
Recursive Blocked Algorithms for Solving
Triangular Systems—Part I: One-Sided and
Coupled Sylvester-Type Matrix Equations

ISAK JONSSON and BO KA
b
GSTRÖM

Umeå University

Triangular matrix equations appear naturally in estimating the condition numbers of matrix
equations and different eigenspace computations, including block-diagonalization of matrices and
matrix pairs and computation of functions of matrices. To solve a triangular matrix equation is
also a major step in the classical Bartels–Stewart method for solving the standard continuous-
time Sylvester equation (AX − XB = C). We present novel recursive blocked algorithms for solv-
ing one-sided triangular matrix equations, including the continuous-time Sylvester and Lyapunov
equations, and a generalized coupled Sylvester equation. The main parts of the computations are
performed as level-3 general matrix multiply and add (GEMM) operations. In contrast to explicit
standard blocking techniques, our recursive approach leads to an automatic variable blocking that
has the potential of matching the memory hierarchies of today’s HPC systems. Different implemen-
tation issues are discussed, including when to terminate the recursion, the design of new optimized
superscalar kernels for solving leaf-node triangular matrix equations efficiently, and how paral-
lelism is utilized in our implementations. Uniprocessor and SMP parallel performance results
of our recursive blocked algorithms and corresponding routines in the state-of-the-art libraries
LAPACK and SLICOT are presented. The performance improvements of our recursive algorithms
are remarkable, including 10-fold speedups compared to standard algorithms.

Categories and Subject Descriptors: F.2.1 [Analysis of Algorithms and Problem Complexity]:
Numerical Algorithms and Problems—computations on matrices; G.1.3 [Numerical Analysis]:
Numerical Linear Algebra—conditioning, linear systems; G.4 [Mathematical Software]: Algo-
rithm design and analysis, efficiency, parallel and vector implementations, portability, reliability
and robustness

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Matrix equations, standard Sylvester and Lyapunov, gener-
alized coupled Sylvester, recursion, automatic blocking, superscalar, GEMM-based, level-3 BLAS,
SMP parallelization, LAPACK, SLICOT

This research was conducted using the resources of the High Performance Computing Center North
(HPC2N) and PDC-Parallelldatorcentrum at KTH, Stockholm. During this work resources at the
Danish Computing Centre for Research and Education (UNI·C), Lyngby, Denmark were also used.
Financial support was provided by the Swedish Research Council under grants TFR 98-604 and
VR 621-2001-3284.
Authors’ address: Department of Computing Science and HPC2N, Umeå University, SE-901 87
Umeå, Sweden; email: {isak,bokg}@cs.umu.se.
Permission to make digital/hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post on servers,
or to redistribute to lists, requires prior specific permission and/or a fee.
C© 2002 ACM 0098-3500/02/1200-0392 $5.00

ACM Transactions on Mathematical Software, Vol. 28, No. 4, December 2002, Pages 392–415.

Recursive Blocked Algorithms—Part I • 393

1. INTRODUCTION

We introduce and discuss new recursive blocked algorithms for solving vari-
ous types of triangular matrix equations. Our goal is to design efficient algo-
rithms for state-of-the-art HPC systems with deep memory hierarchies. A re-
cursive algorithm leads to automatic blocking which is variable and “squarish”
[Gustavson 1997]. This hierarchical blocking promotes good data locality, which
makes it possible to approach peak performance on state-of-the-art processors
with several levels of cache memories. Recently, several successful results have
been published. Using the current standard data layouts and applying recursive
blocking have led to faster algorithms for the Cholesky, LU, and QR factoriza-
tions [Toledo 1997; Gustavson 1997; Elmroth and Gustavson 2001]. Moreover,
in Gustavson et al. [1998a], we demonstrated that a further performance gain
can be obtained when recursive dense linear algebra algorithms are expressed
using a recursive data layout and highly optimized superscalar kernels.

In this contribution (Part I), which extends our work in Jonsson and
Kågström [2001a], we consider one-sided Sylvester-type equations, includ-
ing the continuous-time standard Sylvester (AX − XB = C) and Lyapunov
(AX + XAT = C) equations, and a generalized coupled Sylvester equation
(AX− YB, DX− YE) = (C, F). We use the notation one-sided, since the matrix
equations include terms where the solution is only involved in matrix prod-
ucts of two matrices (e.g., op(A)X or X op(A), where op(A) can be A or AT).
These equations all appear in various control theory applications and in spec-
tral analysis. In Part II [Jonsson and Kågström 2002], we consider two-sided
matrix equations, which include matrix product terms of type op(A)X op(B).
Examples include discrete-time standard and generalized Sylvester and
Lyapunov equations.

The classical method of solution is the Bartels–Stewart method, which in-
cludes three major steps [Bartels and Stewart 1972]. First, the matrix (or ma-
trix pair) is transformed to a Schur (or generalized Schur) form. This leads
to a reduced triangular matrix equation, which is solved in the second step.
For example, the coefficient matrices A and B in the Sylvester equation AX −
XB = C are in upper triangular or upper quasitriangular form [Kågström and
Poromaa 1992; Poromaa 1998]. For the generalized counterpart, the matrix
pairs (A, D) and (B, E) in (AX − YB, DX − YE) = (C, F) are reduced to gener-
alized Schur form, with A and B upper quasitriangular, and D, E upper tri-
angular [Kågström and Westin 1989; Kågström and Poromaa 1996a]. Finally,
the solution of the reduced matrix equation is transformed back to the original
coordinate system. In this article, we focus on the solution of the reduced tri-
angular matrix equations. Reliable and efficient algorithms for the reduction
step can be found in LAPACK [Anderson et al. 1999] for the standard case, and
in Dackland and Kågström [1999] for the generalized case, where a blocked
variant of the QZ method is presented.

Triangular matrix equations also appear naturally in estimating the condi-
tion numbers of matrix equations and different eigenspace computations, in-
cluding block-diagonalization of matrices and matrix pairs and computation
of functions of matrices. Related applications include the direct reordering

ACM Transactions on Mathematical Software, Vol. 28, No. 4, December 2002.

394 • I. Jonsson and B. Kågström

of eigenvalues in the real (generalized) Schur form [Anderson et al. 1999;
Kågström and Poromaa 1996b] and the computation of additive decompositions
of a (generalized) transfer function [Kågström and Van Dooren 1992].

Before we go into any further details, we outline the contents of the rest
of the article. In Section 2, we illustrate how the solutions of triangular ma-
trix equations relate to different spectral condition estimation problems and to
the estimation of the conditioning of the Sylvester-type equations themselves.
Section 3 introduces our recursive blocked algorithms for one-sided and coupled
triangular matrix equations, including the standard Sylvester (Section 3.1) and
Lyapunov (Section 3.2) equations, and the generalized coupled Sylvester equa-
tion (Section 3.3). In Section 4, we introduce a recursive blocked algorithm for
computing functions of matrices, which, indeed, is an application of solving
triangular Sylvester equations.

In Section 5, we discuss different implementation issues, including when
to terminate the recursion, and the design of optimized superscalar kernels
for solving small-sized (leaf-node) triangular matrix equations efficiently. We
also discuss how parallelism is utilized in our implementations. Sample perfor-
mance results of our recursive blocked algorithms are presented and discussed
in Section 6. Finally, we give some conclusions.

2. CONDITION ESTIMATION AND TRIANGULAR SOLVERS

Besides solving a matrix equation it is equally important to have reliable error
bounds of the computed quantities. In this section, we review how triangular
matrix equations enter in condition estimation of common eigenspace computa-
tions, as well as in the condition estimation of the matrix equations themselves.
Since condition estimation typically involves solving several triangular matrix
equations, one could say that this is the main source for different triangular
matrix equation problems. It is important that these matrix equations can be
solved with efficient algorithms on today’s memory-tiered systems.

2.1 Condition Estimation of Some Eigenspace Problems

We assume that S is a real block partitioned matrix in real Schur form:

S =
[

A −C
0 B

]
.

This means that both A and B are upper quasitriangular, that is, block upper
triangular with 1 × 1 and 2 × 2 diagonal blocks, which correspond to real and
complex conjugate pairs of eigenvalues, respectively. Typically, the partitioning
is done with some application in mind. For example, A may include all eigenval-
ues in the left complex plane and we want the invariant subspaces associated
with the spectra of A and B, respectively. Now, S can be block-diagonalized by
a similarity transformation:[

I −X
0 I

]
S
[

I X
0 I

]
=
[

A 0
0 B

]
,

ACM Transactions on Mathematical Software, Vol. 28, No. 4, December 2002.

Recursive Blocked Algorithms—Part I • 395

where X satisfies the triangular Sylvester equation AX − XB = C. Knowing
X , we also know the invariant subspaces and the spectral projector associated
with the block A:

P =
[

I X
0 0

]
.

This is an important quantity in error bounds for invariant subspaces and clus-
ters of eigenvalues. A large value of ‖P‖2 = (1+‖X ‖22)1/2 signals ill-conditioning.
To avoid possible overflow, we use the computed estimate s = 1/‖P‖F
[Bai et al. 1993; Kågström and Poromaa 1992; Anderson et al. 1999].

Next we consider a real regular matrix pair (S, T) in real generalized Schur
form:

(S, T) =
([

A −C
0 B

]
,
[

D −F
0 E

])
,

where A, B, as before, are upper quasitriangular and D, E are upper triangular.
Any 2 × 2 diagonal block in the generalized Schur form corresponds to a pair
of complex conjugate eigenvalues. The 1× 1 diagonal blocks correspond to real
eigenvalues. For example, if eii 6= 0, then aii/eii is a finite eigenvalue of (A, D);
otherwise (eii = 0), the matrix pair has an infinite eigenvalue.

Now, (S, T) is block diagonalized by an equivalence transformation:[
I −Y
0 I

]
(S, T)

[
I X
0 I

]
=
([

A 0
0 B

]
,
[

D 0
0 E

])
,

where (X , Y) satisfies the triangular coupled Sylvester equation (AX − YB,
DX−YE) = (C, F). Knowing (X , Y), we also know pairs of deflating subspaces
associated with the matrix pairs (A, D) and (B, E). Similarly to the matrix case,
large values on the left and right projector norms l = (1 + ‖Y ‖2F)1/2 and r =
(1+ ‖X ‖2F)1/2 signal ill-conditioning [Kågström and Poromaa 1996b; Anderson
et al. 1999], that is, the eigenspaces may be sensitive to small perturbations in
the data.

2.2 Condition Estimation of Matrix Equations

All linear matrix equations can be written as a linear system of equations
Z x = c, where Z is a Kronecker product matrix representation of the associated
Sylvester-type operator, and the solution x and the right-hand side c are repre-
sented in vec(·) notation. vec(X) denotes a column vector with the columns of
X stacked on top of each other. We introduce the following Z -matrices,

ZSYCT = ZAX−XB = In ⊗ A− BT ⊗ Im,
ZLYCT = ZAX+XAT = In ⊗ A+ A⊗ In,

ZGCSY = Z (AX−YB,DX−YE) =
[

In ⊗ A −BT ⊗ Im
In ⊗ D −ET ⊗ Im

]
.

ACM Transactions on Mathematical Software, Vol. 28, No. 4, December 2002.

396 • I. Jonsson and B. Kågström

From top to bottom they represent the matrix operators of the continuous-
time Sylvester and Lyapunov equations, and the generalized coupled Sylvester
equation.

An important quantity that appears both in the perturbation theory for
Sylvester-type equations and for the eigenspace problems considered above is
the separation between two matrices [Stewart and Sun 1990], defined as

Sep[A, B] = inf
‖X ‖F=1

‖AX− XB‖F = σmin(ZSYCT),

where σmin(ZSYCT) ≥ 0 is the smallest singular value of ZSYCT. We review some
of its characteristics: Sep[A, B] = 0 if and only if A and B have a common
eigenvalue; Sep[A, B] is small if there is a small perturbation of A or B that
makes them have a common eigenvalue. The Sep-function may be much smaller
than the minimum distance between the eigenvalues of A and B.

Assuming M and N are the dimensions of A and B, computing σmin(ZSYCT)
is an O(M 3N 3) operation, which is impractical already for moderate values on
M and N . In Kågström and Poromaa [1992], it is shown how reliable Sep−1-
estimates can be computed to the cost O(MN2 + M 2N) by solving triangular
matrix equations:

‖x‖2
‖c‖2 =

‖X ‖F

‖C‖F
≤ ∥∥Z−1

SYCT

∥∥
2 =

1
σmin(ZSYCT)

= Sep−1
.

The right-hand side C is chosen such that the lower bound gets as large as possi-
ble. This leads to a Frobenius-norm-based estimate. For computation of 1-norm-
based estimates see Hager [1984], Higham [1988], and Kågström and Poromaa
[1992].

The Sep-functions associated with the Sylvester-type matrix equations are:

Sep[SYCT] = inf‖X ‖F=1 ‖AX− XB‖F = σmin(ZSYCT),
Sep[LYCT] = inf‖X ‖F=1 ‖AX− X (−AT)‖F = σmin(ZLYCT),
Sep[GCSY] = inf‖(X ,Y)‖F=1 ‖(AX− YB, DX− YE)‖F = σmin(ZGCSY).

The same techniques as presented above can also be used for estimating
Sep[LYCT]. Reliable estimates of Sep[GCSY] (the separation between two ma-
trix pairs [Stewart and Sun 1990]) are presented and discussed in Kågström
and Poromaa [1996a,b] and Kågström and Westin [1989]. The underlying per-
turbation theory for these Sylvester-type equations is presented in Higham
[1993] and Kågström [1994]. See also the nice review in Chapter 15 of Higham
[1996].

3. RECURSIVE BLOCKED ALGORITHMS FOR ONE-SIDED
AND COUPLED MATRIX EQUATIONS

As mentioned in the introduction, the standard methods for solving one-sided
matrix equations are all based on the BS-method [Bartels and Stewart 1972].
The fundamental algorithms for solving the continuous-time Sylvester and
Lyapunov equations are presented in Bartels and Stewart [1972], Golub et al.
[1979], and Hammarling [1982]. Generalizations of the Bartels–Stewart and

ACM Transactions on Mathematical Software, Vol. 28, No. 4, December 2002.

Recursive Blocked Algorithms—Part I • 397

the Hessenberg–Schur [Golub et al. 1979] methods for solving the generalized
coupled Sylvester equation can be found in Kågström and Westin [1989], and
Kågström and Promaa [1996a].

In this section, we present our recursive blocked methods for solving tri-
angular one-sided and coupled matrix equations, which also are amenable for
parallelization, especially on shared memory systems. Parallel methods for solv-
ing triangular one-sided and coupled matrix equations have also been studied
(e.g., see Kågström and Poromaa [1992] and Poromaa [1998, 1997]).

For each matrix equation we define recursive splittings which in turn lead
to a few smaller problems to be solved. These recursive splittings are applied
to all “half-sized” triangular matrix equations and so on. We terminate the re-
cursion when the new problem sizes (M and/or N) are smaller than a certain
block size, blks, which is chosen such that at least a few submatrices involved
in the current matrix equation fit in the first-level cache memory. For the solu-
tion of the small-sized problems, we apply new high-performance kernels (see
Section 5).

We remark that all updates with respect to the solution of subproblems in
the recursion are general matrix multiply and add (GEMM) operations C ←
βC + αAB, where α and β are real scalars. This is due to the “one-sidedness”
of the matrix equations. Using the GEMM-based approach, some of them can
be reorganized in efficient symmetric rank-2k (SYR2K) operations [Dongarra
et al. 1990a,b; Kågström et al. 1998a,b].

3.1 Recursive Triangular Continuous-Time Sylvester Solvers

Consider the real continuous-time Sylvester (SYCT) matrix equation

AX− XB = C, (1)

where A of size M × M and B of size N × N are upper triangular or upper
quasitriangular, that is, in real Schur form. The right-hand side C and the
solution X are of size M ×N . Typically, the solution overwrites the right-hand
side (C← X). The SYCT equation (1) has a unique solution if and only if A and
B have no eigenvalue in common or, equivalently, Sep[SYCT] 6= 0.

Depending on the sizes of M and N , we consider three alternatives for doing
a recursive splitting.

Case 1 (1 ≤ N ≤ M/2). We split A by rows and columns, and C by rows
only: [

A11 A12

A22

][
X 1

X 2

]
−
[

X 1

X 2

]
B =

[
C1

C2

]
,

or equivalently

A11 X 1 − X 1 B = C1 − A12 X 2,
A22 X 2 − X 2 B = C2.

ACM Transactions on Mathematical Software, Vol. 28, No. 4, December 2002.

398 • I. Jonsson and B. Kågström

The original problem is split in two triangular Sylvester equations: we solve for
X 2 and after the GEMM update C1 = C1 − A12 X 2, we can solve for X 1 using
the recursive algorithm.

Case 2 (1 ≤ M ≤ N/2). We split B by rows and columns, and C by columns
only:

A[X 1 X 2]− [X 1 X 2]

[
B11 B12

B22

]
= [C1 C2],

or equivalently

AX1 − X 1 B11 = C1,
AX2 − X 2 B22 = C2 + X 1 B12.

Now, we first solve for X 1 and then after updating C2 with respect to X 1, solve
for X 2.

Case 3 (N/2 < M < 2N). We split A, B, and C by rows and columns:[
A11 A12

A22

][
X 11 X 12

X 21 X 22

]
−
[

X 11 X 12

X 21 X 22

][
B11 B12

B22

]
=
[

C11 C12

C21 C22

]
.

This recursive splitting results in the following four triangular Sylvester
equations:

A11 X 11 − X 11 B11 = C11 − A12 X 21,
A11 X 12 − X 12 B22 = C12 − A12 X 22 + X 11 B12,
A22 X 21 − X 21 B11 = C21,
A22 X 22 − X 22 B22 = C22 + X 21 B12.

We start by solving for X 21 in the third equation. After updating C11 and C22
with respect to X 21, we can solve for X 11 and X 22. Both updates and the trian-
gular Sylvester solves are independent operations and can be executed concur-
rently. Finally, we update C12 with respect to X 11 and X 22, and solve for X 12.

We remark that if a splitting point (M/2 or N/2) appears at a 2×2 diagonal
block, the matrices are split just below this diagonal block. All “half-sized”
Sylvester equations are solved using a recursive blocked algorithm.

In the discussion above, we have assumed that both A and B are upper
triangular (or quasitriangular). However, it is straightforward to derive similar
recursive splittings for the triangular SYCT, where A and B can each be in
either upper or lower Schur form.

A Matlab-style function [X] = rtrsyct(A, B, C, uplo, blks) implementing our
recursive blocked solver is presented in Algorithm 1. The input uplo signals
the triangular structure of A and B. The function [X] = trsyct(A, B, C, uplo)
implements an algorithm for solving triangular Sylvester block kernel problems
(see Section 5). The function [C] = gemm(A, B, C) implements the GEMM-
operation C = C + AB.

ACM Transactions on Mathematical Software, Vol. 28, No. 4, December 2002.

Recursive Blocked Algorithms—Part I • 399

Algorithm 1: rtrgsyl

Input: A (M×M) and B (N×N) in quasitriangular Schur form. C (M×N) dense matrix. blks,
block size that specifies when to switch to a standard algorithm for solving small-sized
matrix equations. uplo indicates triangular form of A, B : 1-(upper, upper), 2-(upper,
lower), 3-(lower, upper), 4-(lower, lower).

Output: X (M × N), the solution of AX− XB = C. X is allowed to overwrite C.

function [X] = rtrsyct(A, B, C, uplo, blks)
if 1 ≤ M , N ≤ blks then

X = trsyct(A, B, C, uplo);
else switch uplo
case 1

if 1 ≤ N ≤ M/2 % Case 1: Split A (by rows and colums), C (by rows only)
X 2 = rtrsyct(A22, B, C2, 1, blks);
C1 = gemm(−A12, X 2, C1);
X 1 = rtrsyct(A11, B, C1, 1, blks);
X = [X 1; X 2];

elseif 1 ≤ M ≤ N/2 % Case 2: Split B (by rows and colums), C (by columns only)
X 1 = rtrsyct(A, B11, C1, 1, blks);
C2 = gemm(X 1, B12, C2);
X 2 = rtrsyct(A, B22, C2, 1, blks);
X = [X 1, X 2];

else % M , N ≥ blks, Case 3: Split A, B and C (all by rows and colums)
X 21 = rtrsyct(A22, B11, C21, 1, blks);
C22 = gemm(X 21, B12, C22); C11 = gemm(−A12, X 21, C11);
X 22 = rtrsyct(A22, B22, C22, 1, blks); X 11 = rtrsyct(A11, B11, C11, 1, blks);
C12 = gemm(−A12, X 22, C12);
C12 = gemm(X 11, B12, C12);
X 12 = rtrsyct(A11, B22, C12, 1, blks);
X = [X 11, X 12; X 21, X 22];

end
case 2 % Code for uplo = 2.
case 3 % Code for uplo = 3.
case 4 % Code for uplo = 4.
end

Algorithm 1. Recursive blocked algorithm for solving the triangular continuous-time Sylvester
equation.

3.2 Recursive Triangular Continuous-Time Lyapunov Solvers

Consider the real continuous-time Lyapunov (LYCT) matrix equation

AX+ XAT = C, (2)

where A is upper triangular or upper quasitriangular, that is, in real Schur
form. The right-hand side C, the solution X , and A are all of size N × N .
Typically, the solution overwrites the right-hand side (C ← X). The LYCT
equation (2) has a unique solution if and only if λi(A)+ λ j (A) 6= 0 for all i and
j , or equivalently Sep[LYCT] 6= 0. If C = CT is (semi)definite and Reλi(A) < 0
for all i, then a unique (semi)definite solution X exists [Hammarling 1982].

ACM Transactions on Mathematical Software, Vol. 28, No. 4, December 2002.

400 • I. Jonsson and B. Kågström

Since all matrices are of the same size, there is one parameter (N) that
controls the recursive splitting. We split A and C by rows and columns:[

A11 A12

A22

][
X 11 X 12

X 21 X 22

]
+
[

X 11 X 12

X 21 X 22

][
AT

11

AT
12 AT

22

]
=
[

C11 C12

C21 C22

]
.

If C = CT , we use the fact that X 21 = X T
12 and the recursive splitting leads to

three triangular matrix equations:

A11 X 11 + X 11 AT
11 = C11 − A12 X T

12 − X 12 AT
12,

A11 X 12 + X 12 AT
22 = C12 − A12 X 22,

A22 X 22 + X 22 AT
22 = C22.

The first and the third are triangular Lyapunov equations, while the second is
a triangular Sylvester matrix equation. We start by solving for X 22 in the third
equation. After updating C12 with respect to X 22, we can solve for X 12. Finally,
we update the right-hand side of the first matrix equation with respect to X 12,
which is a symmetric rank-2k (SYR2K) operation C11 = C11−A12 X T

12−X 12 AT
12,

and solve for X 11.
A Matlab-style function [X] = rtrlyct(A, C, blks) implementing our blocked

recursive solver, which deals with the cases with a symmetric or nonsymmetric
C, is presented in Jonsson and Kågström [2001b]. For solving the triangular
Sylvester equations that appear, we make use of the recursive algorithm [X] =
rtrsyct(A, B, C, uplo, blks), described in Section 3.1.

3.3 Recursive Triangular Coupled Sylvester Solvers

Consider the real generalized coupled Sylvester (GCSY) matrix equation of the
form

AX− YB = C, C← X (M × N),
DX− YE = F, F ← Y (M × N), (3)

where the matrix pairs (A, D) and (B, E) are in generalized Schur form with
A, B upper (quasi-)triangular and D, E upper triangular. A, D are M ×M and
B, E are N × N ; the right-hand sides C, D and the solution matrices X , Y ,
which overwrite C and D, respectively, are of size M × N . The GCSY equation
(3) has a unique solution if and only if (A, D) and (B, E) are regular matrix
pairs and have no eigenvalue in common, or equivalently Sep[GCSY] 6= 0.

As for the standard case, we consider three alternatives for doing a recursive
splitting. Below, we illustrate these cases.

Case 1 (1 ≤ N ≤ M/2). We split (A, D) by rows and columns, and (C, F)
by rows only: [

A11 A12

A22

][
X 1

X 2

]
−
[

Y1

Y2

]
B =

[
C1

C2

]
,[

D11 D12

D22

][
X 1

X 2

]
−
[

Y1

Y2

]
E =

[
F1

F2

]
.

ACM Transactions on Mathematical Software, Vol. 28, No. 4, December 2002.

Recursive Blocked Algorithms—Part I • 401

The splitting results in the following two generalized Sylvester equations:

A11 X 1 − Y1 B = C1 − A12 X 2, D11 X 1 − Y1 E = F1 − D12 X 2,
A22 X 2 − Y2 B = C2, D22 X 2 − Y2 E = F2.

First, we solve for (X 2, Y2) in the second pair of matrix equations. After updating
(C1, F1) with respect to X 2 (two GEMM operations that can execute in parallel),
we solve for (X 1, Y1).

Case 2 (1 ≤ M ≤ N/2). We split (B, E) by rows and columns, and (C, F)
by columns only:

A[X 1 X 2]− [Y1 Y2]

[
B11 B12

B22

]
= [C1 C2],

D[X 1 X 2]− [Y1 Y2]

[
E11 E12

E22

]
= [F1 F2],

or equivalently

AX1 − Y1 B11 = C1, DX1 − Y1 E11 = F1,
AX2 − Y2 B22 = C2 + Y1 B12, DX2 − Y2 E22 = F2 + Y1 E12.

Now we first solve for (X 1, Y1), and after updating (C2, F2) with respect to Y1
(also two independent GEMM operations), we solve for (X 2, Y2).

Case 3 (N/2 < M < 2N). We split all matrices by rows and columns:[
A11 A12

A22

][
X 11 X 12

X 21 X 22

]
−
[

Y11 Y12

Y21 Y22

][
B11 B12

B22

]
=
[

C11 C12

C21 C22

]
,[

D11 D12

D22

][
X 11 X 12

X 21 X 22

]
−
[

Y11 Y12

Y21 Y22

][
E11 E12

E22

]
=
[

F11 F12

F21 F22

]
.

This leads to four pairs of coupled Sylvester equations to be solved:

A11 X 11 − Y11 B11 = C11 − A12 X 21, D11 X 11 − Y11 E11 = F11 − D12 X 21,
A11 X 12 − Y12 B22 D11 X 12 − Y12 D22

= C12 − A12 X 22 + Y11 B12, = F12 − D12 X 22 + Y11 E12,
A22 X 21 − Y21 B11 = C21, D22 X 21 − Y21 E11 = F21,
A22 X 22 − Y22 B22 = C22 + Y21 B12, D22 X 22 − Y22 E22 = F22 + Y21 E12.

We start by solving for (X 21, Y21) in the third matrix equation pair. After up-
dating (C11, F11) and (C22, F22) with respect to X 21 and Y21, respectively, we can
solve for (X 11, Y11) and (X 22, Y22). Finally, we update (C12, F12) with respect to
Y11 and X 22, and solve for (X 12, Y12). Several of these operations can be per-
formed concurrently, including GEMM-updates of right-hand sides and two of
the generalized triangular Sylvester solves.

A Matlab-style function, [X] = rtrgcsy(A, B, C, D, E, F, blks), which im-
plements our recursive blocked generalized Sylvester algorithm is presented
in Jonsson and Kågström [2001b]. As in the standard case, the recursion

ACM Transactions on Mathematical Software, Vol. 28, No. 4, December 2002.

402 • I. Jonsson and B. Kågström

Table I. Complexity of Standard Algorithms
Measured in Flops

Matrix Equation Overall Cost in Flops
SYCT (1) M 2 N +MN2

LYCT (2) N3

GCSY (3) 2M 2 N + 2MN2

is only applied down to a certain block size, when the function [X] =
trgcsy(A, B, C, D, E, F) is applied for solving triangular generalized coupled
Sylvester block kernel problems.

3.4 Number of Operations and Execution Order

All recursive algorithms presented in Section 3 perform the same amount
of floating point operations (flops) as the elementwise explicit algorithms or
their blocked counterparts (e.g., see Bartels and Stewart [1972], Kågström and
Westin [1989], and Kågström and Poromaa [1992, 1996a]), which are all based
on backward or forward substitutions with one or several right-hand sides. In
Table I, we summarize the overall flopcounts for these methods. We remark
that the difference in flops between the two extreme cases, that is, when all
diagonal blocks of the matrices in upper Schur form are of size 1 × 1 or 2 × 2,
respectively, only shows up in the lower-order terms.

The flopcounts for the recursive blocked algorithms can be expressed in terms
of the following recurrence formulas.

FSYCT(M , N) = 4FSYCT(M/2, N/2)+ 2FGEMM(M/2, M/2, N/2)
(4)+ 2FGEMM(M/2, N/2, N/2),

FLYCT(N) = 2FLYCT(N/2)+ FSYCT(N/2, N/2)
(5)+ 2FGEMM(N/2, N/2, N/2),

FGCSY(M , N) = 4FGCSY(M/2, N/2)+ 4FGEMM(M/2, M/2, N/2)
(6)+ 4FGEMM(M/2, N/2, N/2).

These expressions correspond to the most general case when the recursive
splitting is by rows and by columns for all input matrices. Ignoring the lower-
order terms and assuming that FGEMM(P, Q , R), the complexity of the GEMM
operation with matrices of sizes P × Q and Q × R is 2PQR flops, it is straight-
forward to derive the expressions in Table I by induction from Equations (4)
through (6), respectively.

The main difference between the recursive blocked and the standard explic-
itly blocked algorithms is their data reference patterns, that is, the order in
which they access data and how big chunks and how many times the data are
moved in the memory hierarchy of the target computer system. As is shown in
Section 6, this can have a great impact on the performance of the algorithms.
As expected, the algorithms with the smallest amount of redundant memory
transfers show the best performance.

ACM Transactions on Mathematical Software, Vol. 28, No. 4, December 2002.

Recursive Blocked Algorithms—Part I • 403

4. COMPUTING FUNCTIONS OF TRIANGULAR MATRICES
USING RECURSIVE BLOCKING

An important application to solving triangular Sylvester equations is the prob-
lem of computing f (A), where f is an analytic function and A of size N × N is
a real matrix in Schur form; for example, A is upper quasitriangular. The best
known matrix function is the matrix exponential, which has several applica-
tions in control theory. Different methods have been suggested over the years
for computing matrix functions. We refer to the papers Kågström [1977a,b], Van
Loan [1977], and Moler and Van Loan [1978], which also include perturbation
theory and error bounds. Several of these results are also reviewed in Golub
and Van Loan [1996], the standard textbook on advanced matrix computations.

In the following, we let F denote the matrix function f (A) to be computed.
Since A is upper triangular, so will F be. Moreover, since f is analytic F can be
expressed in terms of a series expansion, from which it is obvious that F and
A commute; that is,

AF− FA = 0. (7)

We use this fact to derive a blocked recursive algorithm for computing F . Since
A is square, there is only one way of doing the recursive splitting: namely, we
split A and F by rows and columns. This recursive splitting results in the three
triangular matrix equations:

A11 F11 − F11 A11 = 0,
A11 F12 − F12 A22 = F11 A12 − A12 F22,
A22 F22 − F22 A22 = 0.

The first and the third reveal the commuting properties of the diagonal blocks.
Knowing F11 and F22, we get F12 from the second equation, which is a triangular
continuous-time Sylvester equation (1).

The splitting described above can now be applied recursively to all “half-
sized” triangular matrix equations. As before, we terminate the recursion when
a problem size N is smaller than a certain block size, blks. For computing the
matrix function of the small-sized kernel problems, there are several alterna-
tives. If all eigenvalues are real, one alternative is to choose blks = 1, which
means that the recursion continues until element level and Fii = f (λ j) for an
eigenvalue λ j .

However, in this context, the choice of block size is also important with re-
spect to the accuracy and reliability of the results. If the eigenvalues along the
(block) diagonal of A are ordered with respect to a clustering procedure, then
the blocking with respect to the clustering must be taken into account in the
recursive splitting. Splittings that are not permitted can be monitored by com-
puting an estimate of Sep[A11, A22], each time a Sylvester equation is solved
for computing an F12 block. A small value of Sep indicates that a small pertur-
bation of A11 and/or A22 may cause at least one eigenvalue from the perturbed
A11 to coalesce with an eigenvalue of A22. If this is the case, the splitting of A is
inadmissible and another splitting should be chosen. To facilitate the choice of
splitting, the blocking with respect to clustering should be provided as input.

ACM Transactions on Mathematical Software, Vol. 28, No. 4, December 2002.

404 • I. Jonsson and B. Kågström

5. OPTIMIZED SUPERSCALAR KERNELS AND OTHER
IMPLEMENTATION ISSUES

In principle, we have three levels of triangular matrix equation solvers. At
the user level we have the recursive blocked rtr* solvers. Each of them calls
a tr* block or subsystem solver when the current problem sizes (M and/or N)
from a recursive splitting are smaller than a certain block size, blks. Finally,
each of the block solvers calls a superscalar kernel for solving matrix equations
with M , N ≤ 4. There are several issues to consider in developing portable
and high-performance implementations for these solvers. In this section, we
discuss several of them including the impact of kernel solvers on the overall
performance of the matrix equation solver, the design of superscalar kernels for
solving small-sized matrix equations, and when to terminate the recursion and
instead call a block solver for solving the remaining subsystems. We also discuss
different aspects in the choice of BLAS implementations and in implementing
shared memory parallelism.

5.1 Impact of Kernel Solvers

For illustration and without loss of generality, we assume that all matrix sizes
are the same (M = N). Then the innermost kernels of the Sylvester-type
solvers, which exist in the tr* routines of the algorithm descriptions in Section
3, execute O(N 2) flops out of the total O(N3) flops. Although one order fewer
operations, the performance of the kernels is very important for the overall
computation rate for these solvers. Most of the operations outside the kernels
are GEMM operations.

In Figure 1, the modeled impact of the performance of Sylvester kernels on
the overall performance of the recursive blocked algorithm rtrsyct is illus-
trated. The x-axis shows the problem size N , and the y-axis shows the overall
performance of rtrsyct measured in Mflops/s for kernel routines with differ-
ent performance characteristics. We use two fixed performance rates for the
DGEMM routine, 200 and 500 Mflops/s, respectively. With M = N , the to-
tal number of flops is 2N 3, and the number of flops performed by the 2 × 2
subsystem kernel is 4N 2. We model the overall computation rate as

S = Total number of flops
GEMM time+Kernel time

= 2N 3

2N 3 − 4N 2

G
+ 4N2

K

= N · G
N − 2+ 2

G
K

, (8)

where G denotes the performance of the DGEMM routine, and K denotes the
performance of the kernel routine.

From Figure 1, we see that with a GEMM performance of 500 Mflops/s and
the slowest kernel (0.3 Mflops/s), the overall performance is at most approach-
ing 50% of the GEMM performance for N = 2500. But with the same GEMM
performance and the faster kernels (executing at 3 and 10 Mflops/s, respec-
tively), the overall performance rather quickly approaches 80 to 90% of the
performance of the DGEMM routine. This is, of course, the performance behav-
ior we would like to see in practice.

ACM Transactions on Mathematical Software, Vol. 28, No. 4, December 2002.

Recursive Blocked Algorithms—Part I • 405

Fig. 1. Modeled overall performance of a recursive blocked implementation using different
optimized kernels.

For N = 250, the number of flops performed in the kernel is 0.8% of the
total number of flops, but with the faster DGEMM and the slowest kernel, the
time spent in the kernel is more than 93% of the total time. With the same
prerequisites and N = 750, the number of flops done in the kernel is less than
0.3% of the total number of flops, while the time spent in the kernel is more
than 80% of the total time. We remark that similar analyses hold for all matrix
equations considered. For the IBM Power3, 200 MHz, the 0.3 Mflops/s value is
roughly the average performance of the LAPACK DTGSY2 routine [Kågström
and Poromaa 1996a; Anderson et al. 1999] for these very small problems.
DTGSY2 is the routine for solving small-sized 2 × 2, 4× 4, and 8 × 8 general-
ized coupled Sylvester equations (3) used in an explicitly blocked level-3 solver
[Kågström and Poromaa 1996a]. The main reason for the poor performance
is that the kernel algorithms in LAPACK are designed with the primary goal
of producing high accuracy results and signaling ill-conditioning. For example,
the DTGSY2 solver is based on complete pivoting and overflow guarding. There
is a trade-off among robustness, reliability, and speed. In the next section, we
discuss ways of improving the speed in the kernel design, without sacrificing
the accuracy and robustness demands, assuming the problems are not too ill-
conditioned.

5.2 Design of Optimized Superscalar Kernels

The kernel routines in state-of-the-art libraries such as LAPACK [Anderson
et al. 1999] and SLICOT [2001] are typically not optimized for superscalar RISC

ACM Transactions on Mathematical Software, Vol. 28, No. 4, December 2002.

406 • I. Jonsson and B. Kågström

processors. We continue our illustration with the LAPACK DTGSY2 kernel
routine discussed above.

It uses DGETC2 to factorize the Z -matrix (see ZGCSY in Section 2), and
DGESC2 to do the forward and backward substitutions with overflow guarding.
Several level-1, 2, and 3 BLAS routines (DAXPY, DSCAL, DGER, DGEMV, and
DGEMM) are used in different updates. Now, DGETC2 and DGESC2 in turn
use these and other BLAS routines to do the factorization and solving. Although
this is good programming practice and leads to good code reuse, the overhead
of the routine calls is devastating to the performance. Typically, the compiler
cannot make good intraprocedural optimizations, since the BLAS kernels are
linked from a library and cannot be candidates for inlining. Besides, a large part
of the time spent in the BLAS routines is spent in setup code, that is, parameter
checking and collection of machine characteristics, which in turn degrades the
performance.

Our approach is to design one single routine, which does all (or most of)
the computations for solving the kernel problems using the Kronecker product
matrix representation introduced in Section 2.2. The construction of the Z -
matrix (of size MN × MN for SYCT and LYCT and 2MN × 2MN for GCSY),
the LU factorization using partial pivoting with overflow guarding, and the
forward and backward substitutions are all done in the same routine. This
leads to a great potential for register reuse. Also, by complete loop unrolling,
the routine can make much better use of the superscalar characteristics of
today’s processors.

5.3 Choice of Block Size and Termination of the Recursion

The choice of block sizes is an important issue in algorithms that use explicit
blocking. For a multilevel explicitly blocked algorithm, each block size must be
chosen to match a specific level in the memory hierarchy, for example, registers,
level-1, or level-2 caches. This requires a deep knowledge of the architecture
characteristics. On the other hand, for recursive blocked algorithms, we auto-
matically obtain a hierarchical blocking which is variable and “squarish,” and
there is only need for one blocking parameter, blks. Typically, blks is chosen so
that a few blocks of current subproblems fit in the level-1 cache. For “problems”
smaller than this size, recursion will not lead to any further speedup, to com-
plete recursion until the element level would typically cause too much overhead
and a drop in performance (e.g., see Gustavson et al. [1998b] and Gustavson
and Jonsson [2000]).

For the rtr* solvers, the blks parameter can be chosen smaller than the size
controlled by the level-1 cache without degrading the performance. This is due
to the fact that there is enough computation at the leaves to hide the overhead
caused by recursion. Although the superscalar kernel routines discussed in
Section 5.2 are much faster than corresponding implementations in LAPACK
and SLICOT, they are still much slower than the practical peak performance
provided by an optimized GEMM kernel. The superscalar kernel solvers oper-
ate on problems of the size 2 ≤ M , N ≤ 4, and this controls when the recur-
sion will be terminated. So, we also use recursion in the tr* block solvers now

ACM Transactions on Mathematical Software, Vol. 28, No. 4, December 2002.

Recursive Blocked Algorithms—Part I • 407

calling our superscalar GEMM kernel for all one-sided matrix–matrix updates.
By doing so we minimize unnecessary overhead including costs for any buffer
setups.

5.4 On the Choice of BLAS Implementation

Our recursive blocked algorithms reveal a great richness in matrix–matrix
multiplication operations (GEMM). As the performance of the superscalar ker-
nel increases, the GEMM routine plays a more important role for the overall
performance (see Section 5.1).

The memory access pattern of the recursive blocked algorithms suggests that
a BLAS implementation that uses recursion would perform very well together
with the algorithms described here. However, this depends on the architecture
characteristics. Recursive BLAS implementations have proven to be successful
on processors with a large gap between the memory bandwidth and the com-
putational power (e.g., see Gustavson et al. [1998a]). However, for machines
with a balanced performance with respect to memory bandwidth and compute
power, the difference is negligible when the nonrecursive BLAS is carefully
tuned [Lindkvist 2000].

In Gustavson et al. [1998a], recursive blocked data formats that match re-
cursive blocked algorithms are introduced and used in level-3 BLAS routines.
Our experience is that using a recursive blocked data layout may lead to a
significant performance gain, but it is not appropriate for our recursive trian-
gular Sylvester-type matrix equation solvers in general. The main reason is
the properties of the quasitriangular matrices involved, where the 2×2 bulges
along the block diagonal correspond to conjugate pairs of complex eigenvalues.
A 2 × 2 diagonal block may force the recursive splitting to occur one row or
column above or below the partitioning determined by the blocked format. This
leads to spill rows and columns with respect to the recursive blocked format,
which further increase the data management overhead. Therefore, we have
abandoned its use. However, if all eigenvalues are real or we work in complex
arithmetic all matrices will be upper triangular and a recursive blocked data
format is straightforward to apply.

5.5 Parallelization Issues

In our SMP implementations, different types of shared memory parallelism
have been investigated. The first, and by far the easiest to implement, is to
simply use level-3 BLAS routines that make use of more than one processor.
Moreover, we can parallelize over independent tasks in the “Case 3” branch
of the recursion of the algorithms (where both matrix dimensions are split
simultaneously), which include both GEMM updates and matrix equation
solves from successive splittings (see rtrsyct in Section 3.1 and rtrgcsy in
Section 3.3). Another way to go is to explicitly parallelize a standard blocked
algorithm (e.g., see Kågström and Poromaa [1992] and Poromaa [1998, 1997]).
In this section, these three ways of parallelization including hybrid variants
are discussed using the coupled Sylvester equation (3) for illustration (see
Section 3.3).

ACM Transactions on Mathematical Software, Vol. 28, No. 4, December 2002.

408 • I. Jonsson and B. Kågström

Implicit Data Parallelization. By linking to an SMP-aware implementa-
tion of BLAS, only the parallelism in the GEMM-based updates is taken into
account. This gives fairly good speedup for SMP systems with a small number
of processors, and, especially, for large problems, where the updates stand for a
larger fraction of the total time to solve the problem. The main advantage of this
approach is that it does not require any extra implementation work, granted
that an SMP version of DGEMM is available. Moreover, this means that there
are no requirements on the compiler or the run-time library to support any
parallelization directives or routines, such as OpenMP or pthreads [OpenMP
2000; Nichols et al. 1996].

Task Parallelism in the Recursion Tree. In the rtrgcsy algorithm, there is
also the possibility of parallelizing calls to the coupled Sylvester block kernel
routine, by solving for the block matrix pairs [X 11, Y11] and [X 22, Y22] concur-
rently. Also, some of the updates are independent tasks that can be done in
parallel. In our implementation of the rtrgcsy algorithm, we make use of an
additional parameter procs, which holds the number of processors available
to solve the current problem. If procs > 1, the problem size is large enough,
and M , N fit into the Case 3 clause, then the second and the third recur-
sive calls (solving for [X 11, Y11] and [X 22, Y22]) are done in parallel, as well
as some of the GEMM updates. The constraint on the problem size is neces-
sary to prevent superfluous parallelization; that is, the cost of parallelizing
the task (parallelization overhead) dominates the gain from executing it in
parallel.

In our implementation, the same SMP implementation of BLAS as above
is used. Although this is good for the largest updates at the top of the recur-
sion, where the level of task parallelism is small, it is not optimal when there
are many smaller updates to be done in parallel. Preferably, a DGEMM imple-
mentation where the number of available processors could be specified should
be used. By using a DGEMM with a proc parameter, updates would alternate
between making use of task parallelism (at the leaves of the recursion) and
data parallelism (at the topmost roots of the recursion). However, we have not
seen that option in today’s BLAS implementations. Instead, with the current
implementations there is a potential risk for over-parallelization; for example,
on a four-processor SMP, there could be four instances of DGEMM running in
parallel, each trying to make use of four processors.

Parallelization of Explicitly Blocked Algorithms. Distributed memory as
well as shared memory blocked algorithms for solving Sylvester-type matrix
equations have been studied in the literature (e.g., see Kågström and Poromaa
[1992] and Poromaa [1998, 1997]). The above-cited algorithms try to utilize the
maximum inherent parallelism of explicitly blocked algorithms for solving tri-
angular matrix equations. For example, all blocks along each block diagonal
of the solution(s) correspond to independent tasks (smaller triangular matrix
equation solves) that can be executed in parallel.

A shared memory implementation of the triangular coupled Sylvester equa-
tion (3) is presented and discussed by Poromaa [1998, 1997]. The solution

ACM Transactions on Mathematical Software, Vol. 28, No. 4, December 2002.

Recursive Blocked Algorithms—Part I • 409

(X , Y) overwrites the right-hand sides (C, F), and the SMP algorithm solves
for all blocks in each block diagonal of C and F in parallel, assuming enough
numbers of processors are available. We have implemented this algorithm with
different block (subsystem) solvers, including the sequential rtrgcsy algorithm.
The explicitly blocked algorithm also requires thread support from the compiler
or a run-time library. One advantage of this algorithm is the potential inherent
parallelism in solving subsystems along the block diagonals. One disadvantage
is that the algorithm does not automatically generate good squarish calls to
DGEMM. As such, the choice of block size is more architecture dependent than
in a recursive blocked algorithm.

6. PERFORMANCE RESULTS OF RECURSIVE BLOCKED ALGORITHMS

The recursive blocked algorithms have been implemented in Fortran 90, using
the facilities for recursive calls of subprograms, dynamic memory allocation,
and threads. In this section, we present sample performance results of these
implementations executing on IBM Power, MIPS, and Intel Pentium processor-
based systems. We have selected a few processors representing different ven-
dors and different architecture characteristics and memory hierarchies. The
performance results (measured in Mflops/s) are computed using the flopcounts
presented in Table I of Section 3.4. A selection of the results is displayed in
graphs, where the performance of different variants of the recursive blocked
implementations is visualized together with existing routines in the state-of-
the-art libraries LAPACK [Anderson et al. 1999] and SLICOT [2001]. These
results should be quite self-explanatory. Therefore, our discussion is restricted
to significant or unexpected differences between the implementations execut-
ing on different computing platforms. For additional results we refer to Jonsson
and Kågström [2001b]. The accuracy of the results computed by our recursive
blocked algorithms is overall very good and similar to the accuracy obtained
by the corresponding LAPACK and SLICOT routines. For benchmark problems
see Kressner et al. [1999a,b] and SLICOT [2001] .

The tests were run on several different machines. The first is the IBM
RS/6000 SP SMP Thin Node, with four IBM PowerPC 604e CPUs running
at 332 MHz. Each processor has a theoretical peak rate of 664 Mflops/s. The
second is the IBM RS/6000 SP SMP Thin Node, with two IBM POWER3 CPUs
running at 200 MHz. Each processor has a peak rate of 800 Mflops/s.

The third machine is one node of the HPC2N Linux cluster, with dual Intel
Pentium III CPUs running at 550 MHz. Each processor has a theoretical
peak rate of 550 Mflops/s. The fourth is one SGI Onyx2 node, with a MIPS
R10000 CPU running at 195 MHz. The processor has a theoretical peak rate of
390 Mflops/s.

6.1 Standard Triangular Sylvester Equation

In Figure 2, we show performance graphs for different algorithms and imple-
mentations, executing on IBM PowerPC 604e and Intel Pentium III processor-
based systems, for solving triangular Sylvester equations.

ACM Transactions on Mathematical Software, Vol. 28, No. 4, December 2002.

410 • I. Jonsson and B. Kågström

Fig. 2. Performance results for the triangular Sylvester equation (M =N): IBM SP PowerPC 604e
(left) and Intel Pentium III (right).

The LAPACK DTRSYL implements an explicit Bartels–Stewart solver and
is mainly a level-2 routine, which explains its poor performance behavior.
Our recursive blocked rtrsyct shows between a 2-fold and a 35-fold speedup
with respect to LAPACK DTRSYL and an additional speedup up to 2.8 on a
four-processor PowerPC 604e node for large enough problems. The correspond-
ing results on a two-processor Intel Pentium III show up to a 7-fold speedup
with respect to LAPACK DTRSYL and an additional 1.6 speedup on two proces-
sors. The difference in the speedup B/A for the two architectures is mainly due
to lower cache-miss penalties for the Pentium processor, which in turn leads to
less degradation in the performance of LAPACK DTRSYL. The strong depen-
dencies in the dataflow execution graph limit the possible parallel speedup for
the triangular Sylvester equation.

6.2 Triangular Coupled Sylvester Equation

In Figure 3, performance graphs for different algorithms and implementa-
tions, executing on IBM PowerPC 604e and Intel Pentium III processor-based
systems, for solving triangular generalized coupled Sylvester equations are
displayed.

In total, we make comparisons among seven different implementations.
Two of them are the LAPACK DTGSYL (A) and a parallel variant which
uses SMP BLAS (F). Note that LAPACK DTGSYL is an explicitly blocked

ACM Transactions on Mathematical Software, Vol. 28, No. 4, December 2002.

Recursive Blocked Algorithms—Part I • 411

Fig. 3. Performance results for the generalized coupled Sylvester equation (M = N): IBM SP
PowerPC 604e (left) and Intel Pentium III (right).

level-3 algorithm based on a generalization of the Bartels–Stewart algorithm
[Kågström and Poromaa 1996a; Kågström and Westin 1989]. Three of them are
the sequential recursive blocked rtrgcsy (B) and two parallel variants (C and
D). The last two (E and G) are new explicitly parallelized implementations of
the blocked method [Kågström and Poromaa 1996a; Poromaa 1997, 1998].

Since the LAPACK DTGSYL is mainly a level-3 routine, its performance
increases with increasing problem sizes and levels out due to only one level
of blocking. But still rtrgcsy shows over a 5-fold speedup with respect to
LAPACK DTGSYL and an additional speedup up to 3.2 on a four-processor
PowerPC 604e node for large enough problems. The corresponding results on
a two-processor Intel Pentium III are up to 2.6-fold speedup with respect to
LAPACK DTRSYL and additionally up to a 1.6-fold speedup on two proces-
sors. Comparisons have also been done with rectangular matrices. For the case
M = 10N , the recursive implementations are twice as fast as LAPACK for
problem size (M , N) = (1000, 100). By using SMP versions, an extra speedup
of 2.5 is achieved on the IBM PowerPC 604e. For larger problems, this gap is
even wider [Jonsson and Kågström 2001a].

6.3 Impact of Solving an Unreduced Matrix Equation

For the continuous-time Lyapunov solver, we have investigated the impact
of the choice of triangular matrix equation solver on the time to solve an

ACM Transactions on Mathematical Software, Vol. 28, No. 4, December 2002.

412 • I. Jonsson and B. Kågström

Table II. (a) Total Execution Time for Solving Unreduced Lyapunov Equation for
Two Different Triangular Lyapunov Equation Solvers; (b) Estimate of Separation

Sep[LYCT] Between A and −AT

(a) SB03MD Using SB03MY SB03MD Using rtrlyct
N Total Time Solver Part (%) Total Time Solver Part (%) Speedup
50 0.0253 10.5 0.0238 8.8 1.06
100 0.141 9.2 0.134 4.7 1.05
250 1.65 11.1 1.52 3.1 1.09
500 26.8 43.7 15.3 1.9 1.75
750 105.8 48.5 54.4 1.6 1.94
1000 258.4 50.0 131.5 1.4 1.97

(b) SB03MD Using SB03MY SB03MD Using rtrlyct
N Total Time Solver Part (%) Total Time Solver Part (%) Speedup
50 0.0358 34.7 0.0338 26.0 1.06
100 0.205 34.5 0.164 18.5 1.25
250 2.37 35.7 1.74 13.0 1.36
500 64.9 76.8 16.5 8.4 3.94
750 278.2 80.6 59.1 8.7 4.71
1000 706.4 81.6 141.4 7.9 4.99

unreduced matrix equation. The reduction of an unreduced matrix equation
to a triangular counterpart and the backtransformation of the solution are
operations that are both at least as costly (measured in flops) as the tri-
angular solve. Nevertheless, using our recursive blocked solvers can give a
remarkable performance improvement. We use the SB03MD routine in the
SLICOT [2001] library for illustration, which solves unreduced continuous-time
Lyapunov equations. SB03MD also has an option to compute an estimate of the
separation Sep[LYCT] between A and −AT .

In Table II(a), timings for the SB03MD routine are displayed for problem
sizes ranging from 50 to 1000 using two different triangular matrix equation
solvers. These solvers are SB03MY provided in SLICOT, which implements a
standard Bartels–Stewart method calling BLAS, and our recursive blocked rtr-
lyct algorithm. In the second column, the total times for solving the unreduced
system with SB03MY as the triangular solver are displayed. This includes the
time for the Schur factorization and backtransformation of the solution. In the
fourth and fifth columns, similar results are displayed when SB03MY is re-
placed by the rtrlyct routine. We see between 75 to 100% speedup for problem
sizes N ≥ 500. We remark that the big difference of the timings for N = 250
and N = 500 and their impact are due to cache effects, which automatically
are taken care of by our recursive blocked algorithms.

In Table II(b), we present timings for both solving an unreduced Lyapunov
equation and computing a 1-norm-based estimate of the separation Sep[LYCT]
between A and−AT (see Section 2.2). The condition estimation process leads to
several calls to the triangular Lyapunov solver. Here, the impact is remarkable,
with a four- to fivefold speedup for problem sizes N ≥ 500.

ACM Transactions on Mathematical Software, Vol. 28, No. 4, December 2002.

Recursive Blocked Algorithms—Part I • 413

7. CONCLUSIONS

The performance results verify that our recursive approach is very efficient
for solving one-sided triangular Sylvester-type matrix equations on today’s hi-
erarchical memory computer systems. The recursion is terminated when the
remaining subproblems to be solved are smaller than a given block size blks,
which is the only architecture-dependent parameter in our algorithms. To
complete recursion until the element level would in general cause too much
overhead and a drop in performance. Our solution is to develop new high-
performance superscalar kernels for small-sized triangular Sylvester-type ma-
trix equations and lightweight GEMM operations, which implies that a larger
part of the total execution time is spent in high-performance GEMM operations.
We remark that for all architectures used in our testing, we could terminate the
recursion with blks = 4 without degrading performance, which in turn means
that the implementations are architecture-independent. Altogether, this leads
to simpler and much faster algorithms for solving reduced as well as unreduced
Sylvester-type matrix equations and different associated condition estimation
problems. In our algorithms, the dimensions are split in two equal halves. Our
approach and implementations allow sliding splittings, with the splitting points
varying between the second to the penultimate row and/or column. By not split-
ting in the middle, the algorithms exhibit different memory access patterns and
nonsquare updates, which in general degrade the performance. In the extreme
cases we obtain the standard algorithms. Our intention is to make these algo-
rithms available in the SLICOT [2001] library.

ACKNOWLEDGMENTS

We thank Fred Gustavson and our recursive pals in the Umeå HPC and Parallel
Computing Research Group for stimulating and fruitful discussions. Finally,
we thank Sven Hammarling and the referees for constructive comments on an
earlier version of this manuscript.

REFERENCES

ANDERSON, E., BAI, Z., DEMMEL, J., DONGARRA, J., DU CROZ, J., GREENBAUM, A., HAMMARLING, S.,
MCKENNEY, A., OSTROUCHOV, S., AND SORENSEN, D. 1999. LAPACK Users’ Guide, third ed. SIAM,
Philadelphia.

BAI, Z., DEMMEL, J., AND MCKENNEY, A. 1993. On computing condition numbers for the nonsym-
metric eigenproblem. ACM Trans. Math. Softw. 19, 202–223.

BARTELS, R. H. AND STEWART, G. W. 1972. Algorithm 432: Solution of the equation AX + XB = C.
Commun. ACM 15, 9, 820–826.

CHU, K.-W. E. 1987. The solution of the matrix equation AXB − CXD = Y and (YA − DZ,
YC − BZ) = (E, F). Linear Algebra Appl. 93, 93–105.

DACKLAND, K. AND K ÅGSTRÖM, B. 1999. Blocked algorithms and software for reduction of a regular
matrix pair to generalized Schur form. ACM Trans. Math. Softw. 25, 4, 425–454.

DONGARRA, J. J., DU CROZ, J., DUFF I. S., AND HAMMARLING, S. 1990a. A set of level 3 basic linear
algebra subprograms. ACM Trans. Math. Softw. 16, 1, 1–17.

DONGARRA, J. J., DU CROZ, J., DUFF I. S., AND HAMMARLING, S. 1990b. Algorithm 679: A set of level
3 basic linear algebra subprograms. ACM Trans. Math. Softw. 16, 1, 18–28.

ELMROTH, E. AND GUSTAVSON, F. 2001. High-performance library software for QR factorization. In
Applied Parallel Computing. New Paradigms for HPC Industry and Academia, Lecture Notes in
Computer Science, vol. 1947, Springer Verlag, New York, 53–63.

ACM Transactions on Mathematical Software, Vol. 28, No. 4, December 2002.

414 • I. Jonsson and B. Kågström

GARDINER, J. D., LAUB, A. J., AMATO, J. J., AND MOLER, C. B. 1992a. Solution of the Sylvester matrix
equation AXBT + CXDT = E. ACM Trans. Math. Softw. 18, 223–231.

GARDINER, J. D., WETTE, M. R., LAUB, A. J., AMATO, J. J., AND MOLER, C. B. 1992b. A Fortran 77
software package for solving the Sylvester matrix equation AXBT + CXDT = E. ACM Trans.
Math. Softw. 18, 232–238.

GOLUB, G., NASH, S., AND VAN LOAN, C. 1979. A Hessenberg–Schur method for the matrix problem
AX+ XB = C. IEEE Trans. Autom. Contr. AC-24, 6, 909–913.

GOLUB, G. AND VAN LOAN, C. 1996. Matrix Computations, third ed. Johns Hopkins University
Press, Baltimore.

GUSTAVSON, F. 1997. Recursion leads to automatic variable blocking for dense linear algebra. IBM
J. Res. Dev. 41, 6 (Nov.), 737–755.

GUSTAVSON, F., HENRIKSSON, A., JONSSON, I., K ÅGSTRÖM, B., AND LING, P. 1998a. Recursive blocked
data formats and BLAS’s for dense linear algebra algorithms. In Applied Parallel Computing.
Large Scale Scientific and Industrial Problems, Lecture Notes in Computer Science, vol. 1541,
Springer-Verlag, New York, 195–206.

GUSTAVSON, F., HENRIKSSON, A., JONSSON, I., K ÅGSTRÖM, B., AND LING, P. 1998b. Superscalar GEMM-
based level 3 BLAS—The on-going evolution of a portable and high-performance library. In
Applied Parallel Computing. Large Scale Scientific and Industrial Problems, Lecture Notes in
Computer Science, vol. 1541, Springer-Verlag, New York, 207–215.

GUSTAVSON, F. AND JONSSON, I. 2000. Minimal-storage high-performance Cholesky factorization
via blocking and recursion, IBM J. Res. Dev. 44, 6 (Nov.), 823–849.

HAGER, W. W. 1984. Condition estimates. SIAM J. Sci. Stat. Comp. 5, 311–316.
HAMMARLING, S. J. 1982. Numerical solution of the stable, non-negative definite Lyapunov

equation. IMA J. Numer. Anal. 2, 303–323.
HIGHAM, N. J. 1988. Fortran codes for estimating the one-norm of a real or complex matrix with

applications to condition estimation. ACM Trans. Math. Softw. 14, 381–396.
HIGHAM, N. J. 1993. Perturbation theory and backward error for AX−XB = C. BIT 33, 124–136.
HIGHAM, N. J. 1996. Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia.
JONSSON, I. AND K ÅGSTRÖM, B. 2001a. Parallel triangular Sylvester-type matrix equation solvers

for SMP systems using recursive blocking. In Applied Parallel Computing. New Paradigms for
HPC Industry and Academia, Lecture Notes in Computer Science, vol. 1947, Springer Verlag,
New York, 64–74.

JONSSON, I. AND K ÅGSTRÖM, B. 2001b. Recursive blocked algorithms for solving triangular matrix
equations—Part I: One-sided and coupled Sylvester-type equations. SLICOT Working Note 2001-
4. Dept. of Computing Science, Umeå University, SE-901 87 Umeå, Sweden.

JONSSON, I. AND K ÅGSTRÖM, B. 2002. Recursive blocked agorithms for solving triangular systems—
Part II: Two-sided and generalized Sylvester and Lyapunov matrix equations. ACM Trans. Math.
Softw. 28, 4 (Dec.).

K ÅGSTRÖM, B. 1977a. Bounds and perturbation bounds for the matrix exponential. BIT 17, 39–57.
K ÅGSTRÖM, B. 1977b. Numerical computation of matrix functions. Tech. Rep. UMINF-58.77,

Institute of Information Processing, Umeå University, S-901 87 Umeå, Sweden.
K ÅGSTRÖM, B. 1993. A direct method for reordering eigenvalues in the generalized real Schur form

of a regular matrix pair (A, B). In Linear Algebra for Large Scale and Real–Time Applications,
Kluwer Academic, Amsterdam, 195–218.

K ÅGSTRÖM, B. 1994. A perturbation analysis of the generalized Sylvester equation (AR − LB,
DR − LE) = (C, F). SIAM J. Matrix Anal. Appl. 15, 4, 1045–1060.

K ÅGSTRÖM, B., LING, P., AND VAN LOAN, C. 1998a. GEMM-based level 3 BLAS: High-performance
model implementations and performance evaluation benchmark. ACM Trans. Math. Softw. 24,
3, 268–302.

K ÅGSTRÖM, B., LING, P., AND VAN LOAN, C. 1998b. GEMM-based level 3 BLAS: Portability and
optimization issues. ACM Trans. Math. Softw. 24, 3, 303–316.

K ÅGSTRÖM, B. AND POROMAA, P. 1992. Distributed and shared memory block algorithms for the
triangular Sylvester equation with sep−1 estimator. SIAM J. Matrix Anal. Appl. 13, 1, 90–101.

K ÅGSTRÖM, B. AND POROMAA, P. 1996a. LAPACK–style algorithms and software for solving the
generalized Sylvester equation and estimating the separation between regular matrix pairs.
ACM Trans. Math. Softw. 22, 1, 78–103.

ACM Transactions on Mathematical Software, Vol. 28, No. 4, December 2002.

Recursive Blocked Algorithms—Part I • 415

K ÅGSTRÖM, B. AND POROMAA, P. 1996b. Computing eigenspaces with specified eigenvalues of a
regular matrix pair (A, B) and condition estimation. Numer. Alg. 12, 369–407.

K ÅGSTRÖM, B. AND VAN DOOREN, P. 1992. A generalized state-space approach for the additive
decomposition of a transfer matrix. Int. J. Numer. Linear Algebra Appl. 1, 165–181.

K ÅGSTRÖM, B., AND WESTIN, L. 1989. Generalized Schur methods with condition estimators for
solving the generalized Sylvester equation. IEEE Trans. Autom. Contr. 34, 4, 745–751.

KRESSNER, D., MEHRMANN, V., AND PENZL, T. 1999a. CTLEX—A collection of benchmark examples
for continuous-time Lyapunov equations. SLICOT Working Note 1999-6.

KRESSNER, D., MEHRMANN, V., AND PENZL, T. 1999b. DTLEX—A collection of benchmark examples
for discrete-time Lyapunov equations. SLICOT Working Note 1999-7.

LINDKVIST, A. 2000. High-performance recursive BLAS kernels using new data formats for the QR
factorization. Master’s Thesis, Rep. UMNAD-325.00, Department of Computing Science, Umeå
University, SE-901 87 Umeå, Sweden.

MOLER, C. B. AND STEWART, G. W. 1973. An algorithm for generalized matrix eigenvalue problems.
SIAM J. Numer. Anal. 10, 241–256.

MOLER, C. B. AND VAN LOAN, C. F. 1978. Nineteen dubious ways to compute the exponential of a
matrix. SIAM Rev. 20, 801–836.

NICHOLS, B., BUTTLAR, D., PROULX FARRELL J., AND FARRELL, J. 1996. Pthreads Programming: A
POSIX Standard for Better Multiprocessing. O’Reilly, Sebastopol, Calif.

OPENMP 2000. Fortran Application Program Interface, Version 2.0, November, www.openmp.
org/specs/.

PENZL, T. 1998. Numerical solution of generalized Lyapunov equations. Adv. Comp. Math. 8,
33–48.

POROMAA, P. 1997. High performance computing: Algorithms and library software for Sylvester
equations and certain eigenvalue problems with applications in condition estimation. PhD Thesis
UMINF-97.16, Department of Computing Science, Umeå University, SE-901 87 Umeå, Sweden,
June.

POROMAA, P. 1998. Parallel algorithms for triangular sylvester equations: Design, scheduling and
scalability issues. In Applied Parallel Computing, Large Scale Scientific and Industrial Problems,
Lecture Notes in Computer Science, vol. 1541, Springer-Verlag, New York, 438–446.

SLICOT 2001. Library and the numerics in control network (NICONET) Web site: www.win.
tue.nl/niconet/index.html, Academic Press, San Diego, Calif.

STEWART, G. W. AND SUN, J-G. 1990. Matrix Perturbation Theory. Academic, San Diego.
TOLEDO, S. 1997. Locality of reference in LU decomposition with partial pivoting. SIAM J. Matrix

Anal. Appl. 18, 4, 1065–1081.
VAN LOAN, C. F. 1977. The sensitivity of the matrix exponential. SIAM J. Numer. Anal. 14, 971–

981.

Received April 2001; revised June 2002; accepted July 2002

ACM Transactions on Mathematical Software, Vol. 28, No. 4, December 2002.

