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INTRODUCTION

Ongoing genome sequencing projects produce an

exponentially increasing number of new sequences. It is

common to deduce information about their function and

possibly structure from already characterized homo-

logues1 instead of by means of experiments. Due to the

modularity of proteins it is advisable to characterize their

constituent domains rather than the protein as a whole.

The aim of our approach is to accurately assign domains

to their proper structural family, in order to support the

assignment of function.

Finding a needle in a haystack is a relatively simple

task compared to finding a particular pin in a stack of

needles. A similar situation arises when one attempts to
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ABSTRACT

The ever increasing speed of DNA sequencing widens the

discrepancy between the number of known gene products,

and the knowledge of their function and structure. Proper

annotation of protein sequences is therefore crucial if the

missing information is to be deduced from sequence-based

similarity comparisons. These comparisons become exceed-

ingly difficult as the pairwise identities drop to very low

values. To improve the accuracy of domain identification,

we exploit the fact that the three-dimensional structures of

domains are much more conserved than their sequences.

Based on structure-anchored multiple sequence alignments

of low identity homologues we constructed 850 structure-

anchored hidden Markov models (saHMMs), each repre-

senting one domain family. Since the saHMMs are highly

family specific, they can be used to assign a domain to its

correct family and clearly distinguish it from domains

belonging to other families, even within the same super-

family. This task is not trivial and becomes particularly dif-

ficult if the unknown domain is distantly related to the

rest of the domain sequences within the family. In a search

with full length protein sequences, harbouring at least one

domain as defined by the structural classification of pro-

teins database (SCOP), version 1.71, versus the saHMM

database based on SCOP version 1.69, we achieve an accu-

racy of 99.0%. All of the few hits outside the family fall

within the correct superfamily. Compared to Pfam_ls

HMMs, the saHMMs obtain about 11% higher coverage. A

comparison with BLAST and PSI-BLAST demonstrates that

the saHMMs have consistently fewer errors per query at a

given coverage. Within our recommended E-value range,

the same is true for a comparison with SUPERFAMILY.

Furthermore, we are able to annotate 232 proteins with

530 nonoverlapping domains belonging to 102 different do-

main families among human proteins labelled ‘‘unknown’’

in the NCBI protein database. Our results demonstrate that

the saHMM database represents a versatile and reliable tool

for identification of domains in protein sequences. With

the aid of saHMMs, homology on the family level can be

assigned, even for distantly related sequences. Due to the

construction of the saHMMs, the hits they provide are

always associated with high quality crystal structures. The

saHMM database can be accessed via the FISH server at

http://babel.ucmp.umu.se/fish/.
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find pairs of homologous sequences sharing very low

sequence identity. The task is difficult in view of the fact

that for a certain alignment length, L, the sequence iden-

tities of homologous pairs are virtually undistinguishable

from the sequence identities of randomly picked sequen-

ces as the pairwise sequence identities decrease from

about 20% towards zero.2,3

Park et al. showed that profile hidden Markov models,

HMMs, outperform other methods in detecting remote

homologues, in particular methods based on pair-wise

alignments.4 It is crucial that the HMMs are built from

reliable multiple sequence alignments, MSAs, in order to

best represent the families of sequences they model. Most

MSA programs neglect structural information and base

their alignment steps solely on sequence information, on

certain evolutionary models and on statistical analysis.

Sequences with mutual identities above 20–30%, depend-

ing on alignment length L, can be aligned by standard

alignment tools. However, as the mutual sequence identi-

ties fall below a soft boundary at roughly 20%, often

referred to as the ‘‘twilight zone’’,2,3,5,6 existing methods

might not be able to produce reliable alignments.

In the twilight zone one can no longer determine

whether two aligned protein sequences are homologous

or not, in case the decision is solely based on the percent

sequence identity after optimal alignment. As the level of

sequence identity drops below the twilight zone and into

the midnight zone, this task becomes very challenging or

even impossible. This indicates the need for a sequence

search tool that is capable of recognizing similarities in

proteins even at very low levels of sequence identity.

To overcome the difficulties of sequence-only align-

ments, our method makes use of the fact that the three-

dimensional (3D), structures of homologous protein

domains are evolutionary more conserved than their

amino acid sequences.7–11 It is quite usual that the pep-

tide chains of two domains with a very low sequence

identity, clearly in the midnight zone, adopt almost iden-

tical 3D-structures, which means that their main-chain

atoms are superimposable with a low root mean square

distance (RMSD). The inclusion of structural informa-

tion has in many cases improved the ability to find

remote relationships. Secondary structure information

was used in addition to the sequences to construct so

called ssHMMs.12 Tertiary structure superimpositions

were used to generate substitution matrices,13–15 to con-

struct sequence profiles,16,17 and to build hidden Mar-

kov models.18–23

Hidden Markov models are the most powerful of the

profile methods, and have been used in a variety of ways.

Gough et al.24 used all individual structural classification

of proteins database (SCOP)25 superfamily sequences, with

less than 95% mutual sequence identity, as seeds to con-

struct one HMM from each seed. Their library of HMMs,

called SUPERFAMILY, represent essentially all proteins of

known structure. In a similar manner, Buchan et al. gener-

ated sets of HMMs to represent each CATH superfamily.26

Others have constructed HMMs by explicitly including

structural information.18,19,21–23 Except for Al-Lazikani

et al.18 and Griffiths-Jones and Bateman,19 all studies

were carried out on the superfamily level. However, the

family level provides much more detailed domain specific

information for accurate annotation.

One conclusion that can be drawn from the body of

work mentioned above is that the inclusion of structural

information positively affects the accuracy of sequence

alignments for remote homologues21 and that HMMs

built from structure linked alignments complement

sequence only methods, in particular at the edge of the

twilight zone.23

Even though the inclusion of many sequences into a

HMM will improve its statistics, the large number of

sequences might not be essential if one instead ensures

that the HMMs are built from MSAs that contain a well

balanced distribution of very diverse sequences within a

particular family. At the core of our method lie multiple

structure superimpositions of homologous domains

belonging to the same family. To maximize the sequence

diversity of the alignments, we only include domains

whose mutual sequence identities fall below a curve

defined by the function pI(L,0) (see Materials and Meth-

ods section), which is related to the HSSP-curve.3,6

These domain sequences, which we refer to as saHMM-

members, are collected into our ‘‘midnight ASTRAL

set’’20,27 and are used for multiple structure superimpo-

sitions. Based on structural criteria, structure-anchored

multiple sequence alignments, saMSAs, are assembled

and used to build structure-anchored hidden Markov

models (saHMMs), each representing one SCOP family.

We assume that the saMSAs provide a less biased indica-

tor of the evolutionary variability at each aligned posi-

tion as compared to MSAs based on statistical methods.

Our results demonstrate that using the saMSAs of only a

few distantly related homologues is sufficient to capture

the essence of an entire domain family.

The main steps involved in constructing the database

of saHMMs are displayed in Figure 1. The database can

be used in two ways: (i) A query sequence can be

searched against the saHMMs in order to find which of

the saHMMs gives the highest score, that is describes the

sequence best, thus identifying the domain family the

sequence most likely belongs to. In case the query

sequence comprises two or more domains, one can

expect one hit with low E-value for each domain. (ii)

The saHMM describing a particular family can be used

to search protein sequence databases or translations of

newly sequenced genomes for hitherto unidentified mem-

bers of that family. In either case, saHMMs are able to

identify domains in proteins as belonging to one specific

family and not to another family within the same super-

family. A match with low E-value provides the user not

only with a family membership of the identified domain,
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and hence a hint to its function, but also with an associ-

ated high resolution 3D-structure homologue.

METHODS

Structural superimposition of domains

For all structural superimpositions we use MUS-

TANG.28 The program is, in principle, able to superim-

pose any number of structures and can produce struc-

ture-anchored sequence alignments in msf-format, which

is suitable for input to HMMER.29 MUSTANG proved

to be best suited for our automated saHMM construction

pipeline.

The midnight ASTRAL set

For the definition of homologous structural domains,

we apply the SCOP classification on the family level.25

The SCOP database version 1.69 contains 70,859

domains which are divided into 11 classes. We use only

the seven true classes, which comprise 2845 domain fam-

ilies harbouring 67,220 domains. Excluded are the entries

listed as the ‘‘Not a true class’’ such as coiled-coil pro-

teins, peptides, low resolution structures and designed

proteins. The SCOP associated ASTRAL compendium30

provides Protein Data Bank,31 PDB-style coordinate files

for individual domains.

The PDB, and, consequently, the SCOP and ASTRAL

databases are highly redundant.32,33 To assure maximum

sequence diversity within each family we include only

sequences whose mutual sequence identities are equal to

or less than the limiting curve pI(L,0). The function

pI(L,n) is defined as

pI ðL; nÞ ¼ nþ
100

480 � L�0:32ð1þe�L=1000Þ

19:5

for L � 11;
for 11 < L � 450;
for L > 450;

8<
:

and depends on the alignment length L and on n, which

can be interpreted as the distance, expressed in percent,

from the ‘‘midnight zone curve’’ pI(L,0), for which n is

equal to zero. The definition of pI(L,n) is similar to the

HSSP-curve,2,3,6 except that we extract the alignment

length and percent sequence identity from structure

superimpositions. The HSSP-curve with n 5 0 was

derived in such a way that two random sequences are in

the majority of the cases homologous, if their pairwise

sequence identity lies above the curve.2,3

A flowchart outlining the selection algorithm27 for

family representatives is depicted in Figure 2. The algo-

rithm selects, for each family, only those domains that

were determined by X-ray crystallography to a resolution

of 3.6 Å or better and have mutual sequence identities

equal to or less than pI(L,0). These selection criteria will

ensure a wide evolutionary spread of the homologous

representatives and avoid sequence bias.

Within each family we construct pairwise structural

superimpositions, in order to obtain pairwise structure-

anchored sequence alignments from which we calculate

percent sequence identities. If the sequence identity of a

pair of superimposed domains falls above pI(L,0), we pre-

liminarily discard the domain with the worse resolution.

If the resolution values of the two structures differ from

their average by less than 10%, we choose the domain

with the lower mean thermal factor, B-factor. The mean

B-factor is calculated as the average of the B-factors for

all Ca atoms in the domain and reflects the data quality.

In case of equal mean B-factors, one domain is chosen

randomly.

After the first round of selection, all the preliminarily

discarded domains are again compared to all remaining

domains, in order to assure that only those domains

with sequence identities above pI(L,0) are permanently

discarded. This additional step insures that a sequence A

Figure 1
Steps involved in constructing the saHMM database. For each SCOP

family we select only homologous domains with low pairwise sequence

identity. For these domains we generate a multiple structure

superimposition. The resulting structure-anchored multiple sequence

alignment, saMSA, is used as input for building a structure-anchored

hidden Markov model, saHMM, which becomes part of the saHMM

database.
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which was removed due to high identity to sequence B is

not unnecessarily discarded. It is possible that B will be

later removed due to high identity to sequence C, and it

is conceivable that A and C have low sequence identity.

Hence, A must also be compared to C, and in case the

identity is equal to or less than pI(L,0), both A and C are

kept. The selected domain sequences, called saHMM-

members, are taken as representatives for this particular

family and are collected in the midnight ASTRAL set. As

a minimum requirement for building an saHMM, the

Figure 2
Flowchart showing the construction of the midnight ASTRAL set. For each family in SCOP we structurally superimpose pairs of family members

using MUSTANG. If the resulting structure-derived sequence identity of a pair falls above pI(L,0), we preliminarily place the domain with the worse

resolution into the ‘‘remove’’ set. In case of similar resolutions, the domain with the higher mean B-factor is put into the ‘‘remove’’ set. After the

first round of selection, all the protein domains in the ‘‘remove’’ set are again compared to the remaining domains. This will assure that only

domains with sequence identities above pI(L,0) are permanently discarded.
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domain family must be represented by at least two struc-

tures. We therefore exclude from the midnight ASTRAL

set, all families with only one representative.

Construction of saHMMs

To build saHMMs, we first construct a structure-anch-

ored multiple sequence alignment of the saHMM-mem-

bers within each family. The saMSAs are then used as

input for HMMER version 2.2 g29 with default parame-

ters for hmmbuild. All saHMMs are calibrated using

hmmcalibrate with default settings to obtain fitted E-val-

ues. In this way, we created 850 saHMMs, one saHMM

for each SCOP protein domain family represented in the

midnight ASTRAL set.

Evaluation of the performance

The performance at a given E-value threshold e is eval-

uated with respect to the following two criteria: the cov-

erage, which is expressed as the percentage of all domains

that are matched with the correct saHMM with an E-

value less than or equal to e, and the accuracy, which

stands for the percentage of all hits with an E-value of at

most e, that are correct. For all our evaluations and for

all methods compared, we only consider matches that

cover at least 70% of the domain length.

Matches between a domain sequence and an saHMM

from the same family are counted as correct hits, also

called true positives, tp. Unless otherwise stated, all hits

outside the family are considered as false positives, fp,

even if they fall into the correct superfamily.

For all searches we use HMMER version 2.3.229 and,

unless otherwise stated, the E-value cutoff is set to e 5
0.01 for sequences searches versus saHMMs.

Determining errors per query and coverage

The number of errors per query (EPQ), is calculated

as the total number of fp considering a certain E-value

threshold e, divided by the total number of queries which

is equal to the number of domains used for searching.

The coverage is calculated as described in the previous

section.

The advantage of the EPQ versus coverage graphs,

compared to receiver operating characteristic, curves,34,35

is that they communicate essentially the same information,

while the EPQ versus coverage plots better represent the

high degrees of accuracy and the vast background of non-

homologues encountered in sequence comparisons.36

Construction of exclude-one-saHMMs

For the 387 SCOP families with at least three saHMM-

members, we construct so called exclude-one-saHMMs,

exo-saHMMs, by excluding one representative sequence

at a time and building new saHMMs from the superim-

position of the remaining domains. In this way, we

obtain a collection of n exo-saHMMs for a family with n

saHMM-members. We then examine whether each of the

excluded sequences can be matched with the exo-saHMM

that lacks that sequence. When analysing the results on

the superfamily level, we do not only count matches to

exo-saHMMs as correct, but also matches to saHMMs

within the proper superfamily.

Ability to find new members of a family

We use the full length protein sequences corresponding

to those domains in SCOP version 1.71 (released: Octo-

ber 2006) that are not present in SCOP version 1.69

(released: July 2005), to search against the saHMMs,

which are based on SCOP 1.69. In addition, for each

family, we identify among the new domains those that

have a sequence identity equal to or less than pI(L,0)

compared to the saHMM-members. We then use the full

length sequences harbouring these low identity domains

to examine if the saHMMs are able to assign them to the

correct family.

Comparing saHMMs to BLAST
and PSI-BLAST

We evaluate the ability of BLAST and PSI-BLAST37 to

assign a sequence to the correct family, even at low

sequence identity, and compare the results to those

obtained from searches with saHMM-members versus

exo-saHMMs, as described previously. Full length protein

sequences corresponding to all domain sequences in the

midnight ASTRAL set are used, one at a time, as queries

in BLAST and PSI-BLAST searches.

For the BLAST search we use blastall (2.2.13) with

default parameters to search each sequence against SCOP

1.69.

In the case of PSI-BLAST (blastpgp 2.2.13) we initially

carry out five iterations versus the National Center for

Biotechnology Information (NCBI) nr-database (down-

loaded: March 30, 2006). As threshold for including a

sequence we use an E-value cutoff of 0.001. For all other

parameters we use the default values throughout.

The resulting position specific scoring matrix, PSSM,

one for each query sequence, is thereafter used to search

against SCOP 1.69.

For a BLAST or PSI-BLAST search, we consider a do-

main as assigned to the correct family if its sequence or

PSSM, respectively, obtains a match to at least one mid-

night ASTRAL set sequence from the same family, not

counting self-hits. Matches to midnight ASTRAL set

sequences outside the correct family are counted as false

positives. For comparisons carried out on the superfamily

level, we count matches to midnight ASTRAL set sequen-

ces within the proper superfamily as true positives.

Structure-Anchored Hidden Markov Models

PROTEINS 347



Comparing saHMMs to SUPERFAMILY

Each SUPERFAMILY24 HMM corresponds to one

SCOP domain. Using FASTA version 34.26.5,38 we can

assign each saHMM-member to the corresponding

SUPERFAMILY HMM (version 1.69) using a 95%

sequence identity cutoff.

As before, we use full length protein sequences har-

bouring the domains of the midnight ASTRAL set and

search all SUPERFAMILY HMMs using HMMER. If a

domain obtains a match to at least one HMM corre-

sponding to a midnight ASTRAL set sequence from the

same family we count it as a true positive match. Self-

hits are not considered. Matches to HMMs representing

midnight ASTRAL set sequences outside the correct fam-

ily are counted as false positives. However, when the

analysis is carried out on the superfamily level, matches

within the correct superfamily are counted as true

positives.

Comparing saHMMs to Pfam HMMs

The classification of domains in Pfam39 is not identi-

cal to that of SCOP. Therefore, we have mapped Pfam

(version 19.0, released: November 2005) onto SCOP 1.69.

The relationships between corresponding families in the

two databases are established by finding the SCOP classi-

fication of PDB sequences that are part of Pfam-A seed

alignments. For the comparison, we use as queries those

full length sequences harbouring domains that are new

in SCOP 1.71 and belong to families with both an

saHMM based on SCOP 1.69 and an Pfam_ls HMM,

version 19.0.

RESULTS AND DISCUSSION

The midnight ASTRAL set and
corresponding saHMMs

Our midnight ASTRAL set27 contains 3129 low iden-

tity, nonredundant domains. The domains correspond to

850, out of 2845, SCOP ‘‘true class’’ families. Each family

is represented by at least two, and up to 38, low identity

domains called the saHMM-members, from which one

saHMM per family is automatically constructed.

The ability to find low sequence identity
homologues

In the following, we analyze the ability of the saHMMs

to identify the proper family for low identity sequences,

that is to say sequences whose identity is equal to or less

than pI(L,0) when compared to each one of the saHMM-

members.

To carry out the ‘‘search for a specific pin in a stack of

needles’’, we construct exclude-one-saHMMs, termed

exo-saHMMs, for the domain families with at least three

saHMM-members. The full length sequences correspond-

ing to the 2127 excluded domain sequences are used, one

at a time, to query the saHMM database, with one modi-

fication: for each of the query sequences we exchange the

full family saHMM with the exo-saHMM that lacks that

domain sequence. The search results show that 37.6% of

the excluded domains can be matched to the correspond-

ing exo-saHMM and an additional 3.1% obtain hits to

saHMMs belonging to the correct superfamily (see Table

I). Taken together, we obtain 865 hits, of which 92.5%

are within the correct domain family.

If we relax the E-value cutoff to 10 and consider only

the top scoring hit per domain, the coverage increases to

58.2% at the cost of reduced accuracy (see Table I).

Among the top scoring matches, 79.6% are within the

correct superfamily. The coverage values can be inter-

preted as the probability of assigning the correct family

to a sequence with very low sequence identity compared

to the saHMM-members.

The results show that the exo-saHMMs are able to

detect very low identity homologues with high accuracy.

The majority of the domains for which we obtain a hit

are matched to the correct family, and the majority of

the matches outside the family fall within the correct

superfamily. This property demonstrates the usefulness of

the saHMMs to assign the correct family to remote

homologues.

Table I
Performance at Low Sequence Identity

Number of
sequences

Accuracy
on family
level (%)

Coverage on
family level (%)

Accuracy on
superfamily
level (%)a

Match within
correct

superfamily (%)b

Sequences
without
hits (%)

E-value � 0.01 2127 92.5 37.6 100.0 40.7 61.4
E-value � 0.1 2127 88.0 45.6 99.5 51.5 52.4
E-value � 10, top hits 2127 73.4 58.2 79.6 63.1 20.8

The full length sequences harbouring the domains excluded from the saHMMs are searched against the corresponding exo-saHMMs and the remainder of the saHMM

database, as described in the text. The first and second row report results obtained at an E-value cut-off of 0.01 and 0.1, respectively. The results reported in the third

row consider only the top match for each domain at an E-value cut-off of less than or equal to 10.
aPercentage of all hits that fall within the correct superfamily.
bPercentage of all sequences that obtain a hit within the correct superfamily.
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Comparing exo-saHMMs to BLAST,
PSI-BLAST PSSMs, and
SUPERFAMILY HMMs

Using EPQ versus coverage plots we compare the per-

formance of the exo-saHMMs to BLAST, PSI-BLAST

PSSMs, and SUPERFAMILY HMMs (see Figure 3). The

sequence identities of the query sequences, when com-

pared to those sequences used to build the exo-saHMMs,

fall below pI(L,0). It should be noted that PSI-BLAST

PSSMs and SUPERFAMILY HMMs have an advantage in

this comparison since they are derived from sequences

obtained from iterative searches of the NCBI’s nr-database.

Therefore, the PSSMs and HMMs might contain so called

bridging sequences, with sequence identities above pI(L,0)

as compared to both the query sequence and to one or

more of the saHMM-members within the same family.

These bridging sequences are likely to facilitate the correct

matchmaking of PSI-BLAST PSSMs and SUPERFAMILY

HMMs. In order to avoid such a situation, we would have

to construct a separate nr-database for each query

sequence, where all sequences with sequence identities

above pI(L,0) with respect to the query are removed. For

practical reasons, this is not feasible.

To ensure proper sequence annotations, it is important

to consider only reliable matches, that is with as low

EPQ values as possible. As can be seen in Figure 3a,

below about 40–45% coverage and an EPQ value of

about 0.04, PSI-BLAST PSSMs and the SUPERFAMILY

HMMs are outperformed by the exo-saHMMs, which

obtain clearly lower EPQ values for a given coverage. For

low coverage values, the BLAST curve also shows high

accuracy but reaches only about 20% coverage before the

number of EPQ drastically increases.

When we evaluate the results on the superfamily level,

the EPQ-values, at low coverage, drop compared to the

family level for all methods (Fig. 3b). In particular, below

43% coverage, the number of EPQ is zero for the exo-

saHMMs. As before, the exo-saHMMs perform better

than, or similar to, BLAST and PSI-BLAST over the

whole range of coverage values. Up to about 50% cover-

age, the exo-saHMMs perform better than the SUPER-

FAMILY HMMs as well. However, at higher coverage the

number of EPQ increases rapidly for the exo-saHMMs,

while SUPERFAMILY HMMs show a lower rate of EPQ

increase compared to the other methods.

Together, the graphs in Figure 3 prove our point that

the exo-saHMMs, and hence the saHMMs, are highly

accurate in assigning the correct family to a sequence,

even at low sequence identity. The graphs also demon-

strate that, for E-value cutoffs of 0.1 and below, false

positive matches on the family level fall almost exclu-

sively within the correct superfamily.

Ability to recognize new sequences

To assess the ability of the saHMMs to assign the cor-

rect domain families to new sequences, we use the full

length sequences harbouring the 4406 domains that are

present in SCOP 1.71 but not in version 1.69 to search

against the saHMMs. We find that 2612 of the domains

belong to families for which we have an saHMM in the

database based on SCOP 1.69. Among these domains,

Figure 3
EPQ versus coverage plots. Single-logarithmic plots of Errors Per Query, EPQ, versus coverage for (a) the family level and (b) the superfamily level.

Plotted are the results from searches with low identity sequences versus BLAST (dashes), PSI-BLAST PSSMs (dashes-dots), exo-saHMMs (solid

line), and SUPERFAMILY HMMs (dots). Note that the exo-saHMM curve in (a) lies below the PSI-BLAST and SUPERFAMILY curves for a

coverage below about 42% and EPQ values less than 0.04. Marked on the exo-saHMM curve are the E-values e 5 0.1 (circle) and e 5 0.01

(triangle). In (b) the mark for the E-value 0.01 is outside the range of the plot, as the EPQ value is zero in this case. For searches using the FISH

server, the default E-value cutoff is set to 0.01. Note that below about 5% coverage the curves in (a) are noisy and difficult to interpret, due to the

sparsity of data points.
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81.4% obtain a top score to the correct saHMM, with an

E-value less than or equal to e 5 0.01. The number of

domains obtaining correct top scores increases only mar-

ginally if we allow matches within the superfamily. A

summary of the results is presented in Table II.

The domain sequences without a corresponding

saHMM should not obtain any hits. Accordingly, our

search results show that only a small fraction of these

orphan sequences obtain matches at all, which are exclu-

sively to an saHMM from the correct superfamily. Con-

sidering all domains, 99.0% of the matches are to the

correct family and all hits outside the correct family are

within the proper superfamily.

Next, we evaluate the ability of the saHMMs to detect

low sequence identity homologues among the new

sequences. By selecting, for each domain family, those

domains that have a sequence identity equal to or less

than pI(L,0) compared to the saHMM-members, we

obtain 451 low identity domain sequences belonging to

families with an saHMM. Even though the sequence

identity is very low, we find that 24.4% of the sequences

match the correct saHMM with perfect accuracy (Table

II).

Performance of saHMMs compared
to Pfam HMMs

In the following, we compare the performance of the

saHMMs based on SCOP 1.69 to the performance

of the corresponding Pfam_ls HMMs, version 19.0. From

all the domain sequences new to SCOP 1.71 we first

select the 2454 domains that belong to families with both

an saHMM and a Pfam HMM. When we then screen the

corresponding full length sequences against the respective

HMMs, we are able to detect the correct family relation-

ships for 86% of the domains using the saHMMs, and

for 75% of the domains using Pfam HMMs. For this

comparison, we consider matches with E-values less than

10 and count only the top hits. It is of interest to note

that 412 of the domains with correct hits to saHMMs

fail to obtain a match to the correct Pfam HMM. Of

these 412 hits, 213 can be counted as matches within the

midnight zone since they have a sequence identity of at

most pI(L,0) compared to the saHMM-members based

on SCOP 1.69.

Using saHMMs to annotate
unknown human proteins

Public databases contain thousands of protein sequen-

ces that are labelled ‘‘unknown’’. In order to investigate

the ability of the saHMMs to annotate ‘‘unknown’’

sequences, we searched the NCBI for human proteins

labelled ‘‘unknown’’ and found 1986 such sequences (as

of November 2007). Of these, 232 proteins can be

matched to at least one of our saHMMs, resulting in 530

annotated nonoverlapping domains belonging to 102 dif-

ferent domain families (See Additional Supporting Infor-

mation File 1 for a list of all matches). As before, the E-

values were restricted to 0.01 and below. The classic

Zinc-finger domain family (SCOP family g.37.1.1, sunid

57,668) receives with 83 hits by far the most matches,

which were distributed over 20 individual proteins. Each

of these 20 proteins received between one to 15 hits to

the classic Zn-finger domain, and, in some cases addi-

tional hits to other domain families. For 17 of the Zn-

finger proteins, the NCBI annotation is incomplete in the

sense that none (13 proteins, e.g., AAY14760) or not all

of the Zn-finger domains (e.g., AAX93276, where five

out of seven were previously not assigned) are identified

in the NCBI sequence entry.

Included in the list over families receiving many hits

are such common domains as the EGF-type module with

68 hits and the LDL receptor-like module with 63 hits.

Many domains identified by the saHMMs are involved in

signalling, for example the protein kinase catalytic subu-

nit with 17 hits, the SH3 domain obtaining 16 hits, the

PDZ domain, nine hits, and the SH2 domain with five

hits. (A summary of all matches is provided as Addi-

tional Supporting Information File 2). These protein

Table II
Performance Considering New Sequences

Number of
sequences

Accuracy on
family

level (%)

Coverage on
family level

(%)

Accuracy on
superfamily
level (%)a

Match within
correct

superfamily (%)b

Sequences
without
hit (%)

All sequences 4406 99.0 48.3 100 48.8 51.2
Sequence with an
saHMM in the saHMM db

All sequences 2612 99.9 81.4 100 81.5 18.5
Low identity sequences 451 100 24.4 100 24.4 75.6

Sequence without
saHMM in saHMM db

1794 — — 100 1.1 98.9

The full length sequences corresponding to domains new in SCOP version 1.71 compared to version 1.69, are searched against the saHMM database. The results in the

first row refer to all sequences. Rows two and three show results for sequences that belong to families with an saHMM in the database. Whereas the second row does

not consider a sequence identity cutoff, the third row reports results only for sequences with low sequence identities, below pI(L,0), compared to the saHMM-members

within their families. The results in the last row refer to sequences belonging to families that are not represented by an saHMM.
aPercentage of all hits that are within the correct superfamily.
bPercentage of all sequences that obtain a hit within the correct superfamily.
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domains are often involved in cancer and other common

human diseases. Correctly identifying such domains is of

considerable interest for medical, structural and pharma-

ceutical applications. Through the structural information

associated with the match, it might be possible to use the

saHMM-members as template structures to build com-

parative models, thus providing a starting point for fur-

ther computational and experimental analysis such as

mutagenesis studies, identification of active sites and

interaction surfaces, and possibly for drug design.

CONCLUSIONS

In a fully automated approach we constructed a collec-

tion of 850 saHMMs. The main strength of the saHMMs

lies in the fact that they are built from 3D-structure

alignments of low identity homologous protein domains.

The structure comparisons provide structure-anchored

sequence alignments even in the case of very low mutual

sequence identities. Since the proper multiple structure

alignment method is crucial for the success of the

saHMMs, we included, after careful evaluation, the pro-

gram MUSTANG28 into our automatic pipeline.

We would like to stress the fact that the saHMM

method focuses on the family level. The task of placing a

sequence into the correct family might look simple, how-

ever, considering a sequence which is distantly related to

the rest of the sequences within the family, it is much

harder to associate the unknown sequence with its cor-

rect family, than to place it into its correct superfamily.

By restricting the mutual identities of the sequences

selected as representatives to values equal to or below

pI(L,0), we guarantee a high sequence diversity among

the saHMM-members at the same time as we preserve

the sequence characteristics that define the entire family.

We are able to demonstrate that the saHMMs can, with

high accuracy, identify sequences as belonging to the

family they represent. The saHMMs are in fact so highly

family specific that they are clearly able to distinguish

between members of their own family and members

from other families, even within the same superfamily

and at low sequence identity. Furthermore, using the

family level has the advantage that the structural and

functional information is more specific.

In further evaluating the ability to recognize remote

homologues and by comparison with other methods, we

find that BLAST, which is the usual tool for family level

detection, and the exo-saHMMs show similar perform-

ance up to about 20% coverage, after which the exo-

saHMMs perform significantly better with respect to

both EPQ and coverage. Compared to PSI-BLAST PSSMs

and SUPERFAMILY HMMs, the exo-saHMMs achieve

higher coverage at low EPQ values. We assume that the

full saHMMs, harbouring the complete set of saHMM-

members, will perform at least as well as the exo-

saHMMs.

Extending the analysis onto the superfamily level leads

to a drastic drop of the EPQ values. In particular, the

EPQ value is zero for e 5 0.01, which is the default E-

value cutoff used for the FISH server.40 With regard to

the other methods, the exo-saHMMs perform remarkably

well in this coverage interval, although we did not ini-

tially intend to use the saHMMs database for searches on

the superfamily level.

Comparing saHMMs to the corresponding Pfam

HMMs, shows that the structure-anchored HMMs out-

perform Pfam in assigning the correct family member-

ship to new sequences. In addition, the saHMMs are able

to identify family relationships that are not recognized

by Pfam. In a search with human sequences labelled

‘‘unknown’’ against the saHMM database, we demon-

strate that the saHMMs are able to identify domains for

which there was no previous annotation. The examples

demonstrate the strength of the saHMMs and their

potential to complement existing annotation methods.

In summary, we are able to construct 850 saHMMs

with which we cover 65% of the domain sequences and

about 30% of the seven true class families in SCOP.

Without doubt, this coverage is bound to improve due

to the exponential increase of deposited structures in the

PDB. As we add new domains to the midnight ASTRAL

set, we will be able to increase the number of saHMM-

members in existing families and include new families

into the saHMMs database. The database is the founda-

tion of a publicly available server called FISH, which

stands for Family Identification with Structure-anchored

HMMs,40 and is accessible at http://babel.ucmp.umu.se/

fish/.
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20. Tångrot J, Kågstrom B, Sauer UH. Structure anchored HMMs

(saHMMs) for sensitive sequence searches, Report UMINF-03.18,

Department of computing science, Umeå University, Umeå, 2003.
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