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B. KÅGSTRÖM1, D. KRESSNER2, E. S. QUINTANA-ORTÍ3
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email: kressner@math.ethz.ch
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Abstract.

We present two variants of Moler and Stewart’s algorithm for reducing a matrix
pair to Hessenberg-triangular (HT) form with increased data locality in the access to
the matrices. In one of these variants, a careful reorganization and accumulation of
Givens rotations enables the use of efficient level 3 BLAS. Experimental results on four
different architectures, representative of current high performance processors, compare
the performances of the new variants with those of the implementation of Moler and
Stewart’s algorithm in subroutine DGGHRD from LAPACK, Dackland and K̊agström’s
two-stage algorithm for the HT form, and a modified version of the latter which requires
considerably less flops.

AMS subject classification (2000): 65F15, 65Y20.
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1 Introduction.

Given a matrix pair (A,B) where A,B ∈ Rn×n, a preprocessing step of
the QZ algorithm [18] for solving the regular generalized eigenvalue problem
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B. KÅGSTRÖM ET AL.

(A− λB)x = 0 consists of computing orthogonal matrices Q,Z ∈ Rn×n such
that QTAZ is upper Hessenberg while QTBZ is upper triangular. This so-called
Hessenberg-triangular (HT) form of the matrix pair (A,B) yields a significant
reduction in the computational cost during the iterative part of the QZ algo-
rithm.

The HT reduction originally proposed byMoler and Stewart [18] first computes
a QR decomposition B = Q0B0, whereQ0 is orthogonal and B0 is upper triangu-
lar. The matrices A and B are then overwritten by QT0A and Q

T
0B = B0, respec-

tively. All algorithms under consideration require this initial step, which can be
performed via efficient routines in LAPACK (DGEQRF, DORGQR/DORMQR) [1]; we
therefore assume for the rest of this paper that the matrix B in the pair (A,B)
is already in upper triangular form. In Moler and Stewart’s algorithm, the ma-
trix A is then reduced to Hessenberg form by applying a sequence of Givens
rotations; see Algorithm 1.1 and Figure 1.1. As illustrated there, the reduction
is solely based on level 1 BLAS operations, half of those applied to A and B hav-

Algorithm 1.1 Moler and Stewart’s HT reduction [18]

Input: A general matrix A ∈ Rn×n and an upper triangular matrix B ∈ Rn×n.
Output: Orthogonal matrices Q,Z ∈ Rn×n such that (H,T ) = (QTAZ,QTBZ)

is in HT form. The matrices A and B are overwritten by H and T ,
respectively.

Remark: Gi−1,i ∈ R
n×n denotes a Givens rotation [8, Sec. 5.1.8] acting on

rows/columns i− 1 and i. In stands for the identity matrix of order n.

Set Q← In, Z ← In.
for j ← 1, 2, . . . , n− 2 do
for i← n, n− 1, . . . , j + 2 do
Construct Gi−1,i such that the (i, j) entry of G

T
i−1,iA is zero.

Update A← GTi−1,iA, B ← G
T
i−1,iB, Q← QGi−1,i.

Construct Gi,i−1 such that the fill-in (i, i− 1) entry of BGi,i−1 is zero.
Update A← AGi,i−1, B ← BGi,i−1, Z ← ZGi,i−1.

end for
end for

Figure 1.1: Illustration of one iteration of the innermost loop of Algorithm 1.1 for
n = 7, j = 2, i = 5. From left to right: A← GTi−1,iA, B ← G

T
i−1,iB, A← AGi,i−1, and

B ← BGi,i−1.
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ing a large stride access to memory. Therefore, this algorithm can be expected to
perform poorly on current processors with deep memory hierarchies. Applying
a single Givens rotation to a pair of vectors of length m requires 6m floating-
point arithmetic operations (flops), yielding a total cost for Algorithm 1.1 of
14n3 flops. (Hereafter we neglect lower order terms in the flop counts.) A vari-
ant of Algorithm 1.1 based on fast Givens rotations with a lower computational
cost was proposed in [16].
Most LAPACK subroutines achieve portable high performance by casting the
computationally most intensive parts of the underlying linear algebra algorithms
in terms of matrix-matrix multiplications. This strategy benefits from the use of
a highly optimized level 3 BLAS implementation, which itself is often entirely
based upon the general matrix multiply and add (GEMM) operation [10, 11].
For example, the LAPACK subroutine DGEHRD1, which reduces a matrix to Hes-
senberg form, performs asymptotically 80% of its operations via calls to level 3
BLAS. The underlying algorithm is based on (compact) WY representations of
aggregated products of Householder reflectors [7, 19]. A similar reformulation of
Algorithm 1.1 for reducing a matrix pair to HT form seems to be impossible,
since the need to preserve the upper triangular shape of B effectively forces to
use either Givens rotations or Householder reflectors of small order.
Two-stage approaches represent an alternative strategy to invoke the matrix-
matrix multiplication in the reduction of a matrix to Hessenberg form, as already
noted by Bischof and Van Loan in [3]. Considered to be inferior to the LAPACK
subroutine DGEHRD, because of the large increase in the number of flops [14], they
have not attracted much attention for standard eigenvalue problems (B = In).
However, this approach becomes a viable option for generalized eigenproblems.
Indeed, on current computer architectures, the two-stage reduction to HT form
developed by Dackland and K̊agström [6] outperforms Algorithm 1.1 signifi-
cantly. In the first stage of this algorithm, A is reduced to a block Hessenberg
form with nb > 1 nonzero subdiagonals, while B is maintained in triangular
form. The second stage consists of annihilating all nonzero entries below the
first subdiagonal of A by chasing them off at the bottom right corner, much in
the spirit of the Rutishauser–Schwarz algorithm [20, 22] for reducing the band-
width of a symmetric matrix; see also [2]. Unlike in the symmetric standard
case, the two stages taken together require considerably more flops than Algo-
rithm 1.1. For example, when nb = 32 (and n is sufficiently large) the number of
flops of the two-stage algorithm is increased by roughly 50% with respect to that
of Algorithm 1.1. Still, high performance can be attained from the intensive use
of level 3 BLAS during the first stage and the application of several techniques
to increase the data locality during the second stage.
The main contribution of this paper is a variant of Algorithm 1.1 that per-
forms at least asymptotically 60% of its operations via calls to level 3 BLAS
while asymptotically performing the same number of flops as Algorithm 1.1.
This is achieved by regrouping and accumulating Givens rotations so that they

1 All LAPACK subroutines mentioned in this paper refer to version 3.1.0 released in Novem-
ber 2006.
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can be applied as matrix-matrix multiplications when generating Q,Z and up-
dating parts of A,B. Experimental results on several platforms indicate that
our new variant is significantly faster than subroutine DGGHRD from LAPACK,
which implements Algorithm 1.1, and a prototype implementation of the two-
stage approach. Note that the same technique has been applied by Lang [15] to
generate the orthogonal transformation matrix in the symmetric QR algorithm.
Also, parallel algorithms for computing the QR decomposition of a matrix em-
ploy similarly grouped sequences of Givens rotations; see, e.g., [5, 17]. Two other
contributions of this paper include a modified variant of the two-stage approach
with a more reduced computational cost, and a second variant of Algorithm 1.1
which still applies Givens rotations in terms of level 1 BLAS but exhibits better
data locality.

The rest of this paper is organized as follows. In Section 2, we briefly review the
two-stage approach and propose a modification that increases the performance
of the first stage by allowing for larger matrix-matrix multiplications. Section 3
investigates several possibilities to increase the data locality of Algorithm 1.1 by
regrouping its operations. In particular, it is described how a certain regroup-
ing enables the efficient use of matrix-matrix multiplications in Algorithm 1.1,
leading to our new variant mentioned above. Numerical experiments, reported
in Section 4, compare four algorithms/variants for the HT reduction. A few
concluding remarks follow in Section 5.

2 Two-stage algorithms.

In the following, we briefly describe the two stages of the blocked algorithm
for HT reduction presented in [6] and propose a modification of the first stage.

2.1 Stage 1.

The first stage consists in reducing A to block Hessenberg form, with nb× nb
upper triangular subdiagonal blocks for a user-defined block size nb > 1, while
preserving B in upper triangular form. For simplicity, consider that n is an
integer multiple of nb. This allows us to partition A and B into square blocks
Aij and Bij of order nb. Let us illustrate the block partitioning for n = 6nb:

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A11 A12 A13 A14 A15 A16

A21 A22 A23 A24 A25 A26

A31 A32 A33 A34 A35 A36

A41 A42 A43 A44 A45 A46

A51 A52 A53 A54 A55 A56

A61 A62 A63 A64 A65 A66

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

B11 B12 B13 B14 B15 B16

0 B22 B23 B24 B25 B26

0 0 B33 B34 B35 B36

0 0 0 B44 B45 B46

0 0 0 0 B55 B56

0 0 0 0 0 B66

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

Here, as B is upper triangular, each of its diagonal blocks Bii is also upper tri-
angular. Our goal is to reduce the matrix pair (A,B) to block upper Hessenberg-



REDUCTION TO HESSENBERG-TRIANGULAR FORM

triangular form

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A11 A12 A13 A14 A15 A16

A21 A22 A23 A24 A25 A26

0 A32 A33 A34 A35 A36

0 0 A43 A44 A45 A46

0 0 0 A54 A55 A56

0 0 0 0 A65 A66

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

B11 B12 B13 B14 B15 B16

0 B22 B23 B24 B25 B26

0 0 B33 B34 B35 B36

0 0 0 B44 B45 B46

0 0 0 0 B55 B56

0 0 0 0 0 B66

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
,

(2.1)

where the subdiagonal blocks Ai+1,i and the diagonal blocks Bii are all upper
triangular.
For this purpose, we choose some small integer p ≥ 2 and start by reducing
the bottom p− 1 blocks in the first block column of A to upper triangular form.
For example, if p = 3, this amounts to computing the QR decomposition

⎡
⎢⎣
A41

A51

A61

⎤
⎥⎦ = UlR =

(
I + VlTlV

T
l

)
⎡
⎢⎣
Â41

0

0

⎤
⎥⎦,

where Â41 is upper triangular and I + VlTlV
T
l , with Tl ∈ R

nb×nb and Vl ∈
R
pnb×nb , is the compact WY representation [21] of the orthogonal factor Ul.
Applying (I + VlTlV

T
l )
T to the bottom three block rows of A and B yields

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11 A12 A13 A14 A15 A16

A21 A22 A23 A24 A25 A26

A31 A32 A33 A34 A35 A36

Â41 Â42 Â43 Â44 Â45 Â46

0̂ Â52 Â53 Â54 Â55 Â56

0̂ Â62 Â63 Â64 Â65 Â66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

B11 B12 B13 B14 B15 B16

0 B22 B23 B24 B25 B26

0 0 B33 B34 B35 B36

0 0 0 B̂44 B̂45 B̂46

0 0 0 B̂54 B̂55 B̂56

0 0 0 B̂64 B̂65 B̂66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(2.2)

Now, in order to annihilate the fill-in in B, we compute the RQ decomposition

[
B̂54 B̂55 B̂56

B̂64 B̂65 B̂66

]
=

[
0 B̌55 B̌56

0 0 B̌66

]
Ur,(2.3)

where both B̌55 and B̌66 are upper triangular and Ur is orthogonal. For a gen-
eral value of p, this reduction involves (p− 1)nb Householder reflectors; a com-
pact WY representation of Ur would therefore take the form Ur = I + VrTrV

T
r ,

with Tr ∈ R(p−1)nb×(p−1)nb and Vr ∈ Rpnb×(p−1)nb . For p > 2, such a WY
representation becomes too costly and is replaced by a product of (p − 1)
WY representations, each of which corresponds to a group of nb Householder
reflectors.
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Next, the blocks A21, A31 and Â41 in (2.2) are reduced to upper Hessenberg
form similarly, by orthogonal transformations of block rows/columns 2, 3, and 4
of A,B, while B is maintained in block upper triangular form.2 As a result, the
first block column of A takes the desired form (2.1). To reduce the rest of A,
we subsequently process block columns 2, 3, 4, and 5 in an analogous manner;
see [6] for more details. The following table contains the flop counts of the overall
procedure.

Update of A Update of B Update of Q Update of Z

3p2+10p−7
3(p−1) n

3 2p2+6p−5
3(p−1) n

3 2p+1
p−1 n

3 (p+ 3)n3

These figures reflect that the costs for updating A, B, and Z increase linearly
with p. This increase is partially compensated by the larger matrix-matrix multi-
plications resulting from larger values of p. In practice, for typical values of nb,
the choices p = 2 or p = 3 often yield the lowest execution time [6].

2.2 Modified Stage 1.

The significant increase of flops for large values of p in Stage 1 is due to the
(p − 1)nb Householder reflectors required by the RQ decomposition in (2.3).
In the following, we show how this number can effectively be reduced to nb
during the application of the orthogonal transformations. For this purpose, let
Ur be defined as in (2.3), and compute a QR decomposition of its first block
row:

UTr

⎡
⎢⎣
Inb
0

0

⎤
⎥⎦ = Ũr

⎡
⎢⎣
D1

0

0

⎤
⎥⎦,(2.4)

where Ũr ∈ Rpnb×pnb is orthogonal and D1 ∈ Rnb×nb is a diagonal matrix with
diagonal entries ±1 . Moreover, Ũr is a product of only nb Householder reflectors
(instead of (p− 1)nb for Ur) and consequently admits a compact WY represen-
tation Ũr = I + ṼrT̃rṼ

T
r , with T̃r ∈ R

nb×nb and Ṽr ∈ Rpnb×nb . Then, it follows
from (2.3) and (2.4) that

[
B̂54 B̂55 B̂56

B̂64 B̂65 B̂66

]
Ũr

⎡
⎢⎣
Inb
0

0

⎤
⎥⎦ =
[
B̂54 B̂55 B̂56

B̂64 B̂65 B̂66

]
UTr

⎡
⎢⎣
D−11
0

0

⎤
⎥⎦

=

[
0 B̌55 B̌56

0 0 B̌66

]⎡
⎢⎣
D−11
0

0

⎤
⎥⎦ =
[
0

0

]
.

2 We return B the upper triangular shape by involving pnb rows in the last transformation
of B.
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This implies that applying Ũr to the last three block columns of B in (2.2)
annihilates the blocks B̂54 and B̂64. However, B̂65 is not annihilated, resulting
in a chain of nb × nb bulges on the diagonal of B after the complete reduc-
tion of the first block column of A with the modified method; see Figure 2.1(a)
which illustrates the case p = 4. It can also be seen from Figure 2.1(b)–(d)
that these bulges do not interfer with subsequent reductions; they are merely
chased along the diagonal until they disappear at the bottom right corner. To
achieve this effect, the size of the block transform acting at the bottom of
the matrix needs to be adjusted in accordance with the block structure of B.

Figure 2.1: Shapes of A and B after reduction of the (a) 1st, (b) 2nd, (c) 3rd, and
(d) 4th block column of A during the modified Stage 1.

The mechanism described above allows us to replace the orthogonal matrix Ur
by ŨTr or rather the compact WY representation of Ũ

T
r . The following table

reveals that this approach considerably reduces the number of flops needed for
updating A, B, and Z in Stage 1.

Update of A Update of B Update of Q Update of Z

10p+5
3(p−1)n

3 2p+1
p−1 n

3 2p+1
p−1 n

3 2p+1
p−1 n

3

These numbers actually decrease as p increases, misleadingly suggesting that p
should be chosen as large as possible. However, terms of order O(n2), neglected
in the previous expressions, grow proportionally with p3 and become dominant
for large values of p. In practice, for typical values of nb and sufficiently large n,
we found that choosing p between 5 and 12 often minimizes the execution time;
see Section 4.
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2.3 Stage 2.

In Stage 2, the nonzero lower nb−1 subdiagonals of the matrix A in the block
HT form (2.1) are annihilated. The basic algorithm that applies here is a variant
of Algorithm 1.1 that limits the fill-in in A.
The first column of A is reduced by applying a sequence of Givens rotations
Gnb,nb+1, Gnb−1,nb , . . . , G2,3 from the left. The corresponding update of B cre-
ates nonzero subdiagonal entries at positions (nb+1, nb), (nb, nb−1), . . . , (3, 2);
see Figure 2.2 (a). A sequence of Givens rotations Gnb+1,nb , Gnb,nb−1, . . . , G3,2
from the right is next used to annihilate these entries. If we were to apply this
sequence directly to update A, then a fully dense nb×nb block would be created
below the subdiagonal of A. To avoid this effect, we initially only applyGnb+1,nb ,
creating a nonzero (2nb+1, nb) entry in A. This nonzero entry is immediately an-
nihilated by applying a Givens rotationG2nb,2nb+1 from the left. If we now apply
Gnb,nb−1, only one nonzero entry at position (2nb, nb−1) is created in A. Again
this entry is immediately annihilated, by applying a Givens rotation G2nb−1,2nb
from the left. After all Givens rotations Gnb+1,nb , Gnb,nb−1, . . . , G3,2 have been
processed in the described manner, we obtain a new sequence of Givens rotations
G2nb,2nb+1, G2nb−1,2nb , . . . , Gnb+2,nb+3. To complete the transformation we need
to apply this new sequence from the left to B. It can be seen in Figure 2.2 (b)
that proceeding as described effectively pushes the nonzero subdiagonal entries
of B by nb entries downwards. By repeating the process the nonzero subdiagonal
entries are pushed further down, until they eventually reach the bottom right
corner of B; see Figure 2.2 (c) and (d). In the last step, all subdiagonal entries
can be annihilated without causing any fill-in in A. Columns 2, 3, . . . , n− 2 are
reduced in an analogous manner.

Figure 2.2: Illustration of the reduction of the first column of A in Stage 2 for n = 10,
nb = 3.
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Assuming nb � n, the number of flops needed for performing Stage 2 can be
found in the following table.

Update of A Update of B Update of Q Update of Z

3(nb−1)
nb

n3 3(nb−1)
nb

n3 3(nb−1)
nb

n3 3(nb−1)
nb

n3

For comparison, the following table contains the costs in flops needed by Algo-
rithm 1.1.

Update of A Update of B Update of Q Update of Z

5n3 3n3 3n3 3n3

Stage 2 requires less operations than Algorithm 1.1 for updating A because part
of the reduction was already performed in Stage 1. The modified Stage 1 and
Stage 2 together require approximately a total amount of

10p+ 5

3(p− 1)
n3 + 3

2p+ 1

p− 1
n3 + 4

3(nb − 1)

nb
n3 ≈

64

3
n3

flops. Compared with the 14n3 flops needed by Algorithm 1.1, the cost is there-
fore increased by 32/21 ≈ 52%.
On the other hand, this increase can be compensated by the use of level 3 BLAS
in Stage 1. Also, two strategies are proposed in [6] to increase data locality in
Stage 2:

1. Right after reducing the first column and pushing the corresponding nb− 1
nonzero subdiagonal elements in B by nb steps, the fully updated second
column is reduced. This creates another set of nb − 1 nonzero subdiagonal
elements in B. In total we have now a chain of 2nb−2 such elements, which
are chased simultaneously to the bottom right corner.
It is straightforward to generalize this technique to reduce more than two
columns simultaneously, but in the experiments in [6], the application of
two concurrent reductions was found to be (nearly) optimal.

2. The updates of A and B are restricted to a few, say nc = 32, consecu-
tive columns at a time. The sines and cosines of previously applied Givens
rotations are stored to enable delayed updates of the other columns.

More details on the implementation of these two strategies can be found in [6].
Instead of Givens rotations, one could use tiny Householder reflectors of order,
say, 3 or 4. Although this reduces the number of flops needed by Stage 2, the
actual impact on the execution time was found to be too marginal to justify the
increased complexity of the implementation [13].

3 One-stage algorithms based on Givens rotations.

Although the two-stage algorithm utilizes the memory hierarchy much bet-
ter than Algorithm 1.1 does, with asymptotically 44% of the operations per-
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formed via calls to level 3 BLAS, its significant increase of flops is dissatisfying
and tempts us to reconsider Algorithm 1.1 in the form of the following two
variants.

3.1 Level 1 BLAS variant with increased data locality.

In the second part of the two-stage algorithm, we reduce all the nonzero entries
in a column of A by a sequence of Givens rotations before updating the rest
of A. The same technique can be applied to rearrange the computations in
Algorithm 1.1, leading to Algorithm 3.1. The LAPACK subroutine DLASR is
a straightforward implementation of the functions row givens and col givens
used in Algorithm 3.1. In practice, this subroutine needs to be specialized in
order to handle the upper triangular structure of B.

Algorithm 3.1 HT reduction using sequences of Givens rotations

Input: A general matrix A ∈ Rn×n and an upper triangular matrix B ∈ Rn×n.
Output: Orthogonal matrices Q,Z ∈ Rn×n such that (H,T ) = (QTAZ,QTBZ)

is in HT form. The matrices A and B are overwritten by H and T ,
respectively.

Remark: row givens and col givens apply a sequence of Givens rotations to
the rows and columns of a matrix, respectively.

Set Q← In, Z ← In.
for j ← 1, 2, . . . , n− 2 do
Construct a sequence of Givens rotations Gn−1,n, . . . , Gj+1,j+2 to reduce
A(j + 2 : n, j).
row givens(Gn−1,n , . . . , Gj+1,j+2, A).
row givens(Gn−1,n , . . . , Gj+1,j+2, B).
col givens(Gn−1,n , . . . , Gj+1,j+2, Q).
Construct a sequence of Givens rotations Gn,n−1, . . . , Gj+2,j+1 to annihilate the
subdiagonal fill-in in B.
col givens(Gn,n−1 , . . . , Gj+2,j+1, B).
col givens(Gn,n−1 , . . . , Gj+2,j+1, A).
col givens(Gn,n−1 , . . . , Gj+2,j+1, Z).

end for

We next propose to use two strategies with the goal of increasing data locality
in the accesses performed in Algorithm 3.1.

3.1.1 Increasing data register reuse.

The application of a Givens rotation to a pair of vectors of length m (e.g.,
rows or columns of a matrix) is an operation that requires 6m flops for a total of
4m accesses to memory (each entry of both vectors needs to be read and written
back to memory). This yields a ratio of flops to memory accesses (hereafter,
memops) of 6/4 = 1.5, which explains the low performance of this operation on
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current architectures, with a large gap between the floating-point performance
of the processor and the latency of memory.
Now, given that we are applying the Givens rotations in the sequence
Gn−1,n, . . . , Gj+1,j+2 to consecutive rows of a matrix, we can improve the ratio
of flops to memops by applying several of these rotations simultaneously. For
example, consider the application of two rotations defined by the sine and cosine
arguments c1, s1, c2, s2 to three consecutive rows of a matrix, a

T
1 , a

T
2 , a

T
3 ∈ R

1×m,
as follows:

⎡
⎣
c2 s2
−s2 c2

1

⎤
⎦
⎡
⎣
1
c1 s1
−s1 c1

⎤
⎦
⎡
⎢⎣
aT1
aT2
aT3

⎤
⎥⎦.

Then, provided the sine and cosine arguments remain in four registers of the
processor and two more registers are available for temporary variables, the up-
date of the three rows requires 12m flops for a total of 6m memops yielding the
more favourable ratio of 2 flops to memops.
The technique can be easily generalized to the simultaneous application of ρ
Givens rotations to a block of ρ + 1 vectors, delivering a ratio of 6ρ/2(ρ + 1)
flops to memops. Note that the improvement of this ratio quickly flattens as ρ
increases. On architectures with a small number of registers (e.g., Intel x86), this
limits the practical values to ρ = 2 or ρ = 3. However, on other architectures with
more registers (e.g., Intel Itanium2), larger values of ρ attain higher performance;
see Section 4.

3.1.2 Reducing cache misses.

For matrices stored columnwise (with a leading dimension larger than the size
of the cache lines), accessing the entries of a matrix by rows is disadvantageous
in that it preempts hardware prefetch. In particular, consider the application
of the sequence of Givens rotations Gn−1,n, . . . , Gj+1,j+2 performed in function
row givens and, for simplicity, assume that the technique described previously
to increase data register reuse is not employed. Then, just after having applied
Gn−1,n to the last two rows of A, the cache is likely filled with elements from the
last columns of the matrix. Unfortunately, these elements are useless during the
earlier stages of the application of the next rotation Gn−2,n−1. Furthermore, by
the time the last columns are needed, they have been overwritten in the cache
by the first columns of the matrix leading to cache trashing.
We can reduce the effects of row accesses by updating the matrices panel-
wise by blocks of columns as follows. Assume the sequence of Givens rotations
Gn−1,n, Gn−2,n−1, . . . , Gj+1,j+2 is applied to A (or B) so that the entries in
a panel (column block) of width nc are completely updated before proceeding
with the next column block. Then, if nc is chosen small relative to the cache size,
by the time we are done with Gn−1,n those elements in the first columns of the
current panel still lie in the cache and can be rapidly brought into the processor
registers during the application of Gn−2,n−1, Gn−3,n−2, . . . , Gj+1,j+2.
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3.2 Level 3 BLAS variant with increased data locality.

The data locality of Algorithm 3.1 can be further increased by regrouping and
accumulating Givens rotations. The technique described in the following has
been proposed by Lang [15] in the context of the QR algorithm for symmetric
tridiagonal matrices.

To illustrate the basic idea of regrouping, let G
(j)
i−1,i denote the Givens rotation

used to annihilate the (i, j) element of A. Figure 3.1 illustrates the sequence of
Givens rotations used in Algorithm 3.1 to annihilate the elements below the
first subdiagonals of the first nb = 4 columns of a 13× 13 matrix A. A trivial

but far-reaching observation is that two non-intersecting rotations G
(j1)
i1−1,i1

and

G
(j2)
i2−1,i2

commute if i2 > i1 − 1. For example, in the given sequence, this allows

to commute G
(2)
12,13, G

(2)
11,12, and G

(3)
12,13 subsequently with the complete sequence

G
(1)
2,3 → G

(1)
3,4 → · · · → G

(1)
9,10. The resulting sequence

G
(1)
12,13 → G

(1)
11,12 → G

(2)
12,13 → G

(2)
11,12 → G

(3)
12,13(3.1)

is more localized than the original start sequence. In a similar fashion we can
regroup the rest of the transformations in stripes of nb = 4 antidiagonals, as indi-
cated by the dashed lines in Figure 3.1, leading to the three sequences illustrated
in Figure 3.2.

Figure 3.1: Sequence of Givens rotations used to reduce the first 4 columns of A for
n = 13.

Figure 3.2: Regrouped sequence of Givens rotations.

An additional benefit of regrouping is that we can efficiently apply each re-
grouped sequence in terms of a matrix-matrix multiplication. For example,
the product of all rotations in the second sequence from Figure 3.2,



REDUCTION TO HESSENBERG-TRIANGULAR FORM

G
(1)
9,10 → G

(1)
8,9 → · · · → G

(4)
9,10, takes the form

[
I5 0
0 U

]
, where

U =

[
U11 U12

U21 U22

]
=

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦;(3.2)

that is, U21 ∈ R4×4 and U12 ∈ R4×4 are triangular. For general nb, the matrix U
is 2nb× 2nb with upper/lower off-diagonal triangular blocks U21, U12 ∈ Rnb×nb .
(An exception is the first regrouped sequence (3.1), for which U is smaller and
U21 is a full matrix.) Exploiting the structure of the intermediate matrices, the
overall accumulation of U requires 6n3b +O(n

2
b) flops; see also [15].

Storing the sines and cosines of the Givens rotationsG
(j)
i−1,i allows us to update

the matrix Q in Algorithm 3.1 every nb outer loops by means of regrouped
sequences of Givens rotations or matrix-matrix multiplications. The following
table compares the number of flops needed for applying one regrouped sequence.

Givens rotations Full matrix multiply Triangular matrix multiply

6n2bn 8n2bn
(
6n2b + 2nb

)
n

The last column refers to the case when the triangular block structure of U
in (3.2) is exploited during the matrix-matrix multiplication. Whether the cor-
responding reduction in the flop count leads to an actual reduction of execution
time strongly depends on the implementation of the BLAS DGEMM (general ma-
trix multiply and add) and DTRMM (triangular matrix multiply). Typically, nb
is not much larger than 64 for which the performance of DGEMM and DTRMM is
often suboptimal or erratical; see, e.g., [9]. Note that a similar issue appears in
multishift variants of the QR and QZ algorithms [4, 12, 14]. Our implementation
offers both variants of multiplying U .
The results from this section apply likewise to the sequences of Givens rotations
used for annihilating the fill-in subdiagonal elements of B. In particular, the
orthogonal matrix Z can be updated via calls to level 3 BLAS.

3.3 Panel-wise reduction.

In the following, we describe a panel-wise reduction that allows to perform the
updates of A and B partly by means of matrix-matrix multiplications. For this
purpose, let us assume that jc outer loops of Algorithm 1.1 have been performed
and partition the partially reduced matrix A and the matrix B as

A =

[ jc nb n−jc−nb

jc+1 A11 A21 A31

n−jc−1 0 A22 A23

]
, B =

[ jc+1 n−jc−1

jc+1 B11 B12

n−jc−1 0 B22

]
.

During the subsequent reduction of the nb columns of the panel (or block) A22,
the updates of A and B are restricted to the minimum. That is, only the blocks



B. KÅGSTRÖM ET AL.

A22 and B22 (but not A23) are immediately updated by transformations from
the left and only the blocks [A22, A23] and B22 (but not [A21, A31] and B12)
are immediately updated by transformations from the right. After the complete
panel has been reduced, all employed Givens rotations are accumulated into
2nb × 2nb orthogonal matrices as explained in Section 3.2. This allows to per-
form the remaining updates of A and B by matrix-matrix multiplications; see
also Figure 3.3. The complete procedure can be found in Algorithm 3.2. If the
block triangular structure (3.2) is fully exploited during the accumulation and
application of the matrices U , the flops required by Algorithm 3.2 are as follows.

Update of A Update of B Update of Q Update of Z

5n3 +O
(
nbn

2
)
3n3 +O

(
nbn

2
)
3n3 +O

(
nbn

2
)
3n3 +O

(
nbn

2
)

Hence as nb/n→ 0, Algorithms 1.1 and 3.2 have the same computational cost.
However, Algorithm 3.2 performs asymptotically 50% of the operations for up-
dating A,B and 100% of the operations for generating Q,Z via calls to level 3
BLAS.

Figure 3.3: Illustration of panel-wise factorization for jc = 3, nb = 3.

3.4 Accumulation of orthogonal transformation matrices.

When the generalized eigenvalue problem (A−λB)x = 0 is to be solved and the
orthogonal factors are desired, the Givens rotations applied during Algorithm 1.1
are typically accumulated into an orthogonal matrix Q0 resulting from an initial
QR decomposition of B and into Z0 = In. By carefully exploiting the structure
of Z while reducing the pair (A,B) to HT form via Algorithm 1.1 (and the
two variants that have been proposed), the cost of updating this matrix can be
reduced from 3n3 to just n3 flops, yielding a reduction of the overall algorithm
from 14n3 to 12n3 flops. This is a trivial observation which is exploited, e.g.,
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Algorithm 3.2 Panel-wise HT reduction

Input: A general matrix A ∈ Rn×n and an upper triangular matrix B ∈ Rn×n.
Block size nb.

Output: Orthogonal matrices Q, Z ∈ Rn×n such that (H,T ) = (QTAZ,QTBZ)
is in HT form. The matrices A and B are overwritten by H and T ,
respectively.

Set Q← In, Z ← In.
for jc ← 0, nb, 2nb, . . . do
nnb ← �(n− jc)/nb� − 1, nbt = n− jc − nbnnb + 1.
Initialize U1 ← I2nb , . . . , Unnb ← I2nb , Unnb+1 ← Inbt .
for j ← jc + 1, jc + 2, . . . , jc + nb do
Reduce A(j + 1 : n, j) by Givens rotations sequence Gn−1,n · · ·Gj+1,j+2.

Accumulate

⎧
⎪⎨

⎪⎩

Gn−1,n · · ·Gn−nbt+j−jc,n−nbt+j−jc+1 into Unnb+1;

Gjc+knnb−1,jc+knnb+1 · · ·Gjc+(k−1)nnb,jc+(k−1)nnb+1
into Uk for k = nnb, . . . , 2, 1.

Gn−1,n · · ·Gj+1,j+2 into Unnb+1, Unnb , . . . , U1.
row givens(Gn−1,n · · ·Gj+1,j+2, B).

Construct Givens rotations sequence G
(j)
n,n−1 · · ·G

(j)
j+2,j+1 to annihilate subdiag-

onal fill-in in B.
col givens(G

(j)
n,n−1 · · ·G

(j)
j+2,j+1, A(jc + 2 : n, :)).

col givens(G
(j)
n,n−1 · · ·G

(j)
j+2,j+1, B(jc + 2 : n, :)).

if j < jc + nb then
Multiply Unnb+1, Unnb , . . . , U1 from the left to update A(jc + 2 : n, j + 1).

end if
end for
Multiply Unnb+1, Unnb , . . . , U1 from the left to update A(jc+2 : n, jc+nb+1 : n).
Multiply Unnb+1, Unnb , . . . , U1 from the right to update Q.
Initialize U1 ← I2nb , . . . , Unnb ← I2nb , Unnb+1 ← Inbt .
for j ← jc + 1, jc + 2, . . . , jc + nb do

Accumulate

⎧
⎪⎪⎨

⎪⎪⎩

G
(j)
n,n−1 · · ·G

(j)
n−nbt+j−jc,n−nbt+j−jc+1

into Unnb+1;

G
(j)
jc+knnb+1,jc+knnb−1

· · ·G(j)jc+(k−1)nnb+1,jc+(k−1)nnb into Uk

for k = nnb, . . . , 2, 1.

end for
Multiply Unnb+1, Unnb , . . . , U1 from the right to update A(1 : jc, :).
Multiply Unnb+1, Unnb , . . . , U1 from the right to update B(1 : jc, :).
Multiply Unnb+1, Unnb , . . . , U1 from the right to update Z.

end for

in the construction of the orthogonal factor resulting from a QR decompos-
ition in subroutine DORGQR from LAPACK. However, the current implementation
of the LAPACK subroutine DGGHRD does not exploit this structure leading to
unnecessary overhead.
Note that in the two-stage algorithm described in Section 2, similar savings can
only be attained in the first stage. After the first stage, the factor Z is almost fully
populated so that there is little opportunity to exploit this in the second stage.
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4 Numerical experiments.

In this section, we show the performance benefits attained by the following
algorithms/variants for HT reduction, compared to the LAPACK implementa-
tion DGGHRD:

Table 4.1: Architectures employed in the experimental evaluation.

Platform Architecture Frequency L2 cache L3 cache RAM
(GHz) (KBytes) (MBytes) (GBytes)

athlon AMD Athlon 1.66 256 – 1

itanium Intel Itanium2 1.5 256 4096 4

opteron AMD Opteron 2.2 1024 – 8

pentium Intel Pentium4 3.2 2048 – 1

Table 4.2: Software employed in the experimental evaluation.

Platform Compiler Optimization BLAS Operating
flags System

athlon Portland -O4 -fast ATLAS BLAS 3.5.9 Debian/Linux 3.0
F90 6.0

itanium icc 9.0 -O3 GotoBLAS 1.06 Linux 2.4.21

opteron Portland -O4 -fastsse GotoBLAS 0.94 Debian/Linux 3.1
F90 6.0

pentium icc 9.0 -O3 GotoBLAS 1.06 Linux 2.6.13

Table 4.3: Parameters which affect the performance of the presented algo-
rithms/variants.

Algorithm/ Parameter Purpose
variant

DK/MDK nb Order of the subdiagonal blocks in the block HT form

p #Blocks simultaneously reduced

nc #Columns the application of the updates is restricted to

GB1 ρ #Givens rotations simultaneously applied

nc #Columns the application of the row updates is

restricted to

GB3 nb #Givens rotations regrouped and accumulated

nc #Columns the application of the row updates is

restricted to
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– DK: Prototype implementation of Dackland and K̊agström’s two-stage
blocked algorithm from [6].

– MDK:Modified prototype implementation of Dackland and K̊agström’s two-
stage blocked algorithm from [6] with Stage 1 replaced with the new pro-
cedure described in Section 2.2.

– GB1: New level 1 BLAS variant of Algorithm 1.1 that incorporates the
techniques introduced in Section 3.1 to both increase data register reuse
and reduce cache misses.

– GB3: New level 3 BLAS variant of Algorithm 1.1 with regrouped and accu-
mulated Givens rotations presented in Section 3.2 and described in Algo-
rithm 3.2.

Figure 4.1: Performance benefits attained by the algorithms/variants for the HT re-
duction on athlon.
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Four different platforms, athlon, itanium, opteron, and pentium are em-
ployed in the experimental evaluation of the algorithms, representative of current
desktop platforms. For details on the hardware and software of these platforms,
see Tables 4.1 and 4.2, respectively. All experiments on these processors were
carried out using double-precision floating-point arithmetic.

4.1 Performance dependence on block parameters.

The performance of the considered algorithms/variants can be tuned for a par-
ticular architecture by various parameters, see Table 4.3. In the following experi-
ments, no exhaustive search was made to tune these values. Typical values that

Figure 4.2: Performance benefits attained by the algorithms/variants for the HT re-
duction on itanium.
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provided high performance were nb, nc ∈ {16, 24, 32, 48, 64}, depending on algo-
rithm/variant and the problem size, p ∈ {2, 3}, and ρ = 3.

4.2 Performance comparison.

In the following, we report the speed-ups obtained for algorithms/variants
DK, MDK, GB1, and GB3 with respect to the LAPACK subroutine DGGHRD which
implements Algorithm 1.1. Figures 4.1–4.4 summarize the observed speed-ups
on the four platforms for the HT reduction with and without accumulation of
the orthogonal factors. Note that the initial zero structure of Z (see Section 3.4)
is exploited in GB1 and GB3 but not in DGGHRD, DK, and MDK.

Figure 4.3: Performance benefits attained by the algorithms/variants for the HT re-
duction on opteron.
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The results show that variant GB3 outperforms all other algorithms/variants
on athlon and opteron except for the smallest problem sizes. On these two
platforms, GB3 also outperforms subroutine DGGHRD (speed-up higher than 1) for
problems of dimension starting at 150–250.
The results are completely different on itanium. There, the clear winner is GB1
in all except one case: orthogonal factors computed for problem size n = 1400.
It is necessary to note here that the architecture of the itanium processor is
quite different from those of the remaining three processors. While the itanium
is a VLIW processor with a large number of registers (compared with the x86
platforms) and three levels of cache memory, athlon, opteron, and pentium
are superscalar architectures with a more reduced number of registers and only

Figure 4.4: Performance benefits attained by the algorithms/variants for the HT re-
duction on pentium.
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two levels of cache. In particular, the larger number of registers on itanium
allowed us to improve data register reuse during the application of Givens ro-
tations in variant GB1 using larger values for ρ. The performance improvements
over subroutine DGGHRD are remarkable on this architecture.
On the pentium, GB1 is the best option for problem sizes up to n = 500 when
the orthogonal factors are not needed. In all other cases, GB3 is the variant to
choose.

5 Conclusions.

We have presented two new variants of Moler and Stewart’s algorithm for
Hessenberg-triangular reduction which exhibit better locality in the data access.
One of the variants also performs a significant part of the computations via
efficient calls to level 3 BLAS.
Experimental results on four different processor architectures show that the
new variants are significantly faster than subroutine DGGHRD in LAPACK, a proto-
type implementation of Dackland and K̊agström’s two-stage approach, and a mod-
ified version of Dackland and K̊agström’s algorithm with a more reduced cost
contributed in this paper. Supported by these results, we suggest to replace
the current implementation of subroutine DGGHRD in LAPACK by a combined
implementation of the newly developed algorithms.
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