RECSY —
A HIGH PERFORMANCE LIBRARY 1
SYLVESTER-TYPE MATRIX EQUATI

[sSAK JONSsON, Bo KAGSTROM

Department of Computing Science
Umea University, SE-901 87 Umea, Sweder

{isak,bokg}@cs.umu.se

Euro-Par 2003, Klagenfurt, Austri:
August 26--29, 2003

OUTLINE

e Blocked algorithms and memory hierarchies.

e Sylvester-type matrix equations.

e Recursive blocked solvers for triangular Sylvester-type matrix ¢
e Implementation issues.

e The RECSY library.

e (Questions.

DEEP MEMORY HIERARCHIES

ARCHITECTURE EvOLUTION: HPC systems with multiple SMF
caches and more functional units per CPU.

KEY TO PERFORMANCE: Understand the algorithm and archite

GOAL: Maintain 2-dim data locality at every level of the 1-dim ti

e Hierarchical blocking.

e Matching an algorithm and its data structure.

1-DIM «— 2-DIM: BLOCKING

1. EXPLICIT MULTI-LEVEL BLOCKING

e Fach loop set matches a specific level of the memory hierarchy:.
e Deep knowledge of architecture characteristics needed.
e Needs a blocking parameter for each level.

e Two-level blocked matrix multiply (tuned for L1 and L2 cache

2. AUTOMATIC BLOCKING VIA RECURSION

e RECURSION: key concept for matching an algorithm and its d

e Recursive algorithms — divide and conquer style.
e Automatic HIERARCHICAL BLOCKING — variable and “squaris

e Only tuning parameter is L1 cache.

SYLVESTER-TYPE MATRIX EQUATI

Appear in different control theory applications: stability problems
balancing, H,, control.

ONE-SIDED:

e Sylvester (SYCT): AX — XB =C, A, B and C' general
e Lyapunov (LYCT): AX + XA! =, A general, C = C?* (sen
e Generalized (coupled) Sylvester (GCSY):

AX -YB=C
DX —-YE=F

TWO-SIDED:

e Discrete Sylvester (SYDT): AXBT — X =C
e Discrete Lyapunov (or Stein) (LYDT): AXA! — X =C
e Generalized Sylvester (GSYL): AXB! — CXD! = F

e Generalized Lyapunov
(GLYCT): AXE' + EXAT =F
(GLYDT): AXA! - EXEl =F

SYLVESTER-TYPE MATRIX EQUATI

Bartels-Stewart-type of algorithms =
second major step in the solution is to solve a TRIANGULAR MAT
Our blocked recursive technique works for alll Here

® TRIANGULAR DISCRETE-TIME SYLVESTER AND LYAPUNO
® TRIANGULAR GENERALIZED SYLVESTER AND LYAPUNOV

Great source of triangular matrix equation problems from:

e CONDITION ESTIMATION

— of the matrix equations themselves,

—and in various eigenspace problems including reordering of e

e COMPUTING FUNCTIONS OF MATRICES.

RECURSIVE TRIANGULAR SYLVESTER S

op(A) - X £ X -op(B)=p-C,C «— X (M x N), where
A(M x M) and B(N x N) upper quasi-triangular.
transA ='N’, transB ='N’, sign = —, 3 = 1:
Case 1 (1 < N < M/2): Split A and C' (by rows)
-l
A || Xo Xo Cs
ApnXy — XiB = (1 — ApXy
A Xy — XoB = Oy

1. SYLVCN’, 'N’, Agy, B, Cs)
2. GEMM(’N’, 7N’, o = —17 Alg, CQ, Cl)
3. SYLV(N', 'N’, Ay, B, Cy)

Case 2 (1 < M < N/2): Split B and C' (by columns)

L

RECURSIVE TRIANGULAR SYLVESTER S

Case 3 (N/2 < M < 2N): Split A, B and C

{An Am] {Xn XlQ] | Xn X12] {Bn B12] _
Ao || Xo1 Xoo Xo1 X9 Boy
A Xy — X1Bi = O — ApXy
A1 X192 — Xi9Boyy = (g — A1 Xoo + X115
A Xop — X1 By = Oy
A Xog — Xo9oBop = Uy + Xo1 B9

1. SYIV(N’, N, Ay, Byy, Coy)
2a. GEMM(N’, "N, @ = +1, Cy1, B, Cao)
2b GEI\/H\/[(’N’7 7N’, o = —17 Alg, 021, Cn)
3a. SYLV('N', 'N'| Agg, By, Cs9)
3b. SYLV('N', 'N, Ay, By, Cyy)
4. GEMM(’N’, 7N’, o = —1, Alg, 022, 012)
5. GENH\/[(’N’7 7Nj, o = -|—17 011, BlQ, 012>
6. SYLV('N', "N, Ay, Boa, O12)

Operations 2a, 2b can be executed in parallel, as well as Operatio

IMPLEMENTATION ISSUES

Two alternatives for doing the recursive splits:

1. Always split the largest dimension in two (Cases 1 and 2).

2. Split both dimensions simultaneously (Case 3) when the dimer
factor 2 from each other.

2. = a shorter but wider recursion tree, which offers more “para

USE OF BLAS ROUTINES

The recursive approach gives algorithms that call level 3 BLAS ro
SYRK, etc.) with square blocks. This enables the best performan
BLAS routines.

SYLVESTER KERNEL

For problems smaller than the block size, the dimension is split in
is of size 2 X 2 — 4 x 4, when subsystems are solved using

(B®A—1,® I,,)vec(X) = vec(C)

//

IMPACT OF KERNEL SOLVERS

Kernel solvers execute O(N?) flops out of the total O(N?).
Model of the overall computation rate:

LG

- 3_AN2
2N G4N +

~ Total number of flops
- GEMM time + Kernel time

where G = DGEMM perf., and K = kernel solver pertf.

Sylvester equation solver performance (GEMM performance is 200 and 500 Mflops/s, re

S

500 T T T T
X
>
450 |- T
—_— - > - - -
400 [~ . ’ xT -
X _ - -7
—~ 350 K X —
& P -
= -7 -7
k=) - s e
= 300 : s -
e / — -
[<b) X
o / —
= ; . _ -
g 250 ,’ -7
g : 2 -
) : s 7
o
—= 200 : -
2 / Ll O Ligiles
4 O e e -— T T T .
(@) . % PR o e - ==
150 .-y _ S Sty
; -7, -
. // P @ - O
| 4 / -7
100 / /)</ _
Sy S —— 2x2 kernel perf.=0.3 M
50 27 — — 2x2 kernel perf.=1 Mflc
e, 7 O© GEMM perf.=200 Mflops/s — - 2x2 kernel perf.=3 Mflc
7 x GEMM perf.=500 Mflops/s 2x2 kernel perf.=10 Mfl
O Il Il Il Il
o 500 1000 1500 2000

Problem size

IMPACT OF KERNEL SOLVERS
Modelling results:

e N = 2500; G = 500, K = 0.3 Mflops/s =

Overall performance is at most approaching 50% of GEMM pe
e N = 2500; G = 500, K = 3.0 or 10 Mflops/s =

Overall performance rather quickly approaches 80-90% of GEN
o N = 750; G = 500, K = 0.3 Mflops/s =

Kernel flops = 0.3%, Kernel time = 80%

(e.g. LAPACK DTGSY2 on modern RISC/CISC processors)

DTGSY2 designed with the primary goal of producing high-ac
signaling ill-conditioning (complete pivoting, overflow guarding

Trade-off between ROBUSTNESS, RELIABILITY AND SPEED.

Kernel performance decisive for the overall performance of matrix

OPTIMIZED SUPERSCALAR KERNE

Our design approach:

e One single routine to solve a kernel problem using Kronecker p
representation —-
great potential for register reuse.

e LU with partial pivoting and overflow guarding, forward and b
using complete loop unrolling.

e Matrix multiply kernel “lite” using register blocking techniques
unrolling and fusion).

Facilitates for the compiler to look ahead and schedule the resultir
optimally.

TWO-SIDED MATRIX EQUATION!
CoST AND EXECUTION ORDER

Recursive blocked algorithms require both extra workspace (two-s
and more flops compared to the standard elementwise algorithms.

Matrix Overall cost in flops Flop r
equation (M =
SYDT | SM*N +2MN? (M < N)| 116t
2M?N +SMN? (M > N)
LYDT N3 1.56:
GSYL |3M*N +4MN?* (M < N)| 1.16¢
AM?N +3MN? (M > N)
GLYCT 2L N3 1.31:
GLYDT s 1.56:

Outperform the standard algorithms for large enough problems—

LOCALITY.

DATA REFERENCE PATTERNS: Order in which they access data
and how many times the data is moved in the memory hierarchy:.

SMP PARALLELISM

SMP parallelism is obtained by solving
independent equations as different OpenMP
sections.
Recursion:

e Shows what parts can be solved in parallel.

e Creates problems that are large = coarse
granularity:.

Also, due to the coarse granularity, SMP versions

of DGEMM run well.

Mflops/s

COUPLED SYLVESTER — SMP PERFOR

1000

900

800

700

600

500

400

300

200

100

DTGSYL on Power3. Peak is 800/1600 Mflops/s (1/2 proc)

LAPACK w/ DTGSYZ
LAPACK w/ supersc.
LAPACK w/ supersc.
Rec. alg. w/ new kerr
Rec. alg. w/ SMP BL.
Rec. alg. w/ SMP BL.

Rec. alg., using tradit
T

500

1000

Milops/second

2500

2000

1500

1000

500

TRIANGULAR AXB! — X = C (SY]
IBM POWER 3

Triangular Sylvester on IBM Power3

A A A I,,\,,,I;I,,,,\,\, ’l,,,!ll,' ,,
—=— A. SLICOT sSBO4PY
— B. rtrsydt
------ C. rtrsydt w/ SMP. BLAS
--------- D. rtrsydt w/ SMP BLAS and re
o 500 1000 1500
M=N

RECSY

e A library that encompasses all eight mentioned matrix equatio
SMP parallel versions.

e Recursion is done using Fortran 90 RECURSIVE SUBROUTINES.
e [ixtra memory buffered are dynamically allocated, or can be p
e SMP versions are available on all platforms with OpenMP com

o 77 Wrappers for SLICOT and LAPACK routines provided w1

recompile “legacy” code, only relink.
e Fall-back routines provide the same accuracy and stability as t

e Source publicly available at http://www.cs.umu.se/ isak/

RECSY — UNIPROCESSOR ROUTI

® RECSYCT (UPLOSIGN, SCALE, M, N, A, LDA, B, LDB, C, LDC, INFC
(LAPACK: DTRSYL)

® RECLYCT (UPLO, SCALE, M, A, LDA, C, LDC, INFO, MACHINE) (SLI

® RECGCSY(UPLOSIGN, SCALE, M, N, A, LDA, B, LDB, C, LDC, D, L
INFO, MACHINE) (LAPACK: DTGSYL)

® RECSYDT (UPLOSIGN, SCALE, M, N, A, LDA, B, LDB, C, LDC, INFC
WKSIZE) (SLICOT: SB04PY)

® RECLYDT (UPLO, SCALE, M, A, LDA, C, LDC, INFO, MACHINE, WORK
(SLICOT: SBO3MX)

® RECGSYL (UPLOSIGN, SCALE, M, N, A, LDA, B, LDB, C, LDC, D, L
MACHINE, WORKSPACE, WKSIZE) (No equivalent in SLICOT or LAPACK!)

® RECGLYDT (UPLO, SCALE, M, A, LDA, E, LDE, C, LDC, INFO, MACE
WKSIZE) (SLICOT: SGO3AX)

® RECGLYCT(UPLO, SCALE, M, A, LDA, E, LDE, C, LDC, INFO, MACH
WKSIZE) (SLICOT: SGO3AY)

RECSY — MULTIPROCESSOR ROUT

® RECSYCT_P(PROCS, UPLOSIGN, SCALE, M, N, A, LDA, B, LDB, C,
® RECLYCT_P(PROCS, UPLO, SCALE, M, A, LDA, C, LDC, INFO, MACH

® RECGCSY_P(PROCS, UPLOSIGN, SCALE, M, N, A, LDA, B, LDB, C,
F, LDF, INFO, MACHINE)

® RECSYDT_P (PROCS, UPLOSIGN, SCALE, M, N, A, LDA, B, LDB, C,
WORKSPACE, WKSIZE)

® RECLYDT_P(PROCS, UPLO, SCALE, M, A, LDA, C, LDC, INFO, MACH
WKSIZE)

® RECGSYL_P(PROCS, UPLOSIGN, SCALE, M, N, A, LDA, B, LDB, C,
INFO, MACHINE, WORKSPACE, WKSIZE)

e RECGLYDT_P(PROCS, UPLO, SCALE, M, A, LDA, E, LDE, C, LDC, I
WORKSPACE, WKSIZE)

® RECGLYCT_P(PROCS, UPLO, SCALE, M, A, LDA, E, LDE, C, LDC, I
WORKSPACE, WKSIZE)

UNREDUCED TwO-SIDED: AXA! — EX
SOLVING AND SEP|GLYDT|-ESTIMA

a)

SGO3AD using SGO3AX

SGO3AD using REC

N | Total time Solver | Total time SO
50 0.0277 499 % 0.0185 20.
100 0.180 51.2 % 0.0967 9.
250 2.89 46.8 % | 1.62 4.
5001 59.0 423 % | 34.5 1.
750 303.4 42.0 % | 177.5 0.
1000 | 646.6 44.6 % | 361.8 1.
50 0.117 87.6 % | 0.0263 45
100 0.709 873 % | 0.152 40.
250 9.98 84.5 % | 2.08 25.
500 178.6 80.9 % | 378 9.:
7501 924.1 80.9 % | 184.4 4.
1000 | 2076.6 82.7 % 1391.8 8.

We get another 2x speedup (N > 500) by replacing LAPACK rou
DHGEQZ by Dackland-Kagstrom’s blocked Hessenberg-triangulas
algorithms (ACM TOMS'99) for transforming (A, E) to generaliz

CONCLUSIONS — SO FAR

e State-of-the-art HPC systems have deep memory hierarchie

e Recursion efficiently provides automatic variable blocking for
hierarchy:.

e Recursive blocking = Temporal locality

e Our recursive blocked implementations with optimized kernels
—are GEMM-rich, and

— show significant performance improvements (30% to 400+%
e Code at http://www.cs.umu.se/ " isak/recsy

— Uses F'90 for recursion, dynamic memory allocation
— Uses (nested) OpenMP for SMP parallelism
— Overloads LAPACK and SLICOT routines for Sylvester-typ

