 107!
Lo N 2 107* 107* 1073 |107%2 107t 10°
Lo & J2(0) 4 107* 107* 1073 |1072 107! 10°
Lo ® N, 4 107® 107* 1073 |107%2 100t 107!
Lo ® Ji(0) ® Ny 4 10-* 10=* 1072 |10-2 107! 10°
LooLio LT 5 10=* 10=* 1072 |107%2 107t 10°
Lo @ 2J1(0) 6 10716 10716 10716 + 4+ +
Lo ®2N; 6 10-16 10-16 10716| 4+ + +
2Ly LT 6 10~* 107* 1072 | + + +
2Ly @ J1(0) @ LT 8 107 107* 107! | + 4+ +
2Lo® Ny & LT 8 10=* 107* 107% | + 4+ +
3Lo @ 2LT 12 10716 10716 10716 + 4+ +

Entries marked + in Table 5, represent that the generic structure was not
found for any size of the perturbations. All these results were for perturbations
in tan(A — AB), and they indicate that for these Kronecker structures there are
no or only small curvatures in the orbit at this point (pencil). Here the tangent
directions are very close to orbit(4 — AB).

Notably, the results for the perturbations e(E4 — AEpg) are, except for one
case, similar to the results for e(Z4 — AZp). This is natural since the pertur-
bation E4 — AEp implies a translation both in the tangent space as well as
the normal space directions. The structure changes appear more rapidly in the
normal space, i.e., for smaller e. Our computational results extend the cone
example in Section 1.3 to 2-by-3 matrix pencils.

Why is the smallest perturbation 10716(Z 4 —AZpg) enough to find the generic
structure for the three cases Lo ® 2J1(0), Lo ® 2N; and 3Lo @ 2LY? The ex-
planation is connected to the procedure for determining the numerical rank of

Versal Deformations of Matrices and Matrix Pencils 177

matrices.

GUPTRI has two input parameters, EPSU and GAP, which are used to make
rank decisions in order to determine the Kronecker structure of an input pen-
cil A — AB. Inside GUPTRI the absolute tolerances EPSUA = ||A||g - EPSU and
EPSUB = || B||g - EPSU are used in all rank decisions, where the matrices A and
B, respectively, are involved. Suppose the singular values of A are computed in
increasing order, i.e., 0 < 0y < 09 < ... < 0 < 041 < ...; then all singular
values o, < EPSUA are interpreted as zeros. The rank decision is made more
robust in practice: if o, < EPSUA but or41 > EPSUA, GUPTRI insists on a gap
between the two singular values such that op41/0r > GAP. If 0p11/0r < GAP,
Ok+1 is also treated as zero. This process is repeated until an appreciable gap
between the zero and non—zero singular values is obtained. In all of our tests
we have used EPSU = 10~8 and GAP = 1000.0.

For the most non-generic case 3Lo @ 2L, both the A-part and the B-part
are zero matrices giving EPSUA = EPSUB = 0, which in turn lead to the decision
that a full rank perturbation E4 — AEp times a very small € is interpreted as a
generic pencil. For the other two cases, either the A-part or the B-part is full
rank and the other part is a zero matrix, which accordingly is interpreted to
have full rank already for the smallest perturbation.

6.2.2 Versal deformations and minimal perturbations for changing
a non-generic structure

In the following we illustrate how versal deformations are useful in the under-
standing of the relations between the different structures, by looking at require-
ments on perturbations to (A, B) for changing the Kronecker structure. Assume
that we have the following matrix pencil with the Kronecker structure L; ®J;(0):

—61)\ €9 0
0 0 —€3A

0 0 O

A—)\B =
p1 0 po

and ZA —)\ZB = [] . (6.2)
It was shown in [14] that L; @ J;(0) with codimension 2 is in the closure of
orbit(L; & Ji(7v)) (v # {0,00} but otherwise unspecified) with codimension 1,
which in turn is in the closure of orbit(Ly) (the generic KCF) with codimension
0. Notice in Table 4, since + is assumed specified, L; @ J; () has two parameters
(and codimension = 2). In the discussion that follows we assume that + is finite,
non-zero but unspecified.

We will now, for this example, illustrate how perturbations in the normal
space directions can be used to find more generic Kronecker structures (going
upwards in the Kronecker structure hierarchy), and how we can perturb the
elements in A — AB to find less generic matrix pencils. Since the space spanned
by Z4 — AZp is the normal space, we must always first hit a more generic pencil
when we move infinitesimally in normal space directions.

The KCF remains unchanged as long as p; = ps = 0, but for p; = 0 and
p2 # 0, the KCF is changed into L; & J1(7y) (with v = ps). That is, by adding

178 Paper IV

a component in a normal space direction, we find a more generic pencil in the
closure hierarchy. Notably, the size of the required perturbation is equal to the
smallest size of an eigenvalue to be interpreted as non-zero. By choosing p;
non-zero (and pe arbitrary), the resulting pencil will be generic with the KCF
L,.

To find a less generic structure, we may proceed in one of the following ways:
1. Find a less generic structure in the closure of orbit(L;, @ J1(0)).

2. Go upwards in the closure hierarchy, to a more generic structure and then
look in that orbit’s closure for a less generic structure.

We know from the investigation in [14] that all structures with higher codi-
mension than A — AB = L; @ J1(0) include an Lp block in their Kronecker
structures, which in turn imply that A and B must have a common column
nullspace of at least dimension 1. Therefore, the smallest perturbation that
turns L; @ J1(0) less generic is the smallest perturbation that reduces the rank
of

062 0
Al [0 0 0
|:B:|_ €1 0 0
0 063

The size of the smallest rank-reducing perturbation is equal to the smallest of
the singular values €;1,€2, and e3. By just deleting one €;, the corresponding
perturbed pencil is a less generic pencil within the closure of orbit(L; & J;(0)).
These three cases correspond to approach 1 above. We summarize these per-
turbations and the perturbations in the normal space in Table 6. Notice that
approach 2 will always require a perturbation larger than min{e;}.

Which of the non-generic structures displayed in Table 6 is obtained by the
smallest perturbation to L; @& J;(0)? Mathematically, it is easy to see that the
perturbations in the normal space always can be made smaller than a rank-
reducing perturbation ¢;, since p; and po are parameters that can be chosen
arbitrary small, e.g. smaller than min{e;}.

However, in finite precision arithmetic, it is not clear that the smallest per-
turbation required to find another structure is in the normal direction. This
can be illustrated by using GUPTRI to compute the Kronecker structures for
A — AB as in (6.2) and perturbed as in Table 6. For EPSU = 1078, e; = 1
and €, = €5 = 10719, GUPTRI uses different tolerances EPSUA = 1078 and
EPSUB = 107!® for making rank decisions in A and B, respectively. It fol-
lows that for p; and py of order 1076, GUPTRI still computes the Kronecker
structure Ly @ J;1(0). However, if p; = p» = 0 and the B-part of the pencil
is perturbed by €; or €3, GUPTRI computes the less generic structures, just as
shown in Table 6.

Versal Deformations of Matrices and Matrix Pencils 179

Table 6: Perturbing A — AB (defined in 6.2) yields the pencil A — AB with more
or less generic structures. The codimension of the original orbit is 2.

[(AA,AB)|| ¢ A-)\B KCF cod(A — AB)
n [P] b2 0
D2 [_El)\ 602 - _063)\] Ly & Ji(p2) 1(2)
e {_00 « _SSA] Lo® J1(0) & Ny 4
e {_g}‘ o _00] Lo® L & LT 5
€ [_31’\ 8 _23/\] Lo & 2J,(0) 6

7 Conclusions

In this paper, we have obtained not only versal deformations for deformations
of Kronecker canonical forms, but more importantly for our purposes, metrical
information for the perturbation theory of matrix pencils relevant to the Kro-
necker canonical form. In Part II of this paper, we will explore the stratification
theory of matrix pencils with the goal of making algorithmic use of the lattice
of orbits under the closure relationship.

Acknowledgements

We would like to thank Jim Demmel for conveying the message that the ge-
ometry of matrix and matrix pencil space influences perturbation theory and
numerical algorithms. We further thank him for many helpful discussions. In
addition, the first author would like to thank the second two authors for their
kind hospitality and support at Umea University where this work and fruitful
collaboration began.

References

1] V. 1. Arnold. On Matrices Depending on Parameters. Russian Math. Sur-
g
veys, 26:29-43, 1971.

180

Paper IV

[2]

(3]

(4]

(5]

[6]

[7]

(8]

[9]
[10]

[11]

[12]

[13]

[14]

T. Beelen and P. Van Dooren. An improved algorithm for the computation
of Kronecker’s canonical form of a singular pencil. Lin. Alg. Appl., 105:9—
65, 1988.

J.M. Berg and H.G. Kwatny. A canonical parameterization of the Kronecker
form of a matrix pencil. Preprint, 1994. To appear in Automatica.

T. Brocker and L. Lander. Differential Germs and Catastrophes. Cambridge
University Press, 1975.

J.W. Bruce and P.J. Giblin. Curves and Singularities. Cambridge Univer-
sity Press, 1991.

S.-N. Chow, C. Li, and D. Wang. Normal Forms and Bifurcation of Planar
Vector Fields. Cambridge University Press, 1994.

J. Demmel. On structured singular values. In Proceedings of the 27th
Conference on Decision and Control, Austin, TX, Dec 1988. IEEE.

J. Demmel and A. Edelman. The Dimension of Matrices (Matrix Pen-
cils) with Given Jordan (Kronecker) Canonical Forms. Report LBL-31839,
Mathematics Department, Lawrence Berkeley Laboratories, University of
California, Berkeley, CA 94720, 1992. To appear in Lin. Alg. Appl.

J. Demmel and B. Kagstréom. Computing stable eigendecompositions of
matrix pencils. Lin. Alg. Appl., 88/89:139-186, April 1987.

J. Demmel and B. Kagstrom. Accurate solutions of ill-posed problems in
control theory. SIAM J. Mat. Anal. Appl., 9(1):126-145, January 1988.

J. Demmel and B. Kagstrom. The Generalized Schur Decomposition of
an Arbitrary Pencil A — AB: Robust Software with Error Bounds and
Applications. Part I: Theory and Algorithms. ACM Trans. Math. Software,
Vol.19(No. 2):160-174, June 1993.

J. Demmel and B. Kagstréom. The Generalized Schur Decomposition of an
Arbitrary Pencil A — AB: Robust Software with Error Bounds and Appli-
cations. Part II: Software and Applications. ACM Trans. Math. Software,
Vol.19(No. 2):175-201, June 1993.

A. Edelman and H. Murakami. Polynomial Roots from Companion Matrix
Eigenvalues. Mathematics of Computations, to appear, 1995.

E. Elmroth and B. Kagstrom. The Set of 2-by-3 Matrix Pencils — Kronecker
Structures and Their Transitions Under Perturbations. Report UMINF-
93.22, Department of Computing Science, Umea University, S-901 87 Umea3,
Sweden, November, 1993. Revised October, 1994. To appear in STAM J.
Matriz Anal. Appl.

Versal Deformations of Matrices and Matrix Pencils 181

[15]

[16]

[17]

[18]

[19]

[20]

[21]

22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

F. Gantmacher. The Theory of Matrices, Vol. I and II (transl.). Chelsea,
New York, 1959.

G. Golub and C. Van Loan. Matrixz Computations. Second Edition. Johns
Hopkins University Press, Baltimore, MD, 1989.

M. Golubitsky and V. Guillemin. Stable Mappings and their Singularities.
Springer Verlag, 1973.

U. Helmke and D. Hinrichsen. Canonical forms and orbit spaces of linear
systems. IMA J. Mathematical Control & Information, pages 167—184,
1986.

D. Hinrichsen and D. Prétzel-Wolters. A wild quiver in linear systems
theory. Linear Algebra Applications, pages 143-175, 1987.

D. Hinrichsen and D. Préatzel-Wolters. A Jordan canonical form for reach-
able linear systems. Linear Algebra Applications, pages 489-524, 1989.

B. Kagstrom. RGSVD - an algorithm for computing the Kronecker canon-
ical form and reducing subspaces of singular matrix pencils A —AB. SIAM
J. Sci. Stat. Comp., 7(1):185-211, 1986.

V. B. Khazanov and V. Kublanovskaya. Spectral problems for matrix pen-
cils. Methods and algorithms. I. Sov. J. Numer. Anal. Math. Modelling,
3:337-371, 1988.

V. Kublanovskaya. AB-algorithm and its modifications for the spectral
problem of linear pencils of matrices. Num. Math., 43:329-342, 1984.

Y.-C. Lu. Singularity Theory and an Introduction to Catastrophe Theory.
Springer Verlag, 1976.

D. Pratzel-Wolters. Canonical forms for linear systems. Linear Algebra
Applications, pages 437-473, 1983.

M. Shub and S. Smale. Complexity of Bezout’s theorem II: volumes
and probabilities. In F. Eyssette and A. Galligo, editors, Computational
Algebraic Geometry, Progress in Mathematics Vol. 109, pages 267-285.
Birkhauser, 1993.

G. W. Stewart and J.-G. Sun. Matriz Perturbation Theory. Academic
Press, New York, 1990.

L. Stolovitch. On the computation of a versal family of matrices. Numerical
Algorithms, 4:25-56, 1993.

P. Van Dooren. The computation of Kronecker’s canonical form of a sin-
gular pencil. Lin. Alg. Appl., 27:103-141, 1979.

182 Paper IV

[30] P. Van Dooren. The generalized eigenstructure problem in linear system
theory. IEEE Trans. Autom. Contr., AC-26(1):111-129, 1981.

[31] P. Van Dooren. Reducing subspaces: Definitions, properties and algo-
rithms. In B. Kagstrém and A. Ruhe, editors, Matriz Pencils, pages 58—
73. Springer-Verlag, Berlin, 1983. Lecture Notes in Mathematics, vol. 973,
Proceedings, Pite Havsbad, 1982.

[32] W. Waterhouse. The codimension of singular matrix pairs. Lin. Alg. Appl.,
57:227-245, 1984.

[33] J. H. Wilkinson. The Algebraic Eigenvalue Problem. Oxford Science Pub-
lications, 1965.

[34] J. H. Wilkinson. Linear differential equations and Kronecker’s canonical
form. In C. de Boor and G. Golub, editors, Recent Advances in Numerical
Analysis, pages 231-265. Academic Press, 1978.

Paper V

On the Stratification of the
Kronecker Canonical Form

Erik Elmroth*

Department of Computing Science, Umed University
S-901 87 Umead, Sweden.
E-mail: elmroth@cs.ume.se

Abstract

The understanding of which Kronecker structures that are close to a
given structure is revealed by the Kronecker structure hierarchy, i.e., the
stratification of the Kronecker canonical form. For a given matrix pencil
A — AB, the Kronecker structure hierarchy shows all structures that are
within the closure of orbit(A —AB), and each structure, whose orbit’s clo-
sure contains A— AB. In order to gain new insight in the problem of strat-
ification, we give new interpretations of important results by Pokrzywa,
for determining closure relations among orbits of Kronecker structures.
This is partly done by generalizing classical theorems by Gantmacher.
The results are used to derive an algorithm for computation of the com-
plete Kronecker structure hierarchy, or the Kronecker structure hierarchy
above or below a given structure. The algorithm is presented in terms of
the rank-decisions required in a staircase algorithm, in order to compute
the Kronecker structure hierarchy.

Keywords: Kronecker canonical form, Kronecker structure hierarchy, stratifi-
cation, staircase algorithm, perturbation theory.

*In part supported by the Swedish National Board of Industrial and Technical Development
under grant 89-02578P.

185

186 Paper V

1 Introduction

Any algorithm for computation of the Kronecker Canonical form of an m-by-
n matrix pencil A — AB, computes the exact Kronecker structure of a nearby
pencil A" — AB’. The distance 6§ = ||(A — A',B — B')||, is an upper bound on
the distance to the closest (4 + 6 A, B + éB) with the KCF of (A4’, B’). These
algorithms are supposed to compute the most non-generic KCF within distance
6 from A — AB, and they are said to fail if there is another more non-generic
pencil A — AB within distance § from the original pencil.

The computation of a KCF can be seen as moving pencils from point to point
or manifold to manifold in the 2mmn-dimensional matrix pencil space. During
the computation and in the interpretation of the result, it is of great interest to
know which structures that are close to a given KCF.

Given A—)AB, we know mathematically that an arbitrary small perturbation
outwards from orbit(A — AB) (the manifold of pencils strictly equivalent to
A — AB) results in a more generic pencil above A — AB in the closure hierarchy.
That is, a structure that is more generic than A — AB and whose orbit’s closure
includes A — AB. By travelling downwards in the closure hierarchy, we find less
generic structures, that are in the closure orbit(4 — AB).

In order to make the best decisions during the computation of the KCF it
is important to understand how the manifolds of different structures relate to
each other. Recent contributions to this understanding can be found in [2, 6, 7].
In this contribution we show for the general case how to generate the complete
Kronecker structure hierarchy and how to generate the Kronecker structure
hierarchy above or below a given KCF.

In Section 2, we briefly review the Kronecker canonical form and the concepts
of orbits and their codimension. Section 3 contains a summary of important
results by Pokrzywa [11] on the stratification of orbits, i.e., the characterization
of closure relations of matrix pencils and necessary conditions on consecutive
pencils. In Section 4, we give new interpretations of these results, partly by
extending some classical theorems by Gantmacher [8]. The necessary conditions
on consecutive pencils are in Section 5 interpreted in terms of rank-decisions of
a staircase algorithm for computation of Kronecker structures. In Section 6, our
results are put together in an algorithm for computing the complete Kronecker
structure hierarchy, or the hierarchy above or below a given structure.

The results in this contribution should be seen as preliminary results for the
second part of [6].

2 The Kronecker Canonical Form

Any m-by-n pencil A — AB can by equivalence transformations be transformed
into the Kronecker canonical form

P YA-AB)Q=diag(Le,, - -,Le,,Jj, (1), - - - » T3, (), Niy - - - ,Niy . L1, .. L),

1’

Stratification of the Kronecker Canonical Form 187

where J;(p) corresponds to a j-by-j Jordan block for the zero or non-zero fi-
nite eigenvalue p and N; corresponds to a j-by-j Jordan block for the infinite
eigenvalue:

p—XA 1 1 -
() = . and N, = R
o1 o=
n—A 1
The L; and LT blocks are singular blocks of right (column) and left (row)

indices of grade j. These blocks are of size j-by-(7+ 1) and (5 + 1)-by-j, respec-
tively, and have the form
-
-2 1
L, = and LT =
-2 1 o=
1

The singular blocks have no eigenvalues and there exists a right singular (col-
umn) vector that for each A zeroes out the L; block identically:

1
a1 A 0
||

21 : :

Y 0

Similarly, there exists a left singular (row) vector that zeroes out the L]T block
identically:

-2

[1 A A2 oo N] 1 =[0 0 - 0].

If A— AB is regular, the L; and Lf blocks are not present in the Kronecker
canonical from.

However, most applications do not require A — AB to be transformed into
Kronecker canonical form. Most often it is enough to transfer A — AB to a
generalized Schur form or similar [1, 3, 4, 9, 10, 12, 14], which reveals the
complete Kronecker structure.

If A — AB is m-by-n, where m # n, then for almost all A and B it will have
the same KCF, depending only on m and n (the generic case). The generic

188 Paper V

Kronecker structure for A — AB withd=n—m > 0is
diag(La,...,La,La+1,...,La+1), (21)

where a = |m/d], the total number of blocks is d, and the number of Ly41
blocks is m mod d (which is 0 when d divides m) [12, 2]. The same statement
holds for d = m —n > 0 if we replace Ly, Ly41 in (2.1) by Lg,LZ+1. Square
pencils are generically regular, i.e., det(A — AB) = 0 if and only if A is an eigen-
value. The generic singular pencils of size n-by-n have the Kronecker structures
[13]:

diag(Lj,Lz;_j_l), j=0,...,n—1.

We define an orbit to be the set of strictly equivalent pencils in 2mn-dimen-
sional space:

orbit(A — AB) = {P™!(A — AB)Q : det(P)det(Q) # 0}.

That is, an orbit defines a manifold of pencils with identical Kronecker struc-
tures. The dimension of orbit(4 — AB) is equal to the dimension of the tangent
space, tan(A — AB), to the orbit of A — AB. The tangent space is defined as

F(X,Y)=X(A - AB)— (A— AB)YY, (2.2)

where X is an mxm matrix and Y is an nxn matrix [2]. Since (2.2) maps a space
of dimension m? + n? linearly into a space of dimension 2mn, the dimension of
the tangent space is m? +n? —d, where d is the number of (linearly) independent
solutions of f(X,Y) =0.

The codimension is the dimension of the space complementary to the tangent
space, i.e.,

cod(A — AB) = 2mn — dim(tan(A — AB)) = d — (m — n)?.

As shown in [6], the codimension of A — AB can be computed as the number of
zero singular values of

T= AT®I, -I,®A
- | BT®I, -1,8B |’

We may also define the normal space, nor(A — AB), as the space perpendicular
to tan(A — AB). Then cod(A — AB) is the dimension of nor(4 — AB).

Since the codimension of an orbit depends only on its Kronecker structure,
cod(A — AB) can also be computed by summing the contributions to the codi-
mension from different blocks in the KCF [2].

Stratification of the Kronecker Canonical Form 189

3 Stratification of Orbits

Given two m X m matrix pencils P; = A; — AB; and P, = Ay — ABy we
are interested to know when the closure of orbit(P;) includes the closure of
orbit(Pz), i.e., orbit(P;) D orbit(P2). As in the matrix case we define P; and
P to be consecutive if orbit(Py) D orbit(Py) and there is no pencil P such that
orbit(Py) D orbit(P) D orbit(Ps).

Since the KCF may include both Jordan blocks associated with finite as
well as infinite eigenvalues and Kronecker blocks corresponding to left and right
minimal indices, the task to get a complete characterization of all possible m x n
Kronecker forms is much more intricate than for the matrix case, where we only
have to consider Jordan blocks.

3.1 Characterization of the closure of orbit(A — AB)

An important contribution to the understanding of the stratification for the
Kronecker canonical form was presented by Pokrzywa [11] in 1986. We start by
reviewing some of his results (using our notation).

The following theorem gives a characterization of orbit(P1) D orbit(Pz) in
terms of their Kronecker structures. For a given pencil P = A — AB let 7(P)
and [;(P) be the number of Ly (right singular) and LI (left singular) blocks,
respectively, and let r(P) be the total number of right singular blocks in the KCF
of P. Moreover, let jp(P,u) be the number of k X k Jordan blocks associated
with the eigenvalue y of P.

Theorem 3.1 [11] A pencil Py is in the closure of orbit(P1) if and only if the
following inequalities hold:

D=k -mi(Pr) < (= k)y - i(Pa), (3.1)

k k

IA

S k) W(Pr) <D (i —k)y - Ik(Pa), (3:2)
k k
i-r(P1)+ Y min (6, k)5 (Pr, p) < i-v(Pa)+ Y min (4, k)-ji (P2, 1), (3.3)
k k

for alli=1,2,... and p € C, where C is the complez plane including the point
at infinity and (z); = max (0, z).

Theorem 3.1 gives us necessary and sufficient conditions to decide whether
one pencil is in the closure of another. However, to get a complete understanding
of the closure hierarchy we also need to be able to decide whether two pencils
are consecutive or not, or given a pencil P; we want to know how to construct
all possible consecutive pencils (above and below in the closure hierarchy).

An instrument for this purpose is the following characterization of two con-
secutive pencils [11]. If orbit(P;) D orbit(P;) and P; and P are consecutive

190 Paper V

pencils, then P; = Pl(l) & Pl(z) and Py = Pz(l) @ PZ(Q), where Pl(l) and Pz(l)
are equivalent, and P(z) and P(Z) are equivalent to one of the ordered pairs of
pencils (OI'blt(P(2)) D orbit(P, P?))) of the following lemma.

Lemma 3.1 [11] The following closure relations hold:
(i) orbit(L; ® Ly) D orbit(L;_1 ® Lxt1), 1 <5 < k.
(ii) orbit LT ®L) > orblt(LT 1@ Lk+1) 1<j<k.

(iii) orbit(Ljt1 @ Ji(i)) D orbit(L; ® Jr+1(p)), j,k=0,1,2,... and p € C.

41 © Je(p)) D orbit(Lf ® Jeg1(1), 5, £=0,1,2,... and p € C.

(v) orbit(Jj_1(x)) ® Je+1 () D orbit(J; () @& Jr(p)), 1 < j < kand p€ C.

(vi) orbit(i_, Ji(A:)) D orbit(L, ®LI),if A\j # Xjfor i # j, A € C and
pHqg+1=%"_ k.

Given a pencil P; and its KCF we can use Lemma 3.1 to find a pencil P5 in
orbit(P;) (i.e., Py is below in the hierarchy) such that P; and Ps fulfill necessary
conditions for two consecutive pencils. Similarly, using Lemma 3.1 we can find
another pencil Ps such that Py is in orbit(Ps) (i.e., P2 is above in the hierarchy).
In both cases P; and P, fulfill necessary but not sufficient conditions for two
consecutive pencils. Notice that it is allowed to have Jy(p) blocks in the left
hand side of items (iii), (iv), and (v) [11]. For example, in item (iii) this means
that orbit(L;41) D orbit(L; & Ji(p)).

Recently, Elmroth and Kagstrom derived the closure hierarchy (or stratifi-
cation) of the set of 2 x 3 pencils [7]. By considering zero, non-zero and infinite
eigenvalues separately (which is motivated from an algorithmic point of view)
there are 20 structurally different Kronecker structures. From a topological
point of view it is natural to only consider different eigenvalues without any
special attention to zero and infinite eigenvalues, resulting in only 9 structurally
different Kronecker structures. The closure hierarchy graph corresponding to
these is shown in Figure 1.

Following [7] we display closure graphs such that orbits (nodes) with the
same codimension are displayed on the same horizontal level. The generic case
(L) is at the highest level and the most non-generic pencil (3Ly @ 2LI which
is the 2 x 3 zero pencil) is at the lowest level. Moreover, along each arc in
Figure 1 we display the item in Lemma 3.1 for the necessary condition for
consecutive pencils that is fulfilled. From this closure hierarchy it is possible to
find examples where the necessary conditions of Lemma 3.1 are not sufficient
conditions for consecutive pencils. For example, P; = L, & Ji(v) and Py =
Lo @ 2Jy(y) fulfill the necessary condition (iii), Py = L; & Ji(y) and Py =
Lo ® Ly ® LT fulfill the necessary condition (vi), as Py = Lo @ Ji(v) ® J1(6)
and Py = 2L @ Ji(y) ® L do, while in all three cases there exists a pencil P
such that orbit(P;) D orbit(P) D orbit(Pz).

(L;
) (
) (L
(iv) orbit(LT.
) (
) (

Stratification of the Kronecker Canonical Form 191

Figure 1: Closure hierarchy graph for the set of 2-by-3 pencils.
Cod(A — AB)

L1®71(7) 2

Lo®Jg(7) Lo®J1(7)® J1(6) 4

merT 8

sng@2rl 12

192 Paper V

4 Characterizing Closure Relations Using Gant-
macher Matrices

Let the Gantmacher matrix R[A, B, 1] of size (z + 2)m x (i + 1)n be defined by

0 0
A
R[A,B,i] =

o W

e o

: B
L 0 0 -
where A and B are m X n matrices. When it is clear from context we use the
abbreviated notation RJ[i], or R[P,i] where P = A — AB, for R[A, B, 1.

Gantmacher showed that if R[i — 1] has full column rank but R[i] does not,
then there exists an L; block in the Kronecker structure of A— AB [8]. Here we
extend this result in theorems 4.1-4.2 and we use these extensions in Theorem
4.3 to characterize closure relations in terms of Gantmacher matrices. The
objective is to gain more insight in the problem of stratification of orbits of
Kronecker structures.

Theorem 4.1 If R[A,B,i — 1] has full column rank and R[A, B,i] has a k-
dimensional column nullspace, then there exist k L; blocks in the KCF of A—AB.

Proof. Since R[i — 1] has full column rank but R[i] does not (since it has
a k-dimensional column nullspace), we know from Gantmacher’s results that
A — AB is equivalent to the pencil

[T 4 ap] ' (41)

By rewriting R[i] using this equivalent pencil and the notation L; = LA — ALZ
we have,

— Lf 0 —
0 A
LB o | LA

BN

0 B'| 0 A

R[A, B,i] = ‘ . (42)

Stratification of the Kronecker Canonical Form 193

where the empty blocks denote zeros. By using

I 0 -
I, O
I, O
U= 0 I , (4.3)
0 Im—i
L 0 Im—i _
and))
Iit 0
0 In—i—l
Ii+1 0
V= 0 Iniz1 . (44)
Ii+1 0
L 0 y——
for row and column permutations, respectively, we have
.+ [RILA, LB 4] 0
UR[A, B,V = 0 RIA', B,] (4.5)

It is easily shown that R[L#, L5, 4] has full row rank and since it is of dimension
(42 + 2) x (42 + 2i + 1), the matrix R[L#,LZ,i] has a 1-dimensional column
nullspace. Since R[A, B,i] has a k-dimensional column nullspace, the matrix
R[A’, B',i] must have a (k — 1)-dimensional column nullspace. If £k —1 > 1,
then there is at least one L; block in the KCF of A’ — AB’. By repeating the

procedure above, we are in total able to extract k L; blocks from A — AB. O

Theorem 4.2 If R[A, B,i] has a k-dimensional column nullspace given by k
L, blocks in the KCF of A — AB, then these k L; blocks induce a k(p —i + 1)-
dimensional column nullspace in R[A, B, p] for p > 1.

Proof. Let R[A, B,i] have a k-dimensional column nullspace given by k L;
blocks. The total nullspace may of course be larger due to existence of other right
singular blocks. By using similar reorganizations as in (4.1)—(4.5) of the matrix
R[A, B, 1], we can obtain a reorganized matrix with k R[L#, L?] matrices in its
block structure. Similarly, a reorganized R[A, B,p| has k R[L{, L?, p] matrices
in its block structure. Since each R[LA, L2, p] matrix has full row rank and
dimensions (p+2)i X (p+1)(i+1), each R[L#, LB, p] has a (p—i+1)-dimensional
column nullspace for p > i. It follows that the k matrices R[LA, L2 1] in total
give a k(p — 7 + 1)-dimensional column nullspace in R[A, B, p| for p >i. O

194 Paper V

From Theorem 3.1 we have that the right singular structure of a pencil
P = A — AB is characterized by the expression

> (i —k)g-ri(P), fori=1,2,..., (4.6)

where ri(P) is the number of Lj blocks in the KCF of P. For a given value i
the sum (4.6) is equal to

i'T0+(i—1)'T1+...+].'T'Z'_1.

From theorems 4.1-4.2 we know that (i — j) - 7; is the dimension of the part of
the column nullspace of R[A, B,i— 1] that is induced by r; L; blocks. It follows
that we get an explicit expression for n.(R[:]), the dimension of the column
nullspace of RJ[i].

Corollary 4.1 Let r,(P) be the number of right singular blocks in P = A—AB.

Then
Y (i = k)4 -mi(P) = n(Ri — 1), (4.7)
k

fori=1,2,....

To identify the existence of L blocks in the KCF, Gantmacher stated a dual
form of his theorem. It says that if the (¢ + 1)m X (¢ + 2)n matrix

A B o --- 0
raBi=|° 4 P ,

R . .0

o --- 0 A B

does not have full row rank but L[A, B,i — 1] does, then there exists an LT
block in the KCF of A — AB.

As before, we also use the abbreviated notations L[i] or L[P,] for L[A, B,1].
It is straightforward to formulate dual versions of theorems 4.1 and 4.2, resulting
in similar explicit expressions for n,(L[i]), the dimension of the row nullspace

of L[i].
Corollary 4.2 Let l;,(P) be the number of left singular blocks in P = A — AB.

Then
S~ B (P) = 0, (Lfi ~ 1)), (4.8)
k

fori=1,2,....

We have now showed how to interpret the first two inequalities in Theorem
3.1, using Gantmacher matrices. Our interpretation of the third inequality is

Stratification of the Kronecker Canonical Form 195

partly based on some final remarks by Pokrzywa [11]. He notes that if we
consider the n-by-n pencil A — ul, then

Z min (4,k)-jx(P,) = n.((A — ﬂf)i)a
k

which we recognize as the sum of the ¢ first elements in the Weyr characteristics
corresponding to the eigenvalue p [5]. (Since A is square, we also have n.((4 —
pI)?) = n,((A — plI)?)). For general A — AB, let w; for the eigenvalue p denote
the number of Ji(u) blocks for k > j. Then

Z min (4, k) jx (P, pu) = Z Wy
k j=1

We are now able to rewrite Theorem 3.1 in terms of Weyr characteristics
and Gantmacher matrices.

Theorem 4.3 A pencil Py is in the closure of orbit(Py) if and only if the
following inequalities hold:

ne(R[P1,4]) < n(R[Ps,1)), (4.9)
n(LPL]) < ne(L[P,), (4.10)
P+ Y w) < ior(Py) + > Wl (4.11)

for alli =0,1,2,... and wg-l) and w§2)

teristics corresponding to the eigenvalue u € C, for Py and Py, respectively.

,J =1,2,..., denote the Weyr charac-

Note that we here start form ¢ = 0 in order to obtain R[:] and L[7] in (4.10)
and (4.10) instead of R[i — 1] and L[z — 1], as in (4.7) and (4.8). The inequality
(4.11) is not affected by this change, since 2 = 0 makes both the left hand side
and the right hand side equal to zero.

One immediate observation is that since w; = 0 for ¢ large enough, r(P;) <
7(P2) must hold in order to satisfy the third inequality for all 4. Indeed, by
examining the first two inequalities using Theorem 4.2, we see that they require
Py to have at least as many Lj and L{ blocks as P;.

5 Characterizing Consecutive Pencils Using the
Staircase Algorithm
Using the staircase algorithm (in infinite precision arithmetic) it is possible to

compute the (exact) Kronecker structure of a given m x n pencil. One phase of
the algorithm extracts, for example, the Jordan structure of the zero eigenvalue

196 Paper V

and the right singular structure of A — AB using a finite sequence of orthogonal
(unitary) equivalence transformations. In step k (= 0,1,...) of the first phase,
the GUPTRI algorithm [3, 4] (one variant of the staircase algorithm) determines
my, = dimension of the column nullspace of A®) and my, — s, = dimension of
the common column nullspace of A®*) and B*). Here, A(®) = 4 and B(®) = B
and (A(k), B(k)) for k > 1 correspond to the deflated matrix pair obtained after
the equivalence transformation in step k& — 1. The structure indices display the
Kronecker structure as follows:

e my — S, = number of L; blocks.
e s, — myy1 = number of Ji41(0) blocks.

Applying the same algorithm to B— pA results in the Jordan structure of the
infinite eigenvalue and the right singular structure. The Jordan structure (and
structure indices) associated with a finite but non-zero eigenvalue is obtained
by applying the algorithm to a shifted pencil. One way to find the left singular
structure is to apply the same algorithm to the transposed pencil. Another
way is to directly determine the sizes of the corresponding row nullspaces as
done in the GUPTRI algorithm, resulting in the Jordan structure of the infinite
eigenvalue and the left singular structure. Then my, — sj, is the number of LI
blocks and s — mg41 equals the number of Nii1 = Ji41(00) blocks.

In Corollary 5.1, we formulate Lemma 3.1 in terms of the structure indices
computed by the staircase algorithm. Given a pencil P;, we show prerequisites
on its structure indices for each item in Lemma 3.1 and how they must change
in order to characterize a pencil P, such that orbit(P;) D orbit(P2) and P; and
P, fulfill necessary conditions for two consecutive pencils. We use an arrow (—)
to show how one block in the KCF is transferred to another.

Corollary 5.1 Items (i)—(vi) show prerequisites on the m; and s; indices of a
pencil P; and the changes required in these indices to find a pencil Py, such
that orbit(Py) D orbit(Py) and Py and Po fulfill necessary conditions for two
consecutive pencils.

(i) For 1 < j < k there exist at least one L; and Ly in the KCF of Py if
either m; > s;, my > sp and 3 < k, orm; > s;+1 and j =k. Py is
characterized by the changes mj :=m;—1, s;_1 := s;_1—1 (L; = L;_1),
Mpt1 = Mes1 + 1, and s := s, + 1 (L — Lg41).

(ii) Similar to item (1) but with the my and sy indices replaced by the indices
representing the corresponding left singular structure.

(iii) For j,k > 0 there exist at least one Lji; and Ji(p) in the KCF of Py
if mijp1 > sj41 and sg_1 > my. The last relation is not applicable if
k = 0. Py is characterized by the changes mjy1 :=mjy1 —1, s;:=s; —1
(Ljt1 — Lj), mp :=my + 1, and s := s + 1 (Je(p) = Je+1(1)).

Stratification of the Kronecker Canonical Form 197

(iv) Similar to item (iii) but with the my, and sy indices replaced by the indices
representing the corresponding left singular structure and Jordan structure.

(v) Forl < j <k there exist at least one J;_1(u) and Jiy1(p) in the KCF of
Prifsj_o > mj_1, S > mpy1. The first relation is not applicable if = 1.
Py is characterized by the changes mj;_; := m;_1 + 1, s;_1 := s;1 + 1
(Jj—1(p) = J;(w), my :=my — 1, and sg, := s, — 1 (41 (1) = Ji(p)).

(vi) There ezist t Jordan blocks Ji,(u;),(k; > 1) where each Jordan block
corresponds to a different eigenvalue p;. The structure indices for each
eigenvalue must fulfill si,_1 > my;. Pa is characterized by the changes

S6_1 := 8.1 — 1, ms := ms — 1, for 6§ = 1,...,k; for the indices cor-
responding to each of the eigenvalues. Simultaneously, the indices for L;
blocks must be changed as mq := mq +1 for a =0,...,p, 8o := 8o +1
for a = 0,...,p— 1 and the indices for LJT blocks must be changed as

mg:=mpg+1 for3=0,...,q, sg:=s3+1 for 3=0,...,9—1, where
p+qg+1= E:f:l k;. These operations replace the reqular part correspond-
ing to the t Jordan blocks with a generic square singular pencil L, ® LqT.

Similarly, given P; it is possible to characterize a pencil P, such that orbit(Ps)
D) m('Pl) and P; and P, fulfill necessary conditions for two consecutive pen-
cils. Of course, this will impose different prerequisites on P;’s structure indices.
The details are omitted here.

Applying the GUPTRI algorithm in finite precision arithmetic means that
all rank decisions for computing the structure indices are made with respect
to a user supplied tolerance which reflects the relative accuracy of the data
[3, 4]. Assuming a fixed accuracy of the input data it is possible to increase or
decrease the tolerance for rank decisions such that a more non-generic pencil or a
more generic pencil, respectively, is computed. Alternatively, given a Kronecker
structure computed by the staircase algorithm we can impose a more non-generic
Kronecker structure by applying any of the applicable structure index changes
in Corollary 5.1. A modified GUPTRI algorithm can deliver an upper bound on
the size of the distance from the pencil P; we started with to the pencil P, we
imposed such that P, is in orbit(P;). The other way around, we can start with
a pencil P; and construct a more generic pencil Py by adding perturbations
(whose sizes depend on the rank decision tolerance) such that P; is in orbit(Py)
and the necessary conditions for consecutive pencils are fulfilled.

In infinite precision arithmetic we can always go upwards in the closure
hierarchy by adding arbitrary small perturbations. This is normally not the
case for going downwards in the hierarchy. See [7] for computable normwise
bounds of the smallest perturbations for going downwards (or upwards) in the
closure hierarchy of the set of 2 x 3 pencils.

198 Paper V

6 An Algorithm for Generating Closure Hier-
archies

In the following we give an algorithm for deriving the complete closure hierarchy
below a given m-by-n pencil P. By choosing P as the generic pencil, the algo-
rithm derives the complete closure hierarchy for m-by-n pencils. We call P; a
successor of P if and only if P and P; are consecutive and orbit(?) D orbit(P;).
Algorithm 6.1 generates the closure hierarchy by finding all successors of each

KCF.

Algorithm 6.1 Let P denote the starting KCF and let QQ denote a queue of
generated structures, whose successors are not yet determined. Initially Q is
empty.

1. Generate all structures, P1,Pa, . .., that are candidates for being successors
of P, by applying all appropriate items (i) - (vi) of Corollary 5.1, on all
appropriate combination of blocks in P. That is, change the m; and s;
according to each item where the prerequisites on the indices are fulfilled.

2. Compare all pairs (P;,P;) of candidate successors of P, using Theorem
4.8 (or Theorem 3.1) to detect if orbit(P;) D orbit(P;). If so, the P; and
P are not consecutive, and P; is discarded from being a successor of P.
All other P;s are registered as successors of P.

3. All remaining P;s that are not already in Q are inserted in order of in-
creasing codimension.

4. If @Q 1s not empty, remove the first KCF i @ and denote it P. Repeat
from 1.

We illustrate the execution of Algorithm 6.1 by showing how it generates the
complete closure hierarchy for the set of 2-by-3 matrix pencils in Table 1. The
algorithm starts with P = L, i.e., the generic 2-by-3 Kronecker structure. For
each P, the table shows all candidate successors as generated from step 1 in the
algorithm. Candidate successors that are discarded in step 2 are overcrossed
in Table 1. The graph displaying the complete closure hierarchy in Figure 1
is obtained by drawing arrows from each structure P in the table, to all its
successors (but not to the overcrossed ones).

To obtain an algorithm for computing the structure hierarchy above a given
pencil we have to do the following. In step 1 in Algorithm 6.1, the use of
Corollary 5.1 should be replaced by use of a corresponding corollary, that given
a pencil Py gives the prerequisites and the required changes in the m; and s;
indices for finding a pencil Pz such that orbit(P2) D orbit(P;) and P; and P,
fulfill necessary conditions for consecutive pencils, according to Lemma 3.1. In
step 2, P; should be discarded from being successor of P if orbit(P;) D orbit(P;).

Stratification of the Kronecker Canonical Form 199

Table 1: Successors in the closure hierarchy for the set of 2-by-3 matrix pencils,
in order as generated by Algorithm 6.1.

P Successors

Lo: Li®Ji(v)

LioJi(v): Lo® J1(7)® J1(6), To®2J1(y), Lo® J2(7), Lo®Lr® L
Lo® Ji(7)®1(8): 2E0®&)Ly, 2Lo® L], Lo® L1 ® L]

Lo® Jo(v): Lo®2J1(7), 2L LY, Lyo Lo LT

LyoLioLT: 2Lo® Ji(y)e LT

2Lo@®LT: 2Lo® Ji(v)® LT

Lo®2J1(): 2Lo® Ji(v)® LT

2LodJi(v)oLE: 3L¢oLY

3L LT

In step 3, @ should be sorted in decreasing order of codimension. Finally, to
derive the complete closure hierarchy, we should now start with the most non-
generic pencil, i.e., the zero pencil.

We now from [7] that that number of different Kronecker structures grows
rapidly for increasing m and n. In Algorithm 6.1, this will not only cause a
lot of more work for generation of all true successors, but there will also be a
large growth of the number of generated candidate successors that in step 2
are discarded. Therefore, the amount of redundant work in the algorithm will
increase with increasing m and n.

7 Conclusions

We have given new interpretations of important results by Pokrzywa [11], for
determining closure relations among orbits of Kronecker structures. This has
partly been done by generalizing classical theorems by Gantmacher [8]. These
results have been used to derive an algorithm for computation of the complete
Kronecker structure hierarchy, or the complete hierarchy above or below a given
Kronecker structure. The algorithm is presented in terms of the rank-decisions
required in a staircase algorithm, in order to compute the Kronecker structure
hierarchy.

From a mathematical point of view, we know that the Kronecker structures
that are closest to a pencil P with a given structure are the ones that are above
it in the hierarchy. We know that these structures are the ones that are found
by adding perturbations in the normal space of orbit(P) in the point given by
P. How to actually compute these perturbations, or the versal deformation of

200 Paper V

a KCF, is shown in [6]. For our purposes, it is not the versal deformation itself
that is most important. We are more interested in metrical information for the
perturbation theory relevant to the Kronecker canonical form. The results in
this contribution should be seen in this context and as preliminary results for
the second part of [6].

Acknowledgements

I would like to thank Bo Kagstrom for helpful discussions and constructive
comments during the work and the preparation of this paper. I would also like
to thank Alan Edelman for helpful discussions and for encouraging the study of
the stratification of the Kronecker canonical form.

References

[1] T. Beelen and P. Van Dooren. An improved algorithm for the computation
of Kronecker’s canonical form of a singular pencil. Lin. Alg. Appl., 105:9—
65, 1988.

[2] J. Demmel and A. Edelman. The Dimension of Matrices (Matrix Pen-
cils) with Given Jordan (Kronecker) Canonical Forms. Report LBL-31839,
Mathematics Department, Lawrence Berkeley Laboratories, University of
California, Berkeley, CA 94720, 1992. To appear in Lin. Alg. Appl.

[3] J. Demmel and B. Kagstrom. The Generalized Schur Decomposition of
an Arbitrary Pencil A — AB: Robust Software with Error Bounds and
Applications. Part I: Theory and Algorithms. ACM Trans. Math. Software,
Vol.19(No. 2):160-174, June 1993.

[4] J. Demmel and B. Kagstrom. The Generalized Schur Decomposition of an
Arbitrary Pencil A — AB: Robust Software with Error Bounds and Appli-
cations. Part II: Software and Applications. ACM Trans. Math. Software,
Vol.19(No. 2):175-201, June 1993.

[5] C.C. Mac Duffee. The Theory of Matrices. Chelsea Publishing Company,
New York, 1956.

[6] A. Edelman, E. Elmroth, and B. Kagstrém. A Geometric Approach To
Perturbation Theory of Matrices and Matrix Pencils. Part I: Versal Defor-
mations. Report UMINF-95.09, Department of Computing Science, Umea
University, S-901 87 Umea, Sweden, March, 1995.

[7] E.Elmroth and B. Kagstrom. The Set of 2-by-3 Matrix Pencils — Kronecker
Structures and Their Transitions Under Perturbations. Report UMINF-
93.22, Department of Computing Science, Umed University, S-901 87 Umea,

Stratification of the Kronecker Canonical Form 201

(8]

[9]

Sweden, November, 1993. Revised October, 1994. To appear in SIAM J.
Matriz Anal. Appl.

F. Gantmacher. The Theory of Matrices, Vol. I and II (transl.). Chelsea,
New York, 1959.

B. Kagstrom. RGSVD - an algorithm for computing the Kronecker canon-
ical form and reducing subspaces of singular matrix pencils A —AB. SIAM
J. Sci. Stat. Comp., 7(1):185-211, 1986.

V. B. Khazanov and V. Kublanovskaya. Spectral problems for matrix pen-
cils. Methods and algorithms. I. Sov. J. Numer. Anal. Math. Modelling,
3:337-371, 1988.

A. Pokrzywa. On perturbations and the equivalence orbit of a matrix
pencil. Lin. Alg. Appl., 82:99-121, 1986.

P. Van Dooren. The computation of Kronecker’s canonical form of a sin-
gular pencil. Lin. Alg. Appl., 27:103-141, 1979.

W. Waterhouse. The codimension of singular matrix pairs. Lin. Alg. Appl.,
57:227-245, 1984.

J. H. Wilkinson. Linear differential equations and Kronecker’s canonical
form. In C. de Boor and G. Golub, editors, Recent Advances in Numerical
Analysis, pages 231-265. Academic Press, 1978.

