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MULTISHIFT VARIANTS OF THE QZ ALGORITHM WITH
AGGRESSIVE EARLY DEFLATION∗

BO KÅGSTRÖM† AND DANIEL KRESSNER†‡

Abstract. New variants of the QZ algorithm for solving the generalized eigenvalue problem are
proposed. An extension of the small-bulge multishift QR algorithm is developed, which chases chains
of many small bulges instead of only one bulge in each QZ iteration. This allows the effective use of
level 3 BLAS operations, which in turn can provide efficient utilization of high performance computing
systems with deep memory hierarchies. Moreover, an extension of the aggressive early deflation
strategy is proposed, which can identify and deflate converged eigenvalues long before classic deflation
strategies would. Consequently, the number of overall QZ iterations needed until convergence is
considerably reduced. As a third ingredient, we reconsider the deflation of infinite eigenvalues and
present a new deflation algorithm, which is particularly effective in the presence of a large number
of infinite eigenvalues. Combining all these developments, our implementation significantly improves
existing implementations of the QZ algorithm. This is demonstrated by numerical experiments with
random matrix pairs as well as with matrix pairs arising from various applications.
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1. Introduction. The QZ algorithm is a numerically backward stable method
for computing generalized eigenvalues and deflating subspaces of small- to medium-
sized regular matrix pairs (A,B) with A,B ∈ R

n×n. It goes back to Moler and
Stewart in 1973 [37] and underwent only a few modifications during the following
25 years, notably through works by Ward [47, 48], Kaufman [29], and Dackland and
K̊agström [12]. Nonorthogonal variants of the QZ algorithm include the LZ algorithm
by Kaufman [28] and the AB algorithm for pencils by Kublanovskaya [34].

The purpose of the QZ algorithm is to compute a generalized Schur decomposi-
tion of (A,B), i.e., orthogonal matrices Q and Z so that S = QTAZ is quasi-upper
triangular with 1 × 1 and 2 × 2 blocks on the diagonal, while the matrix T = QTBZ
is upper triangular. This decomposition provides almost everything needed to solve
the generalized nonsymmetric eigenvalue problem (GNEP). Generalized eigenvalues,
defined as root pairs (α, β) of the bivariate polynomial det(βA−αB), can be directly
computed from the diagonal blocks of S and T , although some care must be taken to
implement this computation in a safe manner; see [37, 45]. Moreover, the leading k
columns of the orthogonal matrices Z and Q span a pair of deflating subspaces [40] if
the (k+1, k) subdiagonal entry of the matrix S vanishes. A reordering of the diagonal
blocks of S and T can be used to compute other deflating subspaces; see [26, 25, 44].

The eigenvalues of (A,B) are read off from (S, T ) as follows. The 2 × 2 diagonal
blocks correspond to pairs of complex conjugate eigenvalues. The real eigenvalues
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are given in pairs (sii, tii) corresponding to the 1 × 1 diagonal blocks of (S, T ). The
finite eigenvalues are sii/tii, where tii �= 0. An infinite eigenvalue is represented as
(sii, 0) with sii �= 0. If (sii, tii) �= (0, 0) for all i, then (A,B) is a regular matrix pair,
or equivalently βA − αB is a regular matrix pencil. Otherwise, the matrix pair is
singular and at least one (sii, tii) equals (0, 0). These situations need extra caution,
and so-called staircase-type algorithms can be used for identifying singular cases by
computing a generalized upper triangular (GUPTRI) form of (A,B) (e.g., see Demmel
and K̊agström [13, 14]).

Three ingredients make the QZ algorithm work effectively. First, the matrix pair
(A,B) is reduced to Hessenberg-triangular form; i.e., orthogonal matrices Q and Z
are computed so that H = QTAZ is upper Hessenberg and T = QTBZ is upper
triangular. Second, a sequence of so-called implicit shifted QZ iterations is applied to
(H,T ) in order to bring H closer to (block) upper triangular form while preserving the
Hessenberg-triangular form of (H,T ). Each of these iterations can be seen as chasing
a pair of bulges from the top left to the bottom right corners along the subdiagonals of
H and T , a point of view that has been emphasized by Watkins and Elsner [49]. The
third ingredient is deflation, which aims at splitting the computation of the generalized
Schur form (S, T ) into smaller subproblems. This paper describes improvements for
the latter two ingredients, QZ iterations, and deflations.

Inspired by the works of Braman, Byers, and Mathias [7] and Lang [36] for the
QR algorithm, we propose multishift QZ iterations that chase a tightly coupled chain
of bulge pairs instead of only one bulge pair per iteration. This allows the effective
use of level 3 BLAS operations [15, 23, 24] during the bulge chasing process, which in
turn can provide efficient utilization of today’s high performance computing systems
with deep memory hierarchies. Tightly coupled bulge chasing has also successfully
been used in the reduction of a matrix pair (Hr, T ) in block Hessenberg-triangular
form, where Hr has r subdiagonals, to Hessenberg-triangular form (H,T ) [12].

Recently, Braman, Byers, and Mathias [6] also presented a new, advanced defla-
tion strategy, the so-called aggressive early deflation. Combining this deflation strat-
egy with multishift QR iterations leads to a variant of the QR algorithm, which may,
for sufficiently large matrices, require less than 10% of the computing time needed by
the LAPACK [2] implementation. We will show that this deflation strategy can be
extended to the QZ algorithm, resulting in similar time savings.

A (nearly) singular matrix B often implies that the triangular matrix T of the
corresponding Hessenberg-triangular form has one or more diagonal entries close to
zero. Each of these diagonal entries admits the deflation of an infinite eigenvalue.
Some applications, such as semidiscretized Stokes equations [42], lead to matrix pairs
that have a large number of infinite eigenvalues. Consequently, a substantial amount
of computational work in the QZ algorithm is spent deflating these eigenvalues. We
will provide a discussion on this matter including preprocessing techniques, and we
propose windowing techniques that lead to more efficient algorithms for deflating
infinite eigenvalues within the QZ algorithm. This approach is conceptually close
to blocked algorithms for reordering eigenvalues in standard and generalized Schur
forms [32].

The rest of this paper is organized as follows. In section 2, we review and extend
conventional multishift QZ iterations and provide some new insight into their numeri-
cal backward stability. Multishift variants that are based on chasing a tightly coupled
chain of bulge pairs are described in section 3. In section 4, a thorough discussion on
dealing with infinite eigenvalues is presented that includes preprocessing and efficient
methods for deflating such eigenvalues within the QZ algorithm. Aggressive early de-
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flation for the QZ algorithm and its connection to the distance of uncontrollability for
descriptor systems are studied in section 6. Computational experiments, presented
in section 7, demonstrate the effectiveness of our newly developed multishift QZ al-
gorithm with advanced deflation techniques. Finally, some concluding remarks are
summarized in section 8.

2. Conventional multishift QZ iterations. Throughout the rest of this paper
we assume that the matrix pair under consideration, which will be denoted by (H,T ),
is already in Hessenberg-triangular form. Efficient algorithms for reducing a given
matrix pair to this form can be found in [12, 31]. For the moment, we also assume
that (H,T ) is an unreduced matrix pair; i.e., all subdiagonal entries of H as well as all
diagonal entries of T are different from zero. The latter condition implies that only
finite eigenvalues are considered.

A QZ iteration relies on a fortunate choice of m shifts (or shift pairs) (μ1, ν1),
(μ2, ν2), . . . , (μm, νm) with μi ∈ C and νi ∈ R, giving rise to the shift polynomial

p(HT−1) = (ν1HT−1 − μ1In)(ν2HT−1 − μ2In) · · · (νmHT−1 − μmIn).(2.1)

If x denotes the first column of this matrix polynomial, then the first step of an
implicit shifted QZ iteration consists of choosing an orthogonal matrix Q1 such that
QT

1 x is a multiple of the first unit vector e1. The rest of the QZ iteration consists of
reducing the updated matrix pair (QT

1 H,QT
1 T ) back to Hessenberg-triangular form,

without modifying the first rows of QT
1 H and QT

1 T by transformations from the left.
In the original formulation of the QZ algorithm [37], this reduction to Hessenberg-

triangular form was described for m ≤ 2, based on combinations of Givens rotations
and Householder matrices. This approach has the negative side-effect that one QZ
iteration with m = 2 shifts requires more flops (floating point operations) than two QZ
iterations with m = 1 shift. Partly avoiding this increase of flops, Ward [47] proposed
the so-called combination shift QZ algorithm which uses m = 1 for real shifts and
m = 2 for complex conjugate pairs of shifts. Later on, Watkins and Elsner [49]
proposed a variant solely based on Householder matrices which requires roughly 27%
fewer flops than the original formulation and may employ an arbitrary number m
of shifts. This variant is currently implemented in the LAPACK subroutine DHGEQZ.
A curiosity of this subroutine is that it still uses Ward’s combination shift strategy
despite the fact that two single shift QZ iterations now require roughly 9% more flops
than one double shift iteration.

2.1. Householder-based variants. In the following, we describe the House-
holder-based variant by Watkins and Elsner in more detail. To simplify the notation,
we make use of the following convention.

Definition 2.1. A Householder matrix which maps the last n− j elements of a
given vector x ∈ R

n to zero without modifying the leading j − 1 elements is denoted
by Hj(x).

Let us illustrate the first few steps of an implicit QZ iteration for n = 6,m = 2.
First, a Householder matrix H1(x) is used to map x, the first column of the shift
polynomial defined in (2.1), to a multiple of e1. Note that only the leading three
elements of x are nonzero. Hence, if H1(x) is applied from the left to H and T , only

the first three rows (denoted by the symbols ĥ and t̂ below) are affected while the
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remaining rows stay unchanged (denoted by h and t):

(H,T ) ←

⎛
⎜⎜⎝
⎡
⎢⎢⎣

ĥ ĥ ĥ ĥ ĥ ĥ

ĥ ĥ ĥ ĥ ĥ ĥ

ĥ ĥ ĥ ĥ ĥ ĥ
0 0 h h h h
0 0 0 h h h
0 0 0 0 h h

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

t̂ t̂ t̂ t̂ t̂ t̂
t̂ t̂ t̂ t̂ t̂ t̂
t̂ t̂ t̂ t̂ t̂ t̂
0 0 0 t t t
0 0 0 0 t t
0 0 0 0 0 t

⎤
⎥⎥⎦
⎞
⎟⎟⎠.(2.2)

Next, to avoid further fill-in in the factor T , the newly introduced entries (2, 1) and
(3, 1) must be eliminated. Recall that we are not allowed to change the first row of
T by applying a transformation from the left. However, it is still possible to achieve
these eliminations by applying a Householder matrix using the following simple fact.

Lemma 2.2 (see [49]). Let T ∈ R
n×n be an invertible matrix. Then the first

column of T H1(T
−1e1) is a scalar multiple of e1.

Applying a Householder matrix from the right to eliminate several elements in
one column (instead of one row) is somewhat opposite to their standard use. This mo-
tivates us to call such a matrix an opposite Householder matrix. Applying H1(T

−1e1)
from the right yields the following diagram:

(H,T ) ←

⎛
⎜⎜⎝
⎡
⎢⎢⎣

ĥ ĥ ĥ h h h

ĥb ĥb ĥb h h h

ĥb ĥb ĥb h h h

ĥb ĥb ĥb h h h
0 0 0 h h h
0 0 0 0 h h

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

t̂ t̂ t̂ t t t

0̂b t̂b t̂b t t t

0̂b t̂b t̂b t t t
0b 0b 0b t t t
0 0 0 0 t t
0 0 0 0 0 t

⎤
⎥⎥⎦
⎞
⎟⎟⎠.(2.3)

Here, we have used the subscript b to designate entries that belong to the so-called
bulge pair. The rest of the QZ iteration can be seen as pushing this bulge pair along the
subdiagonals down to the bottom right corners until it vanishes. The next two steps
consist of applying the Householder matrix H2(He1) from the left and the opposite
Householder matrix H2(T

−1e2) from the right:

(H,T ) ←

⎛
⎜⎜⎝
⎡
⎢⎢⎣

h h h h h h

ĥ ĥ ĥ ĥ ĥ ĥ

0̂ ĥ ĥ ĥ ĥ ĥ

0̂ ĥ ĥ ĥ ĥ ĥ
0 0 0 h h h
0 0 0 0 h h

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

t t t t t t
0 t̂ t̂ t̂ t̂ t̂
0 t̂ t̂ t̂ t̂ t̂
0 t̂ t̂ t̂ t̂ t̂
0 0 0 0 t t
0 0 0 0 0 t

⎤
⎥⎥⎦
⎞
⎟⎟⎠,

(H,T ) ←

⎛
⎜⎜⎜⎝
⎡
⎢⎢⎢⎣

h ĥ ĥ ĥ h h

h ĥ ĥ ĥ h h

0 ĥb ĥb ĥb h h

0 ĥb ĥb ĥb h h

0 ĥb ĥb ĥb h h
0 0 0 0 h h

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎣

t t̂ t̂ t̂ t t
0 t̂ t̂ t̂ t t

0 0̂b t̂b t̂b t t

0 0̂b t̂b t̂b t t
0 0b 0b 0b t t
0 0 0 0 0 t

⎤
⎥⎥⎦
⎞
⎟⎟⎟⎠.(2.4)

For general m and n, the implicit shifted QZ iteration based on (opposite) Householder
matrices is described in Algorithm 1. Here, the colon notation A(i1 : i2, j1 : j2) is used
to designate the submatrix of a matrix A defined by rows i1 through i2 and columns
j1 through j2.

Note that the shifts employed in Algorithm 1 are based on the generalized eigen-
values of the bottom right m×m submatrix pair, a choice which is sometimes called
generalized Francis shifts and which ensures quadratic local convergence [49]. If
m � n, a proper implementation of this algorithm requires 2(4m + 3)n2 + O(n)
flops for updating H and T . In addition, (4m + 3)n2 + O(n) flops are required for
updating each of the orthogonal factors Q and Z.
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Algorithm 1 Implicit shifted QZ iteration based on Householder matrices

Input: An n× n matrix pair (H,T ) in unreduced Hessenberg-triangular form, an
integer m ∈ [2, n].

Output: Orthogonal matrices Q,Z ∈ R
n×n so that QT (H,T )Z is the Hessenberg-

triangular matrix pair obtained after applying a QZ iteration with m shifts.
The matrix pair (H,T ) is overwritten by QT (H,T )Z.

Compute (μ1, ν1), (μ2, ν2), . . . , (μm, νm) as generalized eigenvalues of the matrix pair

(H(n−m + 1 : n, n−m + 1 : n), T (n−m + 1 : n, n−m + 1 : n)).

Set x = ((ν1HT−1 − μ1In)(ν2HT−1 − μ2In) · · · (νmHT−1 − μmIn))e1.
(H,T ) ← H1(x) · (H,T )
Q ← H1(x), Z ← H1(T

−1e1)
(H,T ) ← (H,T ) · Z
for j ← 1, 2, . . . , n− 2 do

Q̃ ← Hj+1(Hej)
(H,T ) ← Q̃ · (H,T )
Q ← QQ̃
Z̃ ← Hj+1(T

−1ej+1)
(H,T ) ← (H,T ) · Z̃
Z ← ZZ̃

end for

2.2. Error analysis of opposite Householder matrices. Some authors have
raised concerns that the use of opposite Householder matrices could introduce numeri-
cal instabilities in the QZ algorithm; see, e.g., [12, p. 444]. Such instabilities could arise
if some entries that should be zero after the application of an opposite Householder
matrix are nonnegligible in finite-precision arithmetic. In the following, we provide a
brief error analysis showing that such an event may not occur if some care is taken.

Without loss of generality, we can restrict the analysis to an opposite Householder
matrix of the form H1(T

−1e1) for some nonsingular matrix T ∈ R
n×n. Although an

ill-conditioned T may severely affect the data representing H1(T
−1e1), it has almost

no effect on the purpose of H1(T
−1e1), which is the introduction of zero entries. To

explain this, assume that a numerically backward stable method is employed to solve
the linear system Tx = e1, yielding a computed solution x̂. This implies that x̂ is the
exact solution of a slightly perturbed system

(T + F )x̂ = e1, ‖F‖2 ≤ cT ‖T‖2,(2.5)

where cT is not much larger than the unit roundoff u [21]. Now, consider the House-
holder matrix H1(x̂) = I − β̃ṽṽT , where β̃ ∈ R, ṽ ∈ R

n, such that (I − β̃ṽṽT )x̂ = γ̃e1

for some scalar γ̃. The computation of the quantities β̃, ṽ defining H1(x̂) is also
subject to roundoff errors. Using standard computational methods, the computed
quantities v̂, β̂ satisfy

|β̂ − β̃| ≤ cβ |β̃| ≈ (4n + 8)u|β̃|, ‖v̂ − ṽ‖2 ≤ cv‖ṽ‖2 ≈ (n + 2)u‖ṽ‖2;

see [21, p. 365]. It follows that

‖T · (I − β̂v̂v̂T )e1 − 1/γ̃ · e1‖2 ≤ ‖T · (I − β̃ṽṽT )e1 − 1/γ̃ · e1‖2

+ (2cβ + 4cv)‖T‖2 + O(u2)

≤ (cT + 2cβ + 4cv)‖T‖2 + O(u2).
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This shows that if x̂ is computed by a backward stable method, then the last n − 1
elements in the first column of T (I − βv̂v̂T ) can be set to zero without spoiling the
backward stability of the QZ algorithm.

In this paper, we favor the following method for constructing opposite House-
holder matrices. Let T = RQ be an RQ decomposition; i.e., the matrix R ∈ R

n×n is
upper triangular and Q ∈ R

n×n is orthogonal. If T is invertible, then QT e1 is a scalar
multiple of T−1e1 implying that H1(Q

T e1) is an opposite Householder matrix. Even
if T is singular, it can be shown that the first column of T · H1(Q

T e1) is mapped to
a multiple of e1:

T · H1(Q
T e1) = R · [Q · H1(Q

T e1)] =

[
r11 R12

0 R22

] [
q̃11 0

0 Q̃22

]

=

[
r11q̃11 R12Q̃22

0 R22Q̃22

]
.

RQ decompositions enjoy a favorable backward error analysis, and the constant cT
in (2.5) can be bounded by roughly n2u; see, e.g., [21, Thm. 18.4].

2.3. Bulge pairs and shift blurring. Convergence in the implicit shifted QZ
iteration typically becomes manifest in the bottom right corner of the matrix pair;
often the mth-last subdiagonal entry of H converges to zero. As a QZ iteration can
be interpreted as chasing a bulge pair from the top left corner to the bottom right
corner of (H,T ), the question arises how the information contained in the shifts is
passed during this chasing process. Watkins [53] discovered a surprisingly simple
relationship; the intended shifts are the finite eigenvalues of the bulge pairs.

To explain this in more detail, suppose that the implicit shifted QZ iteration with
m shifts, Algorithm 1, is applied to (H,T ) ∈ R

n×n×R
n×n with n > m. As before, we

assume that (H,T ) is in unreduced Hessenberg-triangular form but we do not assume
that T is nonsingular; only the part used for the shift computation (the trailing m×m
principal submatrix of T ) and the part involved in the introduction of the bulge pair
(the leading m ×m principal submatrix of T ) are required to be nonsingular. Let x
be a multiple of the first column of the shift polynomial defined in (2.1). The initial

bulge pair is the matrix pair
(
B

(H)
0 , B

(T )
0

)
, where

B
(H)
0 = [x(1 : m + 1), H(1 : m + 1 : 1 : m)] =

⎡
⎢⎢⎢⎢⎣

x1 h11 · · · h1m

x2 h21
. . .

...
...

. . . hmm

xm+1 0 hm+1,m

⎤
⎥⎥⎥⎥⎦ ,

B
(T )
0 = [0, T (1 : m + 1 : 1 : m)] =

⎡
⎢⎢⎢⎢⎣

0 t11 · · · t1m

0 0
. . .

...
...

. . . tmm

0 0 · · · 0

⎤
⎥⎥⎥⎥⎦ .

Theorem 2.3 (see [53]). If the leading m×m principal submatrix of T is nonsin-
gular, then the shifts (σ1, 1), . . . , (σm, 1) are the finite eigenvalues of the initial bulge

pair
(
B

(H)
0 , B

(T )
0

)
.

During the course of a QZ iteration, a bulge pair is first created at the top left
corners and then chased down to the bottom right corners. Let

(
H(j), T (j)

)
denote
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the updated matrix pair (H,T ) obtained after the bulge pair has been chased j − 1
steps, which amounts to applying j−1 loops of Algorithm 1. Then, the jth bulge pair(
B

(H)
j , B

(T )
j

)
is given by

B
(H)
j = H(j)(j + 1 : j + m + 1, j : j + m + 1),

B
(T )
j = T (j)(j + 1 : j + m + 1, j : j + m + 1),

(2.6)

which corresponds to the submatrices designated by the subscript b in (2.3)–(2.4).
Theorem 2.4 (see [53]). If the mth leading principal submatrix of T is non-

singular, then the shifts σ1, . . . , σm are the finite eigenvalues of the jth bulge pair(
B

(H)
j , B

(T )
j

)
.

Note that the definition of a bulge pair is only possible for j ≤ n −m − 1, since
otherwise (2.6) refers to entries outside of H(j) and T (j). This issue can be resolved by
adding virtual rows and columns to the matrix pair (H(j), T (j)); see [53]. Theorem 2.4
can be extended to the case j > n−m− 1.

Early attempts to improve the performance of the QR algorithm focused on using
shift polynomials of high degree [4], leading to medium-order Householder matrices
during the QR iteration and enabling the efficient use of WY representations. This
approach, however, has proved disappointing due to the fact that the convergence of
such a large-bulge multishift QR algorithm is severely affected by roundoff errors [16].
This effect is caused by shift blurring: with increasing m the eigenvalues of the bulge
pairs, which should represent the shifts in exact arithmetic, often become extremely
sensitive to perturbations [51, 52, 33]. Already for moderate m, say, m ≥ 15, the
shifts may be completely contaminated by roundoff errors during the bulge chasing
process. Not surprisingly, we made similar observations in numerical experiments
with implicit shifted QZ iterations, which also suffer from shift blurring.

3. Multishift QZ iterations based on tightly coupled tiny bulge pairs.
The trouble with shift blurring can be avoided by developing variants of the implicit
shifted QZ algorithm that still rely on a large number of simultaneous shifts but
chase several tiny bulge pairs instead of one large bulge pair. Such ideas have already
been successfully applied to the QR algorithm; see, e.g., [7, 36] and the references
therein. In this section, we describe an extension of the work by Braman, Byers, and
Mathias [7] to the QZ algorithm.

For the purpose of describing this new tiny-bulge multishift QZ algorithm, let m
denote the number of simultaneous shifts to be used in each QZ iteration and let ns

denote the number of shifts contained in each bulge pair. It is assumed that m is an
integer multiple of ns. To avoid shift blurring phenomena we use tiny values for ns,
say, ns = 2 or ns = 4.

Our algorithm performs an implicit shifted QZ iteration with m generalized Fran-
cis shifts to a Hessenberg-triangular matrix pair (H,T ) and consists of three stages,
which are described in more detail below. First, a tightly coupled chain of m/ns

bulge pairs is bulge-by-bulge introduced in the top left corners of H and T . Sec-
ond, the whole chain at once is chased down along the subdiagonal until the bottom
bulge pair reaches the bottom right corners of H and T . Finally, all bulge pairs are
bulge-by-bulge chased off this corner.

3.1. Introducing a chain of bulge pairs. The tiny-bulge multishift QZ algo-
rithm begins with introducing m/ns bulge pairs in the top left corner of the matrix
pair (H,T ). Every bulge pair contains a set of ns shifts. It is assumed that the
((m/ns)(ns + 1) − 1)th leading principal submatrix of T is nonsingular. The first
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Fig. 3.1. Introducing a chain of m/ns = 4 tightly coupled bulge pairs, each of which contains
ns = 3 shifts.

bulge pair is introduced by applying an implicit QZ iteration with ns shifts and in-
terrupting the bulge chasing process as soon as the bottom right corner of the bulge
in H touches the (ph− 1, ph) subdiagonal entry of H, where ph = (m/ns)(ns +1)+1.
The next bulge pair is chased until the bottom right corner of the bulge in H touches
the (ph − ns − 2, ph − ns − 1) subdiagonal entry. This process is continued until all
m/ns bulge pairs are introduced; see Figure 3.1. Note that only the submatrices
marked light gray in Figure 3.1 must be updated during the bulge chasing process.
To update the remaining parts (marked dark gray), all orthogonal transformations
from the left are accumulated into a ph×ph matrix U and applied in terms of general
matrix-matrix multiply (GEMM) operations:

H(1 : ph, (ph + 1) : n) ← UT ·H(1 : ph, (ph + 1) : n),

T (1 : ph, (ph + 1) : n) ← UT · T (1 : ph, (ph + 1) : n).

3.2. Chasing a chain of bulge pairs. In each step of the tiny-bulge multishift
QZ algorithm, the chain of bulge pairs is chased k steps downward. Before the first
step, this chain resides in columns/rows pl : ph with pl = 1, ph = (m/ns)(ns + 1) + 1
as above. Before the next step, we have pl = 1 + k, ph = (m/ns)(ns + 1) + 1 + k, and
so on.

The whole chain is chased in a bulge-by-bulge and bottom-to-top fashion. One
such step is illustrated in Figure 3.2. Again, only the principal submatrices marked
light gray in Figure 3.2 must be updated during the bulge chasing process. All trans-
formations from the left and from the right are accumulated into orthogonal matrices
U and V , respectively. Then, GEMM operations can be used to update the rest of
the matrix pair (marked dark gray in Figure 3.2):

H(pl : ph + k, (ph + 1) : n) ← UT ·H(pl : ph + k, (ph + 1) : n),

T (pl : ph + k, (ph + 1) : n) ← UT · T (pl : ph + k, (ph + 1) : n),

H(1 : pl − 1, pl : ph + k) ← H(1 : pl − 1, pl : ph + k) · V,
T (1 : pl − 1, pl : ph + k) ← T (1 : pl − 1, pl : ph + k) · V.
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Fig. 3.2. Chasing a chain of m/ns = 4 tightly coupled bulge pairs.

Note that both matrices, U and V , have the following block structure:

(3.1)

where l1 = (m/ns)(ns + 1) − ns and l2 = k + ns. If this structure is largely ig-
nored, applying U or V amounts to a single GEMM with one of the factors being an
(l1 + l2) × (l1 + l2) matrix. If, on the other hand, the triangular block structure is
fully exploited, applying U or V amounts to two triangular matrix-matrix multiplies
(TRMMs), one with an l1×l1 factor and the other with an l2×l2 factor, as well as two
rectangular GEMMs, one with an l1 × l2 factor and the other with an l2 × l1 factor.
The ratio between the flops needed by these two options is 1+(l21 +l22)/(l

2
1 +l22 +4l1l2).

Following the suggestion in [7], we set the number of steps the bulge chain is chased to
k = 3/2m, leading to l2 ≈ 3/2l1. In this case, exploiting the triangular block structure
reduces the number of flops by 26%. Whether this reduction leads to an actual saving
of execution time depends on the performance of TRMM relative to GEMM, which
may vary depending on BLAS implementations used for the target architecture and
actual matrix sizes (e.g., see [23, 24]). A recent report [19] has identified computing
environments for which TRMM performs significantly worse than GEMM, especially
for the matrix dimensions arising in our application. In such a setting, it is more
favorable to apply U or V with a single GEMM. However, many BLAS implementa-
tions, including the one proposed in [19], contain TRMM operations that perform well
in comparison to GEMM. In this case, it is often possible to turn the flop reduction
offered by the block triangular structure into an actual decrease of execution time.

As for the tiny-bulge multishift QR algorithm, we have to be aware of so-called
vigilant deflations [7, 50], i.e., zero or tiny subdiagonal elements in H that arise during
the chasing process. In order to preserve the information contained in the bulge pairs,
the chain of bulge pairs must be reintroduced in the row in which the zero appears.
Fortunately, we do not have to be aware of zero or tiny subdiagonal elements in T ,
since the bulge pairs are properly passed through infinite eigenvalues; see section 4.4.
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After a certain number of steps, the bottom bulge pair of the chain reaches the
bottom right corners of the matrix pair. As soon as this happens, the whole chain is
bulge-by-bulge chased off this corner, similarly to the introduction of bulge pairs.

3.3. Classic deflation of finite eigenvalues. The goal of (multishift) QZ it-
erations is to drive the subdiagonal entries of the Hessenberg matrix in (H,T ) to zero
while preserving the upper triangular shape of T . Once a subdiagonal entry hk+1,k is
considered zero, the problem is deflated into two smaller problems:([

H11 H12

0 H22

]
,

[
T11 T12

0 T22

])
.

Afterward, the (multishift) QZ iteration is applied separately to the k × k and (n −
k) × (n− k) matrix pairs (H11, T11) and (H22, T22), respectively.

In the original formulation of the QZ algorithm [37] and the current implemen-
tation in LAPACK, a subdiagonal entry hk+1,k is considered zero if

|hk+1,k| ≤ u ‖H‖F .(3.2)

A more conservative criterion, in the spirit of the LAPACK implementation of the
QR algorithm, is to consider hk+1,k zero if

|hk+1,k| ≤ u (|hk,k| + |hk+1,k+1|).(3.3)

It is known for standard eigenvalue problems that, especially in the presence of graded
matrices, the use of the criterion (3.3) gives higher accuracy in the computed eigen-
values [41]. We have observed similar accuracy improvements for the QZ algorithm
when using (3.3) in favor of (3.2). We have also encountered examples where both
criteria give similar accuracy but with slightly shorter execution times for (3.2) due
to earlier deflations.

4. Dealing with infinite eigenvalues. If the degree p of the polynomial det
(βA − αB) is less than n then the matrix pair (A,B) is said to have n − p infinite
eigenvalues. The relationship between infinite eigenvalues and the QZ algorithm is
subtle and calls for caution. In finite-precision arithmetic, the QZ algorithm may
utterly fail to correctly identify infinite eigenvalues, especially if the index of the
matrix pair, defined as the size of the largest Jordan block associated with an infinite
eigenvalue [17], is larger than one [37]. In the context of differential-algebraic equations
(DAEs), the index of (A,B) corresponds to the index of the DAE Bẋ = Ax + f .
Many applications, such as multibody systems and electrical circuits, lead to DAEs
with index at least two; see, e.g., [8, 39, 43].

If the matrix pair (A,B) has an infinite eigenvalue then the matrix B is singular.
This implies that at least one of the diagonal entries in the upper triangular matrix
T in the Hessenberg-triangular form (H,T ) and in the generalized Schur form (S, T )
is zero, and vice versa. In finite-precision arithmetic, zero diagonal entries are spoiled
by roundoff errors. While a tiny zero diagonal entry of T implies that T is numerically
singular, the converse is generally not true. There are well-known examples of upper
triangular matrices that are numerically singular but have diagonal entries that are
not significantly smaller than the norm of the matrix [18, Ex. 5.5.1].

In such cases, much more reliable decisions on the nature of infinite eigenvalues can
be met using algorithms that reveal Kronecker structures, such as GUPTRI [13, 14].
In some cases, infinite eigenvalues can be cheaply and reliably deflated by exploiting
the structure of A and B.
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4.1. Preprocessing deflation of infinite eigenvalues. Given a regular ma-
trix pair (A,B) with infinite eigenvalues corresponding to several Jordan blocks, the
QZ algorithm will typically compute eigenvalue pairs (αi, βi) with βi nonzero. More-
over, otherwise well-conditioned eigenvalues can be affected by perturbations from
these defective infinite eigenvalues; e.g., they may coincide or appear in clusters of
eigenvalues corresponding to computed infinite as well as finite eigenvalues. In the
following, we briefly describe two preprocessing techniques for handling such situa-
tions.

Exploiting staircase algorithms. Without having any knowledge of the Jor-
dan structure of the infinite eigenvalue, in principle, the only reliable and robust way
to identify all infinite eigenvalues is to apply a preprocessing step with a staircase-type
algorithm.

By applying the GUPTRI algorithm [13, 14, 27] to a regular pair (A,B) with
infinite eigenvalues, we get

UT (A,B)V =

([
A11 A12

0 Ainf

]
,

[
B11 B12

0 Binf

])
,(4.1)

where U and V are orthogonal transformation matrices, (Ainf , Binf) reveals the Jordan
structure of the infinite eigenvalue, and (A11, B11) is a matrix pair with only finite
eigenvalues.

Let us illustrate the GUPTRI form (4.1) with a small example. We consider a 7×7
pair (A,B) with three finite eigenvalues and an infinite eigenvalue of multiplicity four
corresponding to two nilpotent Jordan blocks N1 and N3. The infinite eigenvalue
is both derogatory and defective, since it has more than one eigenvector (two Jordan
blocks) but lacks a full setting of eigenvectors (four Jordan blocks). Then (Ainf , Binf)
has the following schematic staircase form:

(Ainf , Binf) =

⎛
⎜⎜⎝
⎡
⎢⎢⎣

z y x x
0 y x x
0 0 x x
0 0 0 x

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0 y x x
0 0 x x
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦
⎞
⎟⎟⎠ .

The bold numbers x, y, z in Ainf represent diagonal blocks of full rank, and the
x and y in Binf represent superdiagonal blocks of full row rank. Outgoing from the
bottom right corner of Binf , the sizes of the diagonal blocks (stairs) w = (2, 1, 1)
are the Weyr characteristics of the infinite eigenvalue. These indices relate to the
dimensions of the nullspaces N (Bj) such that

∑j
k=1 wk = dimN (Bj) for j = 1, 2, 3.

In other words, wj is the number of Jordan blocks of size ≥ j. Now, the infinite
Jordan structure can be read off from w giving the Segre characteristics s = (3, 1),
where s1 is the size of the largest Jordan block, s2 is the size of the second largest
block, and so on. Both w and s sum up to the algebraic multiplicity and w1 is the
geometric multiplicity of the infinite eigenvalue.

After such a preprocessing deflation of the infinite eigenvalues of (A,B), we apply
the QZ algorithm to the matrix pair (A11, B11) in (4.1). For more introductory
material on singular matrix pairs and the GUPTRI form see [27] and the references
therein.

Exploiting knowledge of structure. In some cases, infinite eigenvalues can be
reliably deflated by taking into account knowledge on the structure of the matrices A
and B. If this is feasible by orthogonal transformations, this is the recommended way
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of dealing with infinite eigenvalues, as the decision which eigenvalues are considered
infinite is not affected by roundoff error. In the context of DAEs, several frameworks
have been developed that can help identify and exploit such structures; see, e.g., [20,
35]. The following example is closely related to work by Stykel [42], in which (A,B)
arises from a semidiscretized Stokes equation.

Example 4.1. Consider A =
[

K
LT

L
0

]
and B =

[
M
0

0
0

]
, where L is an m× (n−m)

matrix of full column rank (n ≤ 2m) and M is an m×m symmetric positive definite
matrix. By a QR decomposition of L we may transform the matrix pair (A,B) to

(A,B) ←

⎛
⎝
⎡
⎣ K11 K12 L1

K21 K22 0
LT

1 0 0

⎤
⎦ ,

⎡
⎣ M11 M12 0

M21 M22 0
0 0 0

⎤
⎦
⎞
⎠ ,

where L1 is an m × m invertible matrix. The submatrix M22 is again symmetric
positive definite, which in particular yields its invertibility. By a simple block permu-
tation, A and B can be transformed to block upper triangular form,

(A,B) ←

⎛
⎝
⎡
⎣ L1 K12 K11

0 K22 K21

0 0 LT
1

⎤
⎦ ,

⎡
⎣ 0 M12 M11

0 M22 M21

0 0 0

⎤
⎦
⎞
⎠ .

Thus, the eigenvalues of the matrix pair (K22,M22) constitute the finite eigenvalues
of (A,B).

4.2. Deflation of infinite eigenvalues within the QZ algorithm. Although
preprocessing is the preferable way of dealing with infinite eigenvalues, there can be
good reasons to let the QZ algorithm do this job, particularly if the reliable detection of
infinite eigenvalues is not a major concern. One reason is that computing a GUPTRI
form is quite a costly procedure [14]. This and the following two subsections are
concerned with existing and new approaches to deflate infinite eigenvalues that are
signaled by tiny diagonal entries of the matrix T in a Hessenberg-triangular matrix
pair (H,T ).

For testing the smallness of a diagonal entry tjj we may, similar to (3.2)–(3.3),
either use the norm-wise criterion

|tjj | ≤ u · ‖T‖F ,(4.2)

as implemented in the LAPACK routine DHGEQZ, or the neighbor-wise criterion |tjj | ≤
u·(|tj−1,j |+|tj,j+1|). The latter criterion might help avoid artificial infinite eigenvalues
caused by a poor scaling of the matrix pair. Let us briefly sketch the procedure
developed by Moler and Stewart [37] for deflating an infinite eigenvalue after tjj has
been set to zero, for the case n = 5 and j = 3:

(H,T ) =

⎛
⎜⎝
⎡
⎢⎣

h h h h h
h h h h h
0 h h h h
0 0 h h h
0 0 0 h h

⎤
⎥⎦ ,

⎡
⎢⎣

t t t t t
0 t t t t
0 0 0 t t
0 0 0 t t
0 0 0 0 t

⎤
⎥⎦
⎞
⎟⎠ .

First, a Givens rotation is applied to columns 2 and 3 to annihilate t22, followed by
a Givens rotation acting on rows 3 and 4 to annihilate the newly introduced nonzero
entry h42:

(H,T ) ←

⎛
⎜⎝
⎡
⎢⎣

h ĥ ĥ h h

h ĥ ĥ h h

0 ĥ ĥ ĥ ĥ

0 0̂ ĥ ĥ ĥ
0 0 0 h h

⎤
⎥⎦ ,

⎡
⎢⎣

t t̂ t̂ t t

0 0̂ t̂ t t
0 0 0 t̂ t̂
0 0 0 t̂ t̂
0 0 0 0 t

⎤
⎥⎦
⎞
⎟⎠ .
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In a similar manner, the two zero diagonal entries in T are pushed one step upward:

(H,T ) ←

⎛
⎜⎝
⎡
⎢⎣

ĥ ĥ h h h

ĥ ĥ ĥ ĥ ĥ

0̂ ĥ ĥ ĥ ĥ
0 0 h h h
0 0 0 h h

⎤
⎥⎦ ,

⎡
⎢⎣

0̂ t̂ t t t
0 0 t̂ t̂ t̂
0 0 t̂ t̂ t̂
0 0 0 t t
0 0 0 0 t

⎤
⎥⎦
⎞
⎟⎠ .

Finally, a Givens rotation acting on rows 1 and 2 is used to deflate the infinite eigen-
value at the top left corner:

(H,T ) ←

⎛
⎜⎝
⎡
⎢⎣

ĥ ĥ ĥ ĥ ĥ

0̂ ĥ ĥ ĥ ĥ
0 h h h h
0 0 h h h
0 0 0 h h

⎤
⎥⎦ ,

⎡
⎢⎣

0 t̂ t̂ t̂ t̂

0 t̂ t̂ t̂ t̂
0 0 t t t
0 0 0 t t
0 0 0 0 t

⎤
⎥⎦
⎞
⎟⎠ .

The outlined procedure requires roughly 6jn flops for updating each of the factors
H,T,Q, and Z. If j > n/2, it is cheaper to push the infinite eigenvalue to the bottom
right corner.

4.3. Windowing techniques for deflating infinite eigenvalues. The algo-
rithm described in the previous subsection performs O(jn) flops while accessing O(jn)
memory, making it costly in terms of execution time on computing systems with deep
memory hierarchies. If the dimension of the matrix pair is large and many infinite
eigenvalues are to be deflated, this degrades the overall performance of the multishift
QZ algorithm. A higher computation/communication ratio can be attained by using
windowing techniques similar to those proposed in [5, 12, 32]. In the following, we il-
lustrate such an algorithm, conceptually close to a recently presented block algorithm
for reordering standard and generalized Schur forms [32].

Consider a matrix pair (H,T ) in Hessenberg-triangular form, where the 9th and
the 16th diagonal entries of T are zero; see Figure 4.1(a). Both zero entries will be
pushed simultaneously in a window-by-window fashion to the top left corner. The
first step consists of pushing the lower zero diagonal entry to the top left corner of
the 8-by-8 window marked by the light gray area in Figure 4.1(b). This creates zero
diagonal entries at positions 11 and 12. Note that it makes little sense to push one
step further; the leading zero at position 10 would be destroyed when pushing the
zero diagonal entry at position 9. During this procedure, only the entries of H and T
that reside within the window are updated and the data representing the performed
Givens rotations is pipelined; see [32] for more details. Afterward, the pipelined
transformations are applied to the parts outside the window marked by dark gray areas
in Figure 4.1(b) as well as to the corresponding parts of the transformation matrices
Q and Z. To maintain locality of the memory reference pattern, rows are updated
in stripes of nb columns (in the computational environments we considered, choosing
nb = 32 was nearly optimal). The next window contains the diagonal positions
5, . . . , 12; see Figure 4.1(c). The zeros at positions 9 and 11 are subsequently pushed
to positions 5 and 7, respectively. Again, the update of parts outside the window
as well as the update of the transformation matrices are delayed as described above.
The last 8-by-8 window resides in the top left corner and yields the deflation of two
infinite eigenvalues; see Figure 4.1(d).

Note that we have only provided the generic picture; pushing a zero diagonal
entry in T may leave “traces” in the form of additional zero diagonal entries. A
proper implementation of the windowing algorithm has to take care of such events.
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Fig. 4.1. Illustration of windowing algorithm for deflating two infinite eigenvalues. Only the
T -matrix of (H,T ) is shown.

Moreover, to achieve optimal performance, the number of zero diagonal entries to be
simultaneously pushed and the window size should be significantly larger than those
chosen in the descriptive example; see section 7.2.

4.4. Infinite eigenvalues and multishift QZ iterations. An important ob-
servation made in [53] is that the shift transmission mechanism works even if T is
singular, provided that this singularity does not affect the generalized Francis shifts
or the definition of the first column of the shift polynomial. In fact, Theorem 2.4
assumes only that the intended shifts are finite and that the mth leading principal
submatrix of T is nonsingular.

Hence, zero diagonal entries at positions m + 1, . . . , n−m in T do not affect the
information contained in the bulge pairs and consequently do not affect the conver-
gence of the QZ iteration. What happens to such a zero diagonal entry if a bulge pair
passes through it? This question has been addressed by Ward [46, 47] for m ≤ 2, and
by Watkins for general m [53]. The answer is that the zero diagonal entry moves m
positions upward along the diagonal. Note that although it is assumed in [53] that
the multishift QZ iteration is based on Givens rotations, the same answer holds for a
QZ iteration based on (opposite) Householder matrices; see [31].

These results imply that infinite eigenvalues need only be deflated if they corre-
spond to zero diagonal entries at positions 1, . . . ,m and n−m+ 1, . . . , n of T . Other
zero diagonal entries will be automatically moved upward in the course of the QZ
algorithm to the top diagonal positions, where they then can be deflated. Note, how-
ever, that this “transport” of zero diagonal elements holds only under the assumption
of exact arithmetic; it can be severely affected by roundoff error.
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Example 4.2. Consider the 10 × 10 matrix pair

(H,T ) =

⎛
⎜⎜⎝
⎡
⎢⎢⎣

3 3 · · · · · · 3

1 3
. . .

.

.

.
. . .

. . .
. . .

.

.

.. . . 3 3
1 3

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1 1 · · · · · · 1

0
. . .

.

.

.
. . .

. . .
.
.
.

0 1
1

⎤
⎥⎥⎦
⎞
⎟⎟⎠

in Hessenberg-triangular form. It can be shown that this matrix pair has four infinite
eigenvalues. Applying a single-shift QZ iteration, Algorithm 1 with m = 1, once
to (H,T ) leads to an updated triangular matrix T with the leading diagonal entry
being exactly zero. None of the other diagonal entries, however, satisfies the deflation
criterion (4.2). Also in the course of further QZ iterations applied to the deflated
matrix pair no other infinite eigenvalue can be detected. After convergence, the three
remaining infinite eigenvalues of (H,T ) have been perturbed to finite eigenvalues of
magnitude ≈ 1.9 × 105. On the other hand, if all entries of T satisfying (4.2) are
subsequently deflated before any QZ iteration, then all four infinite eigenvalues are
detected.

Example 4.2 reveals that not taking care of all (nearly) zero diagonal entries in T
increases the chances that infinite eigenvalues go undetected. Besides the obvious dis-
advantages, failing to detect infinite eigenvalues may have an adverse effect on the con-
vergence of the QZ algorithm [29, 53]. There is no simple cure for the effects observed
in Example 4.2. Setting a diagonal entry, which is known to be zero in exact arithmetic
but does not satisfy (4.2), explicitly to zero would spoil the backward stability of the
QZ algorithm. We therefore recommend taking care of all nearly zero diagonal entries
in T before applying a QZ iteration. Small or—in rare circumstances—even zero diag-
onal entries in T may still appear during a multishift QZ iteration. In particular, we
may encounter such a situation when having chased some but not all of the bulge pairs
from a chain of bulge pairs. Then the small diagonal entry resides between two smaller
chains and from the point of view of Example 4.2 it would be desirable to deflate the
corresponding (nearly) infinite eigenvalue. However, with the existing deflation tech-
niques, this can only be achieved by chasing off at least one of the smaller chains.

5. Singular and nearly singular pencils. For a moment, let us consider a
square singular pencil βA − αB. Then the generalized Schur form (S, T ) of (A,B)
must (in theory) have at least one pair (sii, tii) with sii = tii = 0. This situation
appears, for example, when A and B have a common column (or row) null space. On
the other hand, given a singular pair (S, T ) in generalized Schur form with a regular
part, an equivalence transformation of (S, T ) that produces upper triangular matrices
may give no information about the regular part by inspection of the diagonal elements.
For example, the pair

(S, T ) =

⎛
⎜⎜⎝
⎡
⎢⎢⎣

3 1 0 0
0 3 0 0
0 0 2 0
0 0 0 0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎤
⎥⎥⎦
⎞
⎟⎟⎠

has the finite eigenvalues 3/1, 3/1, and 2/1, besides the singular part (0/0). The
equivalent matrix pair

(SQ, TQ) =

⎛
⎜⎜⎝
⎡
⎢⎢⎣

0 3 1 0
0 0 3 0
0 0 0 2
0 0 0 0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦
⎞
⎟⎟⎠ , with Q =

⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎤
⎥⎥⎦ ,
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has all diagonal elements equal to zero (0/0). So examination of the diagonal elements
only gives no indication of the well-defined regular part of (S, T ).

In practice, the QZ algorithm will in general not detect the above-mentioned sin-
gularities reliably and otherwise well-conditioned eigenvalues can change drastically,
meaning that the values of the computed pairs (sii, tii) cannot be trusted (e.g., see
Wilkinson [54] for several illustrative examples.) Moreover, it is impossible to decide
just by inspection whether sii = ε1 and tii = ε2, with ε1 and ε2 tiny, correspond to
a finite eigenvalue ε1/ε2 or to a true singular pencil. Anyhow, with this information
we know that βA − αB is close to a singular pencil. (Note that the converse of this
statement is not true [9, 27].)

Although the QZ algorithm delivers erratic results for singular or almost singular
cases, the computed results are still exact for small perturbations of the original matrix
pair (A,B). To robustly deal with such cases, it is recommended to first identify any
singularity and deflate the associated Kronecker structure of (A,B) in a preprocessing
step before the QZ algorithm is applied. As with infinite eigenvalues, this can be done
by exploiting staircase-type algorithms like GUPTRI [13, 14].

6. Aggressive early deflation applied to the QZ algorithm. The idea
behind the aggressive early deflation strategy in the QZ algorithm is to enhance the
deflation strategy described in section 3.3 by taking advantage of perturbations outside
the subdiagonal entries of the Hessenberg matrix, as in the QR algorithm [6]. This
gives the possibility to identify and deflate converged eigenvalues much earlier than
either of the deflation criteria (3.2) and (3.3) would do, which results in fewer QZ
iterations and thereby has the potential to save both floating point operations and
execution time.

6.1. Pairs of reducing perturbations. For simplicity, we consider an n × n
complex unreduced Hessenberg-triangular matrix pair (H,T ). Let PH and PT be
complex perturbation matrices. Suppose there exist a unitary matrix Q of the form

Q =
[

1
0

0
Q̃

]
and a unitary matrix Z such that the transformed perturbed matrix pair,

(Ĥ, T̂ ) ≡ QH(H + PH , T + PT )Z,(6.1)

is in reduced Hessenberg-triangular form:

Ĥ =

[
Ĥ11 Ĥ12

0 Ĥ22

]
, T̂ =

[
T̂11 T̂12

0 T̂22

]
.(6.2)

Then, in analogy to the matrix case, (PH , PT ) is called a reducing perturbation pair.
If the norm of (PH , PT ) is tiny, the equivalence transformation above has split the
problem of computing the eigenvalues of (H,T ) in two (or more) subproblems of
smaller size without affecting the backward stability of the QZ algorithm.

In the following, we derive results that characterize and identify pairs of reducing
perturbations, which are extensions of similar results for the matrix case [6].

Lemma 6.1. Let (H,T ) with H,T ∈ C
n×n be in unreduced Hessenberg-triangular

form and PH , PT ∈ C
n×n. Assume that T + PT is invertible. Then (PH , PT ) is a

reducing perturbation pair for (H,T ) if and only if the regular matrix pair (H +
PH , T + PT ) has a left (generalized) eigenvector y ∈ C

n with a zero first component,
y1 = 0.

Proof. Assume (PH , PT ) is a reducing perturbation pair for (H,T ); i.e., there

exist a unitary matrix Q =
[

1
0

0
Q̃

]
and a unitary matrix Z such that (Ĥ, T̂ ) defined
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by (6.1) is in reduced block-triangular form (6.2). This implies that (Ĥ, T̂ ) has a
left (generalized) eigenvector ŷ with ŷ1 = 0; indeed, the first dim(Ĥ11) components
equal to zero. Since Q has block diagonal structure, it follows that y = Qŷ is a left
eigenvector of (H + PH , T + PT ) with y1 = ŷ1 = 0.

In the opposite direction, assume that (H + PH , T + PT ) has a left (generalized)
eigenvector y ∈ C

n with a zero first component, y1 = 0, associated with the eigenvalue
pair (α, β) ∈ C

2, i.e., βyH(H + PH) = αyH(T + PT ). By replacing the initial QR
factorization of B in the standard algorithm for reducing a matrix pair (A,B) to
Hessenberg-triangular form [18, Alg. 7.7.1] by an RQ factorization of B, we construct

unitary matrices Q =
[

1
0

0
Q̃

]
and Z such that QH(H + PH , T + PT )Z = (Ĥ, T̂ ) is in

Hessenberg-triangular form. It follows that ŷ = QHy is a left (generalized) eigenvector
of (Ĥ, T̂ ) and ŷ1 = y1 = 0 due to the fact that Q is block diagonal. Let k be the
smallest index for which ŷk �= 0 and partition ŷH = [0, z]H with z ∈ C

n−k+1. If Ĥ
and T̂ are conformably partitioned,

Ĥ =

[
Ĥ11 Ĥ12

hk,k−1e1e
T
k−1 Ĥ22

]
, T̂ =

[
T̂11 T̂12

0 T̂22

]
,

then β ŷHĤ = α ŷH T̂ yields

β [ĥk,k−1ŷke
T
k−1, z

HĤ22] = α [0, zH T̂22].

The nonsingularity of T + PT implies β �= 0, which in turn gives ĥk,k−1 = 0; i.e., Ĥ
is in reduced Hessenberg form.

Note that the second part of the proof of Lemma 6.1 also shows how orthogonal
matrices Q and Z yielding a deflated matrix pair (6.2) can be obtained by a slightly
modified form of Hessenberg-triangular reduction. In the context of aggressive defla-
tion, a useful reducing perturbation pair (PH , PT ) must have enough zero structure so
that relatively little work is needed to retransform (H + PH , T + PT ) to Hessenberg-
triangular form. By restricting PH and PT to Hessenberg and triangular matrices,
respectively, there will be no extra work.

Lemma 6.2. (PH , PT ) is a reducing perturbation pair for (H,T ) of minimal
Frobenius norm in the set of Hessenberg-triangular pairs if and only if PT is the zero
matrix and PH is zero except for some subdiagonal entry.

Proof. Let (PH , PT ) be a reducing perturbation pair in Hessenberg-triangular

form. Decompose PH = P
(s)
H +P

(u)
H in its subdiagonal part P

(s)
H and its upper triangu-

lar part P
(u)
H . Then (P

(s)
H , 0) is a reducing perturbation pair of smaller

norm.
This choice leads to the small-subdiagonal deflation strategy for the QZ algorithm

described in section 3.3.
In order to reach a more aggressive deflation strategy, we must allow more general

perturbations, where (PH , PT ) is not necessarily in Hessenberg-triangular form. Ex-
tending the matrix case, we consider small perturbations PH and PT that are nonzero
only in the last k rows and k+1 columns. Now, if k � n, the cost is small (compared
to a QZ iteration) to retransform the perturbed matrix pair to Hessenberg-triangular
form; see also section 6.2.
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Let the matrix pair (H,T ) be in unreduced Hessenberg-triangular form with
H,T ∈ C

n×n and partitioned as follows:

H =

⎡
⎣ H11 H12 H13

H21 H22 H23

0 H32 H33

⎤
⎦ , T =

⎡
⎣ T11 T12 T13

0 T22 T23

0 0 T33

⎤
⎦ ,(6.3)

where the block rows from top to bottom (and block columns from left to right) have
n−nw−1, 1, and nw rows (columns), respectively. Let the perturbation pair (PH , PT )
be partitioned conformably with (H,T ), but with the following nonzero structure:

PH =

⎡
⎣ 0 0 0

0 0 0

0 P
(H)
32 P

(H)
33

⎤
⎦ , PT =

⎡
⎣ 0 0 0

0 0 0

0 0 P
(T )
33

⎤
⎦ .(6.4)

A special choice of such perturbations is given in the following lemma.
Lemma 6.3. If (α, β) is an eigenvalue pair of (H33, T33) with left eigenvector y,

normalized such that ‖y‖2 = 1, then (PH , PT ) partitioned as in (6.4) with P
(H)
32 =

−(yHH32)y, P
(H)
33 = 0, and PT = 0 is a reducing perturbation pair.

Proof. We have

β [0, 0, yH ](H + PH) = β [0, 0, yHH33] = α [0, 0, yHT33] = α [0, 0, yH ]T.

This shows that [0, 0, yH ]H is a left eigenvector of the perturbed matrix pair (H +
PH , T +PT ) with PT = 0, which together with Lemma 6.1 concludes the proof.

To search for reducing perturbation pairs, we can choose from all, generically nw,
possible perturbations in the sense of Lemma 6.3. Although this strategy will gen-
erally yield only a reducing perturbation of approximately minimal Frobenius norm
among all pairs of the form (6.4), the perturbations of Lemma 6.3 have the major
advantage of being effectively computed and tested. Finding the minimum among all
reducing perturbations of the form (6.4) is closely related to finding the distance to
uncontrollability of a descriptor system [10]. This connection along with numerical
methods for computing the distance to uncontrollability will be studied in a forth-
coming paper. However, in preliminary numerical experiments with the multishift
QR algorithm we observed that rarely can any extra deflations be gained from using
perturbations more general than those of Lemma 6.3.

To illustrate the effectiveness of Lemma 6.3, let us consider the following matrix
pair, which has been considered in [1] as an extension of the motivating example in [6]:

(H,T ) =

⎛
⎜⎜⎝
⎡
⎢⎢⎣

6 5 4 3 2 1
0.001 1 0 0 0 0

0.001 2 0 0 0
0.001 3 0 0

0.001 4 0
0.001 5

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1 1 1 1 1 1
1 0 0 0 0

1 0 0 0
1 0 0

1 0
1

⎤
⎥⎥⎦
⎞
⎟⎟⎠ .(6.5)

Let us consider a partitioning of the form (6.3) for nw = 5. Then the eigenvalues of
(H33, T33) are given by the (α, β) pairs (1, 1), (2, 1), . . . , (5, 1) with λ = α/β. Each of
these eigenvalues yields a reducing perturbation pair in the sense of Lemma 6.3. The

respective norms of ‖P (H)
32 ‖ are as follows:

1 : 1.0 × 10−3, 2 : 1.0 × 10−6, 3 : 5.0 × 10−10, 4 : 1.7 × 10−13, 5 : 4.2 × 10−17.

In double precision, the eigenvalue 5 can thus be safely deflated. In single precision,
even three eigenvalues (3, 4, and 5) correspond to a reducing perturbation of norm
below machine precision. See also section 7.3, where this example is studied for larger
matrices.
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6.2. Implementation aspects. In the following, we describe an efficient method
which puts the aggressive early deflation motivated by Lemma 6.3 into practice. For
this purpose, we consider a partition of (H,T ) of the form (6.3) and focus on the
nw × (nw + 1) submatrix pair ([H32, H33], [0, T33]), which defines the deflation win-
dow.

First, by means of the QZ algorithm, orthogonal matrices Q1 and Z1 resulting
in a generalized Schur decomposition of (H33, T33) are computed. This admits the
following partitioning:

QT
1 ([H32, H33], [0, T33])

[
1 0
0 Z1

]
=

([
s3 H̃33 H̃34

s4 0 H̃44

]
,

[
0 T̃33 T̃34

0 0 T̃44

])
,

where s3, s4 are column vectors of appropriate size, and (H̃44, T̃44) is either 1 × 1,
representing a real eigenvalue of (H33, T33), or 2×2, representing a complex conjugate
pair of eigenvalues. If (H̃44, T̃44) represents a real eigenvalue, then the corresponding
reducing perturbation in the sense of Lemma 6.3 is obtained by setting the scalar
s4 to zero. Similarly, if (H̃44, T̃44) is 2 × 2, a reducing perturbation is obtained by
setting the two entries of s4 to zero. This is, strictly speaking, not a perturbation in
the sense of Lemma 6.3 and it may happen that one of the two complex conjugate
eigenvalues of (H̃44, T̃44) considered individually yields a reducing perturbation which
is significantly smaller than ‖s4‖2. However, deflating this eigenvalue alone is not
possible without leaving the realm of real matrices.

There are several possible choices for criteria under which ‖s4‖2, the norm of
the reducing perturbation described above, can be considered negligible. A liberal
deflation criterion, which just preserves numerical backward stability, is given by

‖s4‖2 ≤ u‖H‖F .(6.6)

A more conservative criterion in the spirit of (3.3) is given by

‖s4‖2 ≤
{

u|H̃44| if H̃44 is 1 × 1,

u
√
|det(H̃44)| otherwise.

(6.7)

This is preferred for reasons explained in section 3.3. A range of other criteria can be
found in [6, sec. 2.4].

If ‖s4‖2 satisfies the chosen deflation criterion, we mark (H̃44, T̃44) as deflatable
and apply the described process again to the reduced matrix pair ([s3, H̃33], T̃33]).
Otherwise, we mark (H̃44, T̃44) as undeflatable and reorder the generalized Schur
decomposition of (H33, T33) to construct orthogonal matrices Q2 and Z2 such that

(Q1Q2)
T ([H32, H33], [0, T33])

[
1 0
0 Z1Z2

]
=

([
s̄3 H̄33 H̄34

s̄4 0 H̄44

]
,

[
0 T̄33 T̄34

0 0 T̄44

])
,

where (H̄33, T̄33) is of the same order and has the same eigenvalues as (H̃44, T̃44). In
this case, the described process is applied again to the matrix pair ([s̄4, H̄44], T̄44]).
The whole procedure is repeated until the matrix pair vanishes, i.e., nw − k unde-
flatable and k deflatable eigenvalues have been found yielding a decomposition of the
form

QT ([H32, H33], [0, T33])

[
1 0
0 Z

]
=

([
š3 Ȟ33 Ȟ34

š4 0 Ȟ44

]
,

[
0 Ť33 Ť34

0 0 Ť44

])
,
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where (Ȟ44, Ť44) is k × k and contains all deflatable eigenvalues. Moreover, we have
‖š4‖2 ≤

√
ku‖H‖F no matter whether (6.6) or (6.7) is used. Hence, š4 can be safely

set to zero and the QZ algorithm is continued with the (n− k)× (n− k) matrix pair

(H̃, T̃ ) =

⎛
⎝
⎡
⎣ H11 H12 H13Z

H21 H22 H23Z
0 š3 Ȟ33

⎤
⎦ ,

⎡
⎣ T11 T12 T13Z

0 T22 T23Z
0 0 Ť33

⎤
⎦
⎞
⎠ .

Note that the matrix pair (H̃, T̃ ) is not in Hessenberg-triangular form due to the
“spike” š3. If we apply a Householder matrix H1(š3) = I − βvvT to the last nw − k
rows of (H̃, T̃ ), we have

H1(š3)Ť33 = Ť33 − βv(ŤT
33v)

T .

Hence, H1(š3)Ť33 is a rank-one update of a triangular matrix. Similar to updating
algorithms for the QR decomposition [18, sec. 12.5], we can construct an orthogonal
matrix Z3 as a sequence of nw − k − 1 Givens rotations such that ZT

3 ŤT
33v = γen for

some γ ∈ R. Consequently,

H1(š3)Ť33Z3 = Ť33Z3 − βγveTn

is an upper Hessenberg matrix. By another sequence of nw − k − 1 Givens rotations
the subdiagonal elements of H1(š3)Ť33Z3 can be eliminated so that H1(š3)Ť33Z3Z4

becomes upper triangular. The described algorithm requires O((nw − k)2) flops
which is favorable compared to the O((nw − k)3) flops needed for computing an
RQ factorization of H1(š3)Ť33 from scratch. Finally, the standard reduction algo-
rithm [18, Alg. 7.7.1] without the initial QR factorization is applied to the matrix

pair H1(š3)(Ȟ33, Ť33)Z3Z4 in order to compute orthogonal matrices Q3 =
[

1
0

0
Q̃3

]
and Z5 such that QT

3 H1(š3)(Ȟ33, Ť33)Z3Z4Z5 is Hessenberg-triangular. Setting

Q̃ =

[
In−nw 0

0 H1(š3)Q3

]
, Z̃ =

[
In−nw 0

0 Z3Z4Z5

]

yields a Hessenberg-triangular matrix pair Q̃T (H̃, T̃ )Z̃ from which the multishift QZ
algorithm can be continued. Note that before continuing with a multishift QZ itera-
tion it can be beneficial to apply aggressive early deflation again if sufficiently many
eigenvalues have been deflated, i.e., if the ratio k/nw is above a certain threshold,
which has been set to 40% in our experiments (parameter #3 in Table 7.1).

7. Computational experiments. To assess their performance and robustness,
we have implemented the newly developed variants of the QZ algorithm in Fortran

77 and performed several experiments to be described in the following subsections.

7.1. Computational platform(s). The experiments are carried out on one
processor of two of the HPC2N clusters, seth and sarek, which have advanced mem-
ory systems with different characteristics.

The cluster seth consists of 120 nodes, dual Athlon MP2000+ (1.667Ghz) with
1 GB memory per node. Athlon MP2000+ has a 64 kB instruction, a 64 kB data L1
Cache, and 256 kB of integrated L2 cache. Software used: Debian GNU/Linux 3.0,
Portland F90 6.0, ATLAS BLAS 3.5.9.

The cluster sarek consists of 190 HP DL145 nodes, with dual AMD Opteron 248
(2.2GHz) and 8 GB memory per node. AMD Opteron 248 has a 64 kB instruction
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Table 7.1

Default values for some parameters of the multishift QZ algorithm with aggressive early deflation.

seth sarek

#1 Minimal (sub)matrix pair dimension for multishift QZ iterations 300 300
#2 Minimal (sub)matrix pair dimension for aggressive early deflation 300 300
#3 Minimal success rate for repeated aggressive early deflation 40% 40%
#4 Window size for simultaneous deflation of infinite eigenvalues 60 84
#5 Number of infinite eigenvalues to be deflated simultaneously 20 28

and 64 kB data L1 Cache (2-way associative) and a 1024 kB unified L2 Cache (16-way
associative). Software used: Debian GNU/Linux 3.1, Portland F90 6.0, Goto BLAS
0.94.

All results reported are run in double precision real arithmetic (εmach ≈ 2.2 ×
10−16).

7.2. Random matrix pairs. The described multishift QZ iterations and de-
flation algorithms depend on various parameters, which all have some influence on
the overall execution time of the QZ algorithm. We have performed numerical ex-
periments with randomly generated matrix pairs and numerous sets of parameters to
measure the influence of each individual parameter. In the following, we focus on the
three parameters that have been observed to have the largest impact on the execution
time and therefore require particular attention:

m: number of simultaneous shifts used in each multishift QZ iteration (in-
teger multiple of ns),

ns: number of shifts contained in each bulge during multishift QZ iterations,
nw: aggressive early deflation window size.
All other parameters turned out to have less influence on the performance and

have been set in a heuristic manner. The default values displayed in Table 7.1 yielded
good performance for matrix pairs of size 500, . . . , 3000. If the order of an active
submatrix pair in the course of the multishift QZ algorithm described in section 3
becomes smaller than parameter #1, it is more efficient to resort to double-shift
QZ iterations. Similarly, if the order is smaller than parameter #2, aggressive early
deflation is turned off. It is best to choose #1 not smaller than #2. If aggressive early
deflation yielded the deflation of k eigenvalues and the ratio k/nw exceeds parameter
#3, another search for early deflations is immediately performed on the deflated
matrix pair before applying a (multishift) QZ iteration. Finally, the parameters #4
and #5 represent the window size and the maximal number of infinite eigenvalues
to be pushed simultaneously in the block algorithm for deflating infinite eigenvalues
described in section 4.3. It is necessary to choose #4 larger than two times #5; we
found choosing #4 three times larger nearly optimal.

To make the new implementation better comparable to the LAPACK version
3.0 implementation, we used throughout all experiments the liberal deflation crite-
ria (3.2), (4.2), and (6.6). The use of the more conservative deflation criteria (3.3)
and (6.7) may result in more accurate eigenvalues but may also lead to slightly more
QZ iterations.

7.2.1. Influence of m and ns. To measure the influence of the parameters m
and ns on the performance of the multishift QZ algorithm without aggressive early
deflation, we generated n × n matrices A and B having pseudorandom entries uni-
formly distributed in the interval [−1, 1] and reduced them to Hessenberg-triangular
form by applying the LAPACK version 3.0 routine DGGHRD. Figures 7.1 and 7.2 display
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Fig. 7.1. Random matrix pairs: Execution times on seth of DHGEQZ (dashed line), KDHGEQZ

(solid line), and MULTIQZ without aggressive early deflation for ns = 2 (crosses) and ns = 4 (circles).

Fig. 7.2. Random matrix pairs: Execution times on sarek of DHGEQZ (dashed line), KDHGEQZ

(solid line), and MULTIQZ without aggressive early deflation for ns = 2 (crosses) and ns = 4 (circles).

the measured execution times for the following implementations of the QZ algorithm:
DHGEQZ: LAPACK version 3.0 implementation as described in the original paper

by Moler and Stewart [37] with some of the modifications proposed
in [29, 47, 49]; see also section 2.1.

KDHGEQZ: Blocked variant of DHGEQZ, developed by Dackland and K̊agström [12].
MULTIQZ: Multishift QZ algorithm based on tightly coupled chains of tight bulges

as described in section 3.
The graphs in Figures 7.1 and 7.2 show the sensitivity of the measured execution times
for n = 1000 and n = 2000 as a function of m, the degree of the multishift polynomial
used in MULTIQZ, where m is varying between 20 and 116 with step size 4. Note that
in these and the following figures all results for a fixed value of n are observations
from a single random matrix pair. On seth it can be observed that the optimal time
for MULTIQZ is significantly lower for both ns = 2 and ns = 4 than the time needed
by DHGEQZ and KDHGEQZ. On sarek the gained savings are less substantial. In fact,
for ns = 2 and n = 1000 even with the optimal m, MULTIQZ requires slightly more
execution time than KDHGEQZ.
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Fig. 7.3. Random matrix pairs: Execution times on seth of DHGEQZ with aggressive early defla-
tion (dashed line), KDHGEQZ with aggressive early deflation (solid line), and MULTIQZ with aggressive
early deflation (crosses).

Fig. 7.4. Random matrix pairs: Execution times on sarek of DHGEQZ with aggressive early defla-
tion (dashed line), KDHGEQZ with aggressive early deflation (solid line), and MULTIQZ with aggressive
early deflation (crosses).

7.2.2. Influence of nw. Similar results for the three implementations of the QZ
algorithm with aggressive early deflation are displayed in Figures 7.3 and 7.4. The
graphs show the sensitivity of the measured execution times with respect to nw, the
size of the deflation window, for n = 1000 and n = 2000. For DHGEQZ and KDHGEQZ

aggressive early deflation has not been performed after each QZ iteration but only
after every m/2 (double-shift) QZ iterations, meaning that an overall number of m
shifts is applied before each search for early deflations. For all three implementations,
we have chosen the optimal value for m in the set {20, 24, . . . , 116}. Moreover, we have
set ns = 4 for MULTIQZ. Again, it can be seen that MULTIQZ outperforms LAPACK’s
DHGEQZ, but is also faster than KDHGEQZ.

7.2.3. Infinite eigenvalues. To generate matrix pairs having large numbers of
infinite eigenvalues, we generated Hessenberg-triangular matrix pairs (H,T ) in the
same manner as in the previous two subsections and set each diagonal element of
T with probability 0.5 to zero. For n = 2000, this resulted in a matrix pair (H,T )
with roughly 1000 zero entries on the diagonal of T . Either implementation of the
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Table 7.2

Infinite eigenvalues: Execution times in seconds on seth and sarek of MULTIQZ with aggressive
early deflation for a 2000 × 2000 random matrix pair with 656 infinite eigenvalues. The numbers
shown in brackets correspond to the part (number between 0 and 1) of the execution time that was
spent for deflating infinite eigenvalues.

Deflation strategy seth sarek

All ∞ eigenvalues at top left corner (unblocked) 204.8 (0.70) 71.6 (0.66)
All ∞ eigenvalues at top left corner (blocked) 142.1 (0.56) 59.8 (0.54)
All ∞ eigenvalues at nearest corner (unblocked) 137.0 (0.60) 43.5 (0.55)
All ∞ eigenvalues at nearest corner (blocked) 91.6 (0.45) 37.1 (0.44)
Necessary ∞ eigenvalues at nearest corner (unblocked) 99.6 (0.11) 43.9 (0.13)
Necessary ∞ eigenvalues at nearest corner (blocked) 94.1 (0.05) 42.8 (0.11)

QZ algorithm detected 656 infinite eigenvalues. If only those infinite eigenvalues that
correspond to nearly zero diagonal entries at the top left and bottom right corners of
T are deflated in the course of the QZ algorithm (see section 4.4), then a significant
portion remains undetected. For example, when using this strategy together with
DHGEQZ only 399 infinite eigenvalues were detected, which confirms the findings of
Example 4.2. On the other hand, this strategy significantly lowers the time spent for
dealing with infinite eigenvalues. This can be seen in the last two rows of Table 7.2,
which lists execution times for various strategies used in MULTIQZ with ns = 4 and
the optimal values for m and nw obtained from section 7.2.2. Note, however, that
failing to detect infinite eigenvalues adversely affects the convergence of the QZ algo-
rithm; the time spent for QZ iterations increases from 61 to 89 seconds on seth. We
remark that the use of the windowing technique described in section 4.3 is denoted
by “(blocked)” in Table 7.2. There are other interesting observations in the figures of
this table. Deflating infinite eigenvalues at the nearest corner of the matrix T (and
not at only one corner as it is done in DHGEQZ) is a simple means to significantly lower
the execution time. Roughly the same portion of time can be saved by using the
windowing technique. The most efficient strategy, which detects all 656 infinite eigen-
values, is a combination of both techniques, deflation at the nearest corner combined
with windowing.

7.3. Aggressive early deflation at its best. In exceptional cases, aggressive
early deflation can have a dramatic positive effect on the computational time. Such a
case are matrix pairs of the form (6.5), for which rarely any QZ iterations are needed
to deflate eigenvalues. The graphs in Figure 7.5 show the measured execution times
of the three implementations of the QZ algorithm with and without aggressive early
deflation for n = 600 to 3000 (seth) or 4000 (sarek) with step size 200. For all
examples we used nw = n− 1.

We remark that since aggressive early deflation works so well, the time spent
for (multishift) QZ iterations is negligible compared to the overall time. In fact, the
timings for DHGEQZ, KDHGEQZ, and MULTIQZ with aggressive early deflation are virtually
identical and orders of magnitude better than without early deflation. For example,
for n = 4000 the time of DHGEQZ is reduced from nearly one hour to less than 7
seconds.

7.4. Examples from applications. The purpose of this section is to summa-
rize the performance of the multishift QZ algorithm with aggressive early deflation
for matrix pairs that arise from practically relevant applications. We have selected
16 matrix pairs from the Matrix Market collection [3], 6 matrix pairs from model
reduction benchmark collections [11, 30], and 4 matrix pairs arising from the com-
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Fig. 7.5. BBM/ADK example [1, 6]: Execution times (in logarithmic scale) on seth (left figure)
and sarek (right figure) of DHGEQZ (dashed line), KDHGEQZ (solid line), MULTIQZ (crosses) without
aggressive early deflation, and DHGEQZ/KDHGEQZ/MULTIQZ with aggressive early deflation (dots).

putation of corner singularities of elliptic PDEs [38]. A more detailed description of
the selected matrix pairs along with individual performance results can be found in
Appendix A of the technical report version [22] of this paper. In the following, we
summarize these results and sort the matrix pairs into groups according to their order
n as shown in the following table.

Group G1 G2 G3 G4
order n ∈ [485, 1000] n ∈ [1001, 1500] n ∈ [1501, 2000] n ∈ [2001, 3600]
#pairs 6 8 5 7

Matrix pairs arising from applications differ in many aspects from random matrix
pairs. An aspect which can particularly affect the performance of the QZ algorithm is
that the matrix entries in most of the pairs from the Matrix Market collection differ
wildly in magnitude. Bad scaling makes the performance of the QZ algorithm erratic
and much less predictive than for random matrix pairs. For example, LAPACK’s
DHGEQZ requires 338 seconds for a 1900×1900 matrix pair arising from the discretized
heat equation (see section A.19 in [22]) but less than 25 seconds for the 1922 × 1922
matrix pair consisting of the matrices BCSSTK26 and BCSSTM26 from the Matrix
Market collection (see section A.12 in [22]). Balancing can remedy bad scaling but we
have decided not to make use of it since this preprocessing step is by default turned
off in most major software environments such as MATLAB.

We have tested DHGEQZ, KDHGEQZ, and MULTIQZ for all possible combinations of
the parameters nw (aggressive early deflation window size), m (number of shifts before
each aggressive early deflation) and ns (number of shifts per bulge) satisfying nw ∈
{40, 60, 80, . . . , 400}, m ∈ {24, 32, 40, . . . , 160}, and ns ∈ {2, 4}. Due to the memory
limitations of seth, all numerical experiments described in the following have only
been performed on sarek. Also, to limit the variety of parameters, we have turned off
the blocked algorithms for deflating infinite eigenvalues. Column 3 of Table 7.3 shows
for each of the four groups the average times in seconds of DHGEQZ and KDHGEQZ without
aggressive early deflation. The fourth column displays the average computing times
for all three implementations with aggressive early deflation obtained by choosing
m and nw optimally for each matrix pair in the group. The fifth column displays
similar times obtained by choosing m and nw optimally to yield the best average
performance for all matrix pairs together in each group. The corresponding choices
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Table 7.3

Application examples: Summary of measured execution times and choice of parameters m and
nw that give optimal average performance.

Group Implementation W/o agg. Optimal Ave. opt. m nw

G1 DHGEQZ+AGG 8.86 4.61 5.03 24 120
KDHGEQZ+AGG 7.07 3.62 3.78 24 100
MULTIQZ(ns = 2)+AGG – 3.36 3.45 24 60
MULTIQZ(ns = 4)+AGG – 3.40 3.56 24 40

G2 DHGEQZ+AGG 55.5 23.7 26.5 56 180
KDHGEQZ+AGG 41.4 17.2 18.9 40 140
MULTIQZ(ns = 2)+AGG – 15.3 16.5 72 160
MULTIQZ(ns = 4)+AGG – 15.1 16.3 88 180

G3 DHGEQZ+AGG 130.3 53.6 56.4 48 220
KDHGEQZ+AGG 89.9 36.5 38.8 72 200
MULTIQZ(ns = 2)+AGG – 30.3 30.7 56 200
MULTIQZ(ns = 4)+AGG – 27.5 30.0 88 200

G4 DHGEQZ+AGG 479 157 170 48 340
KDHGEQZ+AGG 271 97 104 40 220
MULTIQZ(ns = 2)+AGG – 80 85 72 220
MULTIQZ(ns = 4)+AGG – 115 124 80 220

of m and nw are listed in columns 6 and 7, respectively. The difference between the
figures of columns 4 and 5 is roughly 10%, which demonstrates that nearly optimal
average performance can be obtained without having to optimize m and nw for each
matrix pair individually. Ideally, m and nw should be chosen adaptively within the
QZ algorithm, but it is not clear how such a strategy can be effectively realized.

On average, the multishift QZ algorithm with aggressive early deflation (MULTIQZ
+AGG, ns = 2) is between 2.6 and 6 times faster than the original LAPACK implemen-
tation (DHGEQZ). Surprisingly, the block version of Dackland and K̊agström is, when
equipped with aggressive early deflation (KDHGEQZ+AGG), only 10% to 20% slower than
the multishift QZ algorithm. There is little justification for setting ns, the number of
shifts per bulge, to ns = 4 in favor of ns = 2, in contrast to the results for random
matrix pairs.

We have also tested the backward stability of the new variants of the QZ algo-
rithm by measuring the residual ‖(Q̂TAẐ − Ŝ, Q̂TBẐ − T̂ )‖F of the computed Schur
decomposition (Ŝ, T̂ ) as well as the orthogonality ‖Q̂T Q̂ − I‖F , ‖ẐT Ẑ − I‖F of the
computed transformation matrices Q̂ and Ẑ. The obtained results are of the same
order as those obtained using the LAPACK implementation.

8. Conclusions. In this paper, we have developed new multishift variants of
the QZ algorithm using advanced deflation techniques which significantly improve
upon the performance compared to all existing implementations. It is planned that
an implementation of our multishift QZ algorithm with aggressive early deflation is
included in a coming release of LAPACK. The ideas presented here are currently
applied to the development of a distributed memory QZ algorithm. Future work also
includes the investigation of extending the described results to even more general
versions of the QR algorithm, such as the periodic QR and QZ algorithms.

9. Final remarks and acknowledgments. The work presented in this article
is based on preliminary results derived in [1, 31]. The authors are greatly indebted
to Ralph Byers and David Watkins for several discussions on the odds and ends of
multishift QR and QZ algorithms. The computational experiments in section 7 were
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performed using facilities of the High Performance Computing Center North (HPC2N)
in Ume̊a.
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