
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2000; 00:1–7 Prepared using cpeauth.cls [Version: 2002/09/19 v2.02]

Parallel eigenvalue reordering
in real Schur forms‡

R. Granat1, B. K̊agström1,∗ and D. Kressner1,2†

1 Department of Computing Science and HPC2N, Ume̊a University,
SE-901 87 Ume̊a, Sweden
2 Seminar für Angewandte Mathematik, ETH Zürich, Switzerland

SUMMARY

A parallel algorithm for reordering the eigenvalues in the real Schur form of a matrix is
presented and discussed. Our novel approach adopts computational windows and delays
multiple outside-window updates until each window has been completely reordered
locally. By using multiple concurrent windows the parallel algorithm has a high level
of concurrency, and most work is level 3 BLAS operations. The presented algorithm is
also extended to the generalized real Schur form. Experimental results for ScaLAPACK-
style Fortran 77 implementations on a Linux cluster confirm the efficiency and scalability
of our algorithms in terms of more than 16 times of parallel speedup using 64 processor
for large scale problems. Even on a single processor our implementation is demonstrated
to perform significantly better compared to the state-of-the-art serial implementation.
Copyright c© 2000 John Wiley & Sons, Ltd.

key words: Parallel algorithms, eigenvalue problems, invariant subspaces, direct reorder-

ing, Sylvester matrix equations, condition number estimates

1. Introduction

The solution of large-scale matrix eigenvalue problems represents a frequent task in scientific
computing. For example, the asymptotic behavior of a linear or linearized dynamical system
is determined by the right-most eigenvalue of the system matrix. Despite the advance of
iterative methods – such as Arnoldi and Jacobi-Davidson algorithms [3] – there are problems
where a direct method – usually the QR algorithm [14] – is preferred, even in a large-scale

∗Correspondence to: Department of Computing Science and HPC2N, Ume̊a University, SE-901 87 UMEÅ,
Sweden.
†E-mail: {granat,bokg}@cs.umu.se, kressner@sam.math.ethz.ch
‡Technical Report UMINF-07.20, Department of Computing Science, Ume̊a University, Sweden.
Contract/grant sponsor: The Swedish Research Council/The Swedish Foundation for Strategic Research;
contract/grant number: VR 621-2001-3284/SSF A3 02:128

Received 31 January 2000
Copyright c© 2000 John Wiley & Sons, Ltd. Revised 19 September 2002



2 R. GRANAT, B. KÅGSTRÖM AND D. KRESSNER

setting. In the example quoted above, an iterative method may fail to detect the right-most
eigenvalue and, in the worst case, misleadingly predict stability even though the system is
unstable [33]. The QR algorithm typically avoids this problem, simply because all and not
only selected eigenvalues are computed. Also, iterative methods are usually not well suited for
simultaneously computing a large portion of eigenvalues along with the associated invariant
subspace. For example, an invariant subspace belonging to typically half of the eigenvalues
needs to be computed in problems arising from linear-quadratic optimal control [37].

Parallelization of the QR algorithm is indispensable for large matrices. So far, only its two
most important steps have been addressed in the literature: Hessenberg reduction and QR
iterations, see [5, 10, 21], with the resulting software implemented in ScaLAPACK [6, 38].
The (optional) third step of reordering the eigenvalues, needed for computing eigenvectors and
invariant subspaces, has not undergone parallelization yet. The purpose of this paper is to
fill this gap, aiming at a complete and highly performing parallel implementation of the QR
algorithm.

1.1. Mathematical problem description

Given a general square matrix A ∈ Rn×n, computing the Schur decomposition (see, e.g., [14])

QT AQ = T (1)

is the standard approach to solving non-symmetric eigenvalue problems (NEVPs), that is,
computing eigenvalues and invariant subspaces (or eigenvectors) of a general dense matrix.
In Equation (1), T ∈ Rn×n is quasi-triangular with diagonal blocks of size 1 × 1 and 2 × 2
corresponding to real and complex conjugate pairs of eigenvalues, respectively, and Q ∈ Rn×n

is orthogonal. The matrix T is called the real Schur form of A and its diagonal blocks (i.e., its
eigenvalues) can occur in any order along the diagonal.

For any decomposition of (1) of the form

QT AQ = T ≡
[
T11 T12

0 T22

]
(2)

with T11 ∈ Rp×p for some integer p, the first p columns of the matrix Q span an invariant
subspace of A corresponding to the p eigenvalues of T11 (see, e.g, [13]). Invariant subspaces
are an important generalization of eigenvectors and often eliminate the need for calculating a
potentially ill-conditioned set of eigenvectors in applications.

When applying the QR algorithm for computing a Schur form, one has little influence on the
order of the eigenvalues on the diagonal. For computing an invariant subspace, however, the
associated eigenvalues must be contained in the block T11 of (2). For example, in applications
related to dynamical systems and control, it is often desired to compute the stable invariant
subspace, in which case T11 is to contain all eigenvalues of A that have negative real part. To
achieve this goal, the output of the QR algorithm needs to be post-processed.

In [2], a direct algorithm for reordering adjacent eigenvalues in the real Schur form (2) is
proposed. For the special case that we want to swap eigenvalues in a tiny matrix T , partioned
as in (2) with block sizes p, n− p ∈ {1, 2}, the method is as follows:

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls



PARALLEL EIGENVALUE REORDERING IN REAL SCHUR FORMS 3

• Solve the continuous-time Sylvester (SYCT) equation

T11X −XT22 = γT12, (3)

where γ is a scaling factor to avoid overflow in the right hand side.
• Compute the QR factorization [−X

γI

]
= QR (4)

using Householder transformations (elementary reflectors)†.
• Apply Q in the similarity transformation of T :

T̃ = QT TQ (5)

• Standardize 2× 2 block(s) if any exists.

In the method above, a swap is performed tentatively to guarantee backward stability by
rejecting a swap where QT TQ would be perturbed too far from real Schur form.

For general n, a real Schur form T ∈ Rn×n can be reordered by subsequently swapping its
individual blocks. Note that we are restricted to swapping adjacent blocks to maintain the real
Schur form. This limits our choice of sorting algorithm essentially to bubble sort. By applying
such a bubble-sort procedure, all selected eigenvalues (usually represented by a boolean vector
select) are moved step by step towards the top-left corner of T . This procedure is implemented
in the LAPACK [1] routine DTRSEN.

This paper presents a parallel algorithm for reordering eigenvalues in Schur forms, partly
based on a blocked variant described in [31]. Furthermore, we extend our techniques to
reordering eigenvalues in a generalized real Schur form of a matrix pair [24].

2. Serial blocked algorithms for eigenvalue reordering

The eigenvalue reordering algorithm implemented in LAPACK [2] sorts a single 1× 1 or 2× 2
block at a time to the top left corner of T . This leads to matrix multiplications with tiny
orthogonal matrices (2 × 2, 3 × 3, 4 × 4) to update the rows and columns of T and Q.
Moreover, a significant portion of T is accessed before the next eigenvalue can be processed.
Consequently, the performance is in the range of level 1 and 2 BLAS [12, 7].

Following the ideas from [30, 31], we may instead reorder several eigenvalues simultaneously.
For this purpose, a local computational window on the diagonal of T is chosen. All selected
eigenvalues residing in this window are reordered locally to the top left corner of the
window. Most importantly, the application of the corresponding orthogonal transformations
is restricted to this window. Once the local reordering is complete, the transformations are
applied in factorized or accumulated form to update the rest of T and the global orthogonal
transformation matrix Q, see Figure 1. Using the accumulated local transformation matrix

†For n = 2, a single Givens rotation is used to compute the QR factorization.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls



4 R. GRANAT, B. KÅGSTRÖM AND D. KRESSNER

Figure 1. Working with computational windows (dark) and delaying the updates for level 3 BLAS
operations on update regions (light) in the matrix T .

results in decently large matrix-matrix multiplications and thus benefits from level 3 BLAS
performance. In the next step of the block algorithm, the window is slided towards the top
left corner of T until the eigenvalues reordered in the previous step reside in the bottom right
corner of the new window. Continuing this process, the window eventually reaches the top left
corner of T and all eigenvalues within the window have been properly reordered. For more
details on this block algorithm and its implementation, we refer to [31].

In general, the described approach leads to a significant performance gain by improving the
memory access pattern and diminishing the number of cache misses. Notice that a similar
technique was employed for the variants of the QR algorithm presented in [8, 9]. The idea
of delaying updates is however not new (see, e.g., [11, 30] and the references therein). The
performance of the block algorithm is controlled by a few parameters, most notably the size of
the computational window nwin, and the maximum number of eigenvalues to reorder locally
inside a window, neig. A recommended choice is neig = nwin/2 [31]. Other parameters to tune
are rmmult, which defines the threshold for when to use the local orthogonal transformations in
their factorized form (Householder transformations and Givens rotations) or their accumulated
form by matrix multiplication, and nslab, which is used to divide the updates of the rows
of T into blocks of columns for improved memory access pattern in case the orthogonal
transformations are applied in their factorized form.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls



PARALLEL EIGENVALUE REORDERING IN REAL SCHUR FORMS 5

3. Parallel blocked algorithms for eigenvalue reordering

In the following, a parallel algorithm for reordering eigenvalues is proposed. In priniple, the
serial block algorithm described in Section 2 already admits a quite straightforward parallel
implementation. There are some issues that need be handled, e.g., the proper treatment of
a computational window that is shared by several processes. In Sections 3.1 and 3.2 below,
we provide the details of such a parallelization. As expected, this approach gives good node
performance but it leads to poor scalability, simply because there are only a limited number
of processes active during the local reordering. To avoid this, we suggest the use of multiple
concurrent computational windows in Section 3.4.

We adopt the ScaLAPACK conventions [6, 38] of the parallel distributed memory (DM)
environment, as follows:

• The parallel processes are organized into a rectangular Pr×Pc mesh labelled from (0, 0)
to (Pr − 1, Pc − 1) according to their specific position indices in the mesh.

• The matrices are distributed over the mesh using 2-dimensional (2D) block cyclic
mapping with the block sizes mb and nb in the row and column dimensions, respectively.

Since the matrices T and Q are square, we assume throughout this paper that nb = mb, i.e.,
the matrices are partitioned in square blocks. To simplify the reordering in the presence of
2 × 2 blocks, we also assume that nb ≥ 3 to avoid the situation of having two adjacent 2 × 2
blocks spanning over three different diagonal blocks in T . Moreover, we require T and Q to
be aligned such that the blocks Tij and Qij are held by the same process, for all combinations
of i and j, 1 ≤ i, j ≤ dn/nbe. Otherwise, shifting T and/or Q across the process mesh before
(and optionally after) the reordering is necessary.

Below, we refer to an active process as a process that holds all or some part of a computational
window in T .

3.1. The computational window in the parallel environment

We restrict the size of the computational window to the block size used in the data layout.
This means that a computational window can only be in two states: either it is completely held
by one single block or it is shared by at most four data layout blocks: two neighboring diagonal
blocks, one subdiagonal block (in presence of a 2× 2 block residing on the block borders) and
one superdiagonal block.

3.2. Moving eigenvalues inside a data layout block

Depending on the values of nb and nwin, each diagonal block of T is locally reordered, moving
k ≤ neig selected eigenvalues from the bottom towards the top of the block, see Figure 2.
Notice that the number of blocks distributed over the process mesh in general is much larger
than what is indicated in Figure 2; the small number of blocks in this case (and below) is due
to simplify the illustration.

Before the window is moved to its next position inside the block, the resulting orthogonal
transformations from the reordering in the current position are broadcasted in the process rows

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls



6 R. GRANAT, B. KÅGSTRÖM AND D. KRESSNER

(1,2)

(0,1) (0,2)

(0,0)

(0,0)

(0,1) (0,2)

(1,0) (1,1)

Figure 2. The Schur form T distributed over
a process mesh of 2 × 3 processors. The
computational window (dark) is completely
local and the update regions (light) are shared
by the corresponding process row and column.

(0,2)

(0,0)

(1,2)

(0,2)

(0,0)

(0,1)

(1,0) (1,1)

(0,1)

Figure 3. Broadcasting of the orthogonal
transformations along the current process row

and column of a 2× 3 process mesh.

and columns corresponding to the current block row and column in T (and Q), see Figure 3.
The subsequent updates are performed independently and in parallel. In principle, no other
communication operations are required beside these broadcasts.

Given one active process working alone on one computational window the possible parallel
speedup during the update phase is limited by Pr + Pc.

3.3. Moving eigenvalues across the process borders

When a computational window reaches the top-left border in the diagonal block, the current
eigenvalue cluster must be reordered across the border into the next diagonal block of T .
This forces the computational window to be shared by more than one data layout block and
(optionally) more than one process. The restrictions imposed on its size ensures that a window
cannot be shared by more than four data layout blocks and by at most four different processes
which together form a submesh of maximum size 2× 2, see Figure 4.

To be able to maximize the work performed inside each diagonal block before crossing
the border and to minimize the required communication for the cross border reordering, it
is beneficial to be able to control the size of the shared windows by an optional parameter
ncrb ≤ nwin that can be adjusted to match the properties of the target architecture.

The processes holding the different parts of the shared ncrb × ncrb window now cooperate
to bring the window across the border, as follows:

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls



PARALLEL EIGENVALUE REORDERING IN REAL SCHUR FORMS 7

(1,0) (1,1)

(0,1) (0,2)

(0,0)

(0,0)

(0,1) (0,2)

(1,2)

Figure 4. The Schur form T distributed over a process mesh of 2 × 3 processors. The computational
window (dark) is shared by four distinct processes. The update regions (light) is shared by the

corresponding two process rows and process columns.

• The on-diagonal active processes start by exchanging their parts of the window and
receiving the off-diagonal parts from the two other processes. The cross border window
causes updates in T and Q that span over parts of two block rows or columns. Therefore,
the processes in the corresponding process rows and columns exchange blocks with their
neighbors as preparation for the (level 3) updates to come, see Figure 5. The total
amount of matrix elements from T and Q exchanged over the border in both directions
is ncrb · (2n− ncrb − 1).

• The on-diagonal active processes compute the reordering for the current window. This
requires some replication of the computations on both sides of the border. Since the total
work is dominated by the off-diagonal updates, the overhead caused by the replicated
work is negligible.

• Finally, the local orthogonal transformation matrices are broadcasted (either in
accumulated or factorized form) along the corresponding process rows and columns,
and used in level 3 updates, see Figure 6.

We remark that in principle the updates are independent and can be performed in parallel
without any additional communication or redundant work. But if the local orthogonal
transformations are applied in their factorized form, each processor computing an update
will also compute parts of T and/or Q that are supposed to be computed by another processor
at the other side of the border. In case of more than one process in the corresponding mesh
dimension, this causes duplicated work in the cross border updates, as well. Our remedy is
to use a significantly lower value for rmmult favoring matrix multiplication in the cross border
reordering.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls



8 R. GRANAT, B. KÅGSTRÖM AND D. KRESSNER

(0,2)

(1,0) (1,1)

(0,1) (0,2)

(0,0)

(0,0)

(0,1)

(1,2)

Figure 5. Exchanges of data in adjacent
process rows and columns for updates

associated with cross border reordering.

(1,0) (1,1)

(0,1) (0,2)

(0,0)

(0,0)

(0,1) (0,2)

(1,2)

Figure 6. Broadcasts of the computed
orthogonal transformations in the current
processor rows and columns for cross border

reordering.

3.4. Introducing multiple concurrent computational windows

By using multiple concurrent computational windows, we can work on at least kwin ≤
min(Pr, Pc) adjacent windows at the same time, computing local reordering and broadcasting
orthogonal transformations for updates in parallel. With kwin = min(Pr, Pc) and a square
process mesh (Pr = Pc), the degree of concurrency becomes Pr · Pc, see Figure 7.

When all kwin windows reach the process borders (see also Section 5.4), they are moved into
the next diagonal block as described in the previous section, but in two phases. Since each
window requires cooperation between two adjacent process rows and columns, we number the
windows by the order in which they appear on the block diagonal of T and start by moving all
windows with an odd label across the border, directly followed by all windows with an even
label. Care has to be taken to assure that no processor is involved in more than one cross
border window at the same time. For example, if kwin = min(Pr, Pc) > 1 is an odd number,
the last labelled window will involve processors which are also involved in the first window. In
such a case, the last window is reordered across the border after the second (even) phase is
completed.

This two-phase approach gives an upper limit of the concurrency of the local reordering and
data exchange phases of the cross border reordering as kwin/2, which is half of the concurrency
of the pre-cross border part of the algorithm.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls



PARALLEL EIGENVALUE REORDERING IN REAL SCHUR FORMS 9

(1,0) (1,1) (1,2)

(0,1) (0,2)

(0,0)

(0,0)

(0,1) (0,2)

Figure 7. Using multiple (here two) concurrent computational windows. The computational windows
(dark) are local but some parts of the update regions (light regions) are shared.

We present a high-level description of our parallel multi-window method in Algorithms 1–2.
Notice that in the presence of 2 × 2 blocks in the Schur form, the computed indices in the
algorithm are subject to slight adjustments, see Section 5.

4. Performance analysis

In this section, we analyze the parallel performance of Algorithms 1–2 and derive a model of
the parallel runtime using p processes,

Tp = Ta + Tc, (6)

where Ta and Tc denote the arithmetic and communication (synchronization) runtimes,
respectively. We assume block cyclic data distribution of T ∈ Rn×n over a square

√
p × √p

process mesh using the block factor nb (see Section 3). We define ta, ts and tw as the arithmetic
time to perform a floating point operation (flop), the start-up time (or node latency) for sending
a message in our parallel computer system, the per-word transfer time or the inverse of the
bandwidth as the amount of time it takes to send one data word (e.g., a double precision
number) through one link of the interconnection network. Usually, ts and tw are assumed to
be constants while ta is a function of the data locality. The communication cost model for a
single point-to-point communication can be approximated by tp2p = ts + twl, where l denotes
the message length in words, regardless of the number of links traversed [15]. However, for a
one-to-all broadcast or its dual operation all-to one reduction in a certain scope (e.g., a process
row or process column), we assume that such an operation is performed using a hypercube-

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls



10 R. GRANAT, B. KÅGSTRÖM AND D. KRESSNER

Algorithm 1 Parallel blocked algorithm for reordering a real Schur form (main part)
Input: A matrix T ∈ Rn×n in real Schur form and a subset of selected eigenvalues Λs,

closed under complex conjugation. Parameters nb (data layout block size), Pr and
Pc (process mesh sizes), myrow and mycol (process mesh indices), ncrb (maximum
cross border window size), kwin (maximum number of concurrent windows), nev

maximum number of eigenvalues simultaneously reordered.

Output: T is overwritten by a matrix T̃ ∈ Rn×n in ordered real Schur form and an orthogonal
matrix Q ∈ Rn×n such that T̃ = QT TQ. For some integer j, the set Λs is the union
of eigenvalues belonging to the j upper-left-most diagonal blocks of T̃ .

Let W = {The set of computational windows} = ∅
iord ← 0 % iord = #number of eigenvalues already in order
while iord < #Λs do

for j ← 0, . . . , kwin − 1 do
swin = (biord/nbc+ j) · nb + 1
Add a window to W for T (swin : swin + nb − 1, swin : swin + nb − 1)

end for
% Reorder each window to top-left corner of corresponding diagonal block.
for each window w ∈W in parallel do

if (myrow,mycol) owns w then
Find first nev ≤ neig eigenvalues in Λs from top of my diagonal block.
ihi ← max{iord + 1, swin}+ nev

end if
% Reorder these eigenvalues window-by-window to top of diagonal block.
while ihi > iord + nev do

ilow ← max{iord + 1, max{ihi − nwin + 1, swin}}
if (myrow,mycol) owns w then

Apply standard eigenvalue reordering to the active window T (ilow : ihi, ilow : ihi) to reorder
k ≤ nev eigenvalues in Λs to the top.
Broadcast local orthogonal transformation U in process row myrow.
Broadcast local orthogonal transformation U in process column mycol.

else if (myrow,mycol) needs U for updates then
Receive U

end if
Update T (ilow : ihi, ihi + 1 : n)← UT T (ilow : ihi, ihi + 1 : n) in parallel.
Update T (1 : ilow − 1, ilow : ihi)← T (1 : ilow − 1, ilow : ihi)U in parallel.
Update Q(1 : n, ilow : ihi)← Q(1 : n, ilow : ihi)U in parallel.
ihi ← ilow + k − 1

end while
end for
iord ← iord + nev[top-left window in W ]
% Reorder selected clusters across block (process) border.
Apply Algorithm 2 to reorder each computational windows across (process) borders.

end while

based algorithm like recursive doubling, i.e., in O(log2 p?) steps, where p? is the number of
processors in the actual scope.

Reordering k eigenvalues in a Schur form has an arithmetic complexity of Ts = O(kn2)ta.
The exact cost depends on the distribution of the eigenvalues over the diagonal of the Schur
form. In the following, we assume 1 ¿ k < n which implies that a majority of the updates are
performed using matrix multiplication.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls



PARALLEL EIGENVALUE REORDERING IN REAL SCHUR FORMS 11

Algorithm 2 Parallel blocked algorithm for reordering a real Schur form (cross border part)

Input and Output: See Algorithm 1. Additional input: set of computational windows W .

for each odd window w ∈W in parallel do
Form 2× 2 process submesh G = {(0, 0), (0, 1), (1, 0), (1, 1)} corresponding to w
iihi ← min{iilo − 1, swin + ncrb/2}, iilo ← max{iihi − ncrb + 1, iord}
if (myrow,mycol) ∈ G then

Exchange data in G to build w at (0, 0) and (1, 1)
if (myrow,mycol) ∈ {(0, 0), (1, 1)} then

Reorder k eigenvalues in Λs to top of w.
Broadcast local orthogonal transformation U in process row myrow.
Broadcast local orthogonal transformation U in process column mycol.

end if
end if
if myrow ∈ prows(G) or mycol ∈ pcols(G) then

Exchange local parts of T (ilow : ihi, ihi + 1 : n), T (1 : ilow − 1, ilow : ihi) and Q(1 : n, ilow : ihi) for
updates with neighboring processes in parallel.
Receive U .
Update T (ilow : ihi, ihi + 1 : n)← UT T (ilow : ihi, ihi + 1 : n) in parallel.
Update T (1 : ilow − 1, ilow : ihi)← T (1 : ilow − 1, ilow : ihi)U in parallel.
Update Q(1 : n, ilow : ihi)← Q(1 : n, ilow : ihi)U in parallel.

end if
end for
if iilo = iord then

iord ← iord + k
end if
for each even window w ∈W in parallel do

% Similar algorithm as for the odd case above.
end for

Given that the selected eigenvalues are uniformly distributed over the diagonal of T , the
arithmetic cost of executing Algorithms 1–2 can be modelled as

Ta =
(

kn2 − 3knnwin

p
+

3knnwin√
p

)
ta, (7)

where the first term is the cost of the GEMM (general matrix-matrix multiplication) updates,
which is divided evenly between the p involved processors, and the second term describes the
cost for computing the local and cross border reordering in the nwin × nwin computational
windows, where the diagonal processors are working and the off-diagonal processors are idle
waiting for the broadcasts to start.

From a global view, bubble-sorting the eigenvalues can be seen as bubble-sorting the diagonal
nb × nb blocks of the block layout in O((n/nb)2) steps. In each step, each local window is
reordered to the top-left corner of the corresponding diagonal block and reordered across the
border. By working with

√
p concurrent windows in parallel (which is the upper limit for a

square grid), the communication cost Tc can be modelled as

Tc =
D2

T√
p

(tlbcast + tcwin + tcbcast + trcexch), (8)

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls



12 R. GRANAT, B. KÅGSTRÖM AND D. KRESSNER

where DT = dn/nbe is the number of diagonal blocks in T , and tlbcast, tcwin, tcbcast, and trcexch

model the cost of the broadcasts local to the corresponding process row and column, the
point-to-point communications associated with the construction of the cross border window,
the cross border broadcasts in the two corresponding process rows and columns, and the data
exchange between neighboring processes in the corresponding process rows and columns for
the cross border updates, respectively.

The number of elements representing the factorized form of the orthogonal transformation
can be approximated by n2

win and the broadcasts are initiated once for each time a window is
moved to the next position in the corresponding block. Based on these observations, we model
tlbcast as

tlbcast = 2
nb

nwin
(ts + n2

wintw) log2

√
p. (9)

By a similar reasoning and taking into account the lower degree of concurrency in the cross
border operations, see Section 3.1, we model tcwin + tcbcast by

tcwin + tcbcast = 4kcr(ts + n2
crbtw)(log2

√
p + 1) (10)

where kcr is the number of passes necessary for bringing the whole locally collected eigenvalue
cluster across the border (kcr = 1 if ncrb = nwin).

The exchanges of row and column elements in T and column elements in Q between
neighboring processes suffer from a lower degree of concurrency. Moreover, we cannot guarantee
that the send and receive may take place concurrently rather than in sequence. The average
length of each matrix row or column to exchange is n/2 and about half of the cross border
window is located on each side of the border. To sum up, we model trcexch as

trcexch = 12kcr

(
ts +

n · ncrb

4
√

p
tw

)
. (11)

Using the derived expressions and assuming kcr = 1, i.e., ncrb = nwin, Tc can be boiled down
to the approximation

((
2n2

nb·nwin
+ 4n2

n2
b

+ 12n2

log2
√

p·n2
b

)
ts +

(
2n2·nwin

nb
+ 4n2·n2

win
n2

b
+ 3n3·nwin

log2
√

p·n2
b

)
tw

)
log2

√
p+1√

p .

The dominating term is the last fraction of the part associated with tw and comes from the data
exchange associated with the updates (see Figure 5); it is of order O(n3/(nb · √p)) assuming
nwin ≈ nb and in the general case the communication cost in the algorithm will be dominated
by the size of this contribution. The influence of this term is diminished by choosing nb ·√p as
close to n as possible and thereby reducing the term closer to O(n2), which may be necessary
when the arithmetic cost is not dominated by GEMM updates. For example, for n = 1500,
nb = 180 and p = 64, we have nb · √p = 1440 ≈ n (see also Section 6). In general and in
practice, we will have nb · √p = n/l, where l < n is the average number of row or column
blocks of T distributed to each processor in the cyclic distribution. The scenario to strive for
is l ¿ k, where k is the number of selected eigenvalues. Then we perform significantly more
arithmetics than communication which is a rule of thumb in all types of parallel computing.
If this is possible depends on the problem, i.e, the number of selected eigenvalues and their
distribution over the diagonal of T . Our derived model is compared with observed data in
Section 6.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls



PARALLEL EIGENVALUE REORDERING IN REAL SCHUR FORMS 13

5. Implementation issues

In this section, we address some detailed but important implementation issues.

5.1. Very few eigenvalues per diagonal block

In the extreme case, there is only one eigenvalue per diagonal block to reorder. In such a
situation, we could think of gathering larger clusters of eigenvalues over the borders as quickly
as possible to increase the node performance of the local reordering. However, this turns out to
be counterproductive; the scalability and the overall efficiency in hardware utilization decreases
as the number of concurrent windows (and consequently the concurrently working processors)
decreases In general, the node performance of our parallel algorithm will vary with the number
of selected eigenvalues to be reordered and their distribution across the main block diagonal
of T .

5.2. Splitting clusters in cross border reordering

Sometimes when we cross the process borders, not all the eigenvalues of the cluster can be
moved across the border because of lack of reserved storage at the receiver, e.g., when there
are other selected eigenvalues on the other side which occupy entries in T close to the border.
Then the algorithm splits the cluster in two parts, roughly half on each side of the border,
to keep the cross border region as small as necessary. In such a way, more work is performed
with a higher rate of concurrency in the pre-cross border phase: the eigenvalues left behind are
pushed closer to the border and reordered across the border in the next cross border sweep
over the diagonal blocks.

5.3. Size of cross border window and shared 2× 2 blocks

To simplify the cross border reordering in the presence of any 2 × 2 block being shared on
the border, we keep the top-left part of the cross border window at a minimum dimension 2.
This ensures that the block does not stay in the same position causing an infinite loop. For a
similar reason we keep the bottom-right part of the window at a minimum dimension 3 if a
non-selected eigenvalue is between the border and a selected 2× 2 block.

In our implementation, the size of the cross border window ncrb is determined by the
parameter nceig which controls the number of eigenvalues that cross the border. In practice,
ncrb ≈ 2nceig except for the case when it is not possible to bring all eigenvalues in the current
cluster across the border for reasons discussed above.

5.4. Detection of reordering failures and special cases

Due to the distributed nature of the parallel algorithm, failures in reordering within any
computational window and special cases, like when no selected eigenvalue was found or moved
in a certain computational window, must be detected at runtime and signaled to all processors
in the affected scope (e.g., the corresponding processor row(s), processor column(s) or the

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls



14 R. GRANAT, B. KÅGSTRÖM AND D. KRESSNER

whole mesh) at specific synchronization points. In the current implementation, all processors
are synchronized in this way right before and right after each computational window is moved
across the next block border.

5.5. Organization of communications and updates

In a practical implementation of Algorithms 1–2, the broadcasts of the orthogonal
transformations, the data exchanges for cross border row and column updates and the
associated updates of the matrices T and Q should be organized to minimize any risk for
sequential bottlenecks. For example, all broadcasts in the row direction should be started before
any column oriented broadcast starts to ensure that no pair of broadcasts have intersecting
scopes (see Figure 7). In practice, this approach also encourages an implementation that
performs all row oriented operations, computations and communications, before any column
oriented operations take place. For such a variant of the algorithm, all conclusions from
Section 4 are still valid. This technique also paves the way for a greater chance of overlapping
communications with computations, possibly leading to better parallel performance.

5.6. Condition estimation of invariant subspaces

Following the methodology of LAPACK, our implementation also computes condition numbers
for the invariant (deflating) subspaces and the selected cluster of eigenvalues using the recently
developed software package SCASY [16, 17, 36] and adopting a well-known matrix norm
estimation technique [20, 22, 26] in combination with parallel high performance software for
solving different transpose variants of the triangular (generalized) Sylvester equations.

6. Experimental results

In this section, we demonstrate the performance of a ScaLAPACK-style parallel Fortran 77
implementation of Algorithms 1–2 called PBDTRSEN. All experiments were carried out in double
precision real arithmetics (εmach ≈ 2.2× 10−16).

Our main target parallel platform is the Linux Cluster seth which consists of 120 dual AMD
Athlon MP2000+ nodes (1.667GHz, 384kB on-chip cache). The cluster is connected with a
Wolfkit3 SCI high speed interconnect having a peak bandwidth of 667 MB/sec. The network
connects the nodes in a 3-dimensional torus organized as a 6 × 4 × 5 grid, where each link is
“one-way” directed. In total, the system has a theoretical peak performance of 800 Gflops/sec.
Moreover, seth is a platform which really puts any parallel algorithm to a tough test regarding
its utilization of the narrow memory hierarchy of the dual nodes.

All subroutines and programs were compiled using the Portland Group’s pgf90 6.0-5
compiler using the recommended compiler flags -O2 -tp athlonxp -fast and the following
software libraries: ScaMPI (MPICH 1.2), LAPACK 3.0, ATLAS 3.5.9, ScaLAPACK / PBLAS
1.7.0, BLACS 1.1, RECSY 0.01alpha and SLICOT 4.0.

Below, we also utilize a second target platform, sarek, which is a 64-bit Opteron Linux
Cluster with 192 dual AMD Opteron nodes (2.2 GHz, 1024kB unified L2 cache), 8Gb RAM

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls



PARALLEL EIGENVALUE REORDERING IN REAL SCHUR FORMS 15

per node and a Myrinet-2000 high-performance interconnect with 250 MB/sec bandwidth.
More information about the hardware and software related to sarek is available on-line [35].

All presented timings in this section are in seconds. The parallel speedup Sp is computed as

Sp = Tpmin/Tp, (12)

where Tp is the parallel execution time using p processors and pmin is the smallest number of
processors utilized for the current problem size.

Some initial tests were performed on seth by reordering 50% of the eigenvalues which are
initially uniformly distributed over the diagonal of a 1500 × 1500 random matrix‡ already in
Schur form. We also updated the corresponding Schur vectors in Q during the reordering. The
purpose of these tests was to find close to optimal configuration parameters for the parallel
algorithm executed with one computational window on one processor. By testing all feasible
combinations of nb, nwin and neig = nceig within the integer search space {10, 20, . . . , 200}
for rmmult ∈ {5, 10, . . . , 100} and nslab = 32, we found that nb = 180, nwin = 60 and
neig = nceig = 30 and rmmult = 40 are optimal with runtime 5.66 seconds. This is a bit slower
than the result in [31] (4.74 seconds) but still a great improvement over the current LAPACK
algorithm (DTRSEN) which takes over 20 seconds! The difference may be partly explained by
the additional data copying that is performed in the parallel algorithm during the cross border
phase.

We display uniprocessor performance results for DTRSEN and PBDTRSEN in Figure 8, using the
optimal configuration parameters listed above. The speedup is remarkable for large problems;
n = 5700 shows a speedup of 14.0 for the parallel block algorithm executed on one processor
compared to the standard algorithm, mainly caused by an improved memory reference pattern
due to the rich usage of high performance level 3 BLAS.

Next, using the close to optimal parameter setting, we performed experiments on a 4 × 4
processor mesh using 4 computational windows on 6000× 6000 matrices of the same form as
above (which puts the same memory load per processor as a single 1500× 1500 matrix on one
processor) to find a close to optimal value of nceig in the integer search space {5, 10, . . . , 30}. In
this case, we ended up with nopt

ceig = 30 with a corresponding execution time of 71.53 seconds,
see Figure 9. It turned out that the execution time increased with a decreasing nceig. For
instance, the same problem took 119.77 seconds using nceig = 5. With our analysis in mind,
this is not surprising since using neig = nceig brings each subcluster of eigenvalues across the
process border in one single step, thereby minimizing the number of messages sent across
the border for each subcluster, i.e., the influence on the parallel runtime caused by the node
latency is minimized.

In Figure 10 we display representative performance results reordering the eigenvalues of
6000 × 6000 matrices for different variations of the number of selected eigenvalues, their
distribution over the main diagonal of the Schur form, and the number of utilized processors.
The parallel speedup goes up to 16.6 for using 64 processors when selecting 5% of the
eigenvalues from the lower part of T .

‡The strictly upper part of T is a random matrix, but we construct T such that 50% of its eigenvalues are in
complex conjugate pairs.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls



16 R. GRANAT, B. KÅGSTRÖM AND D. KRESSNER

0 1000 2000 3000 4000 5000 6000
0

500

1000

1500

2000

2500

3000

3500

4000

4500
Uniprocessor performance reordering 50% of eigenvalues

n − matrix dimension

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
.)

 

 

LAPACK’s DTRSEN

PBDTRSEN on 1 cpu

Figure 8. Uniprocessor performance results for standard LAPACK algorithm DTRSEN and parallel block
algorithm PBDTRSEN reordering 50% of uniformly distributed eigenvalues of random matrices on seth.

5 10 15 20 25 30
70

75

80

85

90

95

100

105

110

115

120

n
ceig

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
.)

Reordering 50% of eigenvalues of the Schur form using 4x4 processors

 

 

n = 6000, n
b
 = 180, n

win
 = 60, n

eig
 = 30, k

win
 = 4

Figure 9. Parallel execution time for 6000× 6000 matrices using 4 concurrent computational windows
on a 4× 4 processor mesh reordering 50% of uniformly distributed eigenvalues of random matrices on

seth, with respect to nceig – number of eigenvalues that cross the border in a single step.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls



PARALLEL EIGENVALUE REORDERING IN REAL SCHUR FORMS 17

0 10 20 30 40 50 60 70
0

20

40

60

80

100

120
Execution time of PBDTRSEN: n=6000, k=5%

p = P
r
 * P

c

T
im

e
 (

s
e
c
.)

 

 

Selection in bottom part

Random selection

0 10 20 30 40 50 60 70
0

2

4

6

8

10

12

14

16

18

p = P
r
 * P

c

S
p
 =

 T
1
 /
 T

p

Parallel speedup of PBDTRSEN: n=6000, k=5%

 

 

Selection in bottom part

Random selection

0 10 20 30 40 50 60 70
0

100

200

300

400

500

600
Execution time of PBDTRSEN: n=6000, k=35%

p = P
r
 * P

c

T
im

e
 (

s
e
c
.)

 

 

Selection in bottom part

Random selection

0 10 20 30 40 50 60 70
0

2

4

6

8

10

12

14

p = P
r
 * P

c

S
p
 =

 T
1
 /
 T

p

Parallel speedup of PBDTRSEN: n=6000, k=35%

 

 

Selection in bottom part

Random selection

0 10 20 30 40 50 60 70
0

100

200

300

400

500

600

700
Execution time of PBDTRSEN: n=6000, k=50%

p = P
r
 * P

c

T
im

e
 (

s
e
c
.)

 

 

Selection in bottom part

Random selection

0 10 20 30 40 50 60 70
0

2

4

6

8

10

12

14

p = P
r
 * P

c

S
p
 =

 T
1
 /
 T

p

Parallel speedup of PBDTRSEN: n=6000, k=50%

 

 

Selection in bottom part

Random selection

Figure 10. Experimental results for n = 6000 from Table II on seth. Displayed representative
performance results are for different variations of the number of selected eigenvalues, their distribution

over the diagonal of the Schur form and the number of utilized processors.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls



18 R. GRANAT, B. KÅGSTRÖM AND D. KRESSNER

To confirm the validity of the derived performance model (see Section 4), we compare the
experimental parallel speedup with the parallel speedup computed from combining Equations
(6), (7) and (8), see Figure 11. To check the reliability of our results, we repeated each run
at least 5 times but observed only insignificant variation in the obtained execution times. The
machine specific constants ta, ts and tw are estimated as follows:

• Since the exact number of flops needed for computing a reordered Schur form is not known
a priori, we approximate ta for p = 1 by t̃

(1)
a (n, k) which is computed from Equation (7)

by replacing Ta by T1, the serial runtime of the parallel algorithm for one processor only.
For p > 1, we model ta by

t̃(p)
a (n, k) = α0 + α1n + α2k + α3

√
p, (13)

where αi ∈ R, i = 0, . . . , 3. The model captures that the processor speed is expected to
be proportional to the matrix data load at each processor. Since the amount of matrix
data per processor and the number of selected eigenvalues per on-diagonal processor are
kept fixed going from a problem instance (n, k, p) to (2n, 2k, 4p), we assume

t̃(p)
a (n, k) = t̃(4p)

a (2n, 2k). (14)

From this assumption and the available data for t̃
(1)
a derived from Table II, we compute

the αi-parameters from a least squares fit, see Table I. With these parameters and fixed
values on p and/or n, the model predicts that t̃

(p)
a (n, k) decreases for an increasing value

of k. Moreover, for a fixed value on k, t̃
(p)
a (n, k) increases with p and/or n. For such cases,

the decrease of the modelled processor performance is marginal, except for large values
on p and/or n. With an increasing size of the processor mesh

√
p×√p and fixed values

on n and k, it is expected that individual processors perform less efficient due to less
local arithmetic work.

• The interconnection network parameters ts and tw are estimated by performing MPI-
based ping-pong communication in the network combined with a linear least-squares
regression, see Table I. In Figure 11, we allow tw to get multiplied by γ ≥ 1 which models
unavoidable network sharing, overhead from the BLACS layer and the potentially (much)
lower memory bandwidth inside the dual nodes. For γ = 1, tw represents the inverse of
the practical peak bandwidth for double precision data in the network of seth.

The comparison presented in Figure 11 shows that the performance model is not perfect, but
is able to predict a parallel speedup in the same range as the actually observed results.

We present experimental profiling data generated by the performance evaluation tool
OPT [34] in Figures 12-13 for four concurrent processors reordering 5% of the eigenvalues
of a 6000 × 6000 matrix on sarek. The profiling data reveals that the load balance is even
and that the computations dominate the execution time. Moreover, the two dominating MPI
routines invoked are related to point-to-point receive operations (MPI Recv), which is expected
to be due to the cross border data exchanges, and synchronizing barriers (MPI Barrier), which
is expected to be due to the synchronization of all processors right before and after each cross
border phase (see Section 5.4).

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls



PARALLEL EIGENVALUE REORDERING IN REAL SCHUR FORMS 19

0 10 20 30 40 50 60 70
0

2

4

6

8

10

12

14

16

p

S
p

Comparison of experimental and modelled parallel speedup

 

 
Exp n=6000, k=5%

Exp n=6000, k=35%

Exp n=6000, k=50%

Mod n=6000, k=5%, gamma=1

Mod n=6000, k=35%, gamma=4

Mod n=6000, k=50%, gamma=4

Figure 11. Comparison of modelled and experimental parallel speedup for problems with random
distribution of the selected eigenvalues.

Figure 12. Execution time profile for four processors reordering 5% of the eigenvalues of a 6000×6000
matrix: total cost of computations vs communications.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls



20 R. GRANAT, B. KÅGSTRÖM AND D. KRESSNER

Table I. Experimentally determined machine parameters for seth.

Parameter Value
α0 6.73× 10−9

α1 6.34× 10−13

α2 −3.10× 10−12

α3 3.08× 10−10

ts 3.7× 10−6

tw γ · 1.1× 10−8

Figure 13. Execution time profile for four processors reordering 5% of the eigenvalues of a 6000×6000
matrix: invoked BLACS-MPI routines.

We conclude this section by remarking that the numerical accuracy of the parallel reordering
algorithm is similar to the results presented in [2, 30, 31] since the numerical backward stability
of the algorithm is preserved when accumulating orthogonal transformations [23]. Experimental
results confirming this claim are also presented in [19].

For a real-world application requiring the reordering of a significant number of eigenvalues
for large matrices, see [18], where the parallel method described in this paper is applied to
linear-quadratic optimal control problems.

7. Extension to the generalized real Schur form

We have extended the presented parallel algorithm for reordering the standard Schur form to
eigenvalue reordering in the generalized Schur form

(S, T ) = QT (A,B)Z, (15)

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls



PARALLEL EIGENVALUE REORDERING IN REAL SCHUR FORMS 21

where (A,B) is a regular matrix pair, Q and Z are orthogonal matrices and (S, T ) is the
generalized real Schur form (see, e.g., [14]). The parallel block algorithm now works on pairs of
matrices. Moreover, the individual orthogonal transformation matrices from each eigenvalue
swap are stored slightly different compared to the standard case (see [31] for details). For our
prototype Fortran 77 implementation PBDTGSEN the following close to optimal parameters was
found by extensive tests: nb = 180, nwin = 60 and neig = nceig = 30 and rmmult = 10 which
resulted in a uniprocessor runtime 18.94 seconds, which is less than 1 second slower than the
results in [31], but much faster than LAPACK.

As for the standard case, PBDTGSEN optionally computes condition numbers for the selected
cluster of eigenvalues and the corresponding deflating subspaces (see, e.g., [27]) by invoking
the generalized coupled Sylvester equation solvers and condition estimators from the SCASY
software [16, 17, 36].

8. Summary and future work

The lack of a fast and reliable parallel reordering routine has turned the attention away from
Schur-based subspace methods for solving a wide range of numerical problems in distributed
memory (DM) environments. By the introduction of the algorithms presented in this paper,
this situation might be subject to change.

We remark that ScaLAPACK still lacks a highly efficient implementation of the parallel
QZ algorithm and the existing parallel QR algorithm is far from level 3 node performance.
Moreover, the techniques developed in this paper can be used to implement parallel versions
of the advanced deflation techniques described in [9, 25].

Acknowledgements

The research was conducted using the resources of the High Performance Computing Center
North (HPC2N).

REFERENCES

1. E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. W. Demmel, J. J. Dongarra, J. Du Croz, A. Greenbaum,
S. Hammarling, A. McKenney, and D. C. Sorensen. LAPACK Users’ Guide. SIAM, Philadelphia, PA,
third edition, 1999.

2. Z. Bai and J. W. Demmel. On swapping diagonal blocks in real Schur form. Linear Algebra Appl.,
186:73–95, 1993.

3. Z. Bai, J. W. Demmel, J. J. Dongarra, A. Ruhe, and H. van der Vorst, editors. Templates for the Solution
of Algebraic Eigenvalue Problems. Software, Environments, and Tools. SIAM, Philadelphia, PA, 2000.

4. Z. Bai, J. W. Demmel, and A. McKenney. On computing condition numbers for the nonsymmetric
eigenproblem. ACM Trans. Math. Software, 19(2):202–223, 1993.

5. M. W. Berry, J. J. Dongarra, and Y. Kim. A parallel algorithm for the reduction of a nonsymmetric
matrix to block upper-Hessenberg form. Parallel Comput., 21(8):1189–1211, 1995.

6. L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. W. Demmel, I. Dhillon, J. J. Dongarra, S. Hammarling,
G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. ScaLAPACK Users’ Guide. SIAM,
Philadelphia, PA, 1997.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls



22 R. GRANAT, B. KÅGSTRÖM AND D. KRESSNER

7. BLAS - Basic Linear Algebra Subprograms. See http://www.netlib.org/blas/index.html.
8. K. Braman, R. Byers, and R. Mathias. The multishift QR algorithm, I: Maintaining well-focused shifts

and level 3 performance. SIAM J. Matrix Anal. Appl., 23(4):929–947, 2002.
9. K. Braman, R. Byers, and R. Mathias. The multishift QR algorithm, II: Aggressive early deflation. SIAM

J. Matrix Anal. Appl., 23(4):948–973, 2002.
10. J. Choi, J. J. Dongarra, and D. W. Walker. The design of a parallel dense linear algebra software library:

reduction to Hessenberg, tridiagonal, and bidiagonal form. Numer. Algorithms, 10(3-4):379–399, 1995.
11. K. Dackland and B. K̊agström. Blocked algorithms and software for reduction of a regular matrix pair to

generalized Schur form. ACM Trans. Math. Software, 25(4):425–454, 1999.
12. J. J. Dongarra, J. Du Croz, I. S. Duff, and S. Hammarling. A set of level 3 basic linear algebra subprograms.

ACM Trans. Math. Software, 16:1–17, 1990.
13. J. J. Dongarra, S. Hammarling, and J. H. Wilkinson. Numerical considerations in computing invariant

subspaces. SIAM J. Matrix Anal. Appl., 13(1):145–161, 1992.
14. G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins University Press, Baltimore,

MD, third edition, 1996.
15. A. Grama, A. Gupta, G. Karypsis, and V. Kumar. Introduction to Parallel Computing, Second Edition.

Addison-Wesley, 2003.
16. R. Granat and B. K̊agström. Parallel Solvers for Sylvester-type Matrix Equations with Applications in

Condition Estimation, Part I: Theory and Algorithms. Technical Report UMINF-07.15, Department of
Computing Science, Ume̊a University, SE-90187, UMEÅ, Sweden. Submitted to ACM Transactions on
Mathematical Software, 2007.

17. R. Granat and B. K̊agström. Parallel Solvers for Sylvester-type Matrix Equations with Applications in
Condition Estimation, Part II: the SCASY Software. Technical Report UMINF-07.16, Department of
Computing Science, Ume̊a University, SE-90187, UMEÅ, Sweden. Submitted to ACM Transactions on
Mathematical Software, 2007.

18. R. Granat, B. K̊agström, and D. Kressner. A parallel Schur method for solving continuous-time algebraic
Riccati equations. Submitted to IEEE International Symposium on Computer-Aided Control Systems
Design, San Antonio, TX, 2008.

19. R. Granat, B. K̊agström, and D. Kressner. Parallel eigenvalue reordering in real Schur forms. LAPACK
working note 192. See http://www.netlib.org/lapack/lawns/downloads/.

20. W.W. Hager. Condition estimates. SIAM J. Sci. Statist. Comput., (3):311–316, 1984.
21. G. Henry, D. S. Watkins, and J. J. Dongarra. A parallel implementation of the nonsymmetric QR algorithm

for distributed memory architectures. SIAM J. Sci. Comput., 24(1):284–311, 2002.
22. N. J. Higham. Fortran codes for estimating the one-norm of a real or complex matrix, with applications

to condition estimation. ACM Trans. of Math. Software, 14(4):381–396, 1988.
23. N. J. Higham. Accuracy and Stability of Numerical Algorithms. Second edition. SIAM, Philadelphia,

PA, 2002.
24. B. K̊agström. A direct method for reordering eigenvalues in the generalized real Schur form of a regular

matrix pair (A, B). In Linear algebra for large scale and real-time applications (Leuven, 1992), volume
232 of NATO Adv. Sci. Inst. Ser. E Appl. Sci., pages 195–218. Kluwer Acad. Publ., Dordrecht, 1993.

25. B. K̊agström and D. Kressner. Multishift Variants of the QZ Algorithm with Aggressive Early Deflation.
SIAM Journal on Matrix Analysis and Applications 29, 1, 199–227, 2006.

26. B. K̊agström and P. Poromaa. Distributed and shared memory block algorithms for the triangular
Sylvester equation with sep−1 estimators. SIAM J. Matrix Anal. Appl., 13(1):90–101, 1992.

27. B. K̊agström and P. Poromaa. LAPACK-style algorithms and software for solving the generalized Sylvester
equation and estimating the separation between regular matrix pairs. ACM Trans. Math. Software 22, 1,
78–103, 1996.

28. B. K̊agström and P. Poromaa. Computing eigenspaces with specified eigenvalues of a regular matrix pair
(A, B) and condition estimation: theory, algorithms and software. Numer. Algorithms, 12(3-4):369–407,
1996.

29. J.G. Korvink and E.B. Rudnyi. Oberwolfach benchmark collection. In P. Benner, V. Mehrmann, and
D.C. Sorensen, editors, Dimension Reduction of Large-Scale Systems, volume 45 of Lecture Notes in
Computational Science and Engineering, pages 311–315. Springer-Verlag, Berlin/Heidelberg, Germany,
2005.

30. D. Kressner. Numerical Methods and Software for General and Structured Eigenvalue Problems. PhD
thesis, TU Berlin, Institut für Mathematik, Berlin, Germany, 2004.

31. Daniel Kressner. Block algorithms for reordering standard and generalized Schur forms. ACM
Transactions on Mathematical Software, 32(4):521–532, December 2006.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls



PARALLEL EIGENVALUE REORDERING IN REAL SCHUR FORMS 23

32. LAPACK - Linear Algebra Package. See http://www.netlib.org/lapack/.
33. R. Lehoucq and J. Scott. An evaluation of software for computing eigenvalues of sparse nonsymmetric

matrices. Tech. Report MCS-P547-1195, Argonne National Laboratory, 1996.
34. OPT - The optimization and profiling tool. See http://www.allinea.com/.
35. Sarek - HPC2N Opteron Cluster. See http://www.hpc2n.umu.se/resources/sarek.html.
36. SCASY - ScaLAPACK-style solvers for Sylvester-type matrix equations. See http://www.cs.umu.se/

~granat/scasy.html.
37. V. Sima. Algorithms for Linear-Quadratic Optimization, volume 200 of Pure and Applied Mathematics.

Marcel Dekker, Inc., New York, NY, 1996.
38. ScaLAPACK Users’ Guide. See http://www.netlib.org/scalapack/slug/.
39. Stewart, G. W. and Sun, J.-G. Matrix Perturbation Theory. Academic Press, New York, 1990.
40. P. Van Dooren. A generalized eigenvalue approach for solving Riccati equations. SIAM J. Sci. Statist.

Comput., 2(2):121–135, June, 1981.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls



24 R. GRANAT, B. KÅGSTRÖM AND D. KRESSNER

APPENDIX A: Performance Results

In Table II, we present representative performance results for PBDTRSEN for different variations
of the number of selected eigenvalues, their distribution over the diagonal of the Schur
form and the number of utilized processors. All presented results are obtained executing the
parallel reordering algorithm using the close to optimal parameters settings using as many
computational windows as possible (kwin =

√
p). For PBDTRSEN, the parallel speedup goes up

to 16.6 for n = 6000 using a 8 × 8 processor mesh when selecting 5% of the eigenvalues from
the lower part of T ; in Table II, Random and Bottom refer to the parts of T where the selected
eigenvalues reside before the reordering starts.

Some remarks regarding the results in Table II are in order.

• In general, the parallel algorithm scales better (delivers a higher parallel speedup) for a
smaller value of k, the number of chosen eigenvalues for a given problem size. The main
reason is that less computational work per processor in general leads to less efficient usage
of processor resources, i.e., a lower Mflops-rate, which in turn makes the communication
overhead smaller in relation to arithmetics. We also see improved processor utilization
when increasing the number of selected eigenvalues to reorder from 5% to 50%. The
amount of work is increased by a factor 10 but the uniprocessor execution times increase
roughly by a factor of 6 (n = 3000).

• Since only the processor rows and columns corresponding to the selected groups of four
adjacent processors can be efficiently utilized during the cross border phase (see the
formation of the processor groups in Algorithm 2), the performance gain going from
a 2 × 2 to a 3 × 3 processor mesh is sometimes bad (even negative, see the problem
n = 1500 and 5% selected eigenvalues). In principle, some performance degradation will
occur when going from 2q× 2q to (2q +1)× (2q +1) processors, for q ≥ 1, since the level
of concurrency in the cross border phase will not increase. This effect is not that visible
for larger meshes since the relative amount of possibly idle processors in the cross border
part decreases with an increasing processor mesh.

We repeated the experiments from the standard Schur form for the generalized Schur form
with similar experimental results, see Table III. For n = 6000, the memory on one 2GB node
of seth available for users is not large enough to hold all data objects (signaled by ’-’). In this
case, Sp is computed using pmin = 4 in Equation (12), i.e., the presented values exemplify the
speedup going from p0 = 4 to p > p0 processor.By assuming a fictive parallel speedup of at
least 2 going from 1 × 1 to 2 × 2 processors for n = 6000 (see the results in Table II), we
conclude that the scalability for the generalized case is as good as or even better than the
standard case.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls



PARALLEL EIGENVALUE REORDERING IN REAL SCHUR FORMS 25

Table II. Performance of PBDTRSEN on seth.

Random Bottom Random Bottom
Sel. Pr × Pc n time Sp time Sp n time Sp time Sp

5% 1× 1 1500 1.98 1.00 2.16 1.00 4500 42.7 1.00 42.4 1.00
2× 2 1500 0.90 2.20 1.02 2.12 4500 15.9 2.69 17.6 2.41
3× 3 1500 1.01 1.96 1.04 2.08 4500 10.8 3.95 12.4 3.42
4× 4 1500 0.80 2.48 0.92 2.35 4500 6.65 6.42 7.74 5.48
5× 5 1500 0.34 5.82 0.76 2.84 4500 4.70 9.09 6.25 6.78
6× 6 1500 0.32 6.19 0.35 6.17 4500 4.26 10.0 4.51 9.40
7× 7 1500 0.32 6.19 0.32 6.75 4500 3.48 12.3 3.50 12.1
8× 8 1500 0.24 8.25 0.27 8.00 4500 3.13 13.6 3.50 12.1

35% 1× 1 1500 5.78 1.00 9.87 1.00 4500 127 1.00 217 1.00
2× 2 1500 2.96 1.95 5.58 1.77 4500 55.3 2.30 96.7 2.24
3× 3 1500 2.05 2.82 4.03 2.45 4500 40.4 3.14 67.9 3.20
4× 4 1500 1.74 3.32 2.72 3.63 4500 25.5 4.98 43.2 5.02
5× 5 1500 1.51 3.83 2.28 4.33 4500 22.4 5.67 39.0 5.56
6× 6 1500 1.17 4.94 1.82 5.42 4500 16.7 7.60 26.4 8.22
7× 7 1500 1.13 5.12 1.49 6.62 4500 15.8 8.04 21.6 10.0
8× 8 1500 1.02 5.67 1.12 8.81 4500 11.8 10.8 18.7 11.6

50% 1× 1 1500 5.66 1.00 12.6 1.00 4500 140 1.00 263 1.00
2× 2 1500 3.50 1.62 6.83 1.84 4500 62.7 2.23 121 2.17
3× 3 1500 1.89 2.99 4.97 2.53 4500 36.1 3.88 84.3 3.12
4× 4 1500 1.87 3.03 4.48 2.81 4500 29.2 4.79 61.5 4.28
5× 5 1500 1.54 3.68 3.20 3.93 4500 21.6 6.48 49.6 5.30
6× 6 1500 1.22 4.64 2.03 6.21 4500 18.8 7.45 34.2 7.69
7× 7 1500 1.30 4.35 1.90 6.63 4500 16.5 8.48 30.3 8.68
8× 8 1500 1.11 5.10 1.76 7.16 4500 12.2 11.5 24.2 10.9

5% 1× 1 3000 12.8 1.00 19.8 1.00 6000 97.6 1.00 109 1.00
2× 2 3000 4.93 2.60 6.63 2.99 6000 34.3 2.85 39.4 2.77
3× 3 3000 3.69 3.47 4.00 4.95 6000 23.8 4.10 27.4 3.98
4× 4 3000 3.01 4.26 2.90 6.83 6000 14.0 6.97 16.3 6.69
5× 5 3000 2.97 4.31 2.54 7.80 6000 11.2 8.71 14.4 7.57
6× 6 3000 1.72 7.44 2.12 9.34 6000 8.60 11.3 8.94 12.2
7× 7 3000 1.82 7.03 2.33 8.50 6000 6.20 15.8 7.52 14.5
8× 8 3000 1.45 8.83 1.59 12.5 6000 6.30 15.5 6.58 16.6

35% 1× 1 3000 40.1 1.00 72.4 1.00 6000 304 1.00 509 1.00
2× 2 3000 19.0 2.11 38.0 1.91 6000 123 2.47 220 2.31
3× 3 3000 13.8 2.91 23.2 3.12 6000 89.9 3.38 152 3.35
4× 4 3000 8.83 4.54 14.2 5.10 6000 58.8 5.17 98.4 5.17
5× 5 3000 7.81 5.13 14.8 4.89 6000 51.6 5.89 81.8 6.22
6× 6 3000 6.90 5.81 9.26 7.82 6000 37.4 8.13 57.2 8.90
7× 7 3000 5.81 6.90 9.07 7.98 6000 31.7 9.59 49.0 10.4
8× 8 3000 5.30 7.57 7.17 10.1 6000 25.2 12.1 38.7 13.2

50% 1× 1 3000 50.2 1.00 91.4 1.00 6000 324 1.00 623 1.00
2× 2 3000 24.2 2.07 44.5 2.05 6000 133 2.44 275 2.27
3× 3 3000 18.9 2.66 28.1 3.25 6000 94.5 3.43 197 3.16
4× 4 3000 11.6 4.33 18.2 5.02 6000 71.5 4.53 135 4.61
5× 5 3000 9.57 5.25 17.2 5.31 6000 50.2 6.45 111 5.61
6× 6 3000 7.17 7.00 12.6 7.25 6000 36.4 8.90 71.5 8.71
7× 7 3000 6.89 7.29 11.4 8.02 6000 33.4 9.70 61.8 10.1
8× 8 3000 5.27 9.53 9.81 9.32 6000 26.4 12.3 50.1 12.4

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls



26 R. GRANAT, B. KÅGSTRÖM AND D. KRESSNER

Table III. Performance of PBDTGSEN on seth.

Random Bottom Random Bottom
Sel. Pr × Pc n time Sp time Sp n time Sp time Sp

5% 1× 1 1500 5.12 1.00 6.56 1.00 4500 98.4 1.00 105 1.00
2× 2 1500 2.65 1.93 2.91 2.25 4500 39.9 2.47 48.0 2.19
3× 3 1500 2.66 1.92 2.74 2.39 4500 23.4 4.21 32.4 3.24
4× 4 1500 2.20 2.32 2.50 2.62 4500 17.3 5.69 18.6 5.65
5× 5 1500 1.48 3.46 1.97 3.33 4500 15.2 6.47 17.0 6.18
6× 6 1500 1.05 4.88 1.69 3.88 4500 10.4 9.46 11.8 8.90
7× 7 1500 0.77 6.65 1.25 5.25 4500 8.93 11.0 9.22 11.4
8× 8 1500 0.60 8.53 0.67 9.79 4500 7.33 13.4 8.15 12.9

35% 1× 1 1500 13.6 1.00 22.0 1.00 4500 279 1.00 312 1.00
2× 2 1500 8.02 1.70 11.4 1.93 4500 133 2.10 218 1.43
3× 3 1500 7.92 1.72 7.63 2.88 4500 77.2 3.61 122 2.56
4× 4 1500 3.52 3.86 5.41 4.07 4500 50.4 5.54 73.7 4.23
5× 5 1500 3.21 4.24 4.50 4.89 4500 40.4 6.91 59.5 5.24
6× 6 1500 3.71 3.67 4.85 4.54 4500 32.2 8.66 43.7 7.14
7× 7 1500 2.21 6.16 3.33 6.61 4500 26.1 10.7 40.3 7.74
8× 8 1500 2.15 6.33 2.84 7.75 4500 20.8 13.4 33.3 9.37

50% 1× 1 1500 18.9 1.00 26.9 1.00 4500 301 1.00 584 1.00
2× 2 1500 13.8 1.37 14.5 1.89 4500 146 2.06 288 2.03
3× 3 1500 11.1 1.70 10.1 2.66 4500 82.9 3.63 169 3.46
4× 4 1500 4.88 3.87 7.94 3.39 4500 54.9 5.48 104 5.62
5× 5 1500 4.01 4.71 6.57 4.10 4500 41.7 7.22 91.9 6.35
6× 6 1500 3.18 5.94 4.19 6.42 4500 32.8 9.18 64.9 9.00
7× 7 1500 3.35 5.64 4.12 6.53 4500 32.1 9.37 62.9 9.28
8× 8 1500 3.01 6.23 3.96 6.79 4500 25.4 11.9 45.1 12.95

5% 1× 1 3000 34.3 1.00 35.9 1.00 6000 - - - -
2× 2 3000 13.5 2.54 15.3 2.35 6000 92.4 1.00 110 1.00
3× 3 3000 8.55 4.02 8.90 4.03 6000 51.1 1.81 58.3 1.89
4× 4 3000 6.13 5.60 5.79 6.20 6000 34.9 2.65 39.2 2.81
5× 5 3000 6.20 5.53 4.32 8.31 6000 29.2 3.16 33.0 3.33
6× 6 3000 4.59 7.47 3.50 10.3 6000 18.8 4.91 20.6 5.34
7× 7 3000 4.14 8.29 3.40 10.6 6000 16.0 5.78 19.6 5.61
8× 8 3000 2.69 12.8 2.69 13.3 6000 13.3 6.95 14.5 7.59

35% 1× 1 3000 93.4 1.00 155 1.00 6000 - - - -
2× 2 3000 44.6 2.09 74.4 2.08 6000 326 1.00 523 1.00
3× 3 3000 27.1 3.45 42.0 3.69 6000 180 1.81 280 1.87
4× 4 3000 19.2 4.86 25.4 6.10 6000 104 3.13 163 3.21
5× 5 3000 16.7 5.59 22.3 6.95 6000 88.1 3.70 135 3.87
6× 6 3000 12.4 7.53 18.1 8.56 6000 64.5 5.05 85.4 6.12
7× 7 3000 10.9 8.57 15.2 10.2 6000 50.7 6.43 80.9 6.46
8× 8 3000 9.80 9.53 11.8 13.1 6000 43.3 7.53 61.2 8.54

50% 1× 1 3000 105 1.00 194 1.00 6000 - - - -
2× 2 3000 53.9 1.95 98.6 1.97 6000 335 1.00 695 1.00
3× 3 3000 31.9 3.29 64.5 3.01 6000 187 1.79 391 1.78
4× 4 3000 21.5 4.88 35.8 5.42 6000 112 2.99 234 2.97
5× 5 3000 18.5 5.68 31.6 6.14 6000 87.5 3.83 181 3.83
6× 6 3000 14.1 7.45 24.3 7.98 6000 66.6 5.03 127 5.47
7× 7 3000 12.6 8.33 22.6 8.58 6000 62.0 5.40 114 6.10
8× 8 3000 9.81 10.7 20.3 9.56 6000 45.5 7.36 88.0 7.90

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls


