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Abstract. The first part of this paper is a brief survey on tree-based
generators, including some typical examples taken from the fields of
string, tree, graph, and picture generation. In the second part, an exten-
sion of the tree-based generator called delegation network is proposed.
Intuitively, a delegation network is a network of tree-based generators
that can “delegate” subtasks to each other. In this way, different types
of tree-based generators can be combined to generate complex objects.

1 Introduction

The theory of tree languages and tree transformations is an important and lively
field of theoretical computer science [GS84, NP92, GS97, FV98, CDG+02]. It
is concerned with formal devices that generate, recognize or transform trees.
A tree in this sense is a term, i.e., a formal expression composed of abstract
operation symbols. The usefulness of devices dealing with such trees is to a large
extent based on the fact that trees can be interpreted by choosing a domain A

and associating an operation on A (of the appropriate arity) with each symbol.
Thus, given such an interpretation, also called algebra, every tree denotes an
element of A. This means that a device generating trees provides the syntactic
basis for a tree-based generator – a system consisting of the tree generator and
an interpretation, that generates elements of A:

tree-based generator

tree generator interpretationgenerated
trees

generated
elements of A

Similarly, a device that transforms trees, together with two interpretations, can
be used to compute a function from A to B. The tree transformation can then
be seen as a symbolic algorithm [Eng80].

In this paper, we will focus on generation rather than transformation. We
will first recall the formal notions needed for the definition of tree-based gener-
ators, and give some examples from the areas of string, tree, graph, and picture
generation. Afterwards, a generalization called delegation network is proposed
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and illustrated by means of an example. A first attempt to formalize the notion
of delegation networks, and to prove some of their basic properties, was made
in [Dre07]. However, as pointed out by Engelfriet1, the evaluation of trees with
respect to nondeterministic algebras is not defined correctly in this paper, and
not all results (in particular the “Mezei&Wright-like” Theorem 5.9) hold for
the nondeterministic case. Therefore, the second part of the present paper tries
to formalize the notion of delegation networks in a more appropriate way, thus
laying the basis for future work in this area.

The purpose of delegation networks is to be able to combine several tree-based
generators (possibly of different types) with each other. Intuitively, a delegation
network consists of a finite number of tree-based generators that may “delegate”
parts of the generation process to each other. Roughly speaking, every delegating
generator in the network is associated with a symbol g : A1 × · · · × Ak → A from
a certain signature. The semantics of the delegation network interprets g as
a function g : A1 × · · · × Ak → A.2 Delegation means that another generator
from the network, associated with a symbol g′, can generate trees that contain
occurrences of g. If such a tree is evaluated, g is interpreted as g. Thus, the
interpretation g′ of g′ depends on g – and as delegation networks can be cyclic,
g may also depend on g′. For this reason, we choose a least fixed-point semantics
for delegation networks (Definition 5).

The structure of this paper is thus as follows. In the next section, the basic
notions regarding tree-based generators are recalled. In Section 3, the tree-based
versions of some well-known grammatical devices are discussed. Section 4 in-
troduces delegation networks, which are illustrated by means of an example in
Section 5. Section 6 concludes the paper.

2 Tree-Based Generators

Before recalling the notion of tree-based generators, let us summarize some stan-
dard notions and notation. Throughout this paper, N denotes the set of natural
numbers (including zero). For n ∈ N, the set {1, . . . , n} is denoted by [n]. The
powerset of a set A is denoted by ℘(A). A function f of arity 0 is identified with
the constant f().

2.1 Signatures and Trees

Let S be a set of sorts. An S-sorted signature (or just signature) is a finite set
Σ of symbols f, each of which has an associated profile A1 × · · ·× Ak → A, where
k ∈ N and A1, . . . , Ak, A ∈ S. To indicate that f has this profile, we also write
f : A1 × · · ·× Ak → A. The number k is also called the rank of f. Symbols of rank
0 are called constant symbols. We write the profile of a constant symbol without
the arrow, i.e., a : A, thus saying that its profile is A.
1 Personal communication.
2 Actually, these are nondeterministic rather than ordinary functions, but this is not

important for the moment.
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Given a sort A, the set of all trees of sort A over Σ is denoted by TA
Σ . By

definition, the sets TA
Σ are the smallest sets of strings simultaneously satisfying

the following conditions:

– For every a : A in Σ, the string a is in TA
Σ .

– For all f : A1 × · · · × Ak → A in Σ (k > 0) and all t1 ∈ TA1
Σ , . . . , tk ∈ TAk

Σ , the
string f[t1, . . . , tk] is in TA

Σ . (Here, the square brackets and the comma are
assumed to be special symbols not in Σ.)

The set TΣ of all trees over Σ is given by TΣ =
⋃

A∈S TA
Σ .

2.2 Algebras and Evaluation

Given an S-sorted signature Σ, a Σ-algebra (or just algebra) is a pair A =
(dom , σ). Here, dom is a domain mapping for S – a function assigning to every
sort A ∈ S a set dom(A) called its domain, and σ is the interpretation of symbols
– a function that assigns to every function symbol f : A1 × · · · × Ak → A in Σ a
corresponding function σ(f) : dom(A1)× · · · × dom(Ak) → dom(A). The function
σ is also called a (Σ, dom)-interpretation.

Throughout the rest of the paper, we will use the following typographical
conventions in connection with algebras, unless there is a risk of confusion: the
domain dom(A) assigned to a sort A is denoted by A, and the interpretation of
a symbol f is denoted by f . Using these conventions, defining an algebra means
to associate a domain A with every sort A, and a function f : A1 × · · · × Ak → A

with every function symbol f : A1 × · · · × Ak → A in Σ.
Given a Σ-algebra A, trees over Σ can be viewed as expressions that can be

evaluated. This evaluation, denoted by valA, is defined recursively, as one would
expect: valA(t) = f(valA(t1), . . . , valA(tk)) for every tree t = f[t1, . . . , tk] ∈ TΣ .
Note that the definition of TΣ makes sure that valA(t) is well defined. In the
following, we may write val(t) if A is understood.

Especially in examples, we shall frequently work with algebras over unsorted
signatures, which is an S-sorted signature such that S is a singleton {A}. In this
case, the notation f : Ak → A may be abbreviated as f(k). The (unique) domain
of an algebra A over Σ is denoted by dom(A).

2.3 Tree-Based Generators

A tree language is a subset of TA
Σ , for some S-sorted signature Σ and a sort

A ∈ S. A formal device γ defining a tree language L(γ) is called a tree generator.
If L(γ) ⊆ TΣ , then Σ is called the output signature of γ. (Thus, to be picky, one
should rather speak of an output signature of γ.)

Now, a tree-based generator is a pair G = (γ, A) that consists of a tree gener-
ator γ and a Σ-algebra A, where Σ is the output signature of γ. The language
generated by G is given by L(G) = {val(t) | t ∈ L(γ)}.
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2.4 TREEBAG

One of the advantages of the notion of tree-based generators is that it gives rise
to a flexible implementation in a rather straightforward manner. The system
Treebag [Dre06, Chapter 8] is such a system. It allows its user to interactively
load instances of a variety of tree generators (and tree transducers), algebras,
and so-called displays, and to establish input-output relations between them.
In this way, tree-based generators can be assembled, and displays that show
the resulting objects on the screen can be attached to them. The pictures in
Sections 3.4 and 3.5 have been created in this way. Moreover, the delegation
network discussed in Section 5 has been simulated in Treebag in order to
create the pictures shown.

3 Examples of Tree-Based Generators

We shall now discuss a few typical classes of tree-based generators. All of them
are based on tree generators with unsorted output signatures; sorted signatures
will become important in the next section.

Let us start with one of the simplest meaningful cases: the tree-based version
of string grammars.

3.1 String Generation

Let T be a set of symbols. We denote the set of all strings over T by T ∗, and
the empty string by ε.

Now, consider an unsorted signature Σ. The Σ-algebra AΣ,T , which allows
to assemble strings by means of concatenation, is given by

– dom(AΣ,T ) = T ∗,
– a = a for every constant symbol in Σ which belongs to T , and
– f(u1, . . . , uk) = u1 · · · uk for all other symbols f(k) ∈ Σ and all strings

u1, . . . , uk ∈ T ∗. Thus, all symbols not in T are interpreted as concatenation
operators of the appropriate arity. In particular, f = ε for all f(0) ∈ Σ which
are not in T .

By definition, a tree-based generator of the form G = (γ, AΣ,T ) generates a
string language L(G) ⊆ T ∗. Several types of string grammars well known from
traditional string language theory can be formulated in this way. In fact, histor-
ically, this was one of the motivations for developing a theory of tree languages
and tree transformations (see, e.g., [Rou70, Tha73]).

As one of the easiest examples, let us see how the context-free grammar can
be turned into a tree-based generator. For this, we use a tree generator known
as regular tree grammar, which is defined as follows. (As a minor extension of
the usual definition found in the literature, we define regular tree grammars
generating trees over sorted signatures.)
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Definition 1 (regular tree grammar). Let S be a set of sorts. A regular tree
grammar is a tuple γ = (Ξ, Σ, R, ξini), where

– Ξ is an S-sorted signature of constant symbols called nonterminals,
– Σ is an S-sorted signature of output symbols which is disjoint with Ξ,
– R is a finite set of rules ξ → r, where ξ ∈ Ξ and r ∈ TΣ∪Ξ are of the same

sort, and
– ξini ∈ Ξ is the initial nonterminal.

A derivation step s →γ t (or simply s → t, if γ is understood) consists of two
trees s, t ∈ TΣ∪Ξ such that t is obtained from s by replacing a single occurrence
of a nonterminal ξ with r, for some rule ξ → r in R. The tree language generated
by γ, called a regular tree language, is

L(γ) = {t ∈ TΣ | ξini →∗ t},

where →∗ denotes the transitive and reflexive closure of the relation →.

Now, let G = (Ξ, T, R, ξini) be a context-free grammar consisting, as usual,
of finite sets Ξ and T of nonterminal and terminal symbols, resp., a set R
of context-free rules, and an initial nonterminal ξini ∈ Ξ. We turn G into an
equivalent tree-based generator, as follows.

First, we need a suitable unsorted signature Σ. For each rule r = (ξ → u)
in R, let Σ contain a unique symbol r /∈ T of rank |u| (where |u| denotes the
length of u). In addition, Σ contains all symbols in T as symbols of rank 0.

Second, let γ = (Ξ, Σ, R′, ξini) be the regular tree grammar obtained by turn-
ing every rule (r = ξ → a1 · · · ak) in R (where a1, . . . , ak ∈ T ) into a rule
ξ → r[a1, . . . , ak] in R′. It is an easy exercise to show that the tree-based gener-
ator G′ = (γ, AΣ,T ) satisfies L(G′) = L(G). Every tree t generated by γ′, where
val(t) = u, corresponds to an abstract syntax tree of u with respect to G.

Of course, there are several natural ways to choose Σ in the previous con-
struction. For example, instead of including r for every rule r = (ξ → u), one
could choose a symbol ξ[k] of rank k = |u|. Then, the trees generated by γ would
correspond to the derivation trees of G. Another possibility is to include only
two symbols in addition to the symbols in T , namely ◦(2) and ε(0), and to use
rules of the form ξ → ◦[a1, ◦[· · · , ◦[ak, ε] · · · ]] in R′.

It is also easy to show that the construction can be reversed: for every tree-
based generator of the form (γ, AΣ,T ), where γ is a regular tree grammar, there is
a context-free grammar generating the same language. Thus, a characterization
of the class of context-free languages in terms of languages generated by tree-
based generators has been obtained.

3.2 Tree Generation

Trivially, trees can be generated by tree-based generators. For this, just use a
tree-based generator G = (γ, A), where A is the free term algebra over the
output signature of γ. In this algebra, the interpretation of symbols is given by



From Tree-Based Generators to Delegation Networks 53

f(t1, . . . , tk) = f[t1, . . . , tk], which means that val is the identity on TΣ , and
L(G) = L(γ).

The situation becomes more interesting if A is not as simple as the free term al-
gebra. An important example for this is the so-called YIELD algebra (or YIELD
mapping, see [Mai74, Eng80, ES77, ES78, FV98, Dre06]), which formalizes the
construction of trees using variable substitution. We will only discuss the vari-
ant dealing with trees over an unsorted signature. The extension to arbitrary
S-sorted signatures is straightforward, but technical.

Let X = {x1, x2, . . . } be a countably infinite set of special symbols of rank
0, called variables. For l ∈ N, we let Xl denote {x1, . . . , xl}. For t, t1, . . . , tl ∈
TΣ∪X ,3 we let t[[t1, . . . , tl]] denote the tree obtained from t by simultaneously
replacing all occurrences of variables xi by ti (i ∈ [l]).

Definition 2 (YIELD algebra). Let Σ be an unsorted signature and let l ≥
max{k ∈ N | f(k) ∈ Σ}. The (unsorted) derived signature ΣY,l is given by

ΣY,l = {subst(l+1)} ∪ {f〈k〉(0) | f(k) ∈ Σ ∪ Xl}.

The YIELD algebra (with respect to Σ and l) is the ΣY,l-algebra Y such that

– dom(Y) = TΣ∪X,
– subst(t, t1, . . . , tl) = t[[t1, . . . , tl]] for all t, t1 . . . , tl ∈ TΣ∪X, and
– f 〈k〉 = f [x1, . . . , xk] for all f(k) ∈ Σ ∪ Xl.

Tree-based generators of the form G = (γ, Y), where γ is a regular tree gram-
mar, generate the so-called IO context-free tree languages. As an example, let
Σ = {f(2), g(2), a(0)}. We show how to generate the set of all trees of the form
t[[t′]], where t is an arbitrary tree over {f(2), x

(0)
1 }, and t′ is a totally balanced

tree over {g(2), a(0)}:

t

t′
t′

t′

. .
.

For this, use the regular tree grammar γ = ({ξini, ξarb, ξbal}, ΣY,2, R, ξini), where
R is given as in Table 1. In an IO context-free tree grammar, these rules would
be written as

ξini → ξarb[ξbal[a]],
ξarb[x1] → f[ξarb[x1], ξarb[x1]] | x1,
ξbal[x1] → ξbal[f[x1, x1]] | x1.

3 We use the notation TΣ∪X to abbreviate
⋃

l∈N
TΣ∪{x1,...,xl}.
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Table 1. Rules of a regular tree grammar that, in connection with the YIELD algebra
Y, mimics an IO context-free tree grammar, where ‘|’ is used to separate alternatives.
We choose l = 2 in Definition 2; hence, subst is of rank 3. For simplicity, we write
subst[t, t1] if the third subtree is uninteresting (i.e., would never be used). The right
column shows the rules in a partially evaluated form, obtained by recursively replacing
all subterms t = subst[h〈k〉, t1, . . . , tk] with t′ = h[t′

1, . . . , t
′
k] (and all h〈0〉 with their

values h).

Actual rules Simplified form

ξini → subst[ξarb, subst[ξbal, a
〈0〉]] ξini → subst[ξarb, subst[ξbal, a]]

ξarb → subst[f〈2〉, ξarb, ξarb] | x
〈0〉
1 ξarb → f[ξarb, ξarb] | x1

ξbal → subst[ξbal, subst[f〈2〉, x
〈0〉
1 , x

〈0〉
1 ]] | x

〈0〉
1 ξbal → subst[ξbal, f[x1, x1]] | x1

3.3 Graph Generation

The tree-based perspective has turned out to be very fruitful in the area of
context-free graph grammars. The first paper investigating the generation of
context-free graph languages in a tree-based manner was [BC87]; see also the
surveys [Cou90, Eng97].

There are two major types of context-free graph languages: those generated
by hyperedge replacement (HR) and those generated by node replacement (NR).
Both have equivalent formulations in terms of tree-based generators, where the
underlying tree generator is the regular tree grammar. Thus, only the algebras
differ. Here, we will consider the HR case.

For simplicity, we restrict ourselves to directed unlabelled graphs. For tech-
nical reasons, these graphs are equipped with a number of distinguished nodes,
so-called ports. More precisely, a graph is a quadruple H = (V, E, att , port)
consisting of

– finite sets V and E of nodes and edges, resp.,
– a mapping att : E → V 2 assigning to every edge its attached nodes (i.e.,

att(e) = (v, v′) means that e points from v to v′), and
– a partial mapping port : N → V , the port labelling, which is defined on a

finite subset df (port) of N.

For i ∈ df (port), the node port(i) is called the i-port of H . Note that graphs
whose port labelling is the totally undefined function can be considered as or-
dinary graphs without ports. If a graph is of this kind, we may omit the fourth
component.

We consider the following two types of operations on graphs.4

1. Let H = (V, E, att , port) and H ′ = (V ′, E′, att ′, port ′) be graphs and as-
sume, without loss of generality, that V ∩ V ′ = ∅ = E ∩ E′ (otherwise, take

4 Strictly speaking, these operations work on abstract graphs (i.e., isomorphism classes
of graphs) rather than concrete ones. Intuitively, this means that isomorphic graphs
are considered to be the same.
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isomorphic copies). Let ≡ be the equivalence relation on V ∪V ′ generated by
{(port(i), port ′(i)) | i ∈ df (port) ∩ df (port ′)}. Then the parallel composition
par (H, H ′) of H and H ′ is obtained by taking their union and identifying
ports with the same label. Formally,

par(H, H ′) = (V ′′, E ∪ E′, att ′′, port ′′),

where
(a) V ′′ = {[v]≡ | v ∈ V ∪ V ′} is the set of equivalence classes of V ∪ V ′ with

respect to ≡,
(b) att ′′(e) = ([v]≡, [v′]≡) for e ∈ E with att(e) = (v, v′) or e ∈ E′ with

att ′(e) = (v, v′), and
(c) for all i ∈ df (port) ∪ df (port ′),

port ′′(i) =
{

[port(i)]≡ if i ∈ df (port)
[port ′(i)]≡ otherwise.

2. Given a partial function ρ : N → N which is defined on a finite subset df (ρ)
of N, the port relabelling of a graph H = (V, E, att , port) with respect to ρ is
given by relρ(H) = (V, E, att , port◦ρ). Here, port ◦ρ denotes the composition
of partial functions, i.e., (port ◦ ρ)(i) is defined if i ∈ df (ρ) and ρ(i) ∈
df (port), and yields port(ρ(i)) in this case.

Now, for an unsorted signature Σ, a Σ-algebra A is an HR Σ-algebra if it
has as its domain the set of all graphs, and Σ contains, in addition to a finite
number of constant symbols,

– the symbol par(2), which is interpreted as par , and
– finitely many symbols of the form rel

(1)
ρ (where ρ is as above), each of which

is interpreted as relρ.

Remark. For readers who wonder about the definition of NR algebras, it can be
mentioned that the graphs in NR algebras are allowed to contain any number of
distinct nodes with the same port label, i.e., port is turned into a binary relation
rather than a partial function. Moreover, let portsi(H) denote the set of all i-
ports of such a graph H . Instead of the operation par , NR algebras contain binary
operations connectC , where C is a binary relation on port labels. For graphs
H, H ′, connectC(H, H ′) is obtained by taking their disjoint union and adding,
for all (i, j) ∈ C and (v, v′) ∈ ports i(H) × portsj(H ′) ∪ ports i(H ′) × portsj(H),
an edge from v to v′. Thus, this operation connects the disjoint components H
and H ′ with edges according to C.

As an example, we consider an HR context-free graph grammar (i.e., a tree-
based generator consisting of a regular tree grammar and an HR algebra) that
generates the set of all wheels Wn, for n ≥ 1. Here, Wn = ({v0, v1, . . . , vn},
{e1, . . . , en, e′1, . . . , e′n}, att), where att(ei) = (v0, vi) (the “spokes” of the wheel)
and att(e′i) = (vi, v(i modn)+1) (the “rim”), for i ∈ [n]. For instance, Figure 1
shows W4.
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W4 =

Fig. 1. The wheel with four spokes

H1 =

1

2

3

H2 =
1, 2

Fig. 2. Graphs to compose wheels of; the numbers indicate the ports, e.g., the bottom
node of H1 is its 2-port

Our grammar assembles such wheels from the graphs shown in Figure 2. It
uses two nonterminals, ξini and ξ, and the rules

ξini → rel[][par[ξ, H2]]
ξ → rel⎡

⎣
1 �→ 1
2 �→ 4
3 �→ 3

⎤

⎦
[par[ξ, rel⎡

⎣
2 �→ 1
3 �→ 3
4 �→ 2

⎤

⎦
[ξ]]]

ξ → H1.

Here, a subscript of the form

⎡

⎢
⎢
⎣

i1 
→ i′
1

...
ik 
→ i′

k

⎤

⎥
⎥
⎦ denotes the partial function ρ : N → N

with df (ρ) = {i1, . . . , ik} and ρ(ij) = i′j for all j ∈ [k]. In the first rule, parallel
composition with H2 just means that the 1-port of the first argument is identified
with its 2-port, thus closing the rim, whereas the application of rel [] removes all
port labels. Of course, the second rule could be replaced by the linear rule

ξ → rel⎡

⎣
1 �→ 1
2 �→ 4
3 �→ 3

⎤

⎦
[par[ξ, rel⎡

⎣
2 �→ 1
3 �→ 3
4 �→ 2

⎤

⎦
[H1]]]

without affecting the generated language. Figure 3 indicates how to evaluate the
right-hand side of the second rule if both occurrences of ξ are replaced with H1.

Using an ET0L tree grammar (see Section 3.4) instead of a regular one, taking
the same rules but putting them into separate tables, the set of all wheels with
2n spokes would be generated, which is neither HR nor NR context free.

3.4 Generation of Line Drawings

Tree-based generation has also turned out to be very useful in the area of picture
generation, because several well-known devices generating pictures can be given a
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1

2

3

2

43 1

2

3 4 1 3 2

H1 H ′
1 = rel2

4
2 �→ 1
3 �→ 3
4 �→ 2

3
5
(H1)

(rotated by 90◦)

H = par(H1, H
′
1) rel2

4
1 �→ 1
2 �→ 4
3 �→ 3

3
5
(H)

Fig. 3. The evaluation of rel⎡

⎣
1 �→ 1
2 �→ 4
3 �→ 3

⎤

⎦
[par[H1, rel⎡

⎣
2 �→ 1
3 �→ 3
4 �→ 2

⎤

⎦
[H1]]]

tree-based definition.5 Two such devices are chain-code picture grammars and L-
systems with turtle interpretation. We will briefly discuss the latter, which can be
seen as an extension of the former. In its original definition, the turtle mechanism
interprets strings whose symbols are regarded as instructions to a plotter-like
device. It originated from the “turtle” of the programming language logo [Ad80]
and was made popular in the area of grammatical picture generation using L-
systems through the book by Prusinkiewicz and Lindenmayer [PL90]; see also
the later survey [PHHM97].

Let us say that a line drawing (in R
2) is a pair Δ = (D, e) consisting of a

finite set D of straight line segments and an end point e ∈ R
2. Furthermore,

choose two angles α0 and α. Given an unsorted signature Σ containing

Σturtle = {F(0), +(1), −(1), enc(1)}

as a subset, the turtle Σ-algebra6 A has as its domain the set of all line drawings.
The interpretation of symbols in Σ by A depends on α0 and α, and is given as
follows.

– F is the line drawing consisting of a single line segment extending one unit
from the origin into the direction given by α0. The end point of this line
segment is the end point of F .

– The symbols + and − are interpreted as rotation around the origin by α
and −α degrees, resp. Here, both the line segments and the end point are
rotated.

– The symbol enc is interpreted as encapsulation, replacing the end point of
the argument by the origin: enc(D, e) = (D, (0, 0)).

– Every symbol f(k) /∈ Σturtle is interpreted as the k-ary concatenation of line
drawings: f(Δ1, . . . , Δk) = (· · · (Δ1◦Δ2)◦· · · )◦Δk, where Δ◦Δ′ is obtained
by translating Δ′ by the vector given by the end point of Δ and taking the
union of the sets of line segments of both. The translated end point of Δ′

becomes the end point of the resulting line drawing.

5 See [Dre06] for an extensive treatment of tree-based picture generation.
6 Slightly simplified, compared to [Dre06].
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As the turtle mechanism is usually studied in connection with L-systems,
let us recall the definition of ET0L tree grammars, which is the tree grammar
version of ET0L systems.

Definition 3 (ET0L tree grammar). Let S be a set of sorts. An ET0L tree
grammar is a tuple γ = (Ξ, Σ, R, t0) consisting of

– (not necessarily disjoint) S-sorted signatures Ξ and Σ of nonterminals (each
of rank 0) and output symbols, resp.,

– a finite set R of tables R1, . . . , Rn, each table being a finite set of rules as
in the case of regular tree grammars, and

– an axiom t0 ∈ TΣ∪Ξ .

To guarantee that Σ ∪ Ξ is a well-defined signature, it is required that each
nonterminal occurring in Σ has the same profile in both signatures. Moreover,
in each table Ri, every nonterminal is required to occur among the left-hand sides
of rules in Ri.

For trees s, t ∈ TΣ∪Ξ , there is a derivation step s ⇒γ t (or just s ⇒ t) if
there is a table Ri such that t can be obtained from s by simultaneously replacing
every occurrence of a nonterminal ξ by r, where Ξ → r is a rule in Ri. The
ET0L tree language generated by γ is given by

L(γ) = {t ∈ TΣ | t0 ⇒∗ t}.

A tree-based generator consisting of an ET0L tree grammar and a turtle alge-
bra is called an ET0L turtle grammar. Such grammars have been used quite
extensively to capture plant architecture by means of grammatical rules. To
discuss an example, let γ = (Ξ, Σ, {R1, R2}, ξini), where Ξ = {ξini, ξ}, Σ =
Ξ ∪ Σturtle ∪ {c(2)

2 , c
(3)
3 }, and

R1 = {ξini → c3[F, enc[+[c3[F, ξini, −[F]]]], enc[−[ξini]]], F → c2[F, ξini]},
R2 = {ξini → c3[F, enc[−[c3[F, ξini, +[F]]]], enc[+[ξini]]], F → c2[F, ξini]}.

Thus, γ is a so-called DT0L tree grammar: its tables are deterministic, and all
nonterminals are output symbols.

Note that derivations in γ never terminate. However, as Ξ ⊆ Σ, all trees that
are derivable from ξini are in L(γ). Now, let A be the turtle Σ-algebra with
α0 = 90◦ and α = 22.5◦. An initial part of a derivation in G = (γ, A) (i.e.,
a derivation in γ whose individual trees are interpreted using A) is shown in
Figure 4, while Figure 5 shows some randomly chosen pictures in L(G). Note that
the figures do not show correct relative sizes. As the pictures grow beyond any
bound as derivations get longer and longer, they must be scaled in an appropriate
manner.

3.5 Generation of Collages

Another well-known type of picture generator is the collage grammar, which was
originally introduced in [HK91] (see also [DK99] and, for the tree-based version,
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⇒ ⇒ ⇒ ⇒

⇒ ⇒ ⇒ · · ·

Fig. 4. An initial part of a derivation in an ET0L turtle grammar

Fig. 5. Pictures generated by an ET0L turtle grammar
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[Dre06]). Choose some dimension d ≥ 1. A collage in the Euclidean space R
d is a

finite set of parts, each part being a nonempty and bounded subset of R
d. Recall

that an affine transformation of R
d is a mapping of the form α(x) = Mx + b,

where M is a d × d matrix and b ∈ R
d. Such an affine transformation is applied

to a part in a pointwise manner. Applying it to a collage means to apply it to
each of its parts.

Now, given injective affine transformations α1, . . . , αk and a collage C, let
〈α1 · · · αk, C〉 denote the k-ary operation f on collages given by

f(C1, . . . , Ck) = C ∪
⋃

i∈[k]

αi(Ci).

As a side remark, it may be interesting to note that, in particular, f is equal
to the constant C if k = 0. Moreover, if C = ∅, then f is equal to the affine
transformation α1 (viewed as a unary operation on collages) if k = 1, and equal
to the union of collages if k = 2 and α1 = α2 = id (where id denotes the
identity). For many types of tree-based collage generators, these three types of
operations suffice to obtain the full generative power.

A collage algebra is a Σ-algebra whose domain is the set of all collages (in
R

d) and which interprets every symbol in Σ as a collage operation. Here, Σ is
any unsorted signature.

Let us briefly look at an example for d = 2 (taken from [Dre06]). We use an
EDT0L tree grammar7 γ whose nonterminals are ξini and ξ, and whose output
signature is Σ = {f(2), g(1), snail(0)}. The axiom consists of the nonterminal
ξini, and the tables are

{ξini → f[ξ, ξini], ξ → g[ξ]}, {ξini → snail, ξini → snail}.

Instead of giving a formal definition of the collage Σ-algebra A used to interpret
the trees in L(γ), let us show how the rules in the first table look if they are
interpreted in A. For this, we extend A to Σ ∪ Ξ, and interpret every constant
symbol as a part whose outline resembles a snail. To be able to distinguish
between the symbols, snail is filled with black, ξini with white, and ξ with
grey8. Using this interpretation of constant symbols, the two rules in the first
table look like this:

→ →

Clearly, each of the rules in the second table replaces the corresponding “non-
terminal snail” with the black one.
7 i.e., with deterministic tables.
8 Formally, the grey fill colour may be interpreted as a sparse area of the part, e.g., a

region where the part contains only rational points.
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⇒ ⇒ ⇒ ⇒

Fig. 6. Deriving a picture made of snails

Fig. 7. Many snails

In this example, all relevant derivations consist of a number of applications of
the first table, followed by one application of the second table. A short derivation
of this kind is shown in Figure 6, while Figure 7 shows a picture generated by a
rather long derivation.

3.6 Music Generation

Let us briefly mention that tree-based generators are even suitable for the gen-
eration of “music” – sound structures that adhere to certain basic rules of com-
position. A suitable algebra whose domain is the set of all musical pieces (in
a certain sense) is proposed in [DH07]. It contains operations that, e.g., invert
a piece, play it backwards, concatenate two pieces or create their overlay. In
[DH07], a tree generator consisting of a regular tree grammar and a sequence
of so-called tolerant top-down and macro tree transducers is used in connec-
tion with the music algebra in order to generate simple musical pieces. On
http://www.cs.umu.se/∼johanna/algebra, the implementation in Treebag

and some generated pieces can be found.

http://www.cs.umu.se/~johanna/algebra
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4 Delegation Networks

A potential application area of tree-based generators concerns the generation of
complex scenes involving structural, spatial, and pictorial elements. As an ex-
ample, one may think of a virtual reality consisting of streets, buildings, plants,
and other objects. For such an application, grammatical approaches to picture
generation could be particularly useful, as they allow to generate very detailed
models using simple and well-understood rules. As the previous section showed,
one may indeed speak of models being generated since most of these systems
actually do not generate pictures in a strict sense. Instead, they generate objects
having a natural pictorial representation. For example, a collage grammar in R

3

generates collections of three-dimensional objects that become pictures only if
they are passed through a ray tracer or similar software. Thus, in principle, a
collage grammar could be used to generate a virtual reality. For example, the
street shown in Figure 8 has been generated in Treebag using a collage gram-
mar designed by C. von Totth. Unfortunately, each of the grammatical picture
generators studied in the theoretical literature (such as ET0L turtle grammars
and collage grammars) is only suitable for generating a rather specific type of
structures. Moreover, the devices themselves provide no support for assembling
large systems from smaller components – which would certainly be needed for

Fig. 8. A street generated by a collage grammar (designed by C. von Totth)
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systems comprising thousands of rules or in a context where generators are de-
signed by a group of developers. A third disadvantage is that they provide no
means for integrating nongrammatical methods in an elegant way.

In this section, we propose the delegation network, a generalization of the
tree-based generator which tries to overcome these limitations by allowing to
combine several generating devices. A delegation network N contains a finite
number of so-called delegating generators, which are basically tree-based gener-
ators. However, each of them may “delegate” the generation of certain parts of
the object to other delegating generators in the network. Moreover, delegation
networks are based on many-sorted algebras whose predefined operations can be
nondeterministic. This makes it possible to

– modularize the generation of complex objects in a meaningful way,
– combine different classes of generators, each working on a part of the problem

and the domains it is appropriate for, and
– let parts of the generation task be performed by devices that are not tree

based, and possibly not even grammatical at all, by viewing them as nonde-
terministic predefined operations.

To understand the last item, imagine that we are given some implementation
of a (nongrammatical) method for generating random textures. We could then
use this device in order to define a nondeterministic operation that takes a
(grammatically generated) collage as input and applies nondeterministically one
of the randomly generated texture patterns to it.

Conceptually, delegation is easily achieved. The tree generator component γ
of a delegating generator (γ, A) generates trees each of whose symbols is either
interpreted by A or refers to another delegating generator of the network. The
second case is what gives rise to delegation.

To give the formal definition of delegation networks, some preliminaries are
needed. We start with the definition of nondeterministic functions.

4.1 Nondeterministic Functions and Algebras

A nondeterministic function from A1 × · · · × Ak to A is a function of the form
f : A1 × · · · × Ak → ℘(A). We identify f with the function f ′ : ℘(A1) × · · · ×
℘(Ak) → ℘(A) such that, for all A1 ⊆ A1, . . . , Ak ⊆ Ak,

f ′(A1, . . . , Ak) =
⋃

{f(a1, . . . , ak) | a1 ∈ A1, . . . , ak ∈ Ak}.

Further, we write f : A1 ×· · ·×Ak � A in order to indicate that f is a nondeter-
ministic function, and call A1 × · · · × Ak � A its (nondeterministic) profile. As
in the deterministic case, we write f : A instead of f : �A if k = 0, and identify
f with the set f() ⊆ A.

Note that a partial function f : A1 × · · · × Ak → A can be regarded as the
special case where |f(a1, . . . , ak)| ≤ 1 for all (a1, . . . , ak) ∈ A1 × · · · × Ak.

The basic definitions regarding signatures, trees, and algebras carry over from
the deterministic case. In an S-sorted signature Σ, profiles may from now on be
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nondeterministic (and a deterministic profile is regarded as a special case of a
nondeterministic one). The definition of trees over Σ and the related notation are
literally the same as in the deterministic case, except that → must be replaced
with �. Similarly, the definition of nondeterministic Σ-algebras and the related
notations carry over from the deterministic case by replacing → with �.

4.2 Evaluating Trees with Parameters in Nondeterministic Algebras

In the following, we want to represent complex operations by trees. For this
purpose, let us reserve a set of special symbols which represent the parameters of
such an operation. For every every sort A, let {xA

1, x
A
2, . . . } be a countably infinite

set of pairwise distinct parameter symbols of sort A. The parameter signature of
type A1 × · · · × Ak is the signature {xA1

1 , . . . , xAk

k }, containing the i-th parameter
symbol xAi

i of profile Ai for every i ∈ [k]. In the following, we will simply denote
xAi

i by xi. To avoid confusion, we assume that parameter symbols occur only in
parameter signatures, i.e., are not used as elements of ordinary signatures.

Given a nondeterministic Σ-algebra A and the parameter signature X of type
A1 ×· · ·×Ak, we can evaluate trees t ∈ TA

Σ∪X . The result of this evaluation is de-
noted by valXA(t). It is the function ϕ : A1×· · ·×Ak � A such that ϕ(a1, . . . , ak)
is given as follows, for all a1 ∈ A1, . . . , ak ∈ Ak:

– If t = xi, then ϕ(a1, . . . , ak) = {ai}.
– Otherwise, if t = f[t1, . . . , tn] with ϕi = valXA(ti) for all i ∈ [n], then

ϕ(a1, . . . , ak) = f(ϕ1(a1, . . . , ak), . . . , ϕn(a1, . . . , ak)).

Given a set T ⊆ TA
Σ∪X of trees rather than a single tree, we let valXA(T ) = Φ,

where Φ(a1, . . . , ak) =
⋃

t∈T valXA (t)(a1, . . . , ak).
During the rest of this paper, we will drop the qualifier nondeterministic when

talking about nondeterministic Σ-algebras.

4.3 The Definition and Semantics of Delegation Networks

For the formal definition of delegation networks, one additional notion is needed.
Consider an S-sorted signature Σ and a Σ-algebra A = (dom , σ). Given a do-
main mapping dom ′ for another set S′ of sorts, A is said to be dom ′-compatible
if dom(A) = dom ′(A) for all A ∈ S ∩ S′.

Now, the formal definition of delegation networks reads as follows.

Definition 4 (delegation network). A delegation network is a system N =
(Σ, dom , G, g0), where

– Σ is an S-sorted signature of generator symbols, for some set S of sorts,
– dom is a domain mapping for S,
– g0 is a constant symbol in Σ, and
– G = (Gg)g∈Σ is a Σ-indexed family of delegating generators Gg = (γg, Ag),

where, for every generator symbol g : A1 × · · · × Ak � A,



From Tree-Based Generators to Delegation Networks 65

• Ag is a dom-compatible Σg-algebra, for some signature Σg disjoint with
Σ, and

• γg is a tree generator such that L(γg) ⊆ TA
Σg∪Σ∪X, where X is the pa-

rameter signature of type A1 × · · · × Ak.

The semantics of N is obtained by constructing a Σ-algebra AN . Intuitively, a
symbol g ∈ Σ is interpreted by evaluating the trees in L(γg). To see what this
means, let t ∈ L(γg). According to Definition 4, every non-parameter symbol
f : A1 × · · · × Ak � A occurring in t is either interpreted by Ag or a generator
symbol. Thus, both cases yield an appropriate interpretation of f (using recursion
if f ∈ Σ), which can be used to evaluate t in the way defined earlier.

However, unfortunately, the situation is not as simple as it intuitively might
seem, because delegation networks can be cyclic. This invalidates the simple
inductive definition the previous paragraph may have suggested. For this reason,
we choose a least fixed-point semantics for delegation networks.

For this purpose, we turn the set of all functions of f, g : A1×· · ·×Ak � A into
a complete lattice by defining f ≤ g if and only if f(a1, . . . , ak) ⊆ g(a1, . . . , ak),
for all a1 ∈ A1, . . . , ak ∈ Ak. This extends to (Σ, dom)-interpretations σ, σ′,
where Σ is S-sorted, in the obvious way: σ ≤ σ′ if and only if σ(f) ≤ σ′(f) for
all f ∈ Σ.

For the following definition, if A = (dom , σ) and A′ = (dom ′, σ′) are Σ- and
Σ′-algebras, resp., where Σ and Σ′ are disjoint and A′ is dom-compatible, we
let A ∪ A′ denote the Σ ∪ Σ′-algebra (dom ′′, σ′′) such that dom ′′(A) = dom(A)
for all A ∈ S and

σ′′(f) =
{

σ(f) if f ∈ Σ
σ′(f) otherwise.

We are now ready to define the semantics of delegation networks.

Definition 5 (semantics of delegation networks). Let N = (Σ, dom , G, g0)
be a delegation network.

1. The operator iterateN on (Σ, dom)-interpretations σ is defined as follows:
iterateN (σ) is the (Σ, dom)-interpretation σ′ such that, for every symbol
g : A1 × · · · × Ak � A in Σ,

σ′(g) = valXAg∪(dom,σ)(L(γg)),

where X is the parameter signature of type A1 × · · · × Ak.
2. The least fixed point of iterateN is denoted by σN , and AN = (dom , σN ).

(Note that, by construction, iterateN is monotonically increasing. Thus, by
Tarski’s fixed-point theorem, it has a least fixed point.)

3. The language generated by N is L(N ) = σN (g0).

It should be noticed that, for a delegation network as above and g ∈ Σ, σN (g)
is just valXAg

(L(γg)) if no symbols from Σ appear in the trees generated by γg.
Thus, a tree-based generator can be identified with a delegation network in which
Σ = {g0}, γ(g0) has the output signature Σg0 (i.e., does not delegate to itself),
and Ag0 is a deterministic Σg0-algebra.



66 F. Drewes

From an implementation point of view, one may think of each delegating
generator Gg in N as a nondeterministic device working as follows. Let the
profile of g be A1 ×· · ·×Ak � A, and let a1 ∈ A1, . . . , ak ∈ Ak be arguments. We
may then nondeterministically “execute” Gg in order to produce an element of
the set g(a1, . . . , ak). For this purpose, we first run γg as a tree generator, which
produces a tree t ∈ TA

Σg∪Σ∪X . The tree t is evaluated in a bottom-up manner by
nondeterministically assigning a value to each of its nodes. To each leaf carrying
a variable xi ∈ X , the value ai is assigned. Now, consider the root node of a
subtree s /∈ X with direct subtrees s1, . . . , sl, and suppose that we have already
assigned values b1, . . . , bl to its direct descendants, i.e., to the roots of s1, . . . , sl.
There are two cases.

– If s = f[s1, . . . , sl] with f ∈ Σg, we choose nondeterministically any element
of f(b1, . . . , bl) (where f is the interpretation of f in Ag) as the value of s.

– If s = g′[s1, . . . , sl] with g′ ∈ Σ, we create (recursively) an instance of Gg′ ,
apply it to the arguments b1, . . . , bl, and consider the result to be the value
assigned to the root node of s.

Without the last case, this is just the evaluation of trees with respect to
Ag, in the sense that the set of all possible results that can be obtained equals
valXAg

(t)(a1, . . . , ak). Thus, the base case is the one where t ∈ TΣg∪X , as such
trees can be evaluated directly. Of course, a naive implementation may lead to
an infinitely descending recursion because of the second case, if the delegation
structure is cyclic. Thus, some care must be taken in an implementation.

5 An Example

Let us now consider an example. We make use of two domains, namely the set
C of collages in R

2 and the set N of natural numbers. The corresponding sorts
are C and N, resp. This defines the domain mapping dom to be used throughout
this section, i.e., dom(N) = N and dom(C) = C. As operations on N, we use
the constant 0 and the successor function s. The operations on C used are of
two different types. On the one hand, we use the collage operations explained in
Section 3.5. One the other hand, we turn cellular automata into operations on
collages. For this, let us first recall what a cellular automaton is.

The concept of cellular automata (CA) was developed by von Neumann, with
contributions by Ulam, Zuse, and others, in the middle of the last century. A
(two-dimensional) CA CA is a parallel device that operates on an infinite two-
dimensional array of cells cell ij (i, j ∈ Z). Geometrically, we identify the cell
cell ij with the unit square whose lower left corner has the coordinates (i, j). The
cellular automaton consists of two components. The first is a set Q = {0, . . . , k}
of states, where k > 0. At each moment in time, every cell contains one of
these states. The second component of CA is a transition function of the form
Δ : Q3×3 → Q, where Δ(000

000
000

) = 0. Initially, the so-called inactive state 0 is
assigned to all cells cell ij except cell00, which is assigned the state 1. In each
step, all cells synchronously update their states according to Δ and the states of
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cells in their neighbourhood. More precisely, each cell cell ij changes its state to
Δ(N), where N is the 3 × 3 array of states of its neighbouring cells (including
cell ij itself), i.e., the states of the cells cellpq such that i − 1 ≤ p ≤ i + 1 and
j − 1 ≤ q ≤ j + 1. For example, after the first step, the state of cell00 will be
Δ(000

010
000

), and the state of cell11 will be Δ(000
000
100

) since cell11 has cell00 as its lower
left neighbour. Note that the number of active cells will always remain finite,
because Δ(000

000
000

) = 0.
Now, to turn a cellular automaton CA as above into an operation acting on

collages, we view it as a function CA : N × C
k → C, where CA(n, C1, . . . , Ck)

is obtained as follows. First, CA is executed n steps. Then, for every cell whose
current state is q ∈ [k], a copy of Cq is horizontally and vertically scaled and
translated in such a way that the cell cell ij becomes its bounding box9. The
resulting collage is the union of all these transformed copies of C1, . . . , Ck.

Note that one could alternatively view CA as a nondeterministic function
CA′ : C

k � C, where CA′(C1, . . . , Ck) = {ca(n, C1, . . . , Ck) | n ∈ N}. Obviously,
this would not allow for as much control as the variant used here.

In the following, we use only one nontrivial cellular automaton CA, where
k = 3. Rather than defining CA formally, let us use a delegation network
N0 = ({g0 : C}, dom , (γg0 , Ag0), g0) containing only one delegating generator,
to show how CA behaves. The algebra Ag0 contains the operations CA, 0, s, and
constant collages Ci, 1 ≤ i ≤ 3. The Ci are hollow squares with different figures
placed inside: a square with indented edges, a triangle, and a hollow circle, resp.
The tree generator γg0 is a regular tree grammar generating the tree language
{CA[sn[0], C1, C2, C3] | n ∈ N}.10 The obvious definition of γg0 is omitted here.
The resulting collages for 0 ≤ i ≤ 6 are shown in Figure 9.

Fig. 9. Initial steps of the cellular automaton CA

Now, let us discuss a delegation network N = (Σ, dom , G, g) that makes use
of CA in a slightly more interesting way. The signature Σ consists of the symbols
g : C, ca : N× C3 � C, and ifs : C � C. The delegation structure in this example
is such that g uses the other two, and ifs delegates to itself. All tree generators
employed are regular tree grammars.
9 For the purpose of this example, we may disregard collages Cq for which such a

scaling is impossible.
10 As usual, s0[0] = 0 and si+1[0] = s[si[0]] for all i ∈ N.
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Let us first discuss (γifs, Aifs), which basically implements an iterated func-
tion system. To achieve this, the tree generator γifs generates the finite tree
language {x1, ifs[f[x1, x1, x1]]}. In Aifs, f is interpreted as a collage opera-
tion f of the form 〈α1α2α3, line〉, where the transformations α1, α2, α3 and the
collage line are chosen in such a way that, e.g.,

f( , , ) = .

As a consequence of the fact that L(γifs) = {x1, ifs[f[x1, x1, x1]]}, the appli-
cation of ifs = σN (ifs) to a collage C yields C and all collages obtained by
applying ifs recursively to f(C, C, C). Thus, for example, ifs( ) yields the set of
collages indicated in Figure 10.

. . .

Fig. 10. Collages generated by ifs, if applied to (up to scaling)

Now, let us discuss Gca = (γca, Aca). The tree generator γca is the regular tree
grammar having only one nonterminal ξini : C and the rules

ξini → CA[x1, ξini, x3, x4],
ξini → CA[x1, x2, x3, x4].

The cellular automaton CA (i.e., the interpretation of the symbol CA) is as before.
Obviously, γca generates all trees

CA[x1, CA[x1, . . .CA[x1, x2, x3, x4] . . . , x3, x4], x3, x4].

Note that the recursion takes place in the argument corresponding to state 1 of
CA (i.e., where Figure 9 contains a copy of ), and all instances of CA perform
the same number of steps, as determined by the parameter x1.

Finally, the first component of Gg = (γg, Ag) is the regular tree grammar with
nonterminals ξini : C and ξ : N, and the rules

ξini → ca[ξ, , ifs[ ], ],
ξ → s[ξ],
ξ → 0.

In Ag, , , and are interpreted as the collages consisting of the correspond-
ing parts (and s and 0 are interpreted as successor, s, and zero, 0). Thus, the
purpose of Gg in this example is to provide Gca with sample arguments. From
the point of view of γg, the only argument that is not fixed, but generated in
a nondeterministic manner, is the first one, determining how many steps CA
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Fig. 11. Collages generated by the delegation network N

is executed. However, actually, even the third argument is nondeterministic, as
ifs( ) is not a single collage, but the set displayed in Figure 10.

Figure 11 shows some of the collages in L(N ). They result from the trees
ca[si[0], , ifs[ ], ] in L(γg), for i = 0, . . . , 3 (top) and i = 5 (bottom). Among
the trees in L(γca), the tree CA[x1, CA[x1, x2, x3, x4], x3, x4] has been used. The
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reader may find it instructive to compare this figure with Figure 9, in order to
discover where the structures in Figure 9 reappear in Figure 11.

6 Conclusion and Outlook

In this paper, we have given a brief survey of tree-based generators, and have
introduced the delegation network as a generalization. Future work should study
both theoretical and practical issues regarding delegation networks, and provide
an implementation.

Some initial results regarding delegation networks are given in [Dre07]. How-
ever, as mentioned in the introduction, evaluation in nondeterministic algebras
is not correctly defined in this paper. Thus, the results of [Dre07] should be
taken with care. However, under the assumption that the union Σ∪ of the
signatures Σg, g ∈ Σ, is well defined, it is clear that a delegation network
N = (Σ, dom , G, g0) can be used to generate a tree language T (N ) by defining
T (N ) = L(N ′), where N ′ is obtained from N by

1. replacing dom with dom ′, where dom ′(A) = TA
Σ∪

for every sort A, and
2. replacing each Ag (g ∈ Σ) with the free term algebra over Σ∪.

Now, if the algebras Ag are deterministic and satisfy some reasonable compat-
ibility requirements (i.e., do not interpret common sorts or function symbols
differently), the “Mezei&Wright-like” result L(N ) = valA(T (N )) holds, where
A is the union of the algebras Ag. For the case of nondeterministic algebras, a
counterexample was given in [ES78, p. 72]. In fact, looking at the notions and
results in [ES77, ES78], it seems that T (N ) can be characterized by a generalized
version of IO context-free tree grammars. Together with the Mezei&Wright-like
result, this would yield an equivalent operational semantics for delegation net-
works whose algebras are deterministic (or, in other words, a characterization in
terms of tree-based generators).

As delegation networks can generate tree languages, they can take the role
of tree generators in delegation networks. A characterization of the tree lan-
guages T (N ) in terms of extended IO context-free tree grammars may also
help to understand the resulting delegation hierarchy (DELn(REG))n∈N. Here,
DELn(REG) is the class of tree languages generated by DELn(REG), which is de-
fined as follows: REG is the class of all regular tree grammars, and DELn+1(REG)
is the set of all delegation networks in which each γg is in DELn(REG).

Let us now discuss some more practical issues. Future plans include the im-
plementation of a system that allows to define and execute delegation networks
in a flexible and, to the extent possible, efficient manner. The flexibility of this
system should preferably be similar to that of the system Treebag (see Sec-
tion 2.4). However, in contrast to Treebag, whose implementation does not
pay much attention to practical issues such as efficiency and usability for large
examples, the development of the new system should address these points in
particular.

In connection with this, it would be interesting to study the parallel and dis-
tributed execution of delegating generators. As indicated at the end of Section 4,
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one may view a delegating generator (γg, Ag) belonging to a delegation network
N = (Σ, dom , G, g0) as a device that, internally, generates a tree (in a nondeter-
ministic fashion) and evaluates it to a (nondeterministic) function. To be able to
evaluate the tree, it creates an instance I of (γg′ , Ag′) for every occurrence of a
symbol g′ ∈ Σ it generates (which, at least for regular and ET0L tree grammars,
can be done as soon as the occurrence is generated). The function eventually re-
turned by I is then used as the interpretation of the given occurrence of g′. The
instances of delegating generators resulting from this process are independent of
each other (except for the fact that parent instances have to wait for their children
during the evaluation process), it should be possible to execute them in parallel
or even distribute their execution over a cluster of processors or machines.

Another question that future investigations may address is dynamic execution.
Especially in the generation of graphical scenes, a derivation can often be seen
as a development in time (cf. Figure 4). In terms of the discussion above, this
would mean that an instance of a delegating generator does not terminate when
it has reported the evaluation of its generated tree to its parent. Instead, it may
perform further derivation steps, each time reporting the accordingly updated
evaluation to its parent. To do this in an efficient manner, one needs to develop
incremental techniques that avoid full re-evaluation in each step. This seems to
be an interesting research question – as is the theoretical question of defining a
suitable “dynamic semantics” for delegation networks.
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to me. Furthermore, I thank Carolina von Totth for allowing me to include the
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