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Abstract. An implementation of a parallel ScaLAPACK-style solver for
the general Sylvester equation, op(A)X−Xop(B) = C, where op(A) de-
notes A or its transpose AT , is presented. The parallel algorithm is based
on explicit blocking of the Bartels-Stewart method. An initial transfor-
mation of the coefficient matrices A and B to Schur form leads to a
reduced triangular matrix equation. We use different matrix traversing
strategies to handle the transposes in the problem to solve, leading to
different new parallel wave-front algorithms. We also present a strat-
egy to handle the problem when 2 x 2 diagonal blocks of the matrices in
Schur form, corresponding to complex conjugate pairs of eigenvalues, are
split between several blocks in the block partitioned matrices. Finally,
the solution of the reduced matrix equation is transformed back to the
originally coordinate system. The implementation acts in a ScaLAPACK
environment using 2-dimensional block cyclic mapping of the matrices
onto a rectangular grid of processes. Real performance results are pre-
sented which verify that our parallel algorithms are reliable and scalable.

Keywords: Sylvester matrix equation, continuous-time, Bartels–Stewart
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1 Introduction

We present a parallel ScaLAPACK-style solver for the Sylvester equation (SYCT)

op(A)X −Xop(B) = C, (1)

where op(A) denotes A or its transpose AT . Here A of size M ×M , B of size
N ×N and C of size M ×N are arbitrary matrices with real entries. Equation
(1) has a unique solution X of size M ×N if and only if op(A) and op(B) have
disjoint spectra. The Sylvester equation appears naturally in several applications.
Examples include block-diagonalizing of a matrix in Schur form and condition
estimation of eigenvalue problems (e.g., see [15, 10, 16]).
Our method for solving SYCT (1) is based on the Bartels–Stewart method [1]:



1. Transform A and B to upper (quasi)triangular form TA and TB , respectively,
using orthogonal similarity transformations:

QT AQ = TA, PT BP = TB .

2. Update the matrix C with respect to the transformations done on A and B:

C̃ = QT CP.

3. Solve the reduced (quasi)triangular matrix equation:

op(TA)X̃ − X̃op(TB) = C̃.

4. Transform the solution X̃ back to the original coordinate system:

X = QX̃PT .

The quasitriangular form mentioned in Step 1 is also called the real Schur
form, which means that the matrix is upper block triangular with 1 × 1 and
2 × 2 diagonal blocks, corresponding to real and complex conjugate pairs of
eigenvalues, respectively. To carry out Step 1 we use the QR-algorithm [2]. The
updates in Step 2 and the back-transformation in Step 4 are carried out using
ordinary GEMM-operations C ← βC +αop(A)op(B), where α and β are scalars
[5, 13, 14].

Our focus is on Step 3. Using the Kronecker product notation, ⊗ , we can
rewrite the triangular Sylvester equation as a linear system of equations

Zx = y, (2)

where Z = IN⊗op(A)−op(B)T ⊗IM is a matrix of size MN×MN , x = vec(X)
and y = vec(C). As usual, vec(X) denotes an ordered stack of the columns of
the matrix X from left to right starting with the first column. The linear system
(2) can be solved to the cost of O(M3N3) using ordinary LU factorization with
pivoting. This is a very expensive operation, even for moderate-sized problems.
Since A and B are (quasi)triangular, the triangular Sylvester equation can indeed
be solved to the cost O(M2N + MN2) using a combined backward/forward
substitution process [1]. In blocked algorithms, the explicit Kronecker matrix
representation Zx = y is used in kernels for solving small-sized matrix equations
(e.g., see [11, 12, 15]).

The rest of the paper is organized as follows: In Section 2, we give a brief
overview of blocked algorithms for solving the triangular SYCT equation. Section
3 is devoted to parallel algorithms focusing on the solution of the reduced tri-
angular matrix equations. Finally, in Section 4, we present experimental results
and discuss the performance of our general ScaLAPACK-style solver.

Our parallel implementations mainly adopt to the ScaLAPACK software con-
ventions [3]. The P processors (or virtual processes) are viewed as a rectangular
processor grid Pr×Pc, with Pr ≥ 1 processor rows and Pc ≥ 1 processor columns
such that P = Pr · Pc. The data layout of dense matrices on a rectangular grid
is assumed to be done by the two-dimensional (2D) block-cyclic distribution
scheme.



2 Blocked Algorithms

Blocking is a powerful tool in Numerical Linear Algebra to restructure well-
known standard algorithms in level 3 operations with the potential to reuse
data already stored in cache or registers. This will make things faster and more
efficient on one processor or in a shared memory environment. Blocking is also
useful for parallelizing tasks in distributed memory environments.

2.1 The Non-transposed Case

We start by reviewing the serial block algorithm proposed in [15] for the non-
transposed triangular Sylvester equation

AX −XB = C. (3)

Here A and B have already been transformed to real Schur form. Let MB and
NB be the block sizes used in the partitioning of A and B, respectively. Then
MB is the row-block size and NB is the column-block size of C and X (which
overwrites C). Now, the number of diagonal blocks of A and B can be expressed
as Da = dM/MBe and Db = dN/NBe, respectively. Then Equation (3) can be
rewritten in block-partitioned form:

AiiXij −XijBjj = Cij − (
Da∑

k=i+1

AikXkj −
j−1∑

k=1

XikBkj), (4)

where i = 1, 2, . . . , Da and j = 1, 2, . . . , Db. Based on this summation formula,
a serial blocked algorithm can be formulated, see Figure 1.

for j=1, Db

for i=Da, 1, -1
{Solve the (i, j)th subsystem}
AiiXij −XijBjj = Cij

for k=1, i− 1
{Update block column j of C}
Ckj = Ckj −AkiXij

end
for k=j + 1, Db

{Update block row i of C}
Cik = Cik + XijBjk

end
end

end

Fig. 1. Block algorithm for solving AX −XB = C, A and B in upper Schur form.



2.2 The Transposed Cases

The three other cases, namely,

AX −XBT = C, AT X −XB = C, and AT X −XBT = C,

can be treated in the same way. Each of these matrix equations correspond to a
summation formula based on the same block partitioning of the matrices:

AiiXij −XijB
T
jj = Cij − (

Da∑

k=i+1

AikXkj −
Db∑

k=j+1

XikBT
jk),

AT
iiXij −XijBjj = Cij − (

i−1∑

k=1

AT
kiXkj −

j−1∑

k=1

XikBkj),

AT
iiXij −XijB

T
jj = Cij − (

i−1∑

k=1

AT
kiXkj −

Db∑

k=j+1

XikBT
jk).

For each of these summation formulas a serial block algorithm is formulated. In
Figure 2, we present the one corresponding to the reduced triangular equation
AT X −XBT = C.

for j= Db, 1, -1
for i=1, Da

{Solve the (i, j)th subsystem}
AT

iiXij −XijB
T
jj = Cij

for k=i + 1, Da

{Update block column j of C}
Ckj = Ckj −AT

ikXij

end
for k=1, j − 1

{Update block row i of C}
Cik = Cik + XijB

T
kj

end
end

end

Fig. 2. Block algorithm for solving AT X −XBT = C, A and B in upper Schur form.

Notice that each summation formula sets a starting point in the matrix C/X
where we start to compute the solution. For example, while solving subsystems
and updating C/X with respect to these subsolutions in Figure 1, we traverse the
matrix C/X along its block diagonals from South-East to North-West (or vice
versa). This “wavefront” starts in the South-West corner of C/X, as depicted
in Figure 3, and moves in the North-Eastern direction. Along the way, each
computed Xij will be used to update block-row i and block-column j of C.



Fig. 3. Traversing the matrix C/X when solving AX −XB = C.

3 Parallel Block Algorithms

We assume that the matrices A, B and C are distributed using 2D block-cyclic
mapping across a Pr × Pc processor grid. To carry out Steps 1, 2 and 4 of
the Bartels–Stewart method in parallel we use the ScaLAPACK library-routines
PDGEHRD, PDLAHQR and PDGEMM [3]. The first two routines are used in Step 1 to
compute the Schur decompositions of A and B (reduction to upper Hessenberg
form followed by the parallel QR algorithm [9, 8]). PDGEMM is the parallel imple-
mentation of the level 3 BLAS DGEMM operation and is used in Steps 2 and 4
for doing the two-sided matrix multiply updates.

To carry out Step 3 in parallel, we traverse the matrix C/X along its block
diagonals, starting in the corner that is decided by the data dependencies. To
be able to compute Xij for certain values of i and j, we need Aii and Bjj to be
owned by the same process that owns Cij . We also need to have the blocks used
in the updates in the right place at the right time. The situation is illustrated
in Figure 4, where all the data lie on the right processors. This will however not
be the general case.

In general, we have to communicate for some blocks during the solves and
updates. For example, while traversing C/X for the triangular AX−XBT = C,
we solve the small subsystems

AiiXij −XijB
T
jj = Cij , (5)

associated with the current block diagonal in parallel. Then we do the GEMM-
updates, {

Ckj = Ckj −AkiXij , k = 1, . . . , j − 1
Cik = Cik + XijB

T
kj , k = 1, . . . , i− 1,

(6)

of block-row i and block-column j, which can also be done in parallel. In equation
(6), the submatrix Xij has been computed in the preceeding step and broad-
casted (see Figure 4) to the processors involved in the GEMM-updates. It can be
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Fig. 4. Data dependencies and mapping for AX −XB = C on a 2× 2 processor grid.

shown that this gives a theoretical limit for the speedup of the triangular solver
as max(Pr, Pc) for solving the subsystems, and as Pr ·Pc for the GEMM-updates
[7, 16]. A high-level parallel block algorithm for the solving the general triangular
SYCT equation (1) is presented in Figure 5.

3.1 The 2 × 2 diagonal block split problem

When entering the triangular solver we already have transformed A, B and C
distributed across the processor grid (2D block cyclic mapping). Now, we have
to assure that no 2×2 diagonal block of A or B in Schur form, corresponding to
conjugate pairs of complex eigenvalues is being split between two blocks (proces-
sors). This happens when any element on the first subdiagonal of the real Schur
form is not equal to zero and does not belong to the same block (submatrix) as
the closest elements to the North, East and North-East. We solve this problem
by extending one block in the real Schur form of the matrix such that the lost
element is included in that block. At the same time we have to diminish some
other neighboring blocks. An explicit redistribution of the matrices would cause
to much overhead. Instead, we do the redistribution implicitly, that is, we only
exchange elements in one row and one column, which are stored in local workar-
rays. Somehow we must keep track of the extensions/reductions done. As we
can see, they are completely determined by the looks of Aii and Bjj . Therefore,
we can use two 1D-arrays, call them INFO ARRAY A and INFO ARRAY B



for k=1, # block diagonals in C
{Solve subsystems on current block diagonal in parallel}
if(mynode holds Cij)

if(mynode does not hold Aii and/or Bjj)
Communicate for Aii and/or Bjj

Solve for Xij in op(Aii)Xij −Xijop(Bij) = Cij

Broadcast Xij to processors that need Xij for updates
elseif(mynode needs Xij)

Receive Xij

if(mynode does not hold needed block in A for updating block column j)
Communicate for requested block in A

Update block column j of C in parallel
if(mynode does not hold needed block in B for updating block row i)

Communicate for requested block in B
Update block row i of C in parallel

endif
end

Fig. 5. Parallel block algorithm for op(A)X −Xop(B) = C, A and B in Schur form.

of length dM/MBe and dN/NBe, respectively, which store information of the
extensions as integer values as follows:

INFO ARRAY A(i) =





0 if Aii is unchanged
1 if Aii is extended
2 if Aii is diminished
3 if Aii is extended and diminished

The first thing to do in our triangular solver is traversing the first subdiagonal
of A and B and assigning values to their INFO ARRAY:s. Here, we are forced
to do some broadcasts since the information must be global, but since this is an
O(dM/MBe) or O(dN/NBe) operation they only effect the overall performance
marginally. Then, using the data in the global arrays, we can carry out an implicit
redistribution by exchanging data between the processors and build up local
arrays of double precision numbers holding the extra rows and/or columns for
each block of A, B and C. These local arrays can then be used to form the
“correct” submatrices for our solves and updates in the parallel triangular solver.

4 Performance Results and Analysis

We present measured performance results of our ScaLAPACK-style algorithms
using up to 64 processors on the IBM Scalable POWERparallel (SP) system at
High Performance Computing Center North (HPC2N). A theoretical scalability
analysis ongoing work and is not included in this paper.

We vary P = Pr · Pc between 1 and 64 in multiples of 2. Speedup Sp and
efficiency Ep are computed with respect to the run for the current problem size



that we were able to solve with as few processors as possible. Therefore, the
results for the speedup and efficiency must be understood from the context. All
timings are performed on random generated problems which typically are pretty
ill-conditioned and have large-normed solutions X.

In Table 1, we present performance results for the triangular solver PDTRSY
when solving AX −XB = C and AX −XBT = C, and A and B are in upper
real Schur form.

In Table 2, we present performance results for the general solver PDGESY when
solving AX −XBT = C. Here, the timings include all four steps. Moreover, we
display the number of 2× 2 diagonal split problems that were involved and the
absolute residual of the solutions. The sizes of the residuals are due to the fact
that the random problems are rather ill-conditioned, i.e., the separation between
A and B are quite small resulting in near to singular systems to solve.

Finally, in Table 3, we present the execution profile of the results of Table
2. As expected, it is the transformations to Schur form in Step 1 that dominate
the execution time. However, it is still important to have a scalable and effi-
cient solver for the triangular SYCT equations, since in condition estimation we
typically have to call PDTRSY several (about five) times [15, 11, 12].

M = N MB Pr Pl Time (sec.) Sp Ep

A, B A, BT A, B A, BT A, B A, BT

1024 64 1 1 58 46 1.0 1.0 1.00 1.00
1024 64 2 1 14 13 4.1 3.4 2.06 1.68
1024 64 2 2 7.8 9.4 7.5 4.9 1.87 1.22
1024 64 2 4 7.2 8.2 8.1 5.6 1.01 0.70
1024 64 4 4 7.3 6.0 8.0 7.7 0.50 0.48
2048 64 2 2 133 143 1.0 1.0 1.00 1.00
2048 64 4 2 39 59 3.4 2.4 1.69 1.21
2048 64 4 4 30 32 4.4 4.5 1.11 1.12
2048 64 8 4 25 28 5.3 5.1 0.67 0.64
2048 64 8 8 22 20 6.0 7.2 0.38 0.45
4096 64 4 4 281 301 1.0 1.0 1.00 1.00
4096 64 8 4 168 188 1.4 1.6 0.84 0.80
4096 64 8 8 117 97 2.4 3.1 0.60 0.78

Table 1. Performance of PDTRSY solving AX −XB = C and AX −XBT = C.

Our software is designed for integration in state-of-the-art software libraries
such as ScaLAPACK [3] and SLICOT [17, 6].
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M = N MB Pr Pl Time (sec.) Sp Ep #Ext Abs. residual

1024 64 1 1 696 1.0 1.00 179 0.10E − 10
1024 64 2 1 397 1.7 0.85 160 0.98E − 11
1024 64 2 2 260 2.7 0.68 160 0.96E − 11
1024 64 4 2 183 3.8 0.48 148 0.89E − 11
1024 64 4 4 140 5.0 0.31 146 0.89E − 11
2048 64 2 2 2057 1.0 1.00 663 0.27E − 10
2048 64 4 2 1061 1.9 0.97 664 0.26E − 10
2048 64 4 4 553 3.7 0.93 704 0.26E − 10
2048 64 4 8 384 5.4 0.67 604 0.24E − 10
2048 64 8 8 364 5.7 0.35 663 0.24E − 10
4096 64 4 4 5158 1.0 1.00 3400 0.72E − 10
4096 64 8 4 2407 2.1 1.10 3376 0.67E − 10
4096 64 8 8 1478 3.5 0.87 3360 0.68E − 10

Table 2. Performance results of PDGESY solving AX −XBT = C.

M = N MB Pr Pc Step 1 Steps 2+4 Step 3 Total time
(%) (%) (%) (sec.)

1024 64 1 1 83 12 4 696
1024 64 2 1 90 6 3 397
1024 64 2 2 92 4 4 260
1024 64 4 2 89 5 4 183
1024 64 4 4 89 2 4 140
2048 64 2 2 81 12 7 2057
2048 64 4 2 85 6 9 1061
2048 64 4 4 90 3 6 553
2048 64 4 8 87 4 7 384
2048 64 8 8 86 3 5 364
4096 64 4 4 75 17 8 5158
4096 64 8 4 79 12 8 2407
4096 64 8 8 89 4 7 1478

Table 3. Execution time profile of PDGESY solving AX −XBT = C.
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