From two-way to one-way automata - three regular-expression based methods

Mans Hulden
University of Colorado

August 18 2015
Overview

- Regular-expression based methods to “compile” two-way automata (2DFAs/2NFAs) to 1DFAs

- Three subtly different methods, all using a similar approach - also provide simple equivalence proofs

- All are “generate-and-test”-style approaches that use auxiliary marker symbols as a intermediate to simulate the transitions of a 2DFA/2NFA
Background & motivation

- Automata are widely used in NLP applications, usually implemented as (very) extended regular expressions compiled into 1DFA

- Wide array of tools available for calculating with 1DFAs (and one-way transducers)

- No available implementation of 2DFA/2NFA > 1DFA conversion

- Two-way automata can compactly encode checking of multiple “long-distance dependencies” in strings
Two-way automata - notation

A 5-tuple: $(\Sigma, Q, Q_0, \delta, F)$

- alphabet
- states
- initial states
- transition function $\delta: Q \times \Sigma \rightarrow 2^{Q \times \{L, S, R\}}$
- final states

“left” “stay” “right”

A 2-way automaton M accepts a word w iff there exists some choice of transitions that lead to a final state with the read head at the right edge of a word
Example

\[\Sigma = \{a, b\} \]
\[Q = \{0, 1, 2\} \]
\[Q_0 = \{0\} \]
\[\delta(0, a) = (0, R), \quad \delta(0, b) = (1, R), \]
\[\delta(1, a) = (1, R), \quad \delta(1, b) = (2, L), \]
\[\delta(2, a) = (0, R), \quad \delta(2, b) = (2, L) \]
Example

\[\Sigma = \{a, b\} \]
\[Q = \{0, 1, 2\} \]
\[Q_0 = \{0\} \]
\[\delta(0, a) = (0, R), \delta(0, b) = (1, R), \]
\[\delta(1, a) = (1, R), \delta(1, b) = (2, L), \]
\[\delta(2, a) = (0, R), \delta(2, b) = (2, L) \]
Example

\[\Sigma = \{a, b\} \]
\[Q = \{0, 1, 2\} \]
\[Q_0 = \{0\} \]
\[\delta(0,a) = (0,R), \quad \delta(0,b) = (1,R), \]
\[\delta(1,a) = (1,R), \quad \delta(1,b) = (2,L), \]
\[\delta(2,a) = (0,R), \quad \delta(2,b) = (2,L) \]
Example

\[\Sigma = \{a, b\}\]
\[Q = \{0, 1, 2\}\]
\[Q_0 = \{0\}\]
\[
\delta(0, a) = (0, R), \ \delta(0, b) = (1, R), \\
\delta(1, a) = (1, R), \ \delta(1, b) = (2, L), \\
\delta(2, a) = (0, R), \ \delta(2, b) = (2, L)
\]
Example

\[\Sigma = \{a, b\} \]
\[Q = \{0, 1, 2\} \]
\[Q_0 = \{0\} \]
\[\delta(0, a) = (0, R), \quad \delta(0, b) = (1, R), \]
\[\delta(1, a) = (1, R), \quad \delta(1, b) = (2, L), \]
\[\delta(2, a) = (0, R), \quad \delta(2, b) = (2, L) \]
Example

\[\Sigma = \{a, b\} \]
\[Q = \{0, 1, 2\} \]
\[Q_0 = \{0\} \]
\[\delta(0,a) = (0,R), \quad \delta(0,b) = (1,R), \]
\[\delta(1,a) = (1,R), \quad \delta(1,b) = (2,L), \]
\[\delta(2,a) = (0,R), \quad \delta(2,b) = (2,L) \]
Example

\[\Sigma = \{a, b\} \]
\[Q = \{0, 1, 2\} \]
\[Q_0 = \{0\} \]
\[\delta(0, a) = (0, R), \delta(0, b) = (1, R), \]
\[\delta(1, a) = (1, R), \delta(1, b) = (2, L), \]
\[\delta(2, a) = (0, R), \delta(2, b) = (2, L) \]
Example

\[\Sigma = \{a, b\} \]
\[Q = \{0, 1, 2\} \]
\[Q_0 = \{0\} \]
\[\delta(0, a) = (0, R), \quad \delta(0, b) = (1, R), \]
\[\delta(1, a) = (1, R), \quad \delta(1, b) = (2, L), \]
\[\delta(2, a) = (0, R), \quad \delta(2, b) = (2, L) \]
Example

\[\Sigma = \{a,b\} \]

\[Q = \{0,1,2\} \]

\[Q_0 = \{0\} \]

\[\delta(0,a) = (0,R), \ \delta(0,b) = (1,R), \]

\[\delta(1,a) = (1,R), \ \delta(1,b) = (2,L), \]

\[\delta(2,a) = (0,R), \ \delta(2,b) = (2,L) \]
Example

\[\Sigma = \{a, b\} \]
\[Q = \{0, 1, 2\} \]
\[Q_0 = \{0\} \]
\[\delta(0, a) = (0, R), \delta(0, b) = (1, R), \]
\[\delta(1, a) = (1, R), \delta(1, b) = (2, L), \]
\[\delta(2, a) = (0, R), \delta(2, b) = (2, L) \]
Example

\[\Sigma = \{a,b\} \]
\[Q = \{0,1,2\} \]
\[Q_0 = \{0\} \]
\[\delta(0,a) = (0,R), \quad \delta(0,b) = (1,R), \]
\[\delta(1,a) = (1,R), \quad \delta(1,b) = (2,L), \]
\[\delta(2,a) = (0,R), \quad \delta(2,b) = (2,L) \]
Properties of two-way automata

Equivalent to 1DFA in generative capacity - recognize only the regular sets (Rabin and Scott, 1959; Shepherdson 1959; Vardi (1989))

Conversion “tradeoffs” between different two-way automata and one-way automata mostly well understood
Properties of two-way automata

Tradeoffs

\[a = 2^n - 1 \]
\[b = n(n^n - (n - 1)^n) \]
\[c = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} \binom{n}{i} \binom{n}{j} (2^i - 1)^j \]
\[d = e = \binom{2n}{n+1} \]
\[f = n \]

(from Kapoutsis (2005))

(dashed arrows open)
Traditional 2DFA~1DFA conversion: crossing sequences

Shepherdson’s (1959) observation: Consider some string xz; if 2DFA M is in some state q when reading the last symbol of x, M's behavior (eventual exit state q') is completely determined by x (and independent of z).

We can record all M's potential exit states with a finite table (of so-called crossing functions).
Traditional 2DFA~1DFA conversion: crossing sequences

We can construct an equivalent 1DFA by simulating the behavior of potentially all prefixes x up to some length, and analyzing their crossing functions (there are potentially $(n+1)^n$ unique functions.)

Each crossing function becomes a state in a 1DFA (roughly)
Current method

We want to take advantage of the existence of efficient toolkits for compiling extended regular expressions into minimal 1DFAs.

Idea:

1. Use a string encoding that contains marker symbols that "simulate" the moves of a given 2DFA/2NFA.
2. Constrain marker symbols to correspond to legitimate accepting paths in a 2DFA/2NFA.
3. Remove markers by homomorphism.

Step (2) should be expressible as a regular language (preferably locally testable; similar to n-slt strategies for simulating 1-way automata (as in Medvedev(1964)).
Current method

Recall: almost trivial state-symbol encoding gives result that every regular language over Σ is the homomorphic image of a 3-testable language over $(\Sigma \cup \Gamma)$, e.g.

$$\Sigma = \{a, b\}$$
$$\Gamma = \{0, 1, 2\}$$

$h(0 \ a \ 1 \ b \ 2 \ b \ 2) = abb$
Current method

Recall: almost trivial state-symbol encoding gives result that every regular language over Σ is the homomorphic image of a 3-testable language over $(\Sigma \cup \Gamma)$, e.g.

$$\Sigma = \{a, b\}$$
$$\Gamma = \{0, 1, 2\}$$

$h([0 \ a \ 1 \ b \ 2 \ b \ 2]) = abb$
Current method

Recall: almost trivial state-symbol encoding gives result that every regular language over Σ is the homomorphic image of a 3-testable language over $(\Sigma \cup \Gamma)$, e.g.

$$\Sigma = \{a,b\}$$

$$\Gamma = \{0,1,2\}$$

$$h(0 \ a \ 1 \ b \ 2 \ b \ 2) = abb$$
Current method

Recall: almost trivial state-symbol encoding gives result that every regular language over Σ is the homomorphic image of a 3-testable language over $(\Sigma \cup \Gamma)$, e.g.

\[
\Sigma = \{a, b\} \\
\Gamma = \{0, 1, 2\}
\]

\[
h(0 \ a \ 1 \ b \ 2 \ b \ 2) = abb
\]
Current method

Recall: almost trivial state-symbol encoding gives result that every regular language over Σ is the homomorphic image of a 3-testable language over $(\Sigma \cup \Gamma)$, e.g.

$$h(0 \ a \ 1 \ b \ 2 \ b \ 2) = abb$$

$\Sigma = \{a, b\}$
$\Gamma = \{0, 1, 2\}$
Current method

Recall: almost trivial state-symbol encoding gives result that every regular language over Σ is the homomorphic image of a 3-testable language over $(\Sigma \cup \Gamma)$, e.g.

$$\Sigma = \{a, b\}$$
$$\Gamma = \{0, 1, 2\}$$

$$h(0 \ a \ 1 \ b \ 2b2) = abb$$
Two-way string encoding

Define a regular language L_{base} containing symbols from Σ (of 2DFA/2NFA M), intersperse three-symbol “control” sequences from $\Gamma = \{q_0, \ldots, q_n, L,R,S\}$ between every $a \in \Sigma$.
Method 1: 2DFA to regular expression

Here, we want to constrain the control strings to reflect acceptance of a string in Σ^* by a 2DFA M

We start with the language L_{base} which, given M:

1. starts with the symbol corresponding to the initial state
2. control sequences reflect actual transitions in M
3. ends with a pair corresponding to a final state in M

```
01R  b  11R 20R  a  12L 01R  b  11
```
Method 1: 2DFA to regular expression

Also, define another language L_{license} that complies with the following: a two-symbol control sequence pq only occurs if there is a preceding “R”, following “L” or simultaneous “S” transition to p; or if p is the initial state and leftmost in the string.

01 is allowed because $0 \in Q_0$

\[
\begin{array}{cccccc}
01R & b & 11R & 20R & a & 12L & 01R & b & 11
\end{array}
\]
Method 1: 2DFA to regular expression

Also, define another language L_{license} that complies with the following: a two-symbol control sequence pq only occurs if there is a preceding “R”, following “L” or simultaneous “S” transition to p; or if p is the initial state and leftmost in the string.

11 is allowed because of 1R “preceding”
Method 1: 2DFA to regular expression

Def a simple homomorphism $h(a) = \varepsilon$ for all $a \in \Gamma$

Example:

$h(01R \ b \ 11R \ 20R \ a \ 12L \ 01R \ b \ 11) = bab$
Method 1: 2DFA to regular expression

\(L_{\text{base}}\) and \(L_{\text{license}}\) are obviously regular (can in fact be made \(k\)-testable for some \(k\) that depends on the structure of \(M\))

Claim: A 2DFA \(M\) accepts a word \(w\) iff \(w \in h(L_{\text{base}} \cap L_{\text{license}})\)

Sketch (\(\Rightarrow\)): induction on the number of steps in the computation of \(M\)
Method 1: 2DFA to regular expression

Sketch (\Rightarrow): All strings in $(L_{\text{base}} \cap L_{\text{license}})$ end in some sequence qq. This must be permitted by some other sequence pq, etc. which eventually needs to end in the initial state at the left edge (because M is deterministic, this backward sequence cannot end in a loop).

![Diagram showing the transition from string to regular expression with impossible configurations indicated.]
From two-way to one-way finite automata

(Implementation aside)

```python
def S [a|b];  # Alphabet
def Q [0|1|2];  # States
def h(X) [X .o. \S -> 0].2;  # The homomorphism
def Ta 0 0 R | 1 1 R | 2 0 R;
def Tb 0 1 R | 1 2 L | 2 2 L;
def Lend 0 0 | 1 1 | 2 2;
def Lbase [Ta+ a|Tb+ b]* Lend;
def ifQPR(P,Q,R) ~[~P Q ~R];
def L Lbase & ifQPR(0|?* 0 S \S*|?* Q 0 L ?|\S* 0 S ?*) & ifQPR( 1 S \S*|?* Q 1 R \S* \S*, 1 Q, \S* S \S* Q 1 L ?|\S* 1 S ?*) & ifQPR( 2 S \S*|?* Q 2 R \S* \S*, 2 Q, \S* S \S* Q 2 L ?|\S* 2 S ?*);
regex h(L);
```

Fig. 1. Example (deterministic) 2DFA M with initial state 0. The language described is (a|ba)* (b|\epsilon).
Method 2: 2NFA to regular expression

The above method 1 can’t be used to model a 2NFA (construction hinges on determinism)
Method 2: 2NFA to regular expression

Same encoding as before, but:

1. Add symbol C (for crash) to \(\Gamma \); \(\Gamma = \{L,R,S,C\} \)
2. ppC is added for all missing transitions from \(p \) with some symbol in \(\Sigma \), and ppC for nonfinal states \(p \)
3. Instead of permitting successors if predecessor is present, \(L_{\text{license}} \) requires all possible successors transitions to be present for any predecessor, except
4. When a control sequence C is present

\[
\begin{align*}
01R & \quad b \quad 11R \quad 20R \quad a \quad 12L \quad 01R \quad b \quad 11C
\end{align*}
\]

1 is nonfinal
Method 2: 2NFA to regular expression

Intuition:

We’re accepting only strings where all corresponding paths eventually crash in the 2NFA

All accepting paths in \(L = L_{\text{base}} \cap L_{\text{license}} \) end in a crash. A word \(w \) is not in \(h(L_{\text{base}} \cap L_{\text{license}}) \) iff all paths crash for \(w \) with 2NFA \(M \).

\[L_2 = \Sigma^* - h(L_{\text{base}} \cap L_{\text{license}}); \]

A 2NFA \(M \) accepts a word \(w \) iff \(w \in L_2 \)
Method 2: 2NFA to regular expression

Note: this method can be seen as a regular expression model of Vardi’s (1989) set-based proof that 2NFA are regular:

Lemma 3.1: Let $A = (\Sigma, S, S_0, \rho, F)$ be a two-way automaton, and $w = a_0, \ldots, a_n$ be a word in Σ^*. A does not accept w if and only if there exists a sequence T_0, \ldots, T_{n+1} of subsets of S such that the following conditions hold:

1. $S_0 \subseteq T_0$,
2. $T_{n+1} \cap F = \emptyset$, and
3. for $0 \leq i \leq n$, if $s \in T_i$, $(s', k) \in \rho(s, a)$, and $i + k > 0$, then $s' \in T_{i+k}$.

Vardi (1989)
Method 3: 2NFA to regular expression (no complement)

Note:

We can’t perform a direct construction by modifying method 1 and have L_{license} “require” a subsequent transition since this may lead to acceptance of spurious (nonminimal) paths, e.g.:

\[
\begin{array}{cccc}
01R & b & 10L & 22R \\
\text{requires} & \text{requires} & \text{valid transitions} & \text{valid final state} \\
& & & \text{“requirements” fulfilled}
\end{array}
\]
Method 3: 2NFA to regular expression (no complement)

If we remove the requirement that strings end in “final states”, we can see that such a language \(L \) would accept strings like:

\[
\begin{align*}
01R & \quad b \quad 10L \quad 22R & \quad a \quad 22 & (1) \\
01R & \quad b \quad 10L & \quad a & (2)
\end{align*}
\]

Observation:
all nonminimal paths (1) can be produced from paths of type (2) by adding at least one symbol from \(\Gamma \) to strings in \(L \).
Method 3: 2NFA to regular expression (no complement)

We can now characterize directly the strings accepted by a 2NFA:

\[L_3 = h((L - \text{Insert}(L)) \cap \Delta^* FF) \]

- add at least one symbol from \(\Gamma \) somewhere (filters out spurious/nonminimal paths)
- must end in final state

A 2NFA \(M \) accepts a word \(w \) iff \(w \) in \(L_3 \)
Method 3: 2NFA to regular expression (no complement)

\[L_3 = h((L - \text{Insert}(L)) \cap \Delta^*QQ) \]

A 2NFA M accepts a word w iff w in \(L_3 \)

Proof sketch: if L contains what is a nonminimal (spurious) path in the computation of a 2NFA M, then L also contains the corresponding minimal path. Hence L-Insert(L) will reflect removal of all spurious paths and \(L_3 \) contains a word w iff 2NFA M accepts.
Experiments on order of intersection

“Check if nth last symbol is a” (n = 6 here)

\[
\begin{array}{ccc}
\text{k} & \text{size}(L_{\text{base}} \cap L_{\text{license}_0} \cap \ldots \cap L_{\text{license}_k}) & \text{size}(L_{\text{license}_0} \cap \ldots \cap L_{\text{license}_k}) \\
0 & 33 & 58 \\
1 & 77 & 1,394 \\
2 & 112 & 29,634 \\
3 & 166 & 589,570 \\
4 & 204 & 11,271,170 \\
5 & 226 & \text{NF} \\
6 & 210 & \text{NF} \\
7 & 131 & \text{NF} \\
8 & 138 & \text{NF} \\
9 & 181 & \text{NF}
\end{array}
\]

Expensive
Summary

2DFA/2NFA are convertible to regular expressions with an intermediate simulation encoding.

The proofs and construction bypass complications of analyzing “crossing sequences” and stress the local nature of 2DFA/2NFA computations.

Useable in practice.
Thank you

Code and examples at:
https://github.com/mhulden/2nfa