Evaluating Parallel Algorithms
for Solving Sylvester-Type
Matrix Equations

Direct Transformation-Based versus lterative
RV, Matrix-Sign-Function-Based Methods

N
3. 3 Robert Granat and Bo Kagstrom,
Umea University and HPC2N, Sweden

GCVENC, w; .
e 2 : : N = /
%Swedzs/z & Foundation for Strategic Research \'3. 52 radaes __\__ VEIENSKAPSRAD oL
Py i
) & PHHH




Outline

Sylvester-Type Matrix Equations
Direct Transformation-Based Methods
Matrix-Sign-Function-Based Methods
Matrix Equations as Linear Systems
Condition Estimation

ScaLAPACK Environment

Parallel Implementations
Experimental Evalutation

Summary

Future/Ongoing Work

References



Sylvester-Type Matrix Equations

Sylvester-type matrix equations arise in many
applications in science and engineering: block
diagonalization of matrices in Schur form, condition
estimation of eigenvalue problems, control theory etc.

The continuous-time Sylvester equation (SYCT):

AX-XB=C, AeR"™ BeR™, CeR"™"
Solution is unique iff A(A)NA(B) =

If we can solve SYCT, we can solve many other similar
equations

We consider and compare two different methods




Direct Transformation-Based Methods (1)

To solve SYCT apply Bartels-Stewart’s method:
o Transform A and B to real Schur form:
T,=0"AQ, T,=P'BP
0 Update the matrix C with respect to the transformations

C Q CP
o  Solve the reduced trlangular system
TX XT C
0 Transform the solutron back to the original coordinate
system
X = QXP

No extra conditions is imposed on A or B by the
method



Direct Transformation-Based Methods (2)

Triangular problem is solved by blocking

D, j-1
AX-XB=C& AX,-X,B,=C,—(D A, X, —> X,B,)
k=i+1 k=1
In parallel, we traverse the matrix C/X along its block
diagonals and solve SYCT subsystems and do
GEMM-updates w r t the subsolutions on the nodes




Matrix-Sign-Function-Based Methods (1)

Let Ze R™”, A(Z)c R have the Jordan decomposition

z=s|”  Ylst sec yrecuoon
0o J'

where J~ and J* contain the Jordan blocks with eigenvalues in

the open left and right half planes, respectively.

The matrix sign function is defined as

. B Ik O -1
sign(Z)=3_S S

O I,

The matrix sign function can be computed via Newton iteration for
the equation 7?2 =7:

Z,=Z7
Z.,.=(Z+2 ]2



Matrix-Sign-Function-Based Methods (2)

[J.D. Roberts, 11]:  sign(2)=1limZ,, and

A —-C 0 X
sign +1 ., =2
0O B | 0 1

Sign-function method can be applied to SYCT iff A
and —B are c-stable: Re(A.) <0, Vi

Parallel implementation by Benner and Quitana-Orti
(in PSLICOT)




Matrix Equations as Linear Systems

= All linear matrix equations can be
represented as a linear system of equations:

op(A)X —Xop(B)=C & Zyx=Yy
Zyer =1, ®op(A)—op(B) ®1I,,

x=vec(X), y=vec(C)

In blocked algorithms, Zx = y representation is used
In kernels for solving small-sized matrix equations.




Condition Estimation

An important quantity in the perturbation theory for Sylvester-
type equations is the separation between two matrices:
sep(A, B) = ”)1(1”1f_1H0p(A)X —Xop(B)|, =0, (Z

-1
min SYCT) - HZSYCTH

2
To compute sep(A,B) exactly costs O(M3N?3) flops (only of

interest in theory). We want to compute a reliable but low cost
estimate (serially as well as in parallel).

We apply a general method (Hager'84, Higham’88, Kagstrém-
Poromaa’92) for estimating H A—lH which only uses matrix
vectors products: o

Ax A'x

mm) we can estimate sep(A,B) for SYCT by solving the
equation itself to an O(M?N + MN?) cost.

Notice that when sep(A, B) is tiny, the SYCT equation is close

to singular, i.e., ill-conditioned (compare with the scalar case
x=c/(a—Db)).



ScaLAPACK Environment

HPC library for dense linear algebra on
distributed memory machines

Buildt on LAPACK, BLAS, PBLAS, BLACS
Fortan 77 SPMD object-oriented
programming style

2D processor grid

All matrices are blockpartitioned by rows and
columns and distributed using 2D block-cyclic

mapping



Parallell Implementations (1)

ScaLAPACK-style implementation of Bartels-
Stewart’s method (Granat-Kagstrém-Poromaa):
o Reduction to triangular form

Hessenberg reduction - PDGEHRD
QR-algorithm — PDLAHQR

o Transforming rhs and solution to tri. problem — PDGEMM

o Solving the triangular problem
Kernel SYCT-solver — DTRSYL
GEMM-updates — DGEMM

o Resulting routine PGESYCTD



Parallell Implementations (2)

ScalLAPACK:-style implementation of the
Matrix-sign-function-based method (Benner
and Quintana-Orti):

o LU decomposition — PDGETRF
o Solving linear systems of equations — PDGETRS
o Inversion based on LU decomposition — PDGETRI

o Solving triangular systems with multiple rhs —
PDTRSM

o Pivoting of a distributed matrix - PDLAPIV
o Resulting routine from PSLICOT — psb04md



Experimental Evaluation (1)

Two target parallel computers:

o IBM SP system
64 thin 120MHz nodes with 128MB RAM
150 Mbyte/sec peak network bandwidth
Well-balanced: t_flop/t_comm = 0.11

o Linux Super Cluster
120 dual 1.667MHz nodes with 1GB RAM

667 Mbyte/sec peak network bandwidth
Less well-balanced: t_flop/t_comm = 0.025



Experimental Evaluation (2)

Test problem matrices:  A=Q(aD, + M ,)Q"

We present three performance ratios 47,49y, 9z
o Measured parallel execution time

o Accuracy:. _
= Frobenius norm of absolute error: HX - X .
= Frobenius norm of absolute residual: HAX — XB - CH

If any ratio > 1, psb0O4md shows better results,
otherwise PGESYCTD performs equal or better

Condition estimation by computing a lower bound of
sep” (A, B)




Experimental Evaluation (3)

Wellconditioned problems on IBM SP sep,, ' (A,B) =10~
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Experimental Evaluation (4)

lllconditioned problems on IBM SP 10~ <sep,,” (A4,B)<10’
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Experimental Evaluation (5)

Wellconditioned problems on Linux Super Cluster sep,, (A,B) =107
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Experimental Evaluation (6)

lllconditioned problems on Linux Super Cluster 10° <sep,,” (A, B) <10°
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Experimental Evaluation (7)

Wellconditioned triangular problems on Linux Super Cluster sep,, (A,B)=10"
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Summary

Routine Generality Reliability Speed Accuracy
PGESYCTD | Aand B must have | Always Up to four times Always much
no eigenvalues in delivers a faster on the most better for
common result balanced parallel illconditioned
platform problems
Always much faster Tends to
for triangular problems | deliver the
(even on less smallest
balanced platform) residual norm
psb04md Aand Bmust | Did not always | Always faster for Slightly better
have no converge for general problems on absolute error
eigenvalues in | illconditioned | the less balanced norm for
common problems platform when wellconditioned
A and -B must converging problems

be c-stable




Ongoing/Future Work

. . SYCT
New implementations for all op(A)X £ Xop(B)=C

transpose and sign-variants of the
non-generalized standard matrix

LYCT

op(A)X + Xop(A")=C

equations op(A)Xop(B)+ X = C SYDT
eSoftware package SCASY will O Xont AT % — O e
also contain generalized solvers op(A)Xop(A™)— X =

and parallel condition estimators op(A)X tYop(B) =C, Gesy
op(D)X tYop(E)=F

*Ongoing investigation of hybrid
algorithms with fast kernels from op(A)Xop(B)+op(D)Xop(E)=C

GSYL

GLYCT

HPC library RECSY op(A) Xop(AT)—op(E) Xop(ET) = C

GLYDT

op(A)X(E")+op(E)Xop(A")=C
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