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Fig. 1. A celtic knotArtists from many cultures have been using visual rules since ancient timesin order to design diagrams of various sorts. Celtic diagrams, and in particular? Research partially supported by the Deutsche Forschungsgesellschaft (DFG) under grant no.Kr-964/6-1, the EC TMR Network GETGRATS (General Theory of Graph TransformationSystems), and the ESPRIT Basic Research Working Group APPLIGRAPH (Applications ofGraph Transformation).



celtic knotwork, are a famous visual language of this type. Figure 1 shows anexample of a celtic knot. Basically, such a diagram is the two-dimensional pictureof one or more continuous strands weaved in a particular fashion. If we look attwo successive crossings along a particular strand, this strand lies on top of the�rst strand crossed if (and only if) it passes below the second. Furthermore, thedistances and angles which appear are determined by an invisible grid.Traditional methods to construct celtic knotwork are described in e.g. [Bai51,Mee91,Buz]. Mainly, one �rst draws a grid of squares, triangles, or a similarpattern. This grid is used to obtain a plait, i.e., a knot with regular interlacing,which is subsequently modi�ed by breaking crossings and connecting the looseends. In the last step, the style of the strands and the background is determined.Although one can identify certain characteristic features of celtic knots as wellas typical ways to construct them, the description of celtic knotwork as a visuallanguage remains informal.In [Slo95], Sloss presents an algorithmic way to generate knots. An introduc-tion to celtic knotwork from the perspective of computer graphics is given byGlassner in [Gla99a,Gla99b,Gla00]. In the present paper, a formal descriptionfor celtic knotwork is provided by means of collage grammars [HK91,HKT93,DK99], one of the picture-generating devices studied in computer science. Usingcollage grammars in the form of [Dre00b], we shall describe (a picture of) a knotby a term, i.e., an expression over graphical operations and primitives. Such aterm corresponds to a derivation tree in a collage grammar, the value of theterm (the result of the derivation tree) being the generated knot. Thus, the treedescribes the syntactic structure of the knot, whereas the evaluation of the treeyields the actual knot. In particular, two knots may share their syntactic struc-ture although their visual appearance di�ers|which is re
ected in the formalmodel by the fact that the underlying trees are identical, but the symbols aregiven di�erent interpretations as picture operations.Reasoning about the generation of picture languages is at the same time eas-ier and more enjoyable if there is a suitable system supporting the work. For thispaper, all knotwork designs (except for the �rst, hand-drawn, knot) were pro-duced using the system Treebag [Dre98]. With the exception of some very basicexamples, we shall not present in detail the grammars we implemented, becausethat would soon degenerate into a tedious enumeration of symbols and rules.Instead, we try to convey the basic ideas and principles behind them. Readerswho are interested in the details or would like to make their own experiments areinvited to download Treebag from the internet at http://www.informatik.uni-bremen.de/~drewes/treebag. The distribution contains all examples presented inthis paper (and many more from other areas).The paper is organised as follows. In Section 2, we develop a �rst gram-matical description of plaitwork, which is the basic form of knotwork, in termsof table-driven collage grammars. Sections 3 and 4 build upon this in order togenerate square knots (designs with breaks in the interlacing) resp. plaits in theso-called carpet-page design. In Section 5, we turn to rectangular knots. Section 62



is devoted to knots composed of triangular primitives. In Section 7, variationson drawing structurally identical knots are discussed. Finally, Section 8 containssome concluding remarks.2 PlaitsCeltic knotwork is based on plaiting, where the strands are interwoven so thatthey turn only at the border of a design. A square plait is shown in Figure 2.Being square, it can be quartered by a horizontal and a vertical line throughits centre, see Figure 3, and the quarters can be obtained from each other by arotation about the centre of the whole. This observation o�ers already a method
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(1)(2)(3)(4)Fig. 2. A square plait Fig. 3. Dividing the plait into tilesto construct a description for the whole plait from a description of one of itsquarters. Now consider the lower right quarter. The dotted lines in Figure 3indicate that it is made up of four basic designs shown at the right: four copiesof design (1) are used in the inner part, designs (2) and (3) yield the edges, anddesign (4) the corner. As a tiling of the plane can be obtained by seamlesslyrepeating design (1), we will from now on call a basic design a tile.Turning the quarter clockwise by 45 degrees as in Figure 4 makes it easyto see that the tree to its right describes its structure. For this, the symbolsoccurring in the tree are considered as operation symbols, which turns the treeinto an expression that can be evaluated. In order to produce the quarter, the. . .. .. . .. . .. .. . .. .. . ... . .. .. . .. . .. .. . .. .. . ... . .. .. . .. . .. .. . .. .. . ... . .. .. . .. . .. .. . .. .. . ..
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dl d rel el c er erFig. 4. Constructing a tree for the plait quarter3



following meaning is given to the symbols. The nullary symbols el, er, and cstand for the tiles (2), (3), and (4). Their evaluation simply draws the respectivetile (with the upper corner placed at the origin, say). The ternary operation dstands for(a) drawing tile (1),(b) shifting the design of the �rst argument to the left square below tile (1) and,respectively, the third argument down to the right square, and(c) shifting the second argument to the square directly below tile (1).Similarly, the unary operation l (resp. r) denotes shifting the design of its argu-ment to the lower left (resp. right) square, and drawing tile (1). Plugging fourcopies of the tree into a 4-ary operation initial which denotes, as discussed above,rotating the design of its ith argument by (i� 1) � 90 degrees yields a tree whichdenotes the whole plait of Figure 2.Formally, the collection of the operation symbols initial ; d; l; r of respectivearities 4, 3, 1, 1 and the constants er; el; c (which are simply operation symbolsof arity 0) is a signature, the tree denoting our plait is a term over that signa-ture (which can be denoted as d[l[el]; d[el; c; er ]; r[er]] in linear notation), and theinterpretation of the symbols yields an algebra of pictures containing, among oth-ers, the desired square plaits. Note that there are many trees over these symbolswhich denote inconsistent designs. Clearly, a tree denoting a consistent squareplait must at least be balanced, as is the case with the tree denoting the plait ofFigure 2.Until now, we have discussed a single tree whose evaluation yields a particularplait. But how can we describe the set of all square plaits in a formal way? Withthe signature and the algebra given as above, we only need a way to generatesuitable trees over that signature. This can be done by means of a grammarwhich has three nonterminal symbols C;L;R, the axiom initial [C;C;C;C], andthe following six rules: C ! d[L;C;R]; C ! c;L ! l[L]; L ! el;R! r[R]; R! er:Such a rule is applied by plugging the root of the right-hand side tree intothe place of the replaced nonterminal. A derivation starts with the axiom andproceeds in a nondeterministic way until there is no nonterminal symbol left.For convenience (and since it does not a�ect the resulting trees), we shall alwaysconsider maximum parallel derivations, i.e., in each step all nonterminals arereplaced in parallel.Using the rules from above, some of the generated trees are balanced, andthus denote square plaits, whereas others are not. Unbalanced trees are generatedby derivations in which the terminating rules are applied too early resp. too latein some places. In order to exclude such derivations, we have to regulate thegeneration process in an appropriate way. For this, the notion of a table-driven,4



initialC C C C )T1 initiald d d dLC R LC R LCR LCR )T2 initiald d d del c er el c er el c er el c erFig. 5. A derivation with the tables T1 and T2or TOL, grammar [Roz73,PL90,KRS97] (see also [DKK] for the case of collagegrammars) can be put to use. In such a grammar, there may be more than oneset, called table, of rules (with every table containing at least one rule for eachnonterminal), and a derivation step from a tree t to a tree t0 consists of choosingone table, and rewriting in parallel every nonterminal in t with an appropriaterule in that table. As an example, we may use two tables T1 and T2, where T1contains the three nonterminating rules on the left, and T2 contains the threeterminating ones on the right. A derivation using these two tables is shown inFigure 5. Every application of T1 adds one level to the tree, whereas T2 �nishesthe derivation as it contains only terminating rules. The interpretation of thetree generated by this derivation results in the plait of Figure 6.
Fig. 6. Interpreting the treegenerated in Figure 5 Fig. 7. The square plait ofintermediate sizeNote that there is a square plait, shown in Figure 7, whose size lies betweenthose of Figures 2 and 6. It can be produced by adding three constants e0r; e0l; c0to the signature, which are interpreted as the tiles(5) (6) (7)respectively, and a table T3 analogous to T2 to the grammar. Tiles (5) and (6)will reappear in Section 3, where they are used to generate knots rather thanplaits.When the grammars get more complicated than the one presented above (andthey soon will!), it is usually too tedious to discuss their rules and the operationsof their associated algebras separately and in all detail. In fact, once the basicidea of the construction is understood, it tends to be a straightforward (though5



sometimes time-consuming) programming exercise to devise appropriate rulesand de�ne the required operations. Therefore, we will rather explain the overallbehaviour of a typical derivation than discuss every single rule and each operationused. Furthermore, while the distinction between trees and their evaluation isa very useful principle from a conceptual point of view, it is normally easierto understand the idea behind a particular grammar when it is presented interms of pictures. Fortunately, there is an elegant way of doing so: We justhave to extend the considered algebra so that it interprets nonterminal symbolsas primitive pictures (special tiles, for instance). As an immediate result, thenonterminal trees occurring in a derivation can be evaluated as well, yielding apictorial representation of the derivation.If we use this idea to visualise the derivation of the plait in Figure 2, we get asequence of pictures as shown in Figure 8 if nonterminals are interpreted as grey
)T1 )T1 )T2

Fig. 8. Deriving the plait in Figure 2squares with arrows inside, indicating the direction into which a nonterminal ispropagated by the rules. Note that the information provided by this interpre-tation of nonterminals is not completely su�cient to reconstruct the grammar.In particular, it does not reveal that L and R are two distinct nonterminals, asthe interpretation of one of them is simply a 90-degree rotation of the other.One could, of course, change the interpretation of L or R in order to make thedi�erence visible. However, in the present case L and R behave more or lessalike, whereas the behaviour of C is di�erent, and this is re
ected by the choseninterpretation.3 Square knotsIn a knot, strands turn not only at the border but also in between, at so-calledbreaklines. The traditional construction of a knot usually starts with a plait (atleast conceptually). Afterwards, one repeatedly chooses a crossing of strands sand s0 and cuts both strands, yielding loose ends s1 and s2 respectively s01 ands02. Then, s1 is connected with s01 and s2 is connected with s02, as illustratedin Figure 9. As a result, the crossing has disappeared and two new turns haveemerged. 6



; ;;Fig. 9. Introducing breaks by cutting and reconnecting strandsLet us use this method in order to turn the square plaits of Section 2 intoknots. In doing so, we need �ve additional tiles, which we obtain by modifyingtile (1): (1a) (1b) (1c) (1d) (1e)Note that (1a)=(5), (1b)=(6), and tiles (1c), (1d), (1e) can be obtained fromtiles (5), (6), (7), respectively, by a 180 degree rotation (but not by a re
ection).If we want to use these tiles in order to break some of the crossings in aplait like the one shown in Figure 2, we have to face two major di�culties. First,in order to obtain a consistent design it must be ensured that, for instance,whenever tile (1c) is used in some place, it is accompanied by tile (1a) on itsleft. Second, celtic knots are usually symmetric with respect to the placement ofbreaks, which we therefore wish to ensure as well. Again, tables turn out to bea useful mechanism for dealing with both requirements.In order to add breaks in a systematic way, we increase the number of tables.The tables T1 and T2 introduced in Section 2 remain useful and play the samerôle as before. A few rules must be added to these tables in order to deal withnew nonterminals, but these rules can be inferred from the existing ones in astraightforward way. Besides the old ones, there are two new tables Ta and Tb.Intuitively, an application of table Ta `informs' the four nonterminals C in thecorners of the square that they and their descending chains of L's and R's are al-lowed to insert breaks. This is implemented by turning C into a new nonterminalCb. If Cb is replaced in the next step, it produces an Lb, C, and Rb instead ofL, C, and R. In this way, it propagates the information that breaks are alloweddownwards to its outermost L- and R-descendants. The table Tb is the one whichactually inserts breaks. While its rules treat L and R in the same way as the �rsttable, it inserts tiles (1c) and (1d) when Lb resp. Rb are replaced. Similarly, Tbuses tile (1e) when replacing Cb.However, we still have to ensure that the tiles (1a) and (1b) always occurnext to (1c) and (1d), respectively.1 We implement this by a slight change of theoriginal production for C. Instead of generating an L and an R when replacinga C, we now generate new nonterminals L1 and R1 in order to keep track of thefact that they lie next to a C. Table Ta, which turns C into Cb, also turns L11 Actually, this problem occurs only if the breaks happen to lie inside a quarter. Otherwise,the requirement is automatically satis�ed since the quarters are rotations of each other.7



)T1 )Ta
)Tb )Tb

)T2
Fig. 10. Deriving a knotinto Lb and R1 into Rb. These nonterminals act like Lb and Rb, except that theopposite tiles (1a) and (1b) are used by the respective rules in Tb.If this sounds complicated, have a look at the pictorial representation of asample derivation in Figure 10 (where the �rst picture, which equals the �rst onein Figure 8, is left out). The nonterminal symbols C, L, and R are depicted as inFigure 8, L1 and R1 are indicated by an additional frame, and the sides at whichLb; Lb; Rb; Rb produce breaks are indicated by small black squares. Likewise, Cbis distinguished from C by the addition of such a black square.Some of the square knots generated by the discussed grammar are depicted inFigure 11. A careful look at the pictures reveals a necessary restriction that has8



Fig. 11. Some derivable square knotsnot been mentioned so far. Whenever the table Ta has been used, we have to waitfor at least two steps until Ta can be used again. Otherwise, inconsistent knotswould occur (as long as we do not add another type of tiles). Thus, the sequenceof tables must not be an arbitrary one|it should be taken from a particularregular language. Another, somewhat clumsy solution would be to use furthernonterminals in order to memorize the fact that Ta has just been applied, so thatanother application of Ta can be skipped if it happens to occur too early.4 Elements of the carpet-page designThe basic design of square plaits can be varied by interrupting the plaitworkwith regularly placed holes. The celtic artist would use these holes for furtherdecoration, creating illustrations in the so-called carpet-page design. The simplestform consists of a square hole in the middle of a square plait, resulting in a closedplaitwork border such as the one shown in Figure 12(a). Placing square holes orL-shaped holes (called L-holes in the following) at the four corners of a squareplait yields crosslets (Figure 12(b)), and a cross panel is obtained if these holesare inside rather than on the boundary of the plait (Figure 12(c)).Cross panels with L-holes may be perceived as variations of square plaits asfollows. Recall from Section 2, Figures 3 and 4 that square plaits can be dividedinto four quarters. Each quarter is made up of n inner rows, resulting from napplications of table T1, and one edge row as the result of once applying tableT2, see the schema in Figure 13 where the edge row is represented in light grey.Analogously, the schema of Figure 14 illustrates the structure of a cross panel9



(a) (b) (c)Fig. 12. Square plaits with holes: (a) square border (b) crosslets (c) cross panelswith L-holes, where the dark grey refers to the hole and suitably extended tablesT1 and T2 are used. As for plaits, the �rst i rows of the panel are created by iapplications of T1. Then one application of a table Tm marks the position of thecurrent corner nonterminal C as the intersection point of the lines going throughthe left and right edges of the future hole by replacing it with d[Lm; Ch; Rm].During the following j applications of T1, the outermost nonterminal descendantsof that C are Lm and Rm, and for the part in between, nonterminals Ch; Lh; Rhare used. Now one application of a table Tu forms the upper edge of the hole byputting at the positions of nonterminals Lm, Lh, Ch, Rh, Rm, respectively, tiles(8), (2), (4), (3), (8), where tile (8) is(8) ,
T2...n T1 .

Fig. 13. Schema of a quarter plait
TmTu Tl T2ijkl T1.T1.T1.T1.

Fig. 14. Schema of a quarter crosspanel with L-holes10



Tmu Tl T2ikl T1. T1.T1.(a)
TmTu T2ijk T1.T1. T1.(b)Tmu T2ik T1. T1 .(c)

Tl T2kl T1 .T1.(d)Fig. 15. Schemata of design quarters: (a) cross panel with square holes, (b) crosslet with L-`holes', (c) crosslet with square `holes', (d) borderand using descendants Le, L�, (L�; C�; R�), R�, Re which will, during the follow-ing k applications of T1, create the left edge (nonterminal Le and tile (3)), theright edge (nonterminal Re and tile (2)), and the blank part (nonterminals L�,C�, R� and the empty tile (0)) of the hole. The lower edge is provided by oneapplication of a table Tl which uses for the nonterminals Le, L�, C�, R�, Re tiles(9) (10) (11) (12) (13)and descendants Lm, Lh, (Lh; Ch; Rh), Rh, Rm, respectively. Subsequent l appli-cations of T1 and one application of T2 then �nish the whole cross panel.As illustrated in Figure 15, the construction of the other designs can be seenas variants of that for cross panels with L-holes:(a) with j = 0 and tables Tm and Tu amalgamated into a table Tmu which marksthe corner nonterminal and immediately starts the upper edge of the hole, across panel with square holes is obtained;(b) letting l = 0 and omitting Tl, a crosslet with L-`holes' is generated (where T2uses the corner tile (4) for the edge nonterminals Le and Re);(c) combining the two variations above leads to a crosslet with square `holes';and(d) a plaitwork border is the result if the unique nonterminal of the �rst row isalready C�, i.e., i+ j = 0 and tables Tm, Tu are omitted.While the language of all square borders, crosslets, and cross panels in theforms just discussed may be interesting in itself, the panels shown in Figure 16illustrate the appealing e�ects of repeating the hole-generating process in one11



Fig. 16. Panels in the carpet-page designdesign. For such an iteration, one can either re-use the left and right edge linesof the preceding hole, or insert a new intersection point after the preceding holehas been completed. An example of a table sequence is : : : TmTuTlTuTl : : : for theformer choice and : : : TmuTlTmTu : : : for the latter, where in addition table T1 mayoccur arbitrarily often and at any position. This leads to a further observation: asfor the knots of the previous section, admissible table sequences, i.e., sequenceswhich generate consistent designs, are elements of a certain regular language.Note, moreover, that the tables of our grammar can be extended so that theintersection point of a second hole may be positioned before the outer edge ofthe �rst hole is generated, which can produce, among others, the e�ects sketchedin Figure 17. By iterating that extension and accepting the resulting explosionin the number of nonterminals, rules, and tables, it is clearly possible to handle12



Fig. 17. Placing the intersection point of the second hole before the end of the �rstup to n intersection points within the area of one hole, where n is some �nitenatural number. However, we do not know whether there is a grammar whichcan achieve an arbitrary number of intersection points in the area of one hole.Let us mention one further, and simpler, modi�cation of our original gram-mar, which was used e.g. for the panel in the centre of the upper row in Figure 16.Dividing this design into tiles reveals that its outermost edge is fashioned fromrotations of tile (5) instead of (2), which implies for the general case that onemust choose for the remaining parts of edges tile (1) instead of tiles (8), (9),(11), (13), and tile (7) instead of tile (4). The only restriction which has to beobserved here is that all tiles in one continuous edge|which may go over severalcorners|must be of either the one or the other type, an information that can bestored in the nonterminals while an edge is being constructed.5 Rectangular knotsSo far, only square knots have been discussed. Let us now turn to the more generalcase of rectangular knots. In order to generate such knotwork, one could in factuse the operations of the previous sections together with a more sophisticatedgrammar, but it seems more instructive to consider another sort of tiles.In Figure 18, an alternative division of the interior of a plait into tiles isshown. Two basic types of tiles occur, one of them being a 90-degree rotation ofthe other. We shall use them in order to generate the desired rectangular plaits(and, afterwards, knots). The basic idea is to split the generation into two phaseseach of which is implemented by a table. In the �rst phase, the width of the plaitis determined: the plait is extended horizontally to either side by one tile in each
Fig. 18. Alternative segmentation of a plait13
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Fig. 19. Derivation of a rectangular plait (as usual, a starred arrow denotes a sequence ofderivation steps)step. The second phase yields the vertical extension. Thus, the width (height) isdetermined by the number of applications of the �rst table (respectively secondtable), which yields rectangular plaits with arbitray width/height ratios. Depict-ing nonterminals as grey squares with inscribed arrows of various descriptions,Figure 19 depicts a typical derivation (where we have used tiles with a blackbackground and added a frame to the border tiles). Based on this picture, thenecessary operations and rules can be de�ned in a straightforward way. In orderto reduce the number of nonterminals and rules as far as possible, it is useful to14



Fig. 20. The two halves of a rectangular plaitobserve that the pictures (terminal as well as nonterminal ones) can be split intotwo parts one of which is a 180-degree rotation of the other, as is illustrated inFigure 20. As a consequence, the plaits can be generated using 9 nonterminals. Atrickier approach might perhaps reduce this number even further. As mentionedin the introduction, the reader is invited to fetch the grammar and the Treebagsystem from the web and make their own experiments. One could, for instance,use two further tables in order to make the plaits grow either to the left, right,top, or bottom in each step (which, however, seems to require numerous addi-tional nonterminals). In this way, one could also generate rectangular plaits withan even number of rows and/or columns (which can, of course, also be achievedwith the current grammar if we allow for the use of several axioms).As any crossing can be broken just by replacing the corresponding tile, thenew set of tiles lends itself to the generation of knots. Obviously, consistency isalways preserved. Thus, no additional consistency constraints must be observed|the plait grammar can be turned into one that generates rectangular knots suchas the one shown in Figure 21 by inserting breaks at random. The requiredmodi�cations of the grammar are almost trivial. It su�ces to make two copies ofeach rule whose right-hand side contains a crossing, and to replace the crossing
Fig. 21. A rectangular knot obtained by inserting breaks at random15



Fig. 22. Symmetric rectangular knotsby a horizontal resp. vertical break. The disadvantage of this method is thatsymmetric knots are encountered only by chance. Aiming at symmetry, we haveto search for a more controlled approach.A rather ambitious task is to develop a device that generates all knots whichcan be obtained from a rectangular plait by replacing some of the crossings withhorizontal or vertical breaks in such a way that the pattern of breaks is sym-metric with respect to both middle axes. Some knots of this type are picturedin Figure 22. To generate the set of all these knots, tables do not seem to bepowerful enough.2 This is because tables can only provide a global control while,here, the structure of the dependencies is more complicated. A possible solutionis provided by a technique which was introduced in [Dre00b] (see also the pic-ture generator GMosaic in [Dre00a, Section 6]). It provides a regulation principle2 The authors strongly conjecture that this is true in a formal sense, but an exact proof seemsto be tremendously di�cult and would probably require proof techniques far beyond theknown ones (cf. [DKL97,DKK]). 16



which is perhaps best described as branching tables. In order to explain this, anexcursion to the theory of tree transducers is necessary.Suppose we are given a tree-generating grammar whose productions (in linearnotation) are S ! f [S; S], S ! g[S; S], and S ! ?. The grammar (with S takenas its axiom) generates all binary trees whose internal nodes are labelled withf or g and whose leaves are labelled with the symbol ?. Now, if we use threeseparate tables for these productions, we get only those trees in which nodesat equal distance from the root have identical labels. The same e�ect can beobtained by replacing the grammar with a tree transformation, also called a treetransduction, as follows. As input trees we use all trees over the unary symbolsa, b and the constant c. These are transformed into output trees using ruleswhich are similar to the rules of the grammar, except that their `nonterminals',called states now, are unary symbols placed on top of the input tree, which theyconsume symbol by symbol. These are the rules:S[a[x]]! f [S[x]; S[x]];S[b[x]] ! g[S[x]; S[x]];S[c] !?:Here, x is a variable, i.e., the rules are term rewrite rules in which x stands for anarbitrary tree over the considered input signature. A derivation is carried out bychoosing an input tree, placing the state S (which must be the initial one sincethere is no other) on top of it, and then applying these rules as long as possible.For example, the input tree a[b[a[c]]] gives rise to the (parallel) derivationSabac ! fS Sbac bac ! fg gS S S Sa a a ac c c c ! fg gf f f fS S S S S S S Sc c c c c c c c !
fg gf f f f? ? ? ? ? ? ? ?producing as its result the tree the grammar generates by applying the �rst,second, �rst, and third table (in that order). Intuitively, the symbols in the inputtree correspond to the tables. Since the input tree is monadic (i.e., it consistsentirely of unary symbols, except for the leaf), in the n-th parallel step all statesprocess copies of the n-th input symbol. In other words, all rules applied in onestep belong to the same `table'. It was shown in [ERS80] that this generationprinciple is indeed equivalent to the use of tables. In fact, our implementationsof examples within Treebag use exactly this method in order to produce thee�ect of tables.What happens if we allow n-ary symbols (binary ones, say) to occur in theinput trees?|We gain the freedom to decide in every step whether the subderiva-tions shall transform copies of the same subtree, or use di�erent ones. Thus, �ner17



control strategies become available. Consider, for example, the same situation asbefore, except that the arity of input symbol b is now 2 and the corresponding ruleis turned into S[b[x; y]] ! g[S[x]; S[y]]. As a consequence, the device generatesall trees over f , g, and ? such that the two subtrees of each f -labelled node areidentical (as before), but the subtrees of a g-labelled node may di�er. We couldalso turn g into a symbol of arity 3 and use the rule S[b[x; y]]! g[S[x]; S[y]; S[x]].Then, in the resulting trees every g-labelled node would have identical left andright subtrees whereas the subtree in the middle could be di�erent.The same technique can be used to generate (the trees denoting) the knots weare aiming at. The input tree contains binary symbols which determine whetherto use a crossing or a break in any given place. In the initial picture shownin Figure 19 (which is in fact the second one, being derived from the initialstate), the two states represented by the top respectively bottom square use thesame control tree, and similarly for the two remaining ones. In the next step,when the topmost square yields the three topmost ones of the second picture,the left and right square are supplied with the same subtree while the one inthe middle is controlled by the other subtree. This re
ects (and ensures) thatthe knot development is symmetrical with respect to the vertical axis, but theplacement of breaks within the middle column is independent of those to the leftand right.In order to be precise, it should be mentioned that the binary input treesmust themselves be generated in a table-driven way to ensure that they arebalanced. Thus, altogether, we need two tree transducers|one which transformsmonadic input trees into balanced trees of branching tables, and one which usesthese as input trees to generate (trees representing) symmetric knots of the formpresented in Figure 22.6 Knots based on triangular tilesAlthough square or, more generally, rectangular tiles are suitable to produce alarge number of di�erent classes of knots, other types of tiles can be useful aswell. In this section, we concentrate on triangular tiles, which are particularlywell suited to generate triangular or hexagonal knots.We discuss two examples of this kind. The �rst is based on the famous tri-quetra or trinity knot, shown in Figure 23(a). Since the trinity knot is a completeknot on its own, it cannot be used very nicely in order to generate larger knots|the latter would simply be sets of individual trinity knots. Therefore, we turnthe trinity knot into an `open' tile as in Figure 23(b). Now, we can assemble ar-bitrarily large knots of the type shown in Figure 24, using tiles (a), (c), and (d)(a) (b) (c) (d)Fig. 23. The trinity knot (a) and three tiles obtained from it (b){(d)18



Fig. 24. A triangular knot composed of the tiles in Figure 23for the boundary. It is quite easy to construct a grammar for this type of knots,using tables and a strategy which generates a knot starting at the top cornerand working downwards. Conversely, we can also start in the middle of the baseline and grow the knot upwards, as depicted in Figure 25. Intuitively, in this casethe nonterminals `sit' on the left and right edges, and in the upper corner of the
) ) ) )

)�
Fig. 25. Derivation of a triangular knot using the tiles in Figure 2319



part which has already been generated. In each step, the nonterminals on theedges extend the knot horizontally by one row of tiles. At the same time, thenonterminal in the upper corner propagates upwards and `emits' a left- and aright-edge nonterminal.Based on this grammar, more sophisticated variations can be developed. Byadding further tables (and nonterminals), one can generate knots with triangular,horizontally centered holes. A derivation of such a knot is depicted in Figure 26.The corresponding grammar has one table which makes the topmost nonterminalswitch to a `hole-generating' state, and one which makes it switch back again.
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Fig. 26. Derivation of a triangular knot with a hole20



Our second example of triangular tiles, shown in Figure 27(a), is based on amotif mentioned in [Dav89, Plate 2] and occurring similarly on the Rosemarkiestone, Ross-shire. Using six rotated copies of this tile, the knot in Figure 27(b) isobtained. We can extend this hexagon to a larger one by adding further layers,

(a) (b) (c)Fig. 27. A second triangular tile (a) and its use to create hexagonal knots (b), (c)as shown in Figure 27(c). Unfortunately, this yields only knots consisting ofseparate, non-interwoven layers, which is not that nice. As a remedy, one canmodify the tile so that consecutive layers may be connected. Coming from theoriginal tile in Figure 27(a), one of the possibilities is to cut one of the strandstwice, and to take the four loose ends down to the basis of the triangle, leadingto the following tile:
Using this tile in addition, more interesting knots of any size can be generated.However, how can we make sure that the resulting pattern of tiles is symmetricwhile keeping as much nondeterminism as possible? Again, branching tables area possible solution. The generation of a knot starts in the centre of the hexagon,initially using six nonterminals. The purpose of each of them is to generate one ofthe six triangular parts of the hexagon. The tables are used to ensure that (a) allsix triangles are identical and (b) each triangle is symmetric with respect to thebisector of the angle at the centre of the hexagon. Except for these restrictions,the tiles are chosen nondeterministically. One of the resulting knots is presentedin Figure 28. 21



Fig. 28. A knot generated by using binary tables and two types of tiles7 The �nal treatment of a knotIn the preceding sections we have seen how, given some type of knotwork, onecan try to deduce syntactic rules which allow to describe the structure of thesample knot. At the same time, the interpretation of that structural descriptionwas already determined by the sample. In this section, two examples are givento illustrate the 
exibility gained by the possibility to choose various algebrasfor a signature.When drawing a knot by hand, the particular style of ribbon can be decidedupon when the design is already quite advanced. In contrast, the form of theunderlying grid has to be �xed in the very �rst stage of the drawing. Well knownfor knots are the Pictish proportions 3 by 4, resp. 4 by 3. The knot of Figure 29implements the second ratio. Its algebra is derived from the algebra in Section 5by interpreting the symbol at the root of a tree so that the rotation of eachargument is followed by a scaling of 4 by 3. Note, however, that unless the ribbonpart of each tile is implemented as one line of �xed width, such a scaling causesthe ribbon to be broader at the vertical bends. It therefore may be preferable toadjust all operations to the rectangular grid and use the appropriate tiles.22



Fig. 29. Knot in 4 by 3 proportionNow consider again the signature(s) and algebra(s) developed in Sections 2{4.There, each strand of the knot is drawn as one single broad ribbon. A lacier e�ectcan be achieved by splitting that ribbon using the so-called swastika method; thebasic inner tile is then :With this treatment, the knots of Figure 30 are obtained.

Fig. 30. Knots with split ribbonsNote that iterating the process of splitting the ribbons|whether into two,three, or more ribbons|can be formalised by a collage grammar as well, allowingto generate more and more re�ned knots.23



8 ConclusionIn this paper, we have explored the syntactic structure of celtic knotwork. Theconstruction of various classes of knots can be modelled by table-driven collagegrammars with regulated derivations. The formal model has the advantage thatthe structure of a knot can be separated from its representation, permitting totreat the two individually and independently. Quite intricate structural depen-dencies can be expressed if the basic regulation provided by tables is enhancedby controlling the admissible sequences of applied tables, such as requiring thatthey belong to some regular language, or even by arranging the tables in thestructure of a tree, as is done with branching tables. Given a structural represen-tation of a knot, its pictorial representation can be changed easily by choosing adi�erent set of tiles. The knots which we have generated are as yet of somewhatbasic type, but there are several directions open to further investigation.Firstly, one may think of using more complex tiles in the generation of knots.For instance, adding a third dimension yields knot models which could practicallyserve as jewellery designs. Pleasing e�ects can also be achieved by supplying theknotwork ribbons with colour.Secondly, there are phenomena not yet provided for in our framework, suchas e.g. the wide corner arcs of the knot in Figure 1, or knots with a circularor an irregular contour. Moreover, while we have to some extent integrated themethod of regularly placed breaklines to untangle crossing strands, the breaklinesoccurring in a celtic knot can form rather more complex, but still regular patterns,and it is not yet clear how more involved structural properties of this kind canbe expressed.On the other hand, the theory of formal languages o�ers sophisticated toolsto control the generation of objects. Thinking of the table-driven grammars weuse, further re�ning the regulation techniques for the application of the tables isone possibility. Furthermore, the grammars admit only a top-down generation oftrees, i.e., information cannot be propagated bottom-up. More powerful gram-mars may prove to be helpful e.g. for the generation of knots in the carpet-pagedesign where the holes are not quite so uniform.A question which naturally arises when designing a knot is the number ofstrands. In celtic art, the whole knot often consists of one continuous strand; ahigher number may be useful e.g. for colouring. A description of a knot in termsof its syntactic structure should allow to compute that number.The aim of the work reported here was to develop a formal model for celticknotwork as close to the original as possible. It should nevertheless be noted thatsuch form languages develop in time. Moreover, the methods employed here haveproved to be applicable to other visual languages such as fractals or Escher-likepictures, and we believe that combining aspects of these languages may be quitepleasurable, both in results and in the doing.24
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