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Abstract. The canonical structures of controllability (A, B) and ob-
servability (A, C) matrix pairs associated with a state-space system are
studied under small perturbations. We show how previous work for gen-
eral matrix pencils can be applied to the stratification of controllability
and observability pairs. We also present how the new results are used
in StratiGraph, which is a software tool for computing and visualizing
orbit and bundle closure hierarchies.

1 Introduction

Computing the canonical structure of a matrix pencil is a well known ill-posed
problem. Small perturbations in the input data can dramatically change the
canonical structure. For example, a square singular pencil becomes regular and
multiple eigenvalues split apart. Nevertheless, degenerate canonical structures
of matrix pencils appear in control applications, e.g., computing controllable
subspaces and uncontrollable modes. Besides knowing the canonical structure of
a system pencil associated with a state-space system, it is equally important to
know its nearby canonical structures in order to explain the behaviour of the
state-space system under small perturbations.

A stratification provides qualitative information about which structures are
related to each other, which structures can be found near a specific matrix or
matrix pencil, etc. The theory describing the complete stratification of orbits
and bundles of general matrices and matrix pencils is presented by Edelman,
Elmroth, and K̊agström [2, 3]. Based on this theory, a software tool, StratiGraph,
for computing and visualizing these hierarchies has been developed [11, 13, 4].

In line of this work, we now continue by considering the controllability and
observability pairs (A, B) and (A, C) associated with the state-space system

ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t), (1.1)

where A ∈ Cn×n, B ∈ Cn×m, C ∈ Cp×n and D ∈ Cp×m. In this contribution,
we show how the previous work for general matrix pencils can be applied to the
stratification of controllability and observability pairs. We also present how the
new results are used in StratiGraph.



2 Review of the general matrix pencil case

A general matrix pencil, A − λB, where A,B ∈ Cm×n can have column and
row minimal indices as well as finite and infinite eigenvalues (infinite if B is
singular). Notice that all matrix pencils where m 6= n are singular, which is the
case in most control applications. Moreover, a general m× n matrix pencil can
be transformed into Kronecker Canonical Form, KCF [7]:

P−1(A − λB)Q = diag(Lε1 , . . . , Lεp , J(µ1), . . . , J(µt), LT
η1

, . . . , LT
ηq

),

where P of size m×m and Q of size n×n are nonsingular. J(µ1), . . . , J(µt) form
the regular structure and are Jordan blocks of the finite and infinite eigenvalues:

Jj(λi) ≡




µi − λ 1
. . . . . .

. . . 1
µi − λ




and Jj(∞) ≡




1 −λ
. . . . . .

. . . −λ
1




.

Li and LT
j correspond to the minimal indices of a singular pencil:

Li ≡



−λ 1

. . . . . .
−λ 1


 and LT

j ≡




−λ

1
. . .
. . . −λ

1




.

An i× (i + 1) block, Li, is called a right singular block associated with a column
minimal index i, and a (j + 1) × j block, LT

j , is called a left singular block
associated with a row minimal index j. Li has a right singular vector xT

i+1 =
[1 λ λ2 . . . λi] such that Lixi+1 = 0 for any λ ∈ C. Similarly, LT

j has a left
singular vector yj+1 = [1 λ λ2 . . . λj ] such that yj+1L

T
j = 0 for any scalar λ.

The right and left singular blocks form the singular structure of A − λB.

2.1 Orbits and bundles

Two matrix pencils, A1 − λB1 and A2 − λB2, are said to be strictly equivalent
if there exists non-singular matrices, P and Q, such that

A2 − λB2 = P−1(A1 − λB1)Q.

The set of all equivalent pencils to A − λB defines the equivalence orbit of
the pencil, i.e.,

O(A − λB) = {P−1(A − λB)Q|det(P )det(Q) 6= 0}.
O(A − λB) consists of all pencils with the same eigenvalues and the same KCF
as A − λB. To be specific, these orbits of matrix pencils are manifolds in the
2mn-dimensional space of m× n matrix pencils.



A bundle B(A − λB) is a union of orbits. If two pencils have the same Kro-
necker structure except that their distinct eigenvalues are different, they are said
to be in the same bundle.

2.2 Codimension

The dimension of an orbit or bundle is equal to the dimension of its tangent
space and is uniquely determined by the Kronecker structure. In practice, it is
often more convenient to work with the dimension of the space complementary
to the tangent space, denoted codimension.

The more degenerate the Kronecker structure of a pencil is, the smaller is
the dimension and the larger is the codimension of its corresponding orbit and
bundle. For the most generic pencil of size m×n (m 6= n), the orbit or the bundle
spans the complete 2mn-dimensional space, hence the codimension is zero. The
most degenerate m × n (m 6= n) case is the zero pencil 0m×n − λ0m×n, which
orbit and bundle both have codimension 2mn.

The main difference between orbits and bundles is that the eigenvalues are
not specified for a bundle, i.e., its tangent space spans one extra dimension for
each distinct eigenvalue compared to the corresponding orbit. In conclusion, the
codimension of a bundle is equal to the codimension of a corresponding orbit
minus the number of distinct eigenvalues.

2.3 Integer partitions and stratification

Edelman, Elmroth, and K̊agström [3] show how Kronecker structures can be
represented as integer partitions such that the closure relations of the various
orbits and bundles are revealed by applying a simple set of rules. The closure
relations or the closure hierarchy form the stratification of Kronecker structures.

An integer partition κ = (k1, k2, k3, ...) such that k1 ≥ k2 ≥ . . . ≥ 0 is said
to dominate another partition λ, i.e., κ > λ if k1 +k2 + . . .+ki ≥ l1 + l2 + . . .+ li
for i = 1, 2, . . ., where λ 6= κ. Different partitions of an integer can in this way
form a dominance ordering. If κ > λ, sum(κ) = sum(λ) and there is no partition
µ such that κ > µ > λ, then κ is said to cover λ.

In the rules defined by Edelman, Elmroth, and K̊agström, the integer par-
titions are illustrated as piles of coins in a table. An integer partition κ =
(k1, k2, . . . , kn) is represented as n piles of coins where pile i has ki coins
(see Figure 1a). The covering relation between two integer partitions can then
easily by determined. If an integer partion µ can be obtained from κ by moving
one coin in κ one column rightward or one row downward and µ remains mono-
tonic decreasing (Figure 1b), then κ covers µ. This defines a minimum rightward
coin move.

For a matrix pencil, the minimal column and row indices form the integer
partitions R = (r0, r1, . . .) and L = (l0, l1, . . .), respectively. Here, ri is the
number of Li blocks of size greater or equal to i. Similarily, lj is the number
of LT

j blocks of size greater or equal to j. The sizes of the Jordan blocks in



(a) Coin table (b) Rightward move

Fig. 1. In (a) the integer partion (3, 2, 2, 1) is shown as a coin table and (b) shows
a minimum rightward coin move, where (3, 2, 2, 1) becomes (2, 2, 2, 2) and hence
(3, 2, 2, 1) covers (2, 2, 2, 2).

Weyr notation corresponding to each eigenvalue µi form the integer partitions
Jµi

= (j(i)
1 , j

(i)
2 , . . . , j

(i)
max), i.e., j

(i)
k is the number of Jordan blocks of size greater

or equal to k. The rules to apply to get the stratification of a matrix pencil is
shown in Theorem 1.

Theorem 1. [3] Given the structure integer partitions L,R and Jµi
of A − λB,

the following if-and-only-if rules find Ã − λB̃ fulfilling orbit or bundle covering
relations with A − λB.

O(A − λB) covers O(Ã − λB̃):

(1) Minimum rightward coin move in R
(or L).

(2) If the rightmost column in R (or L)
is one single coin, move that coin to
a new rightmost column of some Jµi

(which may be empty initially).
(3) Minimum leftward coin move in any

Jµi .
(4) Let k denote the total number of coins

in all of the longest (= lowest) rows
from all of the Jµi . Remove these
k coins, add one more coin to the
set, and distribute k + 1 coins to rp,
p = 0, . . . , t and lq, q = 0, . . . , k −
t − 1 such that at least all non-zero
columns of R and L are given coins.

Rules 1 and 2 may not make coin moves
that affect r0 (or l0).

B(A − λB) covers B(Ã − λB̃):

(1) Same as rule 1 to the left.
(2) Same as rule 2 to the left, except it is

allowed only to start a new set cor-
responding to a new eigenvalue (i.e.,
no appending to nonempty sets).

(3) Same as rule 3 to the left.
(4) Same as rule 4 to the left, but apply

only if there is just one eigenvalue in
the KCF or if all eigenvalues have at
least two Jordan blocks.

(5) Let any pair of eigenvalues coalesce,
i.e., take the union of their sets of
coins.

We remark that several orbits (or bundles) in a closure hierarchy can have
the same codimension, which corresponds to branches in the hierarchy. However,
an orbit (or bundle) structure can never be covered by a less or equally generic
structure. This implies that structures within a branch of a closure hierarchy
can be ordered by their codimensions (or dimensions).

2.4 Closure hierarchies as a graph representation in StratiGraph

The closure hierarchy of canonical structures of an orbit (or bundle) can be
represented as a connected graph, where the nodes in the graph correspond
to different canonical structures in the hierarchy, and the edges represent the
covering relations. This representation is used in StratiGraph. Several structures
in different branches of the closure hierarchy can have the same codimension and
are then aligned on the same horizontal level. A screen-shot of a StratiGraph
graph is shown in Figure 2.



3 Stratification of matrix pairs

A state-space system (1.1) can be represented and analyzed in terms of a system
pencil

S(λ) = A − λB, where A =
[
A B
C D

]
, B =

[
In 0
0 0

]
.

Consequently, the system pencils associated with the controllability pair (A, B)
and the observability pair (A,C) are

SC(λ) =
[
A B

]− λ
[
In 0

]
, (3.2)

and

SO(λ) =
[
A
C

]
− λ

[
In

0

]
, (3.3)

respectively. Notice that the system pencils SC(λ) and SO(λ) are special cases of
S(λ). Due to the special structure of the λ-part matrix of SC(λ), the controlla-
bility system pencil can only have right singular blocks Li and finite eigenvalues
in its KCF. Similarly, the λ-part matrix of SO(λ) has full column rank and it
can only have left singular blocks LT

j and finite eigenvalues in its KCF.
In the following we consider the orbit and bundle for Γ -equivalence of matrix

pairs [14]. Γ-equivalence for a controllability pair (A,B) is defined as

P
[
A− λI B

] [
P−1 0
R Q−1

]
=

[
P (A− λI)P−1 + PBR PBQ−1

]
, (3.4)

and for the observability pair (A, C) as

[
P S
0 T

] [
A− λI

C

]
P−1 =

[
P (A− λI)P−1 + SCP−1

TCP−1

]
, (3.5)

where P ∈ Cn×n, Q ∈ Cm×m, T ∈ Cp×p,

[
P−1 0
R Q−1

]
and

[
P S
0 T

]

are nonsingular, and R ∈ Cm×n and S ∈ Cn×p.
Both necessary and sufficient conditions for closures of matrix pairs have

been studied in [8–10]. In [9], also the necessary conditions for cover relations of
matrix pencils with no minimal row indices has been derived. From [9, 10] and
[3] it is possible to derive sufficient as well as necessary conditions for covering
relations of matrix pairs.

Expressed in coin moves, a less generic matrix pair can be obtained by the
rules of the following theorem.



Theorem 2. [3, 12] Given the structure integer partitions L,R and Jµi
of (A, B)

or (A, C), the following if-and-only-if rules find (Ã, B̃) or (Ã, C̃) fulfilling orbit
or bundle covering relations with (A, B) or (A, C), respectively.

O(A, B) covers O(Ã, B̃) (or O(A, C) cov-

ers O(Ã, C̃)):

(1) Minimal rightward coin move in R (or
L).

(2) If the rightmost column in R (or L)
is one single coin, move that coin as
a new rightmost column of some J µi

(which may be empty initially).
(3) Minimal leftward coin move in any

J µi
.

Rules 1 and 2 may not make coin moves
that affect r0 (or l0).

B(A, B) covers B(Ã, B̃) (or B(A, C) covers

B(Ã, C̃)):

(1) Same as rule 1 to the left.
(2) Same as rule 2 to the left, except it is

allowed only to start a new set corre-
sponding to a new eigenvalue (i.e., no
appending to nonempty sets).

(3) Same as rule 3 to the left.
(4) Let any pair of eigenvalues coalesce,

i.e., take the union of their sets of
coins.

The major difference between the rules for matrix pencils and matrix pairs, is
that rule 4 (both for orbits and bundles) in Theorem 1 does not apply to matrix
pairs. The rule does not exist since there is only one type of singular blocks (Li

or LT
j ) in each matrix pair type. Moreover, in rules 1 and 2 of Theorem 2, the

(A,B) pair applies to the R partition only and the (A,C) pair applies to the L
partition only.

Corollary 1. [12] O(A, B) covers O(Ã, B̃) (or O(A,C) covers O(Ã, C̃)) if and
only if (Ã, B̃) (or (Ã, C̃)) can be obtained from (A,B) (or (A, C)) by using one
of the rules in the left part of Theorem 2.

Corollary 2. [12] B(A, B) covers B(Ã, B̃) (or B(A, C) covers B(Ã, C̃)) if and
only if (Ã, B̃) (or (Ã, C̃)) can be obtained from (A,B) (or (A, C)) by using one
of the rules in the right part of Theorem 2.

The codimension of the orbit for matrix pairs can be calculated as the sum
of separate codimensions [1, 6]:

cod(A,B) = cJor + cRight + cJor,Sing, (3.6)

and
cod(A,C) = cJor + cLeft + cJor,Sing. (3.7)

The sums come from the interaction between the Jordan blocks, the right/left
singular blocks (Lj ↔ Lk or LT

j ↔ LT
k ), and from the interaction of the Jordan

structure with the singular blocks. Let s1(µi) ≥ s2(µi) ≥ · · · ≥ sgi(µi) denote
the sizes of the Jordan blocks corresponding to eigenvalue µi with gi blocks,
i = 1, . . . , t. Then the separate codimensions are given as

cJor =
t∑

i=1

gi∑

j=1

(2j − 1)sj(µi) =
t∑

i=1

(s1(µi) + 3s2(µi) + · · ·+ (2gi − 1)sgi(µi)),



cRight =
∑

j>k

(j − k − 1), cLeft =
∑

j>k

(j − k − 1), and

cJor,Sing = (size of complete regular part) · (number of singular blocks).

The codimension of an associated bundle is equal to the codimension of the orbit
minus the number of distinct eigenvalues.

The generic Kronecker structure of the controllability pair (A, B) has R =
(r0, . . . , rα, rα+1) where r0 = · · · = rα = m, rα+1 = n mod m, and α = bn/mc.
For the observability pair (A,C) the generic case has L = (l0, . . . , lα, lα+1) where
l0 = · · · = lα = p, lα+1 = n mod p, and α = bn/pc. The most degenerated case
of SC(λ) has m L0 blocks and n Jordan blocks of size 1 × 1 corresponding to
an eigenvalue of multiplicity n. Similarly, SO(λ) has m LT

0 blocks and n 1 × 1
Jordan blocks. In other words, the most generic cases correspond to completely
controllable and observable systems, while the most degerate cases correspond to
systems with n uncontrollable and n unobservable multiple modes, respectively.

3.1 A 4 × 2 observability matrix pair

Fig. 2. Screen-shot from StratiGraph visualizing the complete stratification of the orbit
to a general 4 × 2 matrix pencil. The grayed area marks the structures with no right
singular blocks.



For illustration we consider the stratification of the orbit of a small 4 × 4
system pencil with two states, two inputs and two outputs:

S(λ) = A − λB =
[
A B
C 0

]
− λ

[
I2 0
0 0

]
,

where A,B, C ∈ C2×2.

Fig. 3. Screen-shot from StratiGraph visualizing the complete stratification of the orbit
corresponding to a 4 × 2 observability matrix pair (A, C) with two states and two
outputs.

The orbit stratification of a 4 × 4 general matrix pencil is a graph with 47
different structures and does not consider the special structure of the control-
lability and observability pairs. We start by considering the observability pair
(A,C). The observability system pencil

SO(λ) =
[
A
C

]
− λ

[
I2

0

]
,

is now 4 × 2. The stratification of the orbit of a general 4 × 2 matrix pencil
has only 10 structures, illustrated in Figure 2, which shows the closure hierarchy
graph computed and visualized by StratiGraph. Still we have not used the special
structure of SO(λ). Considering that SO(λ) has full column rank, the pencil can



have no right singular blocks. From Figure 2, we see that in the more degenerate
structures, not only left singular blocks appear but also right singular blocks
that we know can not exist.

StratiGraph has recently been extended with built-in support for matrix pairs
(A,B) and (A, C). In Figure 3, the stratification of the same problem size as in
Figure 2 is shown, but now as a matrix pair (A, C) when the rules in Theorem
2 is used. The closure hierarchy graph of SO(λ) is identical to the grayed part
of the graph shown in Figure 2, i.e., the part of the graph with no right singular
blocks.

The result is very similar for the controllability matrix pair (A, B), but com-
pared to a general 2 × 4 matrix pencil, the resulting graph has no structures
with left singular blocks. This is the case both when looking at orbits as well as
bundles.

In conclusion, the incorporation of the stratification of observability and con-
trollability pairs into StratiGraph makes it much easier to view and understand
the qualitative behavior of such pairs under small perturbations. Ongoing work
include the study of matrix triplets and quadruples and the incorporation of
quantitative information in StratiGraph, providing computable bounds on the
distance to nearby structures in a closure hierarchy [5].
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