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Abstract

Bioinformatics is a fast-developing field that make use of computational meth-
ods to analyse and structure biological data. An important branch of bioin-
formatics is structure and function prediction of proteins. To determine the
structure of a protein is a crucial part in the characterisation of the molecule.
The structure can also give clues about how the protein functions in the cell.
Since the experimental determination of a protein structure can be both difficult
and time-consuming, and in some cases is impossible using current techniques,
it is desirable to be able to predict the structure. If two protein sequences are
very similar, it is known that they share the same structure. However, there
are many proteins that share the same fold, but have no clear sequence simi-
larity. To find these relationships, and be able to predict the structure of these
proteins, so called “protein fold recognition methods” have been developed.

In this thesis, the field of bioinformatics is briefly surveyed, and two fold
recognition methods are presented. Both methods use hidden Markov models
(HMMs) to find related proteins, and they both exploit the fact that structure
is more conserved than sequence, but in two different ways.

The first paper introduces the reader to the field of molecular biology, and
also describes some common tools used for protein sequence comparison. HMMs
in general are described in detail, as well as some methods for the construction
of multiple structure superposition. Since 3D structure is more conserved than
sequence, it is expected that a multiple sequence alignment based on a multiple
structure superposition, is more biologically correct than an alignment based
on sequence information, especially for proteins with low sequence identities.
Our structure anchored HMMs (saHMMs), which are presented in the paper,
are constructed from multiple sequence alignments that are based on structural
superposition. The paper also describes the selection of representatives for each
protein family, that were used for the construction of the saHMMs. In this
selection, no protein in a given family have a sequence identity higher than a
certain threshold to any other protein in the same family. The threshold is
defined as the border to the so-called twilight zone. The saHMMs are shown to
be able to find the family relationships for almost 90% of the test cases, even
when the saHMMs are based on two proteins only.

The second paper describes the secondary structure HMMs (ssHMMs). These
HMMs are based on an ordinary multiple sequence alignment, as well as on the
secondary structures of the proteins. When a query sequence is compared to
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the ssHMM, a predicted secondary structure is used, and the score based on
the sequence is increased or decreased depending on the match of the secondary
structures. A rigorous benchmark is also presented, and used to compare auto-
matically generated HMMs with ordinary sequence search methods. The results
show that the ordinary sequence search methods tested perform about as well
as automatic HMMs built from multiple alignments. The ssHMMs, however,
are better at detecting the correct fold of a protein than all the other methods
tested.
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Preface

The thesis consists of a short survey and the following two papers.

I. J. Tångrot, B. Kågström and U. H. Sauer. Structure anchored HMMs
(saHMMs) for sensitive sequence searches. UMINF-03.18

II. J. Hargbo∗ and A. Elofsson. Hidden Markov Models That Use Predicted
Secondary Structures For Fold Recognition. Proteins: Structure, Function
and Genetics 36:68-76, 1999

In the survey part a short description and introduction into the field of
bioinformatics is given.

∗Now Tångrot
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Chapter 1

Introduction

1.1 Bioinformatics
Bioinformatics is a very broad area of research, with the common denominator
that it uses computational methods to analyse and structure biological data,
and from this make theoretical predictions about biological processes. Much of
the research in bioinformatics is multidisciplinary, including computing science,
statistics, and structural and molecular biology.

There are several branches of bioinformatics, some of which are briefly de-
scribed below. For definitions of terms and acronyms used, we refer to Paper
I of this thesis. The list of branches presented here is probably not complete,
and some people would probably claim that some important aspect is missed or
that some things listed below not at all is bioinformatics in its true sense. This
only shows the difficulty in dividing research areas into well-defined categories.
Two books covering some aspects of bioinformatics are [1] and [2].

1.2 Phylogenetic trees, genomics
An important part of bioinformatics is the analysis and comparison of genes and
genomes. Starting on the genomic scale, phylogenetic trees can be constructed to
show the evolutionary relationships between different organisms. These kinds
of trees can also be constructed for individual genes, showing how they have
evolved and how they are related.

Each amino acid is represented in the DNA by a combination of three bases
(of the four A, C, G and T), a so-called codon. One amino acid can be rep-
resented by between one and six codons, depending on which amino acid it is,
but all codons coding for a specific amino acid are not equally abundant. The
patterns of codon usage differ between organisms and between genes in the same
organisms, and can be studied to find similarities and differences. The amounts
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of the bases C and G in genes also differ between organisms and genes, and
give information about the history of a gene, the level of expression, and about
evolution.

Having the human and other genome sequenced, it is important to be able
to find which parts of this huge amount of DNA that are genes that code for
protein. The majority of the human and other large genomes does not code
for any gene. Methods have been and are developed to find the start, stop and
other patterns characteristic for genes. It is also interesting to locate regulatory
regions, for example regulating when and how often a gene is transcribed, or
possible cleavage sites, where the final protein is cleaved to for example remove
signal sequence after they have been used. During and after translation, some
proteins are transported out of the cell, or to the mitochondria (the energy fab-
rics of the cell). These proteins have a signal peptide telling where they should
be located. Neural networks have been used to, based on the sequence, locate
this signal and determine where a protein should be located. Some proteins
are inserted into the membrane surrounding the cell. Hidden Markov models
(HMMs) are used to determine whether a protein is a membrane protein or not,
and which parts of the protein are inside the cell, inserted into the membrane,
and outside of the cell.

Stochastic grammars have been used to determine evolutionary relationships
between biological sequences, and to find a common ancestor. These methods
can also be used to determine the secondary structure of RNA molecules, struc-
tures that form due to base pairing within the RNA chain.

Statistics in different forms can be used to study genetic diseases. Healthy
and sick people are compared on a genetic level, and genetic properties are
determined.

1.3 Study of protein function

A field that has grown the latest years is the study of protein function on a larger
scale, both experimentally and theoretically. To study chemical modifications,
the binding of cofactors, interactions between proteins, etc., is called proteomics
(compare to genomics, the study of the genes/genome). Bioinformatics is needed
when it comes to the analysis of experimental data. For example, patterns from
mass spectrometry experiments can be compared to databases, to find what
the sample contains, image analysis of 2D-PAGE pictures can be performed
to determine quantities in the individual spots, or the sequences of acetylated
mutants can be compared to the wild type to locate differences.

Based on currently available information, metabolic networks, showing which
proteins are parts of which pathways and how the pathways are connected, can
be constructed. Work is also done to predict metabolic networks, to make
models of signal transduction and other important processes in the cell.
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A field that has grown rapidly during the last few years, is functional ge-
nomics in the form of microarrays. Microarrays are small arrays, where several
different DNA strands are attached. These are used to study gene expression in
different types of cells and under different conditions. When a gene is expressed,
mRNA is produced with DNA as a template, and the RNA in turn is used as a
template to build protein molecules. Not all genes are expressed in all cells, and
a single gene is only expressed in a given cell when it is needed. The particular
mRNA molecules present in a cell at a certain time can be captured using the
DNA arrays, and thus capturing information on the genes currently expressed
in the cell. The mRNA has the ability to base pair with the DNA, due to the
chemical similarity between DNA and RNA. It is this ability that is used in the
technique. The RNA molecules bound can be detected and the strength of the
signal is a measure of the amount of RNA in the cells.

Bioinformatics enters when processing and analysing the data. Often gene
expression is studied under different conditions, for example the expression of
genes in starving cells can be compared to that in “normal” cells. In the ex-
periments, it is the difference in expression that is interesting, not the actual
expression levels. Scientists are looking for genes that are up- or down-regulated
(that is expressed more or less than under "normal" conditions). The task is to
find patterns in the expression of different genes. In this way it is, for example,
possible to locate genes belonging to a common pathway (cooperating to per-
form a certain task in the cell), since these proteins should be expressed in a
similar way. The very amount of data makes it a difficult task to try and find
patterns between genes.

Another, very serious, problem is the often bad quality of the data. This
results in unreliable results, since they may differ between experiments. It is
very expensive and labour expensive to perform several experiments, why this
problem in part has to be solved by clever design of the experiments. Work is
currently under way to reduce the impact of such errors.

To find patterns in gene expression, several different approaches have been
used, such as graph theory, self-organising maps (SOM) and the singular value
decomposition (SVD).

1.4 Databases and information searches
Several databases containing biological data are available via the Internet. These
databases might store raw data as well as annotated, or literature references.
Much work is done to annotate the raw data and construct cross-links to create
new, value added databases. Another area of research is to combine several
databases and/or to index web pages, to make it possible to find all data relevant
with just one or a few searches, and to quickly find other, related information.
To achieve this, work has been done using for example XML.

A field also related to bioinformatics is the visualisation of biological data.
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1.5 Biological sequence analysis

The classical branch of bioinformatics is the analysis of biological sequences, such
as DNA and protein. This is most often done in the form of sequence alignments,
where one sequence is matched as good as possible to another sequence. From
a sequence alignment it is possible to determine characteristics common to the
two sequences, such as conserved amino acids or conserved properties such as
size or charge of the aligned residues.

More information of a whole protein family can be gained from multiple
sequence alignments, where many sequences are aligned simultaneously. Sev-
eral methods have been developed for alignment of multiple sequences. Some
examples of approaches used are dynamic programming in different forms (see
Paper I), the divide and conquer strategy, where the alignment is divided into
small manageable parts, genetic algorithms, which use the analogy of genetic
mutations and recombination to find the best alignment. Other approaches are
to iteratively improve a rough start alignment, or to progressively align the
sequences, i.e. to add one at a time following some schema.

To model sequences and sequence families, Markov chains and other statis-
tical methods are common.

1.6 Structure and function prediction

The ultimate goal of much work in bioinformatics is to be able to predict the
structure, and perhaps even the function, of a protein based on its amino acid
sequence. The rationale behind this is that it in general is very expensive, diffi-
cult and time consuming to determine the structure of a protein experimentally.
For certain proteins it is even impossible using current techniques.

The function of a protein is also hard to determine, especially if one has no
clues about what the role of the protein could be. If one was able to predict
the structure of a protein, this would give clues about possible functions of the
molecule, and together with other techniques it would be possible to predict the
function of the protein. This prediction can in turn make a base for constructing
tailored experiments to determine the true function of the protein. The work
of this thesis is done in the area of structure prediction, or rather “sequence
similarity searching”. The prediction of function based on sequence and struc-
ture is still a largely unexplored area, much due to the need for good structure
prediction methods to base the work on.

There are many approaches to structure prediction. The most direct, and
perhaps most difficult, approach is to make ab initio prediction. This means
to try to calculate the fold of a protein based on its sequence and knowledge
about the amino acids chemical properties, using different energy functions. In
a way, this is equivalent to make the protein sequence fold in the computer in
a way similar to the way it is done in the cell. Another ab initio approach
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is the Frankenstein monster model method, which combines small parts from
many different known structures, finding the combination of structural parts
that seems to fit the sequence best. Here, steric and chemical properties of the
amino acids making up the sequence are considered to find the best combination
of structural parts. Currently, there has been success only for very chains, in
the order of 150 residues [4]. If one would succeed in constructing an efficient ab
initio method, this would get important insight to the natural folding process
and parameters/properties important for defining the particular fold a certain
protein adopts.

Other methods use already known structures as templates to construct the
fold of a given sequence. A common method is threading, where the sequence
is “threaded” through a number of structures, choosing the one that fits the
steric and chemical properties of the chain the best. In homology modelling,
the sequence is fitted to the sequence of a protein with known structure, and a
possible structure is determined based both on the fit of the sequences and on
the known structure. For this procedure to be possible, one has to have some
way to locate the closest homologue (with known structure) of the sequence,
and to be able to fit the sequences in a biologically sensible way. This area,
often called fold recognition, is large within bioinformatics. The base for much
work in this area is sequence alignments in one way or the other.

Alignment methods have been developed that are able to find the sequence in
a database that fits the given sequence best, that is, that gives the best alignment
between the two. More sophisticated methods have also been developed, that
try to model the sequences of a whole protein family to be able assign the
sequence to related proteins, even if they are distant relatives. Two examples
of such models are profiles and hidden Markov models (HMMs, see Paper I).
To cluster and classify proteins into families, methods based on singular value
decomposition and principal vector analysis have also been used.

Every second year, the Critical Assessment of Structure Prediction (CASP,
http://predictioncenter.llnl.gov/) takes place, where methods for structure pre-
diction are tested on real targets. Predictors are invited to submit predictions
on sequences whose structures are due to be released, but that are not known
to the predictors at the time of prediction. This blind test makes it possible to
make a fair comparison between the best methods available today. The results
from the latest assessments show that expert evaluation and intervention in the
prediction procedure still is superior to purely automatic methods, but the gap
is decreasing. It seems like the combination of results from several different
methods give the best results.

During evolution, the structure of a protein is conserved in a much higher
degree than the amino acid sequence. The reason is that some amino acids,
or combinations of amino acids, are able to perform about the same task in
the protein, and therefore can be substituted for each other without changing
the conformation of the protein. For example, at some positions it may be



6 Chapter 1

enough to have a reasonably small amino acid for the chain to fold correctly.
For a protein to function correctly, it is the conformation of the chain and a few
crucial residues that are important. Another aspect of this is that it is the core
of the protein that is important to keep it together in a defined way. Residues
located at the surface of the molecule are in most cases not significant at all.
All this has the effect that two proteins, very similar in structure and perhaps
performing about the same task in the cell, might differ a lot in sequence. This
makes it difficult to locate relationships based on the amino acid sequence only.

In the work presented in this thesis, HMMs are used to locate which family
a given family most likely belongs to. On the base of the fact that structure is
more conserved than sequence during evolution, the work presented here takes
two approaches to include structural information into HMMs, to make them
more sensitive to distant relationships.

In Paper I, the structure anchored HMM (saHMM) method is presented.
The saHMMs are based on alignments derived from the structural superposi-
tion of protein structures. These kinds of alignments are supposed to be more
biologically correct than those based on sequence and statistics, especially for
sequences with very low sequence identity. The saHMMs are also built from a
careful selection of proteins, where it is ensured that no protein is more than
about 25% identical to any other in the same family. This is to guarantee an
even spread among the proteins chosen as representatives for each family. HMMs
built from structural alignments of these structurally similar proteins having low
sequence identities are designed to be good at finding distant relatives.

In Paper II, secondary structure HMMs (ssHMMs) are described and eval-
uated. The ssHMM is a combined HMM, taking both the sequence and the
secondary structure of the proteins into account. If the secondary structure of
the query sequence matches that of the HMM, the score for that match is in-
creased, even if the particular amino acid at that position does not fit well. For
a sequence of which one does not know the structure, the secondary structure
of course has to be predicted using some secondary prediction method before it
can be compared to the HMM.



Chapter 2

Summary of Papers

In this chapter, a summary of each of the two papers included in the thesis is
given. Complete references to the papers are found in the Preface.

2.1 Paper I

In Paper I, a general introduction to molecular biology is given, followed by
the description of several methods commonly used in bioinformatics and specif-
ically for the analysis of biological sequences. Hidden Markov models (HMMs)
are described on a more theoretical level, as wells as some methods for the
construction of multiple structural superpositions of proteins.

Based on this background, the structure anchored HMM (saHMM) method
is presented. This method makes use of the fact that the structure of a protein
is more conserved during evolution than its amino acid sequence. A multiple
sequence alignment based on a multiple superposition of the structures of the
proteins to align, is therefore likely to be more biologically correct than an
alignment based on sequence information. This is especially true for proteins
with very low sequence identities. The saHMMs are built from these kinds of
structure anchored multiple sequence alignments.

A careful selection of representative sequences to base the saHMMs on is
created. For each family of proteins, the representatives are selected such that
no representative sequence have a sequence identity to any other in the same
family, above a certain threshold. This threshold is defined as the border to the
twilight zone, according to the equation derived in [3]. Also, only high quality
structures determined using X-ray crystallography are selected.

Parts of this work have previously been presented at several workshops and
conferences, including Bioinformatics 2000 (Helsingör, Denmark), Bioinformat-
ics 2001 (Skövde, Sweden) and Bioinformatics 2002 (Bergen, Norge).
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2.2 Paper II
In Paper II, a rigorous benchmark to test the performance of different fold
recognition methods was developed. This benchmark contains representatives
for all proteins with known structure, that are matched against each other. In
the study, the benchmark was used to compare the performance of automatically
created hidden Markov models (HMMs) with standard sequence search methods
such as BLAST and FASTA.

The second part of this work consists of the construction and evaluation of
secondary structure HMMs (ssHMMs). In the ssHMMs, predicted secondary
structures and multiple alignments are combined into a method that is shown
to perform better than the other methods tested. The secondary structures
are included in the HMM in a way such that a match between the predicted
secondary structure of the query, and the secondary structures represented by
the HMM, increases the score for that particular match, even if the amino acid
in that query position does not fit well.

In the benchmark test, the abilities of the methods to identify the correct
fold of a sequence were measured. The fold was defined according to the SCOP
classification. It was shown that the correct fold of a protein was found for
10% of the test cases when HMMs were built from single sequences. Building
the HMMs from multiple alignments, and thereby including multiple sequence
information, increased that number to 16%. Including secondary structure in-
formation further increased the number of correctly assigned folds to 20%. If
the true secondary structure of the query was used instead of the predicted,
the correct fold was detected for 27% of the test cases. In the study, standard
sequence search methods identify the correct fold in 13-17% of the test cases.
This is almost as good as the HMMs performs. The reason might be that the
alignments used are not diverse enough, and do not contain a large enough
number of sequences.
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Paper I
Structure anchored HMMs (saHMMs) for sensitive

sequence searches∗

Jeanette Tångrot [1,2], Bo Kågström [1] and Uwe H. Sauer [2]
[1]Department of Computing Science

and
[2]Umeå Center for Molecular Pathogenesis

Umeå University
SE-901 87 Umeå, Sweden.

E-mail:jeanette@cs.umu.se

Abstract

To be able to predict the structure, and perhaps even the function, of a
protein, one needs a way to find relatives to that protein. This is often
done by comparing the sequence of the protein of interest to the sequences
of others, often in the form of hidden Markov models (HMMs), to find
the best match. The structure of a protein is much more conserved dur-
ing evolution than is its sequence. A multiple sequence alignment based
on a multiple superposition of the structures of the proteins to align, is
therefore likely to be more biologically correct than an alignment based
on sequence information. This is especially true for proteins with very
low sequence identities, and this is used in the structure anchored HMM
(saHMM) method described here. The saHMMs are constructed from
multiple sequence alignments derived from the multiple structure super-
position of the corresponding structures.

A careful selection of proteins, to base the saHMMs on, is also devel-
oped. Only high quality structures, determined using X-ray crystallog-
raphy, are selected. For each family of proteins, the representatives are
selected such that no representative sequence, have a sequence identity
above a certain threshold, to any other in the same family. This threshold
is defined as the border to the twilight zone, according to the equation
derived in [Rost, Prot. Eng. 1999; 12:85-94].

This work begins with a general introduction to molecular biology,
followed by the description of several methods and techniques commonly
used in the comparison and analysis of protein sequences. Especially,
HMMs are described in some detail, as well as a few methods for the
construction of multiple structural superpositions of proteins. Based on
this background, the saHMMs and the selection procedure are described.

Keywords: saHMM, protein structure, multiple structure superposition, mul-
tiple sequence alignment, hidden Markov model (HMM), SCOP

∗From UMINF-03.18, ISSN-0348-0542, 2003.

13





CONTENTS 15

Contents
1 Introduction 17

2 Biological background 19

3 Sequence alignment methods 29
3.1 Substitution matrices and more . . . . . . . . . . . . . . . . . . . 29
3.2 Dynamic programming . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.1 The Smith-Waterman algorithm . . . . . . . . . . . . . . 31
3.3 Scoring matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4 BLAST and other pairwise methods . . . . . . . . . . . . . . . . 37
3.5 Multiple sequence alignments . . . . . . . . . . . . . . . . . . . . 37
3.6 Automatic multiple sequence alignment . . . . . . . . . . . . . . 38

3.6.1 MSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.6.2 ClustalW . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.6.3 T-Coffee . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.6.4 An example of a multiple sequence alignment . . . . . . . 41

3.7 Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.7.1 PSI-BLAST . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Hidden Markov Models 43
4.1 The Plan7 architecture for HMMs . . . . . . . . . . . . . . . . . 46
4.2 The scoring problem . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.1 Scoring in HMMER2.0 . . . . . . . . . . . . . . . . . . . . 48
4.3 The alignment problem . . . . . . . . . . . . . . . . . . . . . . . 49
4.4 The training problem . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4.1 Dirichlet mixtures . . . . . . . . . . . . . . . . . . . . . . 51

5 Structural superposition of protein structures 52
5.1 SSAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2 DALI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.3 MAPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.4 STAMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.5 Comparison between an alignment based on structure and one

based on sequence . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6 Databases - protein classifications 65
6.1 Sequence databases . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.2 PDB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.3 Pfam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.4 DALI databases . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.5 CATH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.6 SCOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69



CONTENTS 16

6.6.1 PALI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.7 Homstrad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7 The structure anchored HMM method (saHMM) 72
7.1 Outline of the method . . . . . . . . . . . . . . . . . . . . . . . . 72
7.2 Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
7.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.3.1 Selection of sequences to use . . . . . . . . . . . . . . . . 75
7.3.2 Construction of superpositions and multiple alignments . 80
7.3.3 Construction of HMMs . . . . . . . . . . . . . . . . . . . 80

8 Related work 80

9 Testing the saHMM method 83
9.1 Going into the midnight zone . . . . . . . . . . . . . . . . . . . . 83
9.2 A worst case scenario . . . . . . . . . . . . . . . . . . . . . . . . . 84
9.3 The effect of few proteins in the HMM . . . . . . . . . . . . . . . 85
9.4 The effect of structure anchoring . . . . . . . . . . . . . . . . . . 85

10 Results and evaluation of the saHMMs 86
10.1 Number of representatives left after selection . . . . . . . . . . . 86
10.2 The effect of going deeper into the midnight zone . . . . . . . . . 87
10.3 A worst case scenario . . . . . . . . . . . . . . . . . . . . . . . . . 88
10.4 The effect of few proteins in the HMM . . . . . . . . . . . . . . . 90
10.5 Comparison to sequence-based alignments . . . . . . . . . . . . . 93

11 Discussion and future work 95

12 Acknowledgements 97

A Appendix 104



1. Introduction 17

1 Introduction
The sequencing of the human and other genomes have generated a lot of biolog-
ical data to analyse. To fully use the information gathered, all genes have to be
located and their roles in the cells have to be determined. For all proteins to be
fully characterized, one wants to know their three-dimensional (3D) structures,
their molecular and cellular functions, and their interactions with each other
and other molecules. With the function of a protein we mean its role in the cell,
for example as a building block making up the very walls of the cell or pumps
that transport other molecules in and out of the cell, as a helper molecule that
makes some chemical reaction go faster, or as a signal sending messages between
different cells. Due to the vast amount of proteins, it is not feasible to study each
molecule in each genome experimentally. Instead, the characteristics of a newly
sequenced protein is usually derived by sequence and/or structure comparison
to an already characterized protein. Also, the procedures used to determine the
3D structure of a protein are time-consuming and may be problematic. If possi-
ble, it would be better to use computational methods to guide the experimental
approaches, and ultimately to predict the structure of a protein based on its
sequence only. However, this is still a task for the future.

When comparing proteins it is informative to distinguish between homology
and analogy. Analogous proteins are considered as a product of convergent
evolution to a similar 3D structure, while remote homologues originate from a
common ancestor. A clear distinction is difficult to obtain because functional
relatedness is hard to prove. A distinction can in some cases be made based on
similarity in side-chain directions [48].

Comparison of newly sequenced proteins to already known proteins gains lot
of information. When the yeast genome was sequenced in 1996, a function could
be assigned to about 65% of the proteins. About half of these functions were
previously determined by experiment, while the other half could be determined
by homology to other proteins [16]. In general, about 40-60% of the proteins
in a sequenced genome are found to be similar to another protein with known
structure (see for example [30]). The specific number depends on the particular
genome and the method used to find the similarities. The use of bioinformatics
to extract biological information from genome data has been reviewed in [5].
The work is unfortunately not very recent, but still interesting since it describes
some common bioinformatics approaches. Here, we focus on the comparison of
proteins and protein sequences.

Proteins with sequences that are very similar, are known to also have similar
structures (with some exceptions). Sequences more than 20-30% identical are
also relatively easy to align to each other. Below this limit the quality of an
alignment cannot be guaranteed. The significance of an alignment never gets
higher than that of an alignment of two random sequences. This presents a
problem when dealing with proteins that are very similar in structure, but whose
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sequences are very dissimilar. Similarity in structure says nothing about how
similar (or dissimilar) the corresponding sequences are.

Structural divergence as measured in root mean square (RMS, the Euclidean
distance from one atom in one structure to the corresponding atom in the other)
is exponentially related to sequence divergence measured in sequence identity
[17][82]. That is, lower sequence identity means higher RMS, with a sharp in-
crease in RMS in the twilight zone, below 20% sequence identity. In this case, the
interesting parts of the proteins are the hydrophobic cores, that keep the struc-
tures together and define the fold of the proteins. Outside the core, especially in
loop regions, the sequence identity might be very low even in proteins with low
RMS in the core. Domains that share the same fold also have the same function
down to about 40% sequence identity, and belong to the same functional class
down to about 25% sequence identity [82]. Of course these numbers are aver-
ages, and there may be pairs where function is better or worse conserved. One
problem in comparing functions is the lack of measure of functional similarity,
and the lack of a common language and classification of functions.

One common tool for comparing proteins is profile hidden Markov models
(HMMs, Section 4). Often a HMM is constructed to model a sequence family of
interest. The HMM can then be used to search genomes for previously unanno-
tated members of that family, or sequences can be searched against a data base
of HMMs to find which model (and thereby family) that fit the sequences best.

To construct profile hidden Markov models for protein families one needs a
multiple sequence alignment for each model to build. This, however, can give
rise to problems in the case of very dissimilar sequences, since it is then difficult
to generate a good sequence alignment. The fact that “ordinary” models are
based purely on sequence alignment means that, even though very similar in
structure, proteins too divergent in sequence from the proteins the HMM was
built from, will never be found by the model. A striking example is the Runt
domain, which was assumed to have a completely new fold since it did not have
any significant similarity to any protein with known structure. However, when
the structure was solved it turned out that the protein had an S-type Ig-fold, and
was very similar to for example STAT-1 and NF-kappa B. This even though it
does not have more than about 10% sequence identity to either of these proteins.

This indicates a need for some way to be able to recognise proteins similar
in structure, even if the sequences are different. One way to do this would be
to construct a HMM based on an alignment from a collection of sequences very
similar in structure, but dissimilar in sequence. Since it is impossible to find
statistically significant alignments of proteins with a sequence identity below the
limit of 20-30% (see Section 7.3.1), and at the same time a sequence alignment
is needed to find similarities to other proteins, and in particular to construct
a hidden Markov model, some other way of constructing a multiple sequence
alignment has to be found.

Our approach is to use superpositions of known structures, and from them
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deduce the corresponding sequence alignment. This makes it possible to align
protein sequences not similar at all, as long as their structures are similar enough
to superimpose. These structure-based sequence alignments can be used to build
HMMs, hopefully better at recognising even very distant relatives of the protein
family. The goal of this work is to be able to find protein similarities below the
twilight zone, far into the midnight zone.

The twilight zone is the border where the percentage sequence identity be-
tween two aligned protein sequences no longer tells whether the two proteins
are related or not (Figure 1, see also Section 7.3.1). It can be defined by plot-
ting the sequence identity against the alignment length for all possible pairwise
alignments of “all” known proteins. It turns out that protein pairs falling above
the curve in Figure 1 always are homologous proteins. Around the curve, the
number of unrelated pairs start to appear, and increase as one goes below the
curve. Below the curve most of the protein pairs are not related at all, but there
still exist some pairs that are. These are the pairs we are interested in finding.

Of course, the result of a search for similar structures is only a first step
towards the characterization of a new protein. Different members of the same
superfamily (see Section 6.6) can have very different functions, even though the
structures are similar. Hence, the identification of distant relationships only
provides a clue that can be used to guide experiments to focus on the most
likely function of the protein.

The rest of the paper is organised as follows. In Section 2 some basic biology
important for this work is described. Section 3 describes multiple sequence align-
ments and methods for constructing them, as well as other methods for com-
parison of protein sequences. In Section 4, hidden Markov models are treated,
and in Section 5 some methods for superposition of protein structures are pre-
sented. Section 6 describes some important biological databases. In Sections
7, 9 and 10 our structure anchored HMMs are described, including tests and
results derived. Some related work is described in Section 8. Finally, in Section
11 strengths and weaknesses of our method are discussed, as well as plans for
future work.

2 Biological background
The information carrier in all living organisms are the strains of deoxyribonucleic
acid (DNA). All the genetic material, that is the description of every part of
our cells and ourselves (in a biological sense), is stored in the DNA, which is
located in the cell nucleus of every cell in the body. This information is then
transferred to finally construct the proteins, the molecules that perform most
of the work in the cells. This information transfer is called the central dogma
of molecular biology, and is illustrated in Figure 2.

DNA consists of four types of bases, commonly called A (for adenine), C
(cytosine), G (guanine) and T (thymine), connected into strands. In bioinfor-
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Figure 1: The curve that defines the twilight zone according to Rost [65]. When
the percentage sequence identity is plotted to the length of the alignment of two
protein sequences, related proteins fall above this curve. The further into the
twilight zone one gets, the less likely it is that the two proteins are related.
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Figure 2: The central dogma of molecular biology. The picture shows the flow
of information in the cell, from DNA to protein. The picture is kindly provided
by Andy Vierstraete (http://allserv.rug.ac.be/~avierstr/tif.html).
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matics, sequences of these letters, corresponding to the genetic information, are
investigated and compared. The DNA is stored as double helices, where two
strands are twisted around each other. The two strands are connected by base-
pairing, such the A binds to T and C binds to G. Whenever an A is seen on one
strand, a T appears on the other, meaning that the two strands are each others
complement and that each strand contains all the information stored. When
cells divide, for example during embryonic development, the DNA is replicated
to produce two identical double helices (Figure 2). During replication, each of
the two strands act as a template for the new molecule.

During transcription (Figure 2), parts of the DNA is translated into mRNA
(messenger ribonucleic acid), consisting of the bases A, C, G and U (uracil).
There is a one-to-one correspondence between the DNA bases and the mRNA
bases, usually the mRNA is a simple copy of part of the DNA, with all T’s
replaced by U’s. The mRNA sequences too are interesting from a biological
perspective, since they represent molecules that actually perform things, apart
from the DNA that mainly stores all information.

The mRNA is then used as a template for proteins, which are produced
during translation. Proteins are built from 20 kinds of amino acids, often rep-
resented by 20 letters (see Figure 3). There is a three-to-one correspondence
between RNA and protein, with three RNA-bases representing one amino acid
in the protein. The 20 kinds of amino acids each have different characteristics.
They all have a common base (coloured red in Figure 3), where they are linked
together to form the protein chain. This chain of amino acids forms the so-called
backbone of the protein. Very short stretches of connected amino acids are called
peptides. To the common base, each kind of amino acid has a unique side-chain
connected, which gives the amino acids their different properties. The 20 kinds
of amino acids can be divided into groups with similar properties, for exam-
ple hydrophilic/hydrophobic (water loving/water avoiding), neutral/charged or
small/large.

In the context of a protein chain, the amino acids are called residues. The
protein chain folds into a well-defined 3D structure, determined by the actual
sequence of amino acids. It is the chemical properties of the amino acids that
determine the shape of the protein molecule.

The overall structure of a protein is defined at different levels. The pure
sequence of amino acids, represented by a sequence of letters, is called the
primary structure of the protein, or simply the sequence. Parts of the chain fold
locally to form so called secondary structure elements. There are two major
kinds of secondary structures: alpha helices and beta strands, that form beta
sheets (see Figure 4). The alpha helices are often shown as spirals in pictures of
proteins, while the beta strands are shown as arrows.The secondary structures
come together to form super-secondary structures or motifs. Two examples are
beta hair-pins, consisting of two anti-parallel beta strands and the short loop
connecting them, and the beta-alpha-beta motifs, consisting of two parallel beta
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Figure 3: The twenty amino acids. The common parts of all amino acids,
that are connected to form the backbone of the protein, are coloured red. In
parenthesis are the three-letter and one-letter codes for the amino acids.
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(a) (b)

Figure 4: The two most common types of secondary structures. Only the main
chain (backbone) is shown, the side chains are indicated by filled grey circles.
(a) An alpha helix. (b) A beta sheet consisting of three anti-parallel strands.

strands with an alpha helix in between them. The super-secondary structures
are packed together to form domains, that in turn pack to form the tertiary
structure of the protein. In general, proteins pack such that amino acids that
do not like water are stored in the inside of the protein and form the so called
hydrophobic core, while residues that easily interact with water are found on
the outside of the protein. A protein domain is a region of the protein that has
its own hydrophobic core, and that interact relatively little with the rest of the
protein. Domains also can fold independently of other parts of the protein. In
Figure 5, an example of a protein with two domains is illustrated.

Sometimes, several protein chains pack together to form complexes, that
build up the so called quaternary structure. Very large collections of proteins,
sometimes packed together with RNA or DNA, are called macromolecular as-
semblies. One example of such an assembly is the ribosome, which produces
new proteins from an mRNA template.

The particular packing and orientation of the secondary structure elements,
and the location of residues important for the structure and/or function of a
protein, is called the fold of the protein.

In Figure 6, an example of the different levels of protein folding is shown.
Protein structures can be illustrated in a number of ways. In Figure 7, five

different representations of the same protein are shown as an example.
The amino acid sequence of a protein can easily be determined from its cor-

responding DNA, and the sequence of the DNA is easily found experimentally.
The 3D structure of a protein can be determined by experimental methods

such as X-ray crystallography and Nuclear Magnetic Resonance (NMR). As of
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Figure 5: A dimer (two aggregated molecules) of the immunoglobulin light
chain. The chain folds into two separate domains, coloured blue and blue-green,
respectively, that mainly consist of beta strands. The red and yellow-green
domains are the other chain, located in a different direction.
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Figure 6: The different levels of protein folding. At the top of the figure, two
secondary structures are shown, one alpha helix (1a) and one beta strand (1b).
In (2a), the helix is packed with two beta strands to form a beta-alpha-beta
motif, that in turn join more strands to form a complete protein domain (3a).
The strand in (1b) is packed with more strands, and together they form a beta
sheet (2b). In (3b) the sheet together with another sheet form a second domain.
The two domains together form the complete folded protein (4), that interact
with another identical protein chain to form a dimer (5).
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Figure 7: Five different representations of the same protein chain (anti-platelet
protein from leech). At the top left the molecule is shown as lines between
atoms, represented by the colour of the line. At the middle of the top row,
only the backbone of the molecule is shown, now with sticks instead of lines
and the atoms represented by balls. At the top right, the backbone of the
protein is represented with ribbons, where helices are shown as spirals and beta
strands as arrows. The bottom left of the figure shows the protein using a
space fill representation, that is each atom in the molecule is represented by a
sphere, where the radius corresponds to the Van der Waals distance (the closest
any other atom can get without contact). The bottm right shows the area of
the protein that is accessible to water molecules, and is perhaps the most true
picture of the protein from any other molecules point of view.



2. Biological background 28

Figure 8: The number of structures deposited in the PDB. The data for 2003 is
collected up to 8 September 2003.

September 2003, the structure of 22611 proteins are known and deposited in
the Protein Data Bank (PDB, see Section 6.2), and the number is increasing
exponentially (see Figure 8).

Currently, there is no way to determine the structure from the sequence only.
The most common way to find the structure of a new protein is to compare it to
proteins with known structures and predict a conformation based on sequence
similarity. The comparison of protein sequences is treated in Section 3. From a
sequence comparison of two proteins, similarities can be found between proteins
from different organisms or between two proteins in the same organism. These
similarities indicate a common evolutionary origin, that the proteins are homol-
ogous. Given sequence homology, it is possible to deduce similarity in structure
and perhaps even in function. Homology between two proteins from the same
organism means that a gene has been duplicated, and that during time, dif-
ferences have been introduced by mutations and reorganisations. Today, the
proteins are tuned for best performance of two different, but probably similar,
functions. This is the main strategy for the evolution of new genes and more
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complex organisms.
However, not all similarities are indicators for common ancestry. Some simi-

larity may also be introduced by convergent evolution, to create analogous pro-
teins. Analogy appears when two proteins performing the same task in different
organisms, have evolved similar properties simply because those properties make
the proteins more suitable for the task, without having a common ancestor.

There exist extensive resources for retrieval and comparison of proteins on
the Internet. For example there are databases containing protein and DNA
sequences, including the complete genomes of several organisms. The Protein
Data Bank (PDB, Section 6.2) contains all currently known protein structures.
Protein structures are also classified in a number of ways, see Section 6.

To easily access the data, there exist two major “front ends” to the most
common databases. EMBL-EBI (European Bioinformatics Institute) offers the
SRS (sequence retrieval system), which provides access to data stored in pub-
licly available databases. SRS makes it easy to browse very diverse data, such as
literature or biological sequences. The Biology Workbench at San Diego Super-
computer Center (SDSC) offers a similar environment for browsing databases.
To the Biology Workbench a number of analysis and modeling tools are con-
nected, eliminating problems with different file formats.

Some useful links are listed in Appendix A.

3 Sequence alignment methods

3.1 Substitution matrices and more
To compare two sequences and find similarities, one of the most direct methods
is to construct a dot plot. A dot plot is a plot with the two sequences placed
along each axis. A dot is plotted at each positions where the two sequences are
identical, that is at the positions where the symbol displayed in the column is
identical to the symbol in the row. An example of a dot plot is displayed in
Figure 9, where the sequence of human calmodulin is plotted against itself. The
dots at the diagonal show the trivial identity of every element in the sequence to
itself. Diagonals of dots off the main diagonal show regions where the sequences
are identical, in this case of a sequence plotted to itself, stretches of internal
repeats.

A more informative way to compare sequences is to align them, that is to
position them on top of each other, such that each position in the upper sequence
as much as possible matches the symbols in the lower sequence. To make the
fit as good as possible, gaps can be inserted in one of the sequences, to enable
more positions to match. From an alignment one can gain information on how
many and which residues are common between the two sequences. In Figure
10 an example of a pairwise alignment is shown. This information can also be
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Figure 9: A dot plot of human calmodulin compared to itself. Each dot rep-
resents two identical residues. Diagonals of dots indicate stretches of identical
residues, in this case of a single sequence compared to itself, diagonals off the
main diagonal represent internal repeats. The dots along the main diagonal in-
dicate the fact that the sequence is identical to itself. Along the left and bottom
axis of the plot the sequence numbers are shown, and along the upper and right
axis the amino acid sequence is shown. Note that the plot is symmetric.
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trkb_human      EGNP−PTELTQSQMLHIAQQIAAGMVYLASQHFVHRDLATRNCLVGENLLVKIGDFGMSR

q24327          AGSSSPPPLTTSQVLAVAYQIARGMDAIYRARFTHRDLATRNCVISSEFIVKVSYPALCK

consensus       .G...P..LT.SQ.L..A.QIA.GM.......F.HRDLATRNC.......VK........

Figure 10: An example of a pairwise alignment with concensus sequence shown
in red. trkb_human and q24327 are the names of the sequences. They both are
kinases.

captured in a consensus sequence derived from the alignment. In the consensus,
only the residues common for the two sequences are kept.

3.2 Dynamic programming
To compare and align two sequences, the most common method used is dynamic
programming. Dynamic programming is a general method that guarantees a
mathematically optimal alignment of two linear sequences, given a scoring func-
tion or a table of scores for matches and mismatches between all amino acids,
and penalties for insertions or deletions. Often there are two kinds of penal-
ties for generating an insertion/deletion: a gap opening and a gap extension
penalty. The gap opening penalty is used when opening a new gap in a se-
quence, while the gap extension penalty is used for extending the gap. The gap
extension penalty is usually lower than the gap opening penalty, since it is more
biologically reasonable to extend an existing gap than to open a new one.

Dynamic programming was first introduced in molecular biology by Needle-
man and Wunch [58]. The heuristic measure of homology introduced in that
paper has since then been developed into a true measure of the distance be-
tween sequences, as illustrated in the Smith-Waterman algorithm[73]. The
Needleman-Wunch algorithm is designed for constructing global alignments,
where the whole of one sequence is aligned to the whole of another. The Smith-
Waterman algorithm, on the other hand, is designed for local alignments, where
parts of one sequence is aligned to a subsequence of the other. This makes it
possible to find alignments between only parts of the sequences, which is the
biologically more common situation. The method has also been optimized for
time and memory usage [29]. However, the basic idea of dynamic programming
is the same in all cases, why the Smith-Waterman algorithm is described in
more detail below to illustrate the method. Dynamic programming is today
one of the most common methods to optimally align two sequences, whether it
is DNA, protein or an abstract “sequence” of structural features. For multiple
sequences the method quickly becomes very demanding on computing power.

3.2.1 The Smith-Waterman algorithm

The Smith-Waterman algorithm [73] is used to find similarities between two
long sequences, by locating a pair of segments (one from each sequence) such
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that the pair has a higher similarity than any other pair of segments. The
similarity is calculated using a similarity measure s(a, b) between elements a
and b in sequences A = a1a2 . . . an and B = b1b2 . . . bm. Introducing gaps in one
of the sequences is penalised with a penalty Wk, dependent on the number of
gaps, k. An n + 1 × m + 1 similarity matrix H is constructed to find the most
similar pair of segments, where the elements Hij can be seen as the similarity
of the two segments ending at positions ai and bj , respectively. To start, we
set the similarity between all sequence positions in A and an empty position
b0 first in B to 0, representing segments where the beginning of sequence B
matches internal positions in sequence A (for example if B = abc is matched
to A = xxabc). The equivalent holds for B matched to an empty position a0.
That is:

Hk0 = H0l = 0 for 0 ≤ k ≤ n and 0 ≤ l ≤ m. (1)

Then the other elements are chosen as the maximum similarity which is
given by one of four possible combinations of sequence elements:

1. If ai is matched to bj , the similarity is calculated as Hij = Hi−1,j−1 +
s(ai, bj).

2. If ai−k is matched to bj , so that ai is at the end of a deletion of length k
(k gaps are inserted after position bj , and ai is matched to gap number
k), then the similarity is calculated as Hij = Hi−k,j − Wk.

3. If ai is matched to bj−l, so that bj is at the end of a deletion of length l
(l gaps are inserted after position ai, and bj is matched to gap number l),
then the similarity is calculated as Hij = Hi,j−l − Wl.

4. If s(a, b) can give negative values, 0 is included to avoid negative similar-
ities. 0 means no similarity.

In summary, the similarity up to sequence elements ai and bj is determined as:

Hij = max

⎧⎪⎪⎨
⎪⎪⎩

Hi−1,j−1 + s(ai, bj)
maxk≥1{Hi−k,j − Wk}
maxl≥1{Hi,j−l − Wl}

0

⎫⎪⎪⎬
⎪⎪⎭

(2)

This is illustrated in Figure 11.
The segment giving the highest possible similarity is found by locating the

largest element Hij , and then backtracking the calculations to find the other
matrix elements leading to this value. The backtracking procedure ends when
a zero matrix element is found. In this way, the most similar segments from the
two sequences and their alignment are found. If one is interested in alternative
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Figure 11: An illustration of how element Hi,j of the similarity matrix H is
calculated. The arrows symbolise the different alternatives among which the
largest result is selected. In this case, k and l are both equal to two. See text
for details.

matching segments, the next largest element, not in the same path as the largest
element, should be located.

We illustrate the algorithm with the following example. Assume that we
have a simple similarity measure

s(a, b) =
{

1 if a = b
0 otherwise (3)

and a gap penalty Wk = 0.1 · k. Given sequences A = xxyzxxzy and
B = xyzxyzx, the similarity matrix can be calculated. In this case, n = 8 and
m = 7. First, all elements in the first row and the first column are set to 0
(See Figure 12). Then we continue to calculate element H1,1, which represents
the similarity of two segments ending at positions xa1xb1, where xa1 is the x at
position 1 in sequence A and xb1 is the x at position 1 in sequence B. If we
assume that xa1 is matched to xb1 (alternative 1 above), then the similarity is
H0,0 + s(a1, b1) = 0 + s(x, x) = 0 + 1 = 1. If xa1 is at the end of a deletion
(alternative 2), the similarity is maxk≥1{H1−k,1−Wk} = maxk≥1{H1−k,1−0.1 ·
k}. In this case, k=1 is the only option, since the index 1 − k should be equal
to or greater than zero (no negative indices!). That is, we get a similarity of
H0,1−0.1 ·1 = 0−0.1 = −0.1. Correspondingly, if xb1 is at the end of a deletion
(alternative 3), we get a similarity of -0.1. Alternative 4 above is not relevant
in this case, since s(a, b) never yields negative values. To find element H1,1, we
take the maximum of all these values (cf. Equation (2)):

H1,1 = max

⎧⎨
⎩

H0,0 + s(xa1, xb1)
maxk≥1{H1−k,1 − Wk}
maxl≥1{H1,1−l − Wl}

⎫⎬
⎭ = max{1,−0.1,−0.1} = 1.
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(a)

(b)

Figure 12: The construction of the similarity matrix in the example. (a) The
result after the first step, when the first row and column are set to 0. (b) Left:
The result after calculating element H1,1. Right: The result when element H1,2

is calculated and added. The arrows show which other element each calculated
element is based on.
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Figure 13: An example of a similarity matrix. Arrows indicate from which
element each value is derived, and are used to backtrack the calculations to
get the matching sequence segments. Bold arrows represent the optimal path
through the matrix, i.e. the two segments having the highest similarity.

That is H1,1 = 1, a value derived from element H0,0 (see Figure 12b, left).
If we move on to element H1,2, alternative 1 gives the similarity H0,1 +

s(xa1, yb2) = 0+0 = 0 and alternative 2 gives the similarity -0.1 as derived above
for H1,1. Alternative 3 can give two values for the similarity, one for l = 1 and
one for l = 2, of which we want to choose the largest: max{H1,2−1−W1,H1,2−2−
W2} = max{H1,1 − 0.1 · 1,H1,0 − 0.1 · 2} = max{1− 0.1, 0− 0.2} = 0.9, derived
from element H1,1. Element H1,2 is the maximum of all three alternatives:

H1,2 = max

⎧⎨
⎩

H0,1 + s(xa1, yb2)
maxk≥1{H1−k,2 − Wk}
maxl≥1{H1,2−l − Wl}

⎫⎬
⎭ = max{0,−0.1, 0.9} = 0.9,

derived from element H1,1 (see Figure 12b, right).
In this way, all the elements in the matrix can be calculated (see Figure

13). In Figure 13, arrows indicate which previous elements the values are based
on. After the matrix H is filled, the largest element is located, representing
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the pair of fragments that have the largest similarity. In this case, elements
H7,6 = H8,7 = 5 is the largest value. By following the arrows we can backtrack
the calculations from H8,7 to H7,6 to H6,5 ... , all the way to element H1,0 which
has the value 0. This yields the aligned segments

x x y z x x z y
− x y z x y z x

containing no gaps (except for the initial one) and two mismatches (at posi-
tions six and eight in the alignment).

3.3 Scoring matrices
The similarity measure used in dynamic programming is often displayed as
scoring matrices, where the amino acids are listed along the margins of the
matrix and each element contains the score for substituting a particular amino
acid for another. The simplest matrix is the unit matrix, with ones along the
diagonal and zeroes otherwise. This is the matrix representation of the similarity
score in Equation (3).

A more commonly used series of scoring matrices are the PAM (percent
accepted mutation) matrices[19]. These are constructed by first counting the
number of accepted point mutations, i.e. the number of observed mutations,
in a collection of phylogenetic trees. To get a sharper picture of the actual
mutations, the sequences in the trees are compared with their inferred ancestors
instead of each other. These accepted point mutations are combined with the
observed mutability of each amino acid (the probability that a given amino
acid will change during a small evolutionary interval) to construct a mutation
probability matrix of one PAM. Matrices for a greater evolutionary interval
N can be generated by multiplying the PAM-1 matrix with itself N times.
The PAM-250 matrix, which is the most commonly used for distantly related
proteins, is generated in this way. This matrix corresponds to the expected
observed mutations in sequences that are 80% different.

Another common series of matrices is the BLOSUM (blocks substitution ma-
trix) series[37]. The BLOSUM matrices are constructed from ungapped blocks,
that is ungapped multiple alignments of short stretches of related proteins. The
substitutions observed in each column of the alignments are recorded, resulting
in a frequency table of the number of times each of the 210 (20+19+ ...+1) pos-
sible amino acid pairs occur. The frequency table is then used to calculate the
odds ratio between the observed number of times a pair occur and the frequen-
cies expected by chance. The resulting matrix is the scoring matrix. A number
of matrices are constructed from blocks with different levels of sequence iden-
tities between the aligned sequences. For example, BLOSUM80 is constructed
from blocks where the aligned sequence segments are at least 80% identical to
some other segment in the alignment.
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3.4 BLAST and other pairwise methods
BLAST (Basic Local Alignment Search Tool) [3] is the most commonly used
method to find similarities between a query sequence and sequences collected
in a database. The sequences may be protein or DNA, in any combination.
BLAST searches for pairs of segments, one from the query and one from the
database, with the best possible similarity score. The score is calculated using
dynamic programming and some substitution matrix, for example one of the
PAM matrices (see Section 3.1). To decrease the search time, the strategy of
BLAST is to locate short segment pairs with a fixed length, called words, that
have a similarity score above some threshold T. Any such word pair is then
extended in each direction to determine if it is part of a segment pair with a
significant similarity score.

To report the significance of the final result, BLAST uses expectation values
(E-values) instead of raw similarity scores. The E-value describes the number
of hits one can expect to have a given score just by chance, when searching a
data base of a certain size. An E-value of 1 for a hit, would mean that one can
expect to find one match in the given data base having the same score just by
chance. The lower E-value, that is the closer the E-value is to 0, the less likely it
is to find a match just by chance, and the more significant the hit is. Since the
E-value is dependent on the size of the data base and the length of the query
sequence, E-values in general cannot be compared between different programs
or between searches in different data bases.

FASTA [63] is a heuristic method that finds local alignments. In contrast to
BLAST, it uses a substitution matrix only for the extension step, when matched
sequence fragments are extended.

SSearch (Sequence Similarity Search [62]) does a rigorous Smith-Waterman
search for similarity between a query sequence and a group of sequences, which
makes it a very sensitive, but also very slow, method.

3.5 Multiple sequence alignments
A common tool when comparing biological sequences is to construct alignments,
in particular multiple sequence alignments. A multiple sequence alignment tries
to align more than two sequences, so that the symbols in each column are as
similar as possible. An example of a multiple sequence alignment is shown in
Figure 14. Here, four sequences belonging to the DEATH domain family are
aligned. The first column contains the names of the sequences, then comes the
actual alignment. Gaps are symbolised by ’-’ in the alignment.

A consensus sequence, capturing the “essence” of the multiple alignment,
can be constructed by taking the most common letter in each column. The last
row in Figure 14 contains the consensus sequence for the alignment, calculated
using the assumption that at least 60% of all letters in a column must be con-
served to generate the consensus. The consensus in Figure 14 includes conserved
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d1d2zb_         −−−−−−−−LSSKYSRNTELRRVEDNDIYRLAKILDENSCWRKLMSII−−PKGMDVQACSG

d1d2za_         LDNTMAIRLLPLPVRAQLCAHLDALDVWQ−−−−−QLATAVKLYPDQVEQISSQK−−−−−−

d1cy5a_         −−MDAKARNCLLQHREALEKDIKTSYIMD−−−−−HMISDGFLTISEEEKVRNE−−−−−−−

d3ygsp_         −SMDEADRRLLRRCRLRLVEELQVDQLWD−−−−−VLLSRELFRPHMIEDIQRAG−−−−−−

consensus/60%   ...s.t.Rhh.h.sRtpLhcclcssplac.....phhSshhhh.s.lEplpstt......consensus/60%   ... . .R  . . R  L           .....   S     . . E      ......

Figure 14: An example of a multiple sequence alignment of four sequences
belonging to the DEATH domain family. The last row is the consensus sequence
with a 60% cutoff. See text for details.

properties as well as conserved residues. Conserved residues are indicated by
red upper-case symbols. The blue lower-case symbols represent properties com-
mon to the residues in the column, such as size (s means ’small’ for example),
hydrophobicity (p means ’polar’) or charge.

From a multiple sequence alignment, it is possible to find which residues and
which parts of the sequences that are conserved in that group of sequences. If
residues or sequence fragments are conserved, they are most likely important
for that family of proteins, either for the fold of the proteins or for their func-
tional role. A multiple sequence alignment is therefore an important tool to
characterize protein families.

3.6 Automatic multiple sequence alignment
During the years several methods have been developed for automatic multiple
sequence alignment. Most use dynamic programming in one form or the other.
Below, some common methods are described in more detail.

3.6.1 MSA

MSA (Multiple Sequence Alignment, [34]) uses dynamic programming in sev-
eral dimensions to construct an optimal multiple sequence alignment. Each
sequence to align makes up a dimension in the dynamic programming matrix,
and the optimal path (corresponding to the optimal alignment) through this
multidimensional matrix is computed using a variant of Dijkstra’s algorithm.
The optimal path in this case, is the path that minimises the cost of the mul-
tiple alignment, which is the same as minimising the sum of the costs for the
pairwise alignments induced by the multiple alignment. The procedure to min-
imise a cost is completely analogous to maximising a similarity as described in
Section 3.2.1. To save memory and time, only alignments with a cost below
some threshold are searched. Also, only alignments where the induced pairwise
alignments each get a (pairwise) cost below some threshold are considered. De-
spite these considerations, the space and time requirements of MSA are very
demanding. The search space and memory requirements get multiplied by the
length of every additional sequence to align, meaning that only a moderate
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number of sequences can be aligned simultaneously. A maximum of eight to ten
sequences, with sequence lengths up to 1000 residues, seems to be the limit.

3.6.2 ClustalW

ClustalW has become one of the most commonly used methods for multiple
sequence alignment.

In ClustalW [79], first all pairs of sequences are aligned separately to calcu-
late pairwise distances, either by a fast approximate method or by full dynamic
programming. The distances calculated from the alignments are used to con-
struct a guide tree, using the Neighbour-Joining method [67]. This tree is used
in the actual alignment process to guide the addition of sequences to the mul-
tiple alignment. The tree is followed from the tips of the branches to the root,
starting with the sequences that are most similar and hence closest on the tree.
At each branching point, a pairwise alignment is produced by a full dynamic
programming algorithm, either between two sequences, a sequence and an align-
ment from a previous step, or between two alignments. In the case of aligning an
alignment, the score at each position is calculated as an average of all possible
combinations. For example, when aligning an alignment with three sequences
with one with two, the score at each position is the average of 3 · 2 = 6 compar-
isons. The procedure of progressively adding sequences to the alignment, based
on how they are placed in an initial phylogenetic tree of all the sequences, is
sometimes called the “progressive approach”.

The sequences are weighted such that very similar sequences get lower weights,
while sequences without any close relatives get higher weights. This is to better
collect the information in the multiple alignment.

The specific weight matrix to use to determine the similarity between residues
in the alignment is chosen depending on the sequence similarity between the
two sequences to align in each step (see Section 3.1). This means that different
weight matrices can be used at different stages of the alignment procedure.

The gap opening and gap extension penalties are set to some initial values
that are modified depending on the current sequence alignment. The gap open-
ing penalty is scaled depending on the weight matrix used and the similarity of
the sequences to align, and is increased with the sequence length of the shortest
sequence. The gap extension penalty is increased as a function of the difference
in sequence lengths between the two sequences to align. The penalties are also
modified in a position specific way. If a gap is present at a certain position,
the penalties are decreased at that position to promote new gaps at the same
place. The penalties are increased at positions near already existing gaps, since
it is unlikely to have two gaps very close to each other. In hydrophilic stretches,
which most likely are loop regions, the penalties are also lowered. If no gaps
occur at or near to a certain position, and it is not in a hydrophobic stretch, the
gap opening penalty is multiplied with a residue-specific gap propensity. This
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propensity is previously determined by counting the frequency of each residue
on either side of a gap, in alignments of proteins with known structure.

One drawback with the progressive approach is that errors introduced in the
beginning cannot be corrected later, as more information becomes available.
The method is heuristic, and there is no guarantee that the optimal solution
will be found [59][24].

3.6.3 T-Coffee

T-Coffee (Tree-based Consistency Objective Function For alignmEnt Evalua-
tion) [59] is a relatively new method for multiple sequence alignment that uses
a progressive approach, but avoids getting stuck in local minima by including
information from all pairwise alignments in each step of the procedure. The two
main features of the method is the ability to combine many different sources
of data, presented in the form of pair-wise alignments, and the optimization
method that finds the multiple sequence alignment that best fits all the data.

First, a primary library of pair-wise sequence alignments is produced. There
is no need for the alignments to be consistent, so it is possible to include two
or more different alignments of the same two sequences, possibly generated by
different methods. In the default implementation of T-Coffee, pairwise align-
ments are generated in two ways. A library of global alignments, one for each
pair of sequences, is produced using ClustalW (Section 3.6.2,[79]). A collection
of local alignments is produced by Lalign [42] to create a local library. The
ten non-overlapping alignments that score highest for each pair of sequences
are used. Lalign is a variant of the Smith-Waterman algorithm (Section 3.2.1,
[73]), and comes from the FASTA package [63]. To give higher priority to more
reliable alignments, a weight equal to the percent sequence identity within the
alignment is associated to each alignment. In the libraries, the alignments are
represented as lists of pairs of aligned residues. The local Lalign library and the
global ClustalW library are combined by creating a new entry for each pair of
aligned residues. If a pair occurs in both libraries, the entries are merged to a
single one, with a weight equal to the sum of the two weights.

To further make use of the information in the library, the consistency of each
pair of residues is examined with respect to all other alignments, and a weight
reflecting this consistency is assigned to the pair. In this way, some of the
information contained in the whole library is reflected in the individual weights
for each pair, and the alignment procedure is guided towards consistency with
all alignments in the library. This heuristic makes it less likely to get stuck
in a local minimum during the progressive alignment procedure. To calculate
the new “consistent” weights, each aligned pair of residues is checked with all
other alignments including one of these residues. For example, if residue a in
sequence A is aligned to residue c in sequence C, and residue b in sequence
B also is aligned to residue c, then the score for aligned residues a and b is
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increased.
The calculated scores can then be used in a progressive alignment approach.

First, pair-wise alignments are constructed to calculate the distances between
all the sequences, which in turn are used to construct a phylogenetic guide tree.
In the alignment process, the two sequences closest on the tree are aligned first.
The sequences are aligned using dynamic programming (Section 3.2.1) and the
weights in the library. The pair of sequences are then fixed with respect to
each-other according to the alignment. Then the second closest sequences are
aligned, or a sequence is added to the previous alignment, all depending on the
guide tree. The process continues until all sequences are aligned. To align a
group of sequences aligned in a previous step to another sequence or group, the
average scores in each column are used.

3.6.4 An example of a multiple sequence alignment

In Figure 15, two alignments of the same sequences, but constructed using two
different methods, are shown. In Figure 15a, the alignment is produced by T-
Coffee, and in Figure 15b it is produced by ClustalW. The sequences are chosen
from a reference alignment in BaliBASE (Benchmark Alignment dataBASE,
[80]), which is a collection of reliable multiple sequence alignments. BaliBASE
is constructed to be used for evaluation and comparison of multiple sequence
alignment methods. The alignments in BaliBASE are refined manually to ensure
that conserved residues as well as secondary structure elements are aligned. The
parts of the alignments in Figure 15 that are shown in bold are aligned identical
to the reference alignment in BaliBASE. Sections marked in red are indicated
as core blocks in BaliBASE. The alignerd sequences are a collection of kinases.

The alignment produced by T-Coffee (Figure 15a) follows the BaliBASE
alignment quite well, and most of the core elements are correctly aligned. Only
the sequences of kgp2_drome and that of ark1_human are slightly misaligned
in one core element each. The alignment from ClustalW (Figure 15b) also
follows the BaliBASE alignment quite well for most of the sequences. But two
of them, kp68_human and st11_yeast, are completely misaligned with respect
to the reference alignment. These kind of mistakes might be caused by early
misalignments, that cannot be updated as more information becomes available
from the rest of the sequences.

3.7 Profiles
A profile [32] represents a protein family as a position-dependent scoring matrix.
The profile is most often constructed from a multiple sequence alignment of the
family members, resulting in a matrix M with 21 columns and L rows, where L
is the length of the alignment. Each row represents a position in the alignment,
and the corresponding columns contain the scores for that position. The first
20 columns store the scores for each of the 20 amino acids. These scores are
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(a)

(b)

Figure 15: An example of two multiple sequence alignments of the same se-
quences, produced using two different methods. The alignment in a) is made
using T-Coffee, while that in b) is the result from ClustalW.
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calculated as a function of the number of occurrences of each amino acid at each
position in the alignment. The score of amino acid a at position p becomes

M(p, a) =
20∑

b=1

W (p, b) · Y (a, b),

where W(p,b) is a weight based on the number of occurrences of amino acid b
at position p and Y(a,b) is a substitution score from some matrix (for example
the Dayhoff matrix containing mutational distances, see Section 3.1). The last
column contains a penalty for insertions and deletions at that position in the
alignment. This makes it possible to punish insertions and deletions more inside
regions of secondary structure elements than between them, where gaps occur
more frequently.

A profile can be searched against a database using dynamic programming.
Instead of scoring similarities between a query sequence and a database sequence
using an ordinary scoring matrix, the position specific matrix is used. The
similarity score for a residue in the database sequence compared to a position in
the profile simply becomes the score in the column corresponding to the residue,
at the row representing that position in the profile.

3.7.1 PSI-BLAST

PSI-BLAST (Position-Specific Iterated BLAST) [4] is an extension of BLAST
(Section 3.4) that has proven to be sensitive to weak sequence similarities [50].
It uses a position-specific score matrix similar to the profiles described above,
but without the column for gap penalties. In PSI-BLAST, a position specific
score matrix is automatically constructed from the alignments resulting from a
BLAST run. The BLAST search is repeated using the matrix instead of the
query sequence, and the procedure is iterated using the new results acquired in
each run.

4 Hidden Markov Models
The methods and techniques described in the previous section can be seen as
different representations of sequence alignments and, in the end, protein families.
Sometimes, however, the sensitivity of these approaches are not high enough, or
one likes a more detailed “description” of a certain protein family. In these cases,
one solution could be to try to model the family, and use this model to get deeper
insights into the characteristics of the family and/or to find more members of
the same family. In this section, hidden Markov models of protein families are
described. For a more complete description of hidden Markov models and their
use in molecular biology, see for example [7] or [21].
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In a Markov model, a probability is assigned to symbols in a sequence, based
on which symbols are seen in the preceding positions in the sequence. A sequence
in this case can be any sequence of symbols or events. The order of the Markov
model is the number of preceding symbols the probabilities are based on. A
simple first order Markov model of a protein sequence would be a set of arrays
ak, one for each amino acid, with the probabilities P (ik) of seeing amino acid
k after amino acid i. The probability that an observed sequence belongs to the
model would then be the product of the probabilities for each amino acid in the
sequence, with some special treatment of the first amino acid, since that one is
not preceded by any other. These kind of models work well in some occasions,
but they do not give much information about the sequences they model.

A more robust approach is to assign a probability to each residue in each
position. For example, at position 3 in the alignment in Figure 19, the proba-
bility of having an N would be 33%, and that of an M would be 67%. All other
residues would have a probability 0 in this position. In this way, something
similar to a profile of the aligned sequences can be constructed. A slightly more
complicated, but more statistically correct, way to model the group of sequences
is to use hidden Markov models (HMMs). In short, a profile HMM is a statisti-
cal model of a multiple sequence alignment, where probabilities are assigned to
each position in the alignment, and to the transitions between positions. The
analogy to multiple sequence alignments makes it possible to draw conclusions
about the group of sequences that are modeled, making hidden Markov models
more appealing than the simple Markov model described above. The HMM
can, as can multiple alignments and profiles, be used to locate structurally or
functionally important residues, since they are conserved in the sequences. The
HMMs are also useful for finding other sequences, similar to the ones modeled.

Some of the advantages with HMMs, compared to for example simple pro-
files, are position specific scores for amino acids and for insertions/deletions.
With many other methods, a single gap penalty is chosen regardless of where in
the sequence a gap is inserted. This does not model true sequences very well,
since the probability for insertions or gaps is much higher in loop areas than
in an alpha helix, for example. Another advantage is that the HMMs are built
on a formal probabilistic basis, and that less skill and manual interventions is
required for using HMMs than for profiles. A limitation with profile HMMs is
that they do not allow consideration of any higher order correlations, such as
interactions between residues in different parts of the chain, or base pairing of
RNA-bases in a model of RNA.

A profile HMM consists of a collection of states of three kinds (Figure 16):
match states corresponding to the positions in the consensus sequence, insert
states that model insertions with respect to the consensus, and delete states
representing deletions with respect to the consensus. The match and insert
states emit symbols, in this case amino acids, with a probability ei(x) that
symbol x is emitted from state i. The delete states are silent, not emitting
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Figure 16: A schematic picture of a HMM. Circles symbolize delete states,
squares are match states, and insert states are pictured as diamonds. Arrows
between the states indicate the possible transitions. To each transition a tran-
sition probability t is associated. Match and insert states are associated with
an emission probability e. These are only shown for the first few states in the
figure.

any symbols. There are also transitions between the different states (arrows in
Figure 16), and a probability tij to move from state i to state j is associated
with the transition. The insert states have self transitions, a transition back to
itself, to allow for arbitrary length insertions relative to the consensus sequence.
To model the beginning and end of a sequence belonging to the alignment, two
special states not emitting any symbols are added first and last in the HMM.
An HMM of length N has N match states with corresponding delete states, and
N + 1 insert states in between the match states.

Using the probabilities, a sequence can be emitted by the HMM. Assume that
the sequence “TLVSM” is observed. This sequence can be emitted by the HMM
in Figure 16 in a number of ways. One possible state sequence resulting in the
observed sequence is m1 → m2 → m3 → m4 → i4. That is to go from the begin
state to match state m1 emitting symbol “T”, then move on to state m2 emitting
symbol “L”, to state m3 emitting an “V”, to state m4 emitting an “V” and finally
go to state i4 emitting symbol “M” before going to the end state. Another
possibility is the state sequence d1 → d2 → d3 → d4 → i3 → i3 → i3 → i3 → i3,
skipping all match states and emitting all symbols from state i3 by using the
transition back to itself. Yet another possibility is i0 → m1 → d2 → m3 →
i3 → m4, as is illustrated in Figure 17. All these possible state sequences have
different probabilities, but there is no way to tell which state sequence emitted
the observed sequence - the state sequence is hidden for us. That is why hidden
Markov models are called hidden.
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Figure 17: An example of how the sequence “TLVSM” can be generated by
the HMM illustrated in Figure 16. The bold arrows and states show the path
followed to generate the sequence. The bold letters are the symbols emitted at
each match and insert state the path passes through. Together, these symbols
form the sequence.

4.1 The Plan7 architecture for HMMs
The HMMs in HMMER2.0 (http://hmmer.wustl.edu/), which is the HMM im-
plementation we used, do not look exactly as described above. Instead, the
Plan7 architecture, illustrated in Figure 18, is used. The basics are the same
as described earlier, with a number of match states corresponding to consen-
sus positions, associated insert and delete states, and transitions between the
states. Unlike the previously described architecture, Plan7 does not have any
transitions, in any direction, between insert and delete states. This reduction
of transitions from 9 to 7 per node is one of the reasons for the name Plan7.
The B and E states are, as above, states used to enter and exit the main model.
The special states S, N, J, C and T control which kind of alignment the model
is most likely to generate. The S and T states are start and termination states,
respectively. None of them emit any symbols. The N state is used to model
unaligned N-terminal sequence. Every time it makes a transition to itself, a
symbol is emitted. The same holds for the C state, which models C-terminal
sequence not aligned to the actual model. These two states make it possible
to model local alignments with respect to the sequence (for example a single
domain in a multidomain protein) - the parts of the sequence not aligned to the
main model are “captured” by the N and C states. The J state is used to model
regions in between two matching domains in a sequence. The dotted arrows
in the figure illustrate transitions between the B state and match states, and
between match states and the E state. These makes it possible to model local
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Figure 18: The Plan7 architecture used in HMMER2.0. See text for details.

alignment with respect to the main model. Using one of the dotted transitions,
it is possible to skip some of the match states in the beginning and/or end of
the model without having to pass through a number of delete states. The align-
ment mode is determined by the actual values for the transitions between the
special states, and is decided when building the model. If one likes more than
one type of alignment mode, several HMMs have to be constructed for the same
sequences.

There are three interesting problems, answering different questions, to solve
when working with profile HMMs: the scoring problem, the alignment problem
and the training problem. These are discussed in the following sections.

4.2 The scoring problem
The scoring problem is to find the probability that a certain HMM generated
an observed sequence. It tries to answer the question: Is sequence s related to
the sequences modeled by the HMM? If the probability is high, then it is also
very likely that the observed sequence is related to the group of sequences that
are modeled by the HMM.

A sequence s = x1 . . . xL with length L, following the state path q =
q0 . . . qN+1 through an HMM µ with N states, has the probability

P (s | (q, µ)) =
N+1∏
i=1

tqi,qi−1

N∏
j=1

ej(xl(j)) (4)

where l(j) is the index in the sequence for symbol x at state qj . This is
simply the product of the probabilities of going from one state to the other (the
transitions t) and the probabilities e of emitting the symbols in the sequence at
the given states. To get the probability of the HMM emitting the sequence, we
have to choose a suitable path for the sequence. The most common approaches
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are to sum over all possible paths or to take the path which has the highest
probability. To sum over all possible paths can be expressed as:

P (s | µ) =
∑

q

P (s | (q, µ)) (5)

However, to compute the probabilities for all possible paths often is too compu-
tationally exhausting, especially when there are many models to compare the
sequence to. The path with the highest probability is called the Viterbi path
[7]:

P (s | µ) = max
q

P (s | (q, µ)) (6)

Strictly, it is not the probability P (s | µ) = P (s = x | x is generated by model µ)
that is interesting, since it describes the probability of seeing sequence s in a
collection of sequences generated by the given model. The question of interest
is to find the probability, given a sequence s, that this sequence is generated by
the model: P (x is generated by model µ | x = s) = P (µ | s). To calculate this
probability, Bayes’ rule can be used:

P (µ | s) =
P (s | µ)P (µ)

P (s)
(7)

To avoid computing the unknown probabilities P (µ) and P (s), the question
is slightly twisted - instead of calculating the probability that the model gener-
ated the sequence, the odds that the sequence was generated by model µ rather
than model η is calculated:

P (µ | s)
P (η | s)

=
P (s | µ)
P (s | η)

P (µ)
P (η)

(8)

Here, η is generated as a null model that tries to fit all sequences in the uni-
verse of sequences (for example a sequence database). The relative probability
P (µ)
P (η) of the two models can be estimated as the expected number of hits divided
by the number of sequences scored.

4.2.1 Scoring in HMMER2.0

In HMMER2.0 the two models µ and η are considered equiprobable, so the
relative probability is set to 1.

The null model is in HMMER2.0 a single “insert” state that can make transi-
tions back to itself and a dummy end state equal to the END state in the actual
model. The null model insert state emits symbols according to a distribution
equal to the average amino acid composition in Swiss-Prot 34. The score
reported by the program is the logarithm of the right hand side in equation (8)
- a log-odds score. To correct for bias in sequence composition, HMMER2.0
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actually uses a second null model in addition to the simple one described above.
This model is useful for HMMs modeling sequences with unusual sequence com-
positions, preventing unrelated sequences with the same unusual composition
from getting unreasonably high scores.

E-values

In addition to the raw scores, an E-value is reported from HMMER2.0. The
E-value is an expectation value; it is the expected number of sequences in the
database not related to the model, that score higher than or equal to the re-
ported score S = y. This is the number of hits with a score greater than or
equal to y, that one can expect just by chance in a database of size N . See also
Section 3.4. By default, the E-value in HMMER is calculated as an analytic
upper bound roughly equal to ε = Nz−y, where z is the base of the logarithm,
in this case 2 [8]. More correct values can be obtained by calibrating the HMM
before using it for sequence searches. When calibrating the model, an extreme
value distribution P (S < y) = exp(−e−λ(y−µ)) is fitted to the scores generated
by the model, and the E-value can then be calculated as ε = NP (S ≥ y). The
scores to fit the distribution are generated from a Monte Carlo simulation of a
sequence database. To find the parameters λ and µ, the log likelihood is maxi-
mized. That is, the maximum of the logarithm of the likelihood of getting the
simulated scores from a distribution defined by λ and µ is determined:

max
λ,µ

{log P (y1, . . . , yn | λ, µ)} (9)

To find the maximum, the zeroes of the partial derivatives with respect to
λ and µ are found with the help of a Newton-Raphson algorithm. In practise,
only the right tail of the histogram of scores is fitted, because the left tail (the
low scoring sequences) does not obey the extreme value distribution. The right
tail, around ε = 1, empirically fits the distribution quite well, and since this is
the region of interest it is recommended to calibrate the models.

According to the HMMER User’s Guide (http://hmmer.wustl.edu/), E-
values of 0.1 or less in general are significant hits.

4.3 The alignment problem
The alignment problem is to find the state sequence (path) through a given
HMM that generated an observed sequence. If one finds that path, one also
has the optimal alignment of the sequence to the model and to other sequences
generated by / related to the HMM. The solution is to find the path that gives
the highest probability for the sequence, as given by equation (4).
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d1d2zb_         −−−−−−−−LSSKYSRNTELRRVEDNDIYRLAKILDENSCWRKLMSII−−PKGMDVQACSG

d1d2za_         LDNTMAIRLLPLPVRAQLCAHLDALDVWQ−−−−−QLATAVKLYPDQVEQISSQK−−−−−−

d1cy5a_         −−MDAKARNCLLQHREALEKDIKTSYIMD−−−−−HMISDGFLTISEEEKVRNE−−−−−−−

d3ygsp_         −SMDEADRRLLRRCRLRLVEELQVDQLWD−−−−−VLLSRELFRPHMIEDIQRAG−−−−−−

consensus/60%   ...s.t.Rhh.h.sRtpLhcclcssplac.....phhSshhhh.s.lEplpstt......consensus/60%   ... . .R  . . R  L           .....   S     . . E      ......

Figure 19: The multiple sequence alignment shown in Figure 14, displayed again
for convenience.

4.4 The training problem
The training problem is to find the parameters of the HMM, i.e. the transition
and emission probabilities. If an alignment of the sequences to model is given, it
is rather a question of building a HMM, not training. In this case, the consensus
positions, where most positions in the column are filled with symbols, are set
to match states. All gaps with respect to the consensus are counted as delete
states, and all insertions correspond to symbols emitted by insert states. The
transition probabilities can be calculated by simply counting the number Tij of
observed transitions between one state, i, and another state, j, divided by the
total number of transitions from that state:

tij =
Tij∑
j′ Tij′

(10)

As an example we consider the alignment in Figure 19, and the column
before the one with an conserved ’E’ at the end of the alignment. If this column
is a match state, there are three transitions from it to the next match state (the
next column with the conserved ’E’). There is also one transition from this state
to a delete state, since the first sequence has a gap instead of the conserved ’E’.
There are no transitions to insert states at this position. This means that the
transition probabilities from this match state become tm,m = 3/(3 + 1 + 0) =
0.75, tm,d = 1/(3 + 1 + 0) = 0.25 and tm,i = 0.

The emission probabilities are calculated as

ej(x) =
Ej(x)∑
x′ Ej(x′)

(11)

where Ej(x) is the number of occurrences of symbol x at position j.
As an example we consider the alignment in Figure 19. At position three

in the multiple alignment there are two symbols ’M’ and one symbol ’N’. This
means that the emission probabilities at this position would be e(M) = 2/(1 +
2) = 0.667 and e(N) = 1/(1+2) = 0.333. All other emission probabilities would
be equal to zero.

For the insert states, background frequencies are often used for the emission
probabilities. It is assumed that the symbols in insertions are more or less
random, so that the probability of emitting an “A” should be the same as the
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frequency of an “A” in the universe of protein sequences. The reason for this
assumption is that the number of observations often is too small to determine
all the parameters, especially in inserts.

A serious problem with this “raw” calculation of probabilities is the risk
of overfitting the model to the data. If the HMM fits the data too well, it
will only recognise the sequences used in the training of the model, and no
related sequences. In the worst case, a sequence differing from the observed
training sequences in just one single position can get a probability of zero, since
this very amino acid has not been observed at that position. To handle this
problem, pseudocounts can be added to the raw counts. In this way all possible
symbols will get a probability greater than zero at all positions, even if they are
not observed, making it possible to generate / recognise sequences that differ
slightly from the training sequences. Also, in the case of proteins, one knows
from alignment of homologous proteins that some substitutions of amino acids
are more likely than others. For example, tyrosine and phenylalanine often occur
in the same place in an alignment, while they both rarely substitute for proline.
Knowing that phenylalanine and tyrosine often substitute for each other, a small
count can be added to one of them each time the other is observed, increasing
the probability for both amino acids.

A problem with a limited amount of training sequences is the occurrence
of biased data. Often there are many similar sequences belonging to the same
family, and a few more unique ones. To get a good model of all sequences in the
family, not just the majority of very similar ones, the few “unique” ones should
get a higher weight. This can be achieved by using tree-based weighting, where
sequences with few neighbours on the same branch get higher weights.

If no alignment is given, the model has to be trained from the raw data. First
a random alignment is produced, most simply by aligning the first residue of
each sequence and then aligning all the others without gaps until the end of the
sequences. From this “random” alignment the parameters can be calculated to
create an initial model. All sequences are then aligned to the model, resulting in
a new alignment which can be used to calculate new parameters. The procedure
is then iterated until the alignment and parameters converge. To avoid getting
stuck in a local minima, with a suboptimal alignment, a few variations in this
procedure are implemented. However, in HMMER2.0 the training of HMMs is
not implemented at all, since sequence alignment programs such as ClustalW
give much better alignments, resulting in better HMMs, than the HMM training.

In this work, we use alignments based on structural superimposition as the
base for building structure anchored HMMs (saHMMs).

4.4.1 Dirichlet mixtures

In the default settings of HMMER2.0, Dirichlet mixtures are used to define the
pseudocounts to add at each position, in order to avoid overfitting.
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Let p be a probability vector, containing a possible distribution over the
twenty amino acids. That is, element pi is the probability of amino acid i,
pi ≥ 0 and

∑
i pi = 1. A Dirichlet density ρ is a statistical density over all

probability vectors, meaning that it gives high probability to some distributions
(probability vectors) of amino acids, and low to others. For example, a certain
Dirichlet density may give high probability to distributions where one single
amino acid dominates, that is to conserved distributions. Other densities might
give high probability to distributions where amino acids share a common feature,
such as hydrophobicity or size, dominate, while even others favour distributions
where no particular kind of amino acid dominates.

For a particular p, the value of the density is

ρ(p) =
∏20

i=1 pαi−1
i

Z
, (12)

where Z is a constant that makes ρ sum to unity, and αi are the parameters
of the density.

A Dirichlet mixture is a mixture of Dirichlet densities. The individual densi-
ties ρj are called components of the mixture, and each component is associated
with a mixture coefficient qj , that functions as a weight for the component. The
mixture coefficients sum to 1. A Dirichlet mixture ρ with l components has the
form

ρ = q1ρ1 + . . . + qlρl. (13)

At each position of the alignment, the probability of each amino acid is
calculated based on the observed number of occurencies in that column. Pseu-
docounts are added from each component ρj of the Dirichlet mixture, each
contributing with different number of counts depending on the particular den-
sity. The pseudocounts from each component are scaled according to how likely
it is that the individual component has produced the observed data.

The mixture used in HMMER2.0 is a nine-component mixture, where the
parameters (qj , αj) are estimated based on the multiple sequence alignments in
the Blocks database[36].

5 Structural superposition of protein structures
In Figure 20, a superposition of four protein structures is shown. Superpo-
sition is the structural equivalent of an alignment, to try to fit two or more
structures as good as possible “on top” of each other. To construct a structural
alignment means to find equivalences between residues in two proteins based
on their coordinates in 3D space. As with sequence alignments, the alignment
and/or superposition of multiple structures is more complicated but also more
informative than pairwise alignments.
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Figure 20: An example of four superimposed structures belonging to the
DEATH domain family. Above the superposition smaller images are shown for
the individual structures. The four protein domains are: d1d2zb_ (magenta),
d1d2za_ (blue), d3ygsp_ (yellow) and d1cy5a_ (green), following the SCOP
nomenclature.
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For a useful structure superposition method there are a few requirements to
be met. Preferably all proteins representing a family should be superimposed
simultaneously, or at least the order of adding the structures to the superposition
should not affect the final result. Secondly, there must be some way to find the
residue equivalences from the structural superposition.

To find a superposition is not a trivial task, since the proteins can differ in
size or have slightly different angles between their secondary structure elements,
and still have the same overall fold. Even if the similarity is obvious by eye, it
is difficult to parameterize it and make a computer do it automatically.

To determine a sequence alignment based on residue equivalences from the
superposition of structures is an equally difficult task. How can one determine
which of two residues in one protein, on roughly the same distance from a
residue in another protein, should be considered equivalent to the other residue?
The different sizes of the proteins are also an issue here. If the structures are
superimposed as rigid bodies, the centre of the superposition might be quite well
defined, while the further away you get from the centre, the further apart are
the structures, even though the basic structure is the same. For example, two
helices that are situated at the same position with respect to the other elements
of the protein in two structures, might be parallel but still some distance apart
in the superposition, since one protein could be more loosely connected or have
longer loops than the other. This kind of situation makes it very difficult to
determine which residue in one protein corresponds to which in the others,
especially if one wants to do it automatically. An example of such a situation
is the rightmost helix in Figure 20. Here the blue and the magenta helices are
clearly equivalent, but since they are tilted in slightly different directions, they
only overlap perfectly on a few residue in the middle. The ends of the helices
probably are too distant for a computer program to consider them equivalent.

Several methods have been developed to compare protein structures. Com-
parison is done with two main purposes, to determine whether two structures
are related through evolution, and to find exactly how similar two proteins are
by pairing residues that are located at similar positions in space. Most meth-
ods developed are designed to compare just two proteins at a time, and almost
all multiple methods use pairwise alignments as a starting point. Methods for
structural alignments are reviewed in ([39], [27], [47])

A very common approach to find matching residues in the proteins to align,
is to use dynamic programming ([38], [66],[26],[23],[68],[83],[43],[78]). Dynamic
programming finds the optimal solution for the superposition of two structures,
but this is given the scoring function that is optimized during the process.
This is also the main difference between these methods. Some alternatives are
to minimize the difference in distance between aligned residues, to compare
intra-protein distances [38], to combine and compare features such as surface
accessible area, secondary structure and sequence information [43], to minimize
the “soap area” between the backbones of the two structures [23] and to compare
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the discrete curvature of the backbones [83]. Genetic algorithms have also been
used to find initial equivalences [75].

Lately, several methods have been developed that represent the secondary
structure elements as vectors, and find the best matching between those as a
first step in the alignment procedure ([53],[75],[70],[2],[72],[84],[54]). The reason
for this choice is to reduce search space for the initial alignment, and to ensure
biologically relevant alignments since the secondary structures are the building
blocks of the structures.

For the actual rotation and translation to superpose the structures, most
methods use some kind of iterative least squares procedure, that minimizes the
RMSD between equivalenced residues ([53],[66],[83],[43],[75],[70],[2],[72]). Often
equivalenced residues are found using nearest neighbours or dynamic program-
ming. These equivalences are then superimposed, and the procedure is iterated
until either the RMSD, the equivalenced residues, or both have converged.

Other methods to find the optimal superposition and/or equivalences are
Monte Carlo optimization [38], [54] and dynamic programming [78].

There are a few methods with more “unique” approaches, that uses hashing
to find common submotives[49], searches all possible combinations of rotations
and translations to find the maximum number of matched Cα [20], or assembles
structurally similar fragment pairs using combinatorial extension [71].

To construct multiple structural alignments, a common approach is to per-
form pairwise alignments and include proteins in the alignment directed by a
guide tree [66],[68] or pairwise similarity scores [85]. Other methods find the
transformations that minimize the RMSD of all proteins simultaneously [52],[83]
or align all proteins to the structure that is closest to all others [26].

In the following, four methods are described in more detail. SSAP is a
method for pairwise structural alignments, used to construct the protein classi-
fication in CATH. DALI is also a pairwise method that uses distance matrices
for comparison. The method is used to construct the DaliDD and FSSP. MAPS
is a multiple method that attempts to find the rotations and translations that
best superposes all proteins at the same time. This program was used in addi-
tion to STAMP for difficult cases in our method. Finally, STAMP is the multiple
structure alignment program we chose to use in our implementation.

5.1 SSAP
SSAP (Structure and Sequence Alignment Program) [78] compares protein struc-
tures using a dynamic programming approach (see Section 3.2), and is used in
the construction of CATH (Section 6.5, [60]). The dynamic programming al-
gorithm finds the optimal alignment of two sequences, given a similarity score
for matching symbols in one sequence with symbols in the other. In SSAP,
this score is based on comparing the distances from the given residues to other
residues in the same protein. These distances represent a structural environ-
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ment for the residue, and is assumed to be the same at corresponding positions
in similar structures.

The distance based similarity score could be calculated in a number of ways.
To simply sum the distances to say 5 residues forward and 5 backward in the
chain, and compare these sums, will work well as long as no gaps or insertions
are involved. However, these kinds of “discontinuities” are quite common. SSAP
handles this by applying the dynamic programming twice, first to find the best
equivalence score, and then to find the optimal alignment given these scores.
To base the equivalence scores solely on the distances between residues gives
high scores to all similar distances, even if the distances are measured between
residues that are in completely different relative positions. Therefore, the com-
parison is done using vectors between residues, instead of plain distances. These
vectors are defined with respect to a local coordinate system defined for each
residue, to make it possible to compare residues in different directions. The co-
ordinate systems are based on the geometry of the bonds to the Cα atom. The
score for matching residue i in one protein to residue k in the other becomes:

Sik = max
{
a/(VA

ij − VB
kl)

2 + b
}

(14)

Here, VX
ij is the vector between residues i and j in a protein X, a is a

constant limiting the maximum possible score and b is a constant preventing
division with very small numbers. max {. . .} is used to represent the dynamic
programming procedure, so that Sik is the maximum score obtained by dynamic
programming over all possible j in protein A and all possible l in protein B.
Having defined this score between matching symbols/positions, it is straight-
forward to construct a scoring matrix and find the optimal alignment. Every
calculation of equation (14) gives an alignment of matched inter atomic vectors,
which represents an alignment of the structures. This information is included
in the second run of dynamic programming, in addition to the maximum score
Sik. To include the alignment information, the values along the trace-backs of
the equivalence matrices are added to the corresponding elements in the scoring
matrix.

In an extension of SSAP [77], other information than directional is in-
cluded in the score, information such as hydrophobicity, phi/psi angles, solvent-
accessible surface area, etc. SSAP is also combined with the multiple sequence
alignment program MULTAL to enable multiple structure alignments [76]. In
the multiple structure alignment, the columns of amino acids are replaced by
sets, or bundles, of vectors. These bundles are reduced to average vectors and
an error term, measuring the divergence inside the set. To construct a multi-
ple alignment, first the most similar protein pairs are aligned separately, and
a consensus structure is derived. Then all similarities are recalculated, in this
case between remaining structures and the consensus structures, before again
the most similar are aligned. In this way the most similar structures are aligned
at each stage, until the alignment is complete. We have not been able to test
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this combination of programs.

5.2 DALI
Dali [38] is an algorithm for pairwise structural alignment of proteins. Instead
of comparing the actual coordinates of the proteins, the method finds similarities
between distance matrices computed from the structures. The distance matrix
used is one containing all pairwise distances between Cα atoms in a protein.
This matrix contains all information needed to reconstruct the protein structure,
except for the chirality1 of the molecule. In Figure 21, an example of a distance
matrix, or actually two, is shown. Due to the symmetry of the distance matrices,
data can be shown above the diagonal (or actually the anti-diagonal) for one
protein, and below for the other.

In Dali, the distance matrices are first systematically compared to find all
matching hexapeptide-hexapeptide contact patterns. If contact pattern (iA . . . iA+
5, jA . . . jA + 5) in protein A is similar to pattern (iB . . . iB + 5, jB . . . jB + 5)
in protein B, then the hexapeptide iA . . . iA + 5 is equivalenced to iB . . . iB + 5,
and hexapeptide jA . . . jA + 5 is equivalenced to jB . . . jB + 5 in the alignment.
The patterns of pairs of hexapeptides in the matrix of protein A are compared
to the patterns of hexapeptide pairs in the matrix of protein B. The similarity
is calculated as

φE(i, j) =

⎧⎨
⎩

(
θE − |dA

ij−dB
ij|

d∗
ij

)
w(d∗

ij), i �= j

θE , i = j

⎫⎬
⎭ (15)

where d∗
ij is the average of dA

ij and dB
ij , θE = 0.2 is a similarity threshold, and

w is a function giving less weight to the common, but not so informative, pairs
in the long distance range. The pairs are stored in a list, that then is sorted
according to score. The 40000 highest scoring pairs are kept to use in the next
step; the actual alignment, which is produced by Monte Carlo optimization.
The procedure starts with producing a number of seed alignments. These are
constructed from all triplets of non-overlapping hexapeptides in the pair list.
For instance, the pairs (a, b)-(a’, b’), (a, c)-(a’, c’) and (b, c)-(b’, c’) could form
the triplet (a, b, c)-(a’, b’, c’), if a, b, c are segments from sequence A and a’, b’,
c’ are segments from sequence B. Each singlet (x, x’) in the triplets is used to
generate a seed alignment. The seed alignments are extended using overlapping
contact pairs - for example, if the alignment contains the residue pair (iA, iB),
all pairs including this residue pair can be used for extending the alignment.

1The chirality of a molecule is its “handedness”. Compare to a left and a right hand -
they are identical with respect to internal distances between for example fingers, but are each
others mirror images.
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Figure 21: An example of two distance matrices. The range of colours goes from
blue through green and yellow to red, where blue indicate very short distances
and red very long. The section above the diagonal (actually the anti-diagonal)
are the distances between atoms in the protein domain d1cy5a, the section below
show distances between atoms in d1d2za. Both protein domains are members of
the DEATH domain family. Along the axis the secondary structures are shown
schematically. Both domains consist of only alpha helices (shown as rectangles).
The blue sections along the diagonal show short range contacts inside the helices.
Matches between the two domains along the diagonal correspond to similarity
in backbone conformation, that is in secondary structures. Matches off the
diagonal reveal similarity in contacts between secondary structure elements,
that is in tertiary structure.
The 3D structures of the two proteins can be seen in Figure 20.
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The score of the alignment is calculated as the sum of all pairwise similarities:

S =
L∑

i=1

L∑
j=1

φ(i, j) (16)

Here, i = (iA, iB) and j = (jA, jB) are pairs of equivalenced residues, L
is the length of the alignment (the number of equivalenced pairs), and φ is a
similarity measure, for example the one in equation (15). The highest scoring
alignments are selected and optimized in parallel. The optimization consists in
extending the alignment based on overlapping contact pairs, keeping the new
residue pairs according to a probability function p = exp(β(S′ − S)). S′ and S
are the old and new scores, respectively, and β is a parameter governing how
probable it is to keep “bad” alignments. After a few rounds of extension, the
alignments are trimmed by removing negatively scoring matches. The procedure
continues with expansion and trimming until the score has not improved for 20
cycles. Finally, the best alignment is refined by optimizing 10 variations of that
alignment, each having 30% of the aligned blocks randomly removed.

5.3 MAPS
MAPS (Multiple Alignment of Protein Structures)[52] is based on the (protein
TOPological comparison) program TOP[53], which compares two protein struc-
tures and is used as the starting point for MAPS. In TOP, a first fit is done
based on the secondary structure elements (SSEs), which are represented as vec-
tors from the N-terminal to the C-terminal end of the SSE. Each possible pair
of SSEs from one protein is compared to each possible pair from the other by
trying to find a rotation and translation that superimposes the endpoints of the
two vector pairs. If a similarity is found (angles and distances between superim-
posed vectors are similar), the superposition is refined to minimize the RMSDs
(root mean square deviations) of the angles between all SSEs by a least squares
method. The procedure of finding more similarities and refining the superposi-
tion is iterated until convergence. Then matching atoms are identified, so that
at least three consecutive residues are aligned and the aligned residues are each
others nearest neighbours. The distance, as well as the difference in direction
of the Cα − Cβ bond, between two aligned residues should be below a certain
value. The transformation is refined using these residue equivalences, and the
process of identifying equivalences and refining the superposition is iterated un-
til convergence of equivalenced residues. The whole procedure is repeated for
all pairs of SSEs, and the best match is selected.

In MAPS, all proteins are first pairwise aligned as above to give equivalent
residues and a rotation and translation to best superimpose each pair of proteins.
These values are used as a starting point to minimize the total distance between
all proteins:
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∆ =
N−1∑
i=1

N∑
j=i+1

Mij∑
k=1

1
wijk

∣∣x′
ik(ri, ti) − x′

jk(rj , tj)
∣∣2 (17)

where N is the number of proteins to align, Mij is the number of equivalent
residues in proteins i and j, wijk is a weight, and x′

ik and x′
jk are the trans-

formed coordinates for equivalent residues k in protein i and j, respectively.
The transformed coordinates x′ are dependent on three angles r to define the
rotation and three parameters t to define the translation. ∆ is minimized using
a non-linear least squares method.

Three criteria are used to detect equivalent segments: the length of an
aligned segment should be equal to or above a given number (default 3), the
difference in direction of the Cα −Cβ bond between two aligned residues should
not be too large, and the distance between aligned residues should be less than
a given value (default 3.8Å). This new set of equivalenced atoms is used to
again find the rotations and translations that minimizes ∆ in equation (17),
and the procedure is iterated until convergence of equivalenced residues and
RMSD (which is correlated to ∆).

MAPS reports the pairwise TOP alignments as well as the final multiple
sequence alignment, and has an option to produce transformed coordinate files
for the superimposed proteins. Only segments with equivalenced residues are
reported in the sequence alignment.

5.4 STAMP
STAMP (Structural Alignment of Protein Sequences) [66] aligns several se-
quences based on their structural similarity. A tree based on pairwise com-
parisons is used to determine the order in which the structures are aligned.

An overview of the procedure STAMP uses is shown in Figure 22. To start,
STAMP needs the structures to be reasonably superimposed, a superimposition
which is refined in the procedure, and which is used to construct the guide tree.
The structural domains are superimposed in the order indicated by the precal-
culated tree. First, a matrix containing the distances between each residue in
one domain to each residue in the other is calculated. The optimal way through
the matrix is found, resulting in a list of equivalent residues with corresponding
Cα positions. These positions are used to calculate the transformation (trans-
lation and rotation) of one structural domain that gives the lowest RMSD (root
mean square deviation) towards the other. The domain is transformed, resulting
in a new set of coordinates, and the calculations are repeated until convergence.
STAMP then moves on to the next pair to be superimposed.

The initial multiple superimposition or multiple sequence alignment needed
by STAMP can be produced by (i) constructing a multiple sequence alignment
of the domains to be superimposed, (ii) constructing a simple “alignment” where
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Figure 22: The STAMP procedure for alignment and superposition of protein
structures. See text for details.
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Figure 23: To the left is a table containing the RMSD (in Å) for four hypothetical
proteins A, B, C and D. To the right is the guide tree constructed based on
these values. Using this tree, proteins A and B would be superimposed first,
then proteins C and D, and last the two alignments would be superimposed on
each other.

the sequences are stacked on top of each other with no gaps, starting from the N-
terminus, or (iii) pairwise superimposition of all structural domains against one
of them, after which the superpositions are converted to a multiple sequence
alignment. The initial alignment is used to construct a tree that guides the
order of superimposition. For each pair of domains to be superimposed, the
k positions aligned for this pair in the initial alignment, with no gaps, are
compared and fitted (rotated and translated) to minimize the RMSD (root
mean square deviation) for the pair. The RMSD is calculated as:

RMSD =

√√√√ k∑
i=1

(dx2
i + dy2

i + dz2
i )/k (18)

where dxi = xAi − xBi , dyi = yAi − yBi , dzi = zAi − zBi are the dis-
tances between x-, y- and z-coordinates, respectively, for equivalent atoms i in
molecules A and B. This is a measure of the distance between equivalent atoms
in the two molecules, and consequently measures how well the two molecules
are superimposed, and how similar they are in structure.

If N proteins are to be aligned, the RMSD values for each of the possible
N(N − 1)/2 pairs are used to construct the guide tree, such that pairs with
low RMSD are close to each other in the tree, while pairs with high RMSD are
further away from each other. In Figure 23, the construction of a tree from a
distance matrix containing RMSD values is illustrated. To construct the tree,
each molecule is assigned to its own subset. Then the two subsets that have the
lowest RMSD are joined together, and the lengths of the branches are set as the
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distance. In Figure 23, molecule A and B have the lowest RMSD, and are joined
first. These two subsets are then treated as a single subset when the process
is iterated, until all subsets have been joined to a single set, the tree. When
two subsets containing more than one molecule are compared to determine the
distance, the average RMSD values from all possible pairings of molecules from
the two subsets are used.

The structural domains are then superimposed starting from the leaves in
the tree, superimposing a pair of domains at each node until reaching the root
of the tree. In this way, the most similar domains are compared first, leaving
the comparison and alignment of more distantly related domains until later
in the procedure. At internal nodes, where more than two domains are to be
superimposed, average values are used for domains belonging to the same branch
of the tree.

The actual superimposition in each node starts by calculating a distance
matrix for the two domains to be superimposed. For each residue i in domain
A, the probability Pij of structural equivalence to residue j in domain B is
calculated as:

Pij = exp(− d2
ij

2E2
1

) exp(− s2
ij

2E2
2

) (19)

where dij is the distance between Cα atoms for residues i and j, sij is a
measure of the chain configuration, and E1and E2 are constants. This results
in a m × n matrix, if A contains m residues and B contains n. If more than
two domains are to be superimposed in a node, domains on the same branch
are kept fixed to each other, and the average Pij for all possible combinations
is computed for each position ij. Say domains A and B superimposed on one
branch, are to be compared to domains C and D from the other branch, then
all possible combinations are A-C, A-D, B-C, and B-D. If a comparison is made
to a gap, a neutral value of 0 is used.

The best way through the matrix, i.e. the path that yields the highest sum
of Pij values, is calculated using a modified Smith-Waterman algorithm ([73],
Section 3.2.1). The path corresponds to the best possible set of equivalent
residues. From this set, the pairs having a Pij larger than a threshold T are
used to obtain two sets of equivalenced Cα positions. The sum of Pij values can
be seen as the score S of the set of Cα positions.

The two sets of equivalent Cα positions can be seen as two sets A and B of
k vectors ai and bi (i = 1, . . . , k), if k is the number of equivalent positions.
Each vector ai and bi contains three elements representing the x-, y-, and z-
coordinates of the residue at position i. Given these two sets, the problem is
to find a rotation matrix R, and a translation t which when applied to set A
yields a transformed set of coordinates ãi which minimizes the RMSD (equation
(18)) to set B. In the case of several domains being compared, the average Cα

coordinates for domains belonging to the same branch are used.
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The translation t is calculated as the difference between the centres of masses
for the two sets of coordinates. The orthogonal matrix R is found as the matrix
that minimizes the energy function

W =
1
2

∑
i

(Rai − bi)
2 =

1
2

∑
i

(ãi − bi)
2
. (20)

This is actually (a variant of) the Procrustes problem. It can be shown
[44][45] that finding the eigenvalues µp and eigenvectors ep of the matrix UTU
solves the problem. The elements of matrix U = (ukl) are calculated as

ukl =
∑

i

bikail (21)

and UT is the transposed matrix. If vectors fp are defined as

fp =
1√
µp

Uep (22)

the rotation matrix R can be constructed as

rkl =
∑

p

fpkepl (23)

The domain is transformed using the calculated R and t, resulting in a new
set of coordinates that can be used to calculate a new distance matrix according
to equation (19). The calculations are repeated until convergence, meaning that
the score S does not change more than 0.1% compared to the previous iteration.
STAMP then moves on to the next node and pair of domains/averaged domains
to be superimposed, until reaching the root, meaning that all structural domains
are superimposed.

The method is not designed to align different topologies or connectivities
(where the secondary structure elements are connected in different ways even
though their relative positions in space are the same), but since we use structural
and functional families, such cases are not relevant for us. The heuristic tree-
based addition of structures to the alignment is not guaranteed to give the
optimal solution to the problem, but in most cases the resulting solution will be
close enough to the optimal one.

5.5 Comparison between an alignment based on structure
and one based on sequence

In Figure 24 two alignments are shown, one based on structural superposition
and constructed using STAMP (Figure 24a), and one based on sequence anlysis
using T-Coffee (Figure 24b). Residues forming beta strands are marked in red,



6. Databases - protein classifications 65

while residues forming alpha helical structures are marked in blue. The figure
shows that the secondary structure elements are much better aligned in the
alignment produced by STAMP than in the sequence-based alignment. In this
case, the alignment based on structure is obviously biologically more correct.

6 Databases - protein classifications
A listing of useful biological databases can be found in Baxevanis [11], including
a short description of each database. A longer description of each database is
provided through the Nucleic Acids Research web site. Some links and short
descriptions are provided here in Appendix A. In this section, we describe some
of the most common databases that are relevant for this work, with focus on
databases containing classifications of proteins. We start by mentioning some
important sequence data bases.

6.1 Sequence databases
There are three important databases storing genetic information, that is nu-
cleotide databases containing DNA sequences. GenBank2 is the NIH (National
Institute of Health, USA) genetic sequence database. GenBank is an anno-
tated collection of all publicly available DNA sequences and is maintained at
the National Center for Biotechnology Information (NCBI). The EMBL Nu-
cleotide Sequence Database (sometimes called EMBL-Bank)3 is the main re-
source of nucleotide sequences in Europe, and is maintained at the European
Bioinformatics Institute (EBI), which is a part of the European Molecular Bi-
ology Laboratory (EMBL). The third collection of nucleotide sequences can be
found in the DNA database of Japan (DDBJ)4. The three databases cooper-
ate, and exchange new and updated database records on a daily basis. Each
database entry gets a unique accession number, making it possible to refer to
a specific gene sequence. The main sources of DNA, and also RNA sequences,
are submissions from individual researchers, genome sequencing projects and
patent applications.

One of the main sources of protein sequence information is the Swiss-Prot
Protein Knowledgebase (Swiss-Prot)5. It is a curated protein sequence database,
that is aimed to provide a high level of annotation, as little redundancy as pos-
sible and a high level of integration with other databases. Swiss-Prot is main-
tained by the Swiss Institute for Bioinformatics (SIB) together with the EBI.
The Swiss-Prot release of October 2003 contains 136356 entries.

2http://www.psc.edu/general/software/packages/genbank/genbank.html
3http://www.ebi.ac.uk/embl/index.html
4http://www.ddbj.nig.ac.jp/
5http://www.ebi.ac.uk/swissprot/



6.1 Sequence databases 66

(a)

(b)

Figure 24: An example of an alignment based on a) structural superposition (us-
ing STAMP) and b) a sequence alignment method (T-Coffee). Regions marked
with red are beta strands, regions marked with blue are of alpha type. The
three protein sequences are all domains in fascins; actin-crosslinking proteins.
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The TrEMBL database (Translated EMBL)6 contains the translations of all
coding sequences present in the EMBL Nucleotide Sequence Database. That
is, the DNA sequences in EMBL-Bank that code for a protein are translated
into the corresponding protein sequence. Only sequences which are not yet
integrated into Swiss-Prot are stored in TrEMBL. A subset of TrEMBL,
called SP-TrEMBL, contains sequences that eventually will be incorporated into
Swiss-Prot.

PIR (Protein Information Resource)7 produces the Protein Sequence Database
(PSD), which contains protein sequences that are functionally annotated.

To collect the information in these three databases, the United Protein
Databases (UniProt)8 project was formed in 2002. UniProt aims to create a
central database of protein sequence and function by joining the forces of the
Swiss-Prot, TrEMBL and PIR protein database activities.

6.2 PDB
The Protein Data Bank (PDB, http://www.rcsb.org/pdb/, [12]) is the single
world-wide collection of structural data of proteins and other biological macro-
molecules. In the PDB, all protein structures are stored in an organised way,
and all entries get a unique PDB accession code. The data in the individual
structure files is ordered according to the PDB format, making it easy to parse
and extract specific information. However, due to changes in the format during
the years since the data bank was established in 1971, not all files follow the
format completely. Also, the file format is adapted to structures determined by
X-ray crystallography, why some parameters may not be relevant to structures
determined using NMR and other techniques, and other parameters would be
needed. Work is under way to solve these problems.

6.3 Pfam
Pfam ([74], http://pfam.cgb.ki.se) is a semi-automatically created database of
multiple sequence alignments of protein domain families. The families are de-
fined based on clear common ancestry and sequence similarity. The database
is purely sequence based, but is mentioned here since it uses HMMs to define
families and construct alignments. Pfam consists of two sets of alignments with
corresponding HMMs; PfamA and PfamB.

The base of Pfam is a collection of high quality seed alignments. The initial
members of a seed alignment are collected from a number of sources, includ-
ing structural alignments, Swiss-Prot (see Section 6.1) and published align-
ments. The sequences are aligned by an automatic alignment method, most

6http://www.ebi.ac.uk/trembl/index.html
7http://pir.georgetown.edu/
8http://pir.georgetown.edu/uniprot/
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often ClustalW, and checked manually. From each seed alignment a HMM is
built, which in turn is used to search a non-redundant collection of sequences
from Swiss-Prot and SP-TrEMBL (see Section 6.1), called Pfamseq, for ad-
ditional members. The seed is updated with selected sequences until all known
members are found. These are aligned to the HMM to construct a full align-
ment of the family. Where available, structural information is used to ensure
that each Pfam family corresponds to just one structural domain. The seed
alignment, the HMM built from it, the full alignment and some annotation and
cross-references to other families make up Pfam-A. Pfam-B is a less reliable col-
lection of multiple sequence alignments, initially constructed by automatically
clustering the rest of pfamseq (all sequences not included in Pfam-A). In later
releases [10][9], Pfam-B has been constructed from all protein domain families
in the ProDom database, not included in Pfam-A. ProDom is an automatically
generated database of protein domain families [18].

As of 1999, 70% of the SCOP (Section 6.6) families are found in Pfam, and
57% of the Pfam families exist in SCOP [22].

6.4 DALI databases
The Dali Domain Dictionary[40] clusters protein domains by so called fold space
attractors. Each domain is regarded as a point in a high-dimensional fold space,
and a multivariate scaling method, similar to principal component analysis, is
used to find the groups of proteins sharing common features. At the next level,
the domains are clustered into fold types, where members of a fold have a mu-
tual Dali [38] Z-score above 2. Then Dali and a neural network approach is
used to cluster protein domains into groups of homologous proteins constituting
functional families, largely consistent with SCOP superfamilies (Section 6.6).
The domains are automatically defined based on compactness and recurrence.
The FSSP (Fold classification based on Structure-Structure alignment of Pro-
teins) database is a similar classification based on whole protein chains, instead
of domains [41].

6.5 CATH
In CATH[60], protein domain structures are classified into five levels: protein
class (C), architecture (A), topology (T), homologous superfamily (H), and se-
quence family (S). The classification is, as far as possible using current tech-
niques, done automatically, with the goal of completely automatic classification
in the future. The database classifies single domains, so multidomain proteins
are divided into separate domains using an automatic procedure. In those cases
where the procedure fails, the domain borders are determined manually.

The class (C-level) describes the content of α helices and β sheets in the
structures. There are four classes: mainly α, mainly β, α−β and a special class
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grouping all domains with low secondary structure content. The class is de-
termined by an automatic procedure, which examines the secondary structure
composition of one representative for each sequence family. The architecture
(A-level) describes the general arrangement of secondary structures and is de-
termined manually, while the topology (T-level) further groups the structural
domains based on the overall fold. Fold in this case means that the number
and arrangement of secondary structures are similar, and that the connectivity
between secondary structures are the same. The homologous superfamilies (H-
level) group domains by high structural similarity and similar functions. The T-
and H-levels are determined by structural comparison of representative proteins
using the SSAP program (Section 5.1, [78]), with different cutoffs for the two
levels. For a protein to belong to a certain homologous superfamily, it must also
have a common function to the other members in the superfamily. Function is
determined from Swiss-Prot, the PDB file or literature.

At the lowest level (S-level, sequence family), protein domains with high
sequence similarity (>35% identical) are clustered. These domains are assumed
to have very similar structures and functions. The sequence similarity is de-
termined by pairwise comparisons using the Needleman-Wunsch algorithm [58],
and the sequences are clustered into families by single linkage cluster analysis.

From the PDB [12], only crystal structures with a 3.0 Å resolution or better
and NMR structures are selected. These are sorted so that low resolution,
native X-ray structures are first and mutant NMR-structures become last. The
domain listed highest is chosen as representative for the sequence family in the
classification.

In addition to the actual classification, the database contains derived data
such as structural alignments and family templates. Also, for each structure
in CATH, a number of graphical representations are provided, together with a
report containing information from the PDB file, domain boundary data and
functional data.

The CATH database has recently been extended into the CATH-protein fam-
ily database (CATH-PFDB), which includes sequences found by searching the
non-redundant GenBank database with CATH domain sequences using profile
based search methods.

6.6 SCOP
We chose to use the SCOP (Structural Classification of Proteins) [57] database
(version 1.61) as the gold standard. In SCOP, all proteins with known structures
are divided into groups based on different levels of similarity. The classification
is done at the domain level (see Section 2), meaning that different parts of a sin-
gle protein may appear in multiple families in the classification, even in different
classes. The aim is to capture evolutionary relationships between protein do-
mains. In SCOP, a domain is defined as an evolutionary unit, either observed in
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Figure 25: A schematic picture of the SCOP classification, together with the
number of entries at each level, as of version 1.61 (to the right). Pictures of
protein structures are taken from the PDB.

isolation in nature or together with different domains in different multidomain
proteins.

In Figure 25, a schematic picture of the SCOP classification is shown. At
the lowest level in the classification are the actual protein domains (bottom in
Figure 25), sorted by species. Protein domains very similar in structure, and
with experimentally determined similarities in function, are put into the same
family, the next higher level. Especially, domains having a sequence identity
of 30% or more are assigned to the same family. Families of proteins with
similar structures, but uncertain similarity in function, are part of the same
superfamily. One level higher is the fold, where superfamilies with roughly the
same arrangement of secondary structures and the same topology are grouped
together. The highest level in the SCOP hierarchy is the classes, where folds
consisting of the same kinds of secondary structure elements are grouped. Apart
from the four main classes shown in Figure 25, all alpha-helices, all beta-sheets
and the two kinds of mixtures of alpha and beta, there exist three more true
classes - multidomain proteins, membrane proteins and small proteins. There
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are also four classes containing peptides, low resolution structures and other
groups of proteins that could not be included in the actual classification. These
are not considered as true classes.

SCOP includes all proteins in the PDB until the date they started working
on the current release of SCOP, and most of the proteins whose structures
have been published but not included in the PDB. The last few years a new
version of SCOP has been published every 4–6 months. The database is curated,
meaning that the similarity of the proteins is determined manually by a group of
experts. The investigation is done using both visual inspection and comparison
of structures. Automatic tools are used to speed up the classifications. Sequence
comparison can be used to group domains with high sequence similarity to the
same family, while structural alignments are used to suggest a fold for a protein
of interest, even though manual inspection must be used to verify the result
and choose an appropriate superfamily and family for the domain. The manual
check of the classification is the reason why the SCOP database often is used
as the gold standard for grouping of similar protein domains.

The ASTRAL Compendium [15] is a collection of sequences for the domains
classified in SCOP. The sequences can be retrieved filtered according to different
criteria such as sequence similarity.

6.6.1 PALI

PALI (Phylogeny and ALIgnment of homologous protein structures)[6] is a
database of structure-based sequence alignments and phylogenetic trees for each
SCOP family. For each family the database provides a multiple structural align-
ment, all possible pairwise alignments and two phylogenetic trees, one based on
structure similarity and the other on similarity of aligned residues. The struc-
tural alignments are constructed using the program STAMP ([66], Section 5.4).

Also, in the latest version [31], sequences homologous to the members are
aligned to the family, and Position Specific Scoring Matrices (PSSMs) and
HMMs are constructed based on these enriched alignments. The alignments,
PSSMs and HMMs are available in the database.

6.7 Homstrad
HOMSTRAD[56] is a database of aligned protein structures. The classification
is based on SCOP, Pfam, PROSITE, SMART and sequence comparisons by
PSI-BLAST and FUGUE. The information of all these methods/databases are
combined and the family definitions are defined manually to group proteins
that share sequence/structure similarity. For each family, a structure-based
alignment constructed using COMPARER[68], manually checked and edited, is
provided. The family alignment is composed of representative members only.

In the HOMSTRAD families, the sequences on the average have 30% se-
quence identity, and even if the sequence identity between a pair of sequences
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from the same family should be below 20%, they are often bridged by another
sequence having more than 20% identity to each of the sequences.

7 The structure anchored HMM method (saHMM)
In the previous sections, we have discussed methods to construct multiple se-
quence alignments based on statistics (Section 3) and methods to represent
these alignments and model protein families, in particular hidden Markov mod-
els (HMMs, Section 4). HMMs have proven to be very powerful at recognising
new members of protein families (see for example [55], [61]). However, as any
statistical method, HMMs based on conventional sequence alignments have dif-
ficulties in detecting very distant relationships, between protein sequences with
very low sequence identities. Therefore, several attempts have been made to use
structural information, both together with HMMs and with other methods, to
be able to detect these relationships (see Section 8).

The observation this work is based on, is that sequence alignments based
on statistical methods might differ significantly from those constructed based
on structural superposition of the corresponding protein structures (see Section
5.5). Since sequence alignments based on structural superposition align those
residues that are close in space, and really can be regarded as each others equiv-
alents, these alignments should be biologically more significant than alignment
based on statistics and comparison of the symbols representing the individual
residues. Especially for sequences with very low sequence identity, the structure
based sequence alignments should be more reliable in a biological sense. The
idea behind this work is to use multiple sequence alignments constructed from
multiple structural superposition of protein structures, to build HMMs that
might be better at finding distant relationships between proteins, far below the
twilight zone (see Sections 1 and 7.3.1). Our method and some preliminary re-
sults have previously been reported in [81] and presented at several workshops.

7.1 Outline of the method
In Figure 26, a “flowchart” showing the main steps of our method is shown. In the
first step, only those sequences in a family having very low sequence identity with
respect to each other are selected as representatives for that particular family
of proteins. The structures of these proteins are then multiply superimposed,
so that one superposition of structures is made for each family.

From the superposition a multiple sequence alignment is deduced, based on
which residues are close to each other in space (or preferably on top of each
other) when the structures are superimposed. This step often is performed
simultaneously as the structural superposition, depending on which method
(program) is used for the structural comparison. The resulting multiple sequence
alignment is (hopefully) much better than what could be achieved from aligning
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Figure 26: A schematic illustration of our method. We start by constructing a
structural superposition of all proteins in the family. This is then used to extract
a structure-based multiple sequence alignment, that in turn is used to build a
structure anchored hidden Markov model (saHMM) for the family. From the
resulting database of saHMMs useful information can be extracted. See text for
details.



7.2 Output 74

the sequences based on sequence information. Especially in the case of low
sequence identity, one would expect such a structure-based alignment to be
more biologically correct than one based on sequence information only.

To get more sequences in the alignment, and thus be able to build bet-
ter hidden Markov models (HMMs) in a later step, each of the representatives
can be searched independently against some sequence database using BLAST
(see Section 3.4) or some other sequence alignment tool. The so found sequences
(similar to the query sequence) are then aligned by sequence to the member used
as query, and consequently to the other members through the structure-based
alignment. In this way, several new sequences (with no structure information)
can be added to the structure-based alignment, creating a large multiple se-
quence alignment based on structure. This, however, has not been implemented
yet (see Section 11).

The structure-based multiple sequence alignment is used to build a struc-
ture anchored HMM (saHMM) representing the family. The construction of
one model for each family yields a whole database of saHMMs, which in turn
can be searched for similarities to new sequences. If one has a particularly in-
teresting sequence, this can be searched against the database to find which (if
any) saHMM fits the sequence best, and thus which family the sequence most
likely belongs to. If, on the other hand, one is particularly interested in a cer-
tain protein family, the corresponding saHMM can be used to search sequence
databases or newly sequenced genomes for more members of the family. In both
cases, the fact that the saHMMs are built from structure anchored alignments,
means that matching a sequence to a saHMM also matches the sequence to the
corresponding structure. Also, by aligning the new sequence to the proteins the
saHMM is built from, makes it possible to assign secondary structures to the
sequence.

7.2 Output
From a users point of view, the method should be a black box, into which a
sequence can be sent, and out comes some (hopefully useful) results. These
results are the name of the family (or a list of families) the sequence resembles
most, a measure of how good the match is, and links to structures representative
for the family. It could also be possible to produce an alignment of the query
sequence to the sequences the corresponding saHMM is built from. Based on
such an alignment of a query sequence to proteins for which the structures are
known, secondary structures could be assigned to the query sequence.

What happens inside the black box is that the sequence is searched against
all saHMMs using hmmpfam in the HMMER2.0-package. The result of this
search is a list of names of saHMMs that match the sequence, sorted by the
E-value of the match. An example of the output is shown in Figure 27.

The E-value corresponds to the probability that the similarity found is ran-
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dom. The lower (closer to zero) the E-value is, the less probable it is that the
match is random, i.e., the more likely it is that the query sequence really is
related to the sequences the saHMM is built from (see also Section 4.2.1). From
this list the best hit (or the best hits) is chosen, and the name and a description
of the family corresponding to the successful saHMM is reported, as well as
the names of and links to the protein domains the saHMM represents. All this
information can be precomputed.

Another possibility is to search a whole genome with a single saHMM, look-
ing for sequences belonging to a certain family. The output of such a search
would be similar to the previous, except that instead of a list of families that
most likely fits a query sequence, one will get a list of those protein sequences
from the genome that most likely belong to the family modeled by the saHMM.

7.3 Implementation
7.3.1 Selection of sequences to use

To build the models we needed to define groups of proteins with similar struc-
tures, and select representatives from each group. We chose to use the family
level in the SCOP classification (Section 6.6) as groups of protein domains to
superimpose.

In the PDB (Section 6.2), and consequently in SCOP, there is a high degree
of redundancy [14]. Some proteins have a huge number of entries, only differing
in single positions, while the majority of proteins only have one entry. Conse-
quently, in SCOP some families contain lots of domains, while other only have
one or two members. The number of families in superfamilies and superfamilies
in folds are also skewed, but not correlated. Both the PDB and SCOP are biased
towards proteins that crystallize or that are suitable for NMR experiments.

To avoid getting an alignment biased towards sequences very common in the
family, and to get maximum spread in the representatives from each family, we
decided to use only sequences with mutual sequence identities below a certain
limit. The limit was defined as the border to the so called twilight zone as
described in [65]. The actual curve that defines the border to the twilight zone
differs depending on the data it is based on, and on slightly different defini-
tions between authors, but the basic idea is the same. If all known proteins
are pairwise aligned, the resulting sequence identity can be plotted against the
alignment length. In such a plot, pairs of non-related proteins will have low
sequence identity over mostly short alignment lengths, while related proteins
often have higher sequence identities and longer alignments. It turns out that
protein pairs falling above the curve in Figure 28 always are homologous pro-
teins. Around the curve, the number of unrelated pairs start to appear, and
increase as one goes below the curve. Below the curve most of the protein pairs
are not related at all, but there still exist some pairs that are. That two proteins
are related does not imply that they have a high sequence identity. The twilight
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Figure 27: Example of output from HMMER. The first rows are some general
information. Then the name of the database of HMMs is presented. In this
case the search is done against the database ’all.hmm’, containing HMMs for
a number of protein families. The sequences of the query proteins are in this
case stored in the sequence file ’scop2.fa’. Then the actual result are presented.
The first (and only shown) query is the protein domain d1d2zb_. Some general
information derived from the sequence file is presented along with the query
name. This search generated two hits. The best hit is to the HMM named
’a.77.1.1’, modeling the same family, which in other words is the DEATH domain
family. The score of this hit is 320.8 and the E-value is 1.4e-94. This is a very
significant hit, so the query most likely belongs to the DEATH domain family.
The other hit, g.7.1.1, has an E-value of 9.8, which in some cases might give
interesting clues, but is not significant. The last rows show the actual residues
matched to the HMM. It is also possible to get a sequence alignment of the
query to the HMMs (not shown).
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Figure 28: The curve that defines the twilight zone according to Rost [65]. When
the percentage sequence identity is plotted to the length of the alignment of two
protein sequences, related proteins fall above this curve. The further into the
twilight zone one gets, the less likely it is that the two proteins are related.

zone is the border where the percentage sequence identity between two aligned
protein sequences no longer tells whether the two proteins are related or not
(Figure 28).

In practice, this “border” is fuzzy, hence it is called the twilight zone. The
equation derived by Rost to model this “border” is

pI =

⎧⎨
⎩

100 for L ≤ 11
480 · L−0.32·(1+e−L/1000) for 11 < L ≤ 450

19.5 for L > 450
(24)

where pI is the cut-off percentage of residues identical over an alignment length
of L residues. This means that for short alignments the sequence identity has
to be very high for the two sequences to be considered related, while for longer
alignments even quite low percentage identities are significant. The equation
is fitted to the data such that it excludes most false positives, i.e. most pairs
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falling above this curve really are related. Pairs of proteins falling under this
curve might be related, but most probably are not. One goal of this work is
to be able to detect those pairs that fall under the curve even though they are
related.

The procedure to select representatives for each family is illustrated in Figure
29. The representatives were chosen by taking all proteins belonging to the
family (as defined in SCOP) and running STAMP (Section 5.4, [66]) on all
pairs of proteins. In the cases where STAMP failed, MAPS was used to produce
a better start alignment for STAMP to work on. If STAMP failed again, the
MAPS alignment was used in cases where it was long enough, otherwise the
two sequences were considered “troublesome” and treated as very similar. If the
STAMP alignment of two sequences revealed a sequence identity above the limit
for that alignment length, as defined in equation (24), one of the sequences was
discarded. If one of them had higher resolution than the other, the one with the
best resolution was kept. If the resolutions were within 10% of the mean value of
the two resolutions, the protein with the best R-value was chosen, and if these
were equal, one was chosen randomly. To guarantee high quality structures
to make the superimpositions on, only X-ray structures with a better (lower)
resolution than 3.6Å were chosen, and all structures with worse resolutions, or
determined using NMR or any other technique, were discarded. After going
through the first round of selection, all removed proteins were checked against
all left to assure that only sequences with too high sequence identities were
discarded. The rationale behind this is that in the process of removing proteins,
it may happen that sequence A is removed due to high similarity to sequence
B. If B later is removed due to similarity to sequence C, it may well happen
that A and C have a similarity below the threshold, and thus A now lacks a
representative and has to be reintroduced.

An alternative to the SCOP classification would be to use CATH, a similar
database that is built on automatic clustering of the proteins (see Section 6.5).
This would make the method less dependent on A. Murzin (and co-workers),
who runs SCOP, but on the other hand CATH as usually seen as a less reliable
classification of proteins. This far, CATH is less straightforward to use, and
SCOP is the commonly used database in similar studies.

PALI (Section 6.6.1) is a collection of STAMP-generated alignments of SCOP
families. The alignments, and PSSMs and HMMs constructed from them, are
available in the database. However, since the alignments are based on whole
SCOP families, and not only those members having a very low sequence identity,
we had to make our own alignments. Additionally, the alignments are not easily
available other than one by one, and much of the work was done before we knew
about the database.
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Figure 29: A flowchart showing the procedure used to select representative
proteins from each SCOP family. Each member in a family was compared
to each other member, by constructing a pairwise structural alignment using
STAMP. The length of the structure based alignment and the resulting pairwise
sequence identity were calculated, and if the numbers fell above the curve in
Equation (24), that is the two proteins are too similar, one of them was removed.
The protein to remove was chosen as the one with the highest (worst) resolution,
or if the resolutions were similar, as the protein with highest R-value.



8. Related work 80

7.3.2 Construction of superpositions and multiple alignments

The STAMP method and program (Section 5.4) was chosen for the construction
of structural superpositions. The program also generates the structure-based
multiple sequence alignment based on structural equivalences. The reason for
choosing STAMP was that it produces the best sequence alignments among the
programs tested. The first choice was MAPS (Section 5.3), since this method
(program) superimposes multiple structures simultaneously. The program pro-
duces very nice superimpositions when looking at the structures in 3D, but can
only find very short stretches of aligned residues, those that are really close in
space, and therefore the program was abandoned. STAMP produces longer se-
quence alignments, and also has the benefit that the output can be easily parsed
to a format suitable for input to HMMER. Important to note is that there does
not exist many publically available programs for multiple superposition of pro-
tein structures. The only real alternative to STAMP and MAPS is the multiple
version of SSAP, which is not readily available to us.

STAMP needs an initial alignment to start from. We use the ROUGHFIT
option, which generates an initial alignment where the sequences are aligned
from their N-terminal ends. This works well in cases where the sequences are
roughly of the same lengths, and where there is high structural similarity. How-
ever, in general it often fails to generate a good starting point. In those cases
where STAMP completely fails to align the domains in the family, we chose to
use MAPS to generate a better initial alignment in the form of superimposed
structures.

7.3.3 Construction of HMMs

In Figure 30 the procedure followed to construct one saHMM for each SCOP
family is illustrated. The representatives of each SCOP family with at least two
members left after the selection procedure described in Section 7.3.1 were mul-
tiply superimposed as described in the previous section. The multiple sequence
alignments produced by STAMP were fed into HMMER version 2.0 to construct
HMMs, using default parameters. The type of HMM was chosen to be optimal
to find alignments and/or hits local with respect both to the HMM and with
respect to the query sequence. All HMMs were calibrated to get fitted E-values.

8 Related work
The idea to use protein structures and structure-based alignments to improve
recognition of related proteins is not new. The incorporation of structural infor-
mation has in many cases proved to improve the ability to find remote relation-
ships. Perhaps the most straight forward approach is to use structural align-
ments to generate substitution matrices for use in sequence comparisons. Blake
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Figure 30: How the family saHMMs were constructed. Only SCOP families
with two or more representatives left after the selection described in Section 7.3.1
were used, since at least two proteins are needed to construct an alignment. The
representatives in each family were structurally aligned as described in Section
7.3.2, using MAPS when needed. The resulting structure anchored multiple
sequence alignments were fed into HMMER2.0, using standard parameters, to
produce the final saHMMs.
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and Cohen [13] use the CATH classification and the structure alignment pro-
gram AFFC[23] to construct a series of substitution matrices based on structural
alignments. Their results indicate that the addition of structural information
improves the alignments produced for sequences with low sequence identity.

Rice and Eisenberg[64] used pairwise structural alignments to construct a
3D-1D substitution matrix, H3P2, that is used to match a sequence and its
predicted secondary structure to representative proteins with known structures.
Each position in the query sequence is represented by one of seven residue classes
and one of three secondary structure classes. Each position in the representative
structures is described by one of seven residue classes, one of three secondary
structure classes and two classes indicating whether the residue is buried or not.
This makes the substitution matrix five-dimensional. It is shown that the H3P2
matrix detects more distant homologies, where the sequence identity is very low,
than common matrices such as PAM250 and BLOSUM62.

Kelley et al.[46] use structural alignments to produce so called 3D-PSSMs
(three-dimensional Position Specific Scoring Matrices), which are used in a dy-
namic programming procedure together with secondary structure matching and
solvation potentials. The addition of 3D information is shown to increase the
methods ability to recognise homologous sequences.

FUGUE ([69], http://www-cryst.bio.cam.ac.uk/fugue/) is a program for ho-
mology recognition that uses environment-specific substitution tables derived
from structural alignments and structure-dependent gap penalties, to construct
profiles based on structural information. Query sequences are searched against
a sequence database to construct a PSI-BLAST alignment, which is converted
to a profile that is compared to the structure-based profiles. The structural
alignments are collected from HOMSTRAD ([56], Section 6.7). They find that
FUGUE is better than common sequence comparison and fold recognition pro-
grams such as PSI-BLAST and THREADER.

Structural information has also been included in HMMs. Hargbo (now Tån-
grot) and Elofsson [35] constructed HMMs based on both sequence and sec-
ondary structure simultaneously, so called ssHMMs. The ssHMMs match and
insert states have, in addition to the emission probabilities for amino acids (Sec-
tion 4), also associated an emission probability for secondary structures. This
means that even though the actual sequence symbol does not match the HMM,
a position can get higher probability if the secondary structure matches that
of the model. The secondary structures for query sequences, which of course
are not known, are predicted using some secondary structure prediction method
before the search. The ssHMMs were shown to perform better than “ordinary”
HMMs in recognizing proteins having the same fold as the modeled proteins.

Secondary structure information have been included in profiles as well. Lüthy
et al. [51] use secondary structure specific substitution tables to construct sec-
ondary structure-based profiles. They show that the secondary structure-based
profiles are better than profiles based on an ordinary Dayhoff table at recognis-
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ing distant homologies.
Gnanasekaran et al. [28] used structure-based multiple sequence alignments

to construct profiles of conserved transmembrane β strand regions in porins.
These profiles were successfully used to search for β stranded membrane proteins
in a sequence database of mostly membrane proteins.

Al-Lazikani et al. [1] combine trusted multiple sequence alignments, derived
from structural alignments, with sequence alignments of close relatives, and use
the resulting alignment as a base for a hidden Markov model, in a way similar to
our idea. However, they use manual intervention where required, and implement
the method on a single family only. Since the goal of their work was to locate
the SH2 domain in Janus kinases, which they successfully did, the method itself
was not evaluated or compared to other methods. Their positive results were
encouraging for further testing of our approach.

Griffiths-Jones and Bateman[33] have come up with a strategy very similar
to ours. In their work, they build HMMs from structural alignments derived
from the HOMSTRAD database ([56], Section 6.7). HMMs were built from the
HOMSTRAD alignments and from alignments of the same sequences produced
by ClustalW and T-Coffee. The HMMs were used to search Pfamseq (see Sec-
tion 6.3) for sequences belonging to the same family as those included in the
model. Only those HOMSTRAD alignments that correspond to a single Pfam
family were used, so that the Pfam database could be used as a list of family
memberships. The specificity and sensitivity were calculated for the HMMs’
ability to place sequences in the correct family. In their study, they found that
the sensitivity of HMMs built from T-Coffee alignments did not differ signif-
icantly from HMMs from HOMSTRAD alignments, and that ClustalW-based
HMMs performed slightly worse, bordering on significance.

Their method differs from ours in that they use HOMSTRAD families in-
stead of SCOP. We have also taken great care only to include sequences with very
low sequence identity in our alignments, to ensure maximum possible spread in
training data. In the HOMSTRAD families, the sequences have higher sequence
identities (Section 6.7).

9 Testing the saHMM method

To test the performance of the method a number of tests were constructed.

9.1 Going into the midnight zone
To start with, two selections were made according to the procedure described
in Section 7.3.1, one filtered according to the curve described in Equation (24),
and one using a sequence identity threshold lying 10 % below this curve. This
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second selection would show the effect of going even deeper into the “midnight
zone”.

An saHMM was built for each family based on the sequences left after filter-
ing. Then all sequences in SCOP (Section 6.6) were searched against all HMMs
to find which model(s) that fitted each sequence. The results of these searches
were summarized in a sensitivity-specificity plot. The sensitivity is defined as
the fraction of sequences that get a hit to their corresponding family HMM. For
a given E-value e in the search results, the sensitivity is calculated as

sens =
tp

tp + fn
. (25)

Here, tp denotes the number of true positives, that is the number of sequences
that find their corresponding family HMM with an E-value less than or equal
to e, and fn is the number of false negatives, that is the number of sequences
whose family HMM get an E-value greater than e and therefore are not found.

The specificity measures how specific the results are, that is the fraction of
of all hits that are correct relationships. For a given E-value e, the specificity is
calculated as

spec =
tp

tp + fp
, (26)

where tp is defined as above and fp is the number of false positives, that
is the number of HMMs that get an E-value less than or equal to e to some
sequence not belonging to the same family as the HMM.

In the ideal case, the specificity would be one for all sensitivity values from
zero to one, and then drop rapidly, meaning that no false hits are found until
all true relationships are identified.

9.2 A worst case scenario
Secondly, a worst case scenario was studied, namely the case of having only two
sequences to base the saHMMs on. This is a worst case since the family specific
information increases with more proteins in the family. An HMM built from
just two sequences risks to either be too specific for those sequences only, or to
include too much prior information and match “anything”. Too few examples to
build the HMM from makes it very difficult to distinguish between important
characteristics, such as conserved residues, and properties that just happen to
be the same for those particular sequences, without being a characteristic for
the whole family. The performance of HMMs is expected to increase with an in-
creasing number of sequences to base the HMM on, since more sequences makes
it possible to capture properties common for the whole family. To investigate
the worst possible performance, only those families that had just two sequences
left after the filtering procedure were collected. The investigation was done for
the selection 10% below the twilight zone curve.
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9.3 The effect of few proteins in the HMM
Since most families only have just a few members left after the filtering proce-
dure, most have just two members left, we decided to investigate the effect of
the number of sequences in the HMM on its ability to recognise family members.
For this purpose, we chose to take a closer look at the Ig-Vset domain family,
since it is one of the largest families available. The family contains 953 members,
and after selection (based on the twilight zone curve) 25 of these are left. Of
these 25, all possible combinations of two proteins were chosen and structurally
aligned, and HMMs were constructed from the resulting pairwise alignments.
The procedure was repeated for all possible combinations of three, four, five,
etc. members, up to the complete set of 25 members. Since the number of pos-
sible combinations rapidly become huge, 1000 of the possible combinations were
randomly chosen for each of the groups of three to 22 members. Each HMM was
used to search SCOP for family members, and the number of members found
was counted. The results were summarized in a figure (see Figure 37). Along the
x-axis, the number of proteins included in the HMMs are indicated, and along
the y-axis the number of family members found are shown. This means that the
first “column” in the plot shows the ability of HMMs built from combinations
of two proteins to find family members, the second shows the performance of
HMMs built from three sequences, etc. Each mark (stretch) in the figure rep-
resents one or more HMMs, since several HMMs can find the same number of
family members. Each column is normalised, such that the mark representing
most HMMs gets a weight of one, and the others lower weights corresponding
to the number of HMMs represented by each mark. The colours of the marks
denote these normalised values, such that red marks represent many HMMs,
while dark blue ones represent only a few.

9.4 The effect of structure anchoring
Finally, the effect of basing the HMMs on structural superimposition, instead
of sequence based alignments, was assessed. For each family of protein domains
where it was possible to construct an saHMM, the domain sequences were also
aligned using the sequence-based alignment program T-Coffee. More informa-
tion on T-Coffee can be found in Section 3.6.3. The sequence-based alignments
were then used to build HMMs, resulting in a second database of HMMs corre-
sponding to SCOP families. In the following those HMMs will be called tcHMMs
since they are built from T-Coffee alignments.

We use the default parameters in T-Coffee for the test. One of the reasons
for selecting T-Coffee as the reference sequence alignment program is that it is
superior[59] to ClustalW, one of the most commonly used sequence alignment
programs.

All the sequences in SCOP were searched against the two databases of
HMMs. For each domain sequence there is only one correct saHMM and one
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tcHMM that should be found, since one domain in SCOP only belongs to one
SCOP family. However, hits to HMMs representing families in the same super-
family as the query sequence might also be acceptable. The reason SCOP was
chosen as the collection of sequences to test on, is that we know which family
each domain sequence belongs to, and therefore we also know which HMM to
expect a hit to.

The way the sequences to build HMMs from were chosen, ensures that all
sequences belonging to a family with a corresponding HMM have a significant
sequence similarity to sequences used to build the HMM (see Section 7.3.1).
Because of this similarity, it should be expected that all sequences quite easily
can find their “family HMM”. To really test the HMMs capability to recognise
sequences with very low sequence similarity to other sequences in the family, but
where the structure is conserved, another set of saHMMs (and corresponding
tcHMMs) was constructed. In this collection, a number of HMMs were con-
structed for each family, leaving out one representative sequence at a time. As-
suming we have a family with representative domains A, B and C, one structure-
based alignment was constructed from each of the groups AB, AC and BC, and
saHMMs were constructed from these alignments. The question is then if the
saHMM built from AB is found when searching with sequence C (or sequences
similar to C in sequence), and similarly if AC is found by sequence B and rela-
tives, and BC by sequence A and sequences similar to it. Corresponding HMMs
were constructed from sequence-based alignments of the subgroups.

10 Results and evaluation of the saHMMs

10.1 Number of representatives left after selection
From the SCOP classification, only true classes were used in this work (see
Section 6.6), that is, for example peptides and low resolution structures were
removed prior to the selection, and are not included in the numbers shown
below.

After going through the selection procedure described in Section 7.3.1, 2794
of the 42434 domains in SCOP1.61 were left. These are distributed over 748
families, each having between 2 and 35 members. About half of the families are
left with only two members. From these, we were able to construct saHMMs
for 746 families.

The second selection made, selecting only those proteins that have a sequence
identity 10% below the twilight-zone curve, to any other selected protein from
the same family, was slightly smaller. In this set, 2149 domains was left after se-
lection, distributed over 653 families with between 2 and 32 members each. Also
here, about half of the families are left with only two members. 653 saHMMs
could be constructed from this set of sequences.
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Figure 31: A sensitivity-specificity plot over the result from the twilight curve
selection and the selection based on a threshold 10% below the curve. The
sensitivity is the fraction of all true relationships recognised, and is plotted
along the x-axis. The specificity is the fraction of all relationships found that
are correct, and is plotted along the y-axis.

10.2 The effect of going deeper into the midnight zone
First, the performance of the two selections made was compared.

In Figure 31, the specificity is plotted versus sensitivity for a number of E-
values ranging from zero to ten. The line shows the results for the selection
based on the twilight zone curve, while the broken line shows the results for
the selection 10 % below the curve. For the selection defined by the twilight
zone curve, the performance is very good, with almost 90% of the sequences
finding their corresponding family HMM before the number of false hits exceeds
5% (vertical dotted line in the figure). The selection based on a threshold 10%
below the twilight zone curve performs slightly worse, with about 85% of the
true relationships found at a false hit rate of 5%. But this is still quite high,
showing that even though we are well below the twilight zone, it is possible to
identify a large fraction of the members of a protein family.
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Figure 32: The four figures 33, 34, 35 and 36 collected in the same figure.
Top left: Percentage sequence identity as a function of alignment length. The
threshold 10% below the twilight zone curve (continuous line) is shown with
dashes. Top right: Percentage sequence identity as a function of percentage
true positives found. Bottom left: Percentage true positives found as a function
of number of residues aligned. Bottom right: Percentage true positives found
as a function of percentage false hits.

10.3 A worst case scenario
To investigate the worst possible performance, only those 349 families that had
just two sequences left after the filtering procedure were collected. In Figures
33, 34, 35 and 36, each star represents one of these families. A star in one
figure has a corresponding star in the other figures, coloured the same way and
representing the same family. The four figures are collected in Figure 32, to
illustrate how they are related. As an example, the family of the AAT-like
domains is marked with an arrow, and the four stars representing this family
are connected by dotted lines.

When the sequence identity between the two proteins in each family is plot-
ted as a function of alignment length (Figure 33), it turns out that most pairs
have quite low sequence identities (well below the threshold) distributed over
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Figure 33: Percentage sequence identity as a function of alignment length. The
threshold 10% below the twilight zone curve (continuous line) is shown with
dashes.

relatively short alignment lengths (less than 100 aligned residues).
The percentage positives found was calculated as the number of family mem-

bers that had an E-value below 0.1 (those are members to which the HMM had
a significant hit), divided by all family members. Most families found 100% of
their members. This is very positive, but should not be too surprising since all
family members have a relatively high sequence identity (over the threshold of
10% below the twilight zone curve) to at least one protein included in the HMM.
It seems like percentage sequence identity within the HMM does not affect the
performance noticeably, as can be seen in Figure 34. Here, percentage sequence
identity is plotted as a function of percentage true family members found. The
distribution displayed along the right axis shows the number of families at each
sequence identity, finding 100% of their members. Considering that most fam-
ilies have low sequence identity, no correlation can be found between sequence
identity and ability to find family members.

When plotting the percentage family members found as a function of align-
ment length (Figure 35), longer alignments are found to give slightly better
results.

The percentage false hits was calculated as the fraction of the proteins found
by a HMM (with an E-value below 0.1), that do not belong to the family. In
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Figure 34: Percentage sequence identity as a function of percentage true posi-
tives found.

Figure 36, it can be seen that most HMMs either find all their family members,
or they do not get any false hits at all. In addition, the major part of all family
HMMs find more than 80% of their family members, with less than 20% false
hits, which is promising. The histogram at the top shows the distribution of
families that find 100% of their family members.

10.4 The effect of few proteins in the HMM
The results from the searches with saHMMs built from combinations of different
number of proteins are shown in Figure 37. Along the x-axis, the number of
proteins included in the HMMs are indicated, and along the y-axis the number
of family members found are shown. For HMMs built from two sequences only,
the results are very diverse. Some combinations of two proteins make it possible
to find about 900 of the 953 family members, while other combinations find less
than 50. Two categories of HMMs are slightly more represented; those who find
very few members (about 20) and those who find almost all (about 900). These
results indicate that it is impossible to know whether an HMM representing a
family with only two members left after filtering makes a good job at recognising
all possible members (known and unknown) or not. The trend when adding
more representatives to the HMMs, is that the majority of the HMMs find more
and more family members. At about ten proteins in the HMM, the performance
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Figure 35: Percentage true positives found as a function of number of residues
aligned.
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Figure 36: Percentage true positives found as a function of percentage false hits.
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Figure 37: The number of family members found for different combinations
of representatives from the Ig-Vset domain family. Each “column” in the plot
represent the result for HMMs built from combinations of the corresponding
number of representatives. See Section 9.3 for an explanation of the plot.

seems to approach a “steady-state”, and thereafter, not much is gained by adding
more members. This is contrary to what one might expect - adding more family
members should make the HMM better at recognising diverse family members
and less specific for the few examples used in the construction. The “steady-
state” might be due to increasing difficulties at superimposing many structures
simultaneously. Another reason for this behaviour might be that trying to merge
too much information, in the form of many different members, makes the HMM
too “broad”, so that it is not able to match anything really good.

10.5 Comparison to sequence-based alignments
For each family with at least two members left after filtering with the twilight
curve as cutoff, two HMMs were built. The first, the saHMM, is based on
structural alignments, while the other, the tcHMM, is based on a sequence
alignment of the same sequences, constructed with T-Coffee (Section 3.6.3). The



10.5 Comparison to sequence-based alignments 94

Family members found, % False hits, %
saHMMall 82.09 (24,811) 1.78 (450)
tcHMMall 93.86 (28,367) 4.11 (1,215)
saHMMabo 26.11 (533) 15.13 (95)
tcHMMabo 37.04 (756) 23.87 (237)

Table 1: The percentage of all family members found and the percentage of all
hits that are false for each kind of HMM. Numbers in parenthesis are absolute
numbers. saHMMall and tcHMMall are HMMs based on structure superposi-
tions and T-Coffee alignments respectively, made on all representatives in the
family. saHMMabo and tcHMMabo are corresponding HMMs made from all
representatives but one at a time in a family.

two sets of HMMs were used to search all SCOP sequences for family members.
The results are shown in the first two rows of Table 1. The saHMMs on average
find 82.09% of the family members, and only 1.78% of sequences found by the
HMMs are false hits, that is, does not belong to the same family as the HMM.
The tcHMMs on the other hand find 93.86% of all family members, but 4.11%
of the hits are false. Surprisingly, the tcHMMs are better at recognising family
members than the saHMMs are. But this ability comes at a cost, the tcHMMs
have more than the double amount of false hits compared to the saHMMs. To
get reliable results, the saHMMs seem superior.

In the, perhaps more realistic, case where one sequence at a time was removed
from the selection prior to building the HMMs, the results are similar. Here,
only the sequences removed were counted as true hits. That is, when searching
the HMM lacking sequence x against SCOP, a true hit was counted if x is found,
ignoring all other family members. All hits to non-family members were counted
as false hits. The results are displayed in the last two rows of Table 1. 26.11%
of the saHMMs lacking one representative, are able to find that sequence among
all others, while 15.13% of the hits are false. The tcHMMs find 37.04% of the
“missing” sequences, but 23.87% of the hits are false. Here too, the tcHMMs
find more family members, but the relative increase in the number of false hits,
compared to the saHMMs, is higher than the relative increase in true hits.

It is worth noting that the tcHMMs are not an established method, but was
invented by us for testing purposes. These might be used as a complement to
the saHMMs, when a higher coverage is required. Since the tcHMMs too are
based on the selection of sequence below the twilight zone, these too would be
less biased than many other methods.
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11 Discussion and future work
The main strength of the saHMM method is that it uses accurate multiple
sequence alignments as the base for HMMs. With accurate we mean the correct
alignment from a structural point of view. Aligning sequences based on where
residues are placed in space is intuitively more correct than basing an alignment
on the raw sequence and algorithms for symbol recognition and comparison.
This is especially true when the goal is to find similarity in structure between
protein domains. An additional strength gained by using alignments based on
structural superimpositions is that even domains where the sequences differ
a lot can be aligned, cases where sequence-based approaches may fail to find
similarities to base the alignment on.

The main weakness of this approach is the lack of good multiple structure su-
perimposition methods/programs, meaning that the alignments we use as a base
for the saHMMs still not are optimal. Most programs for structural comparison
only work with two structures at a time to do pair-wise superimpositions. And
even though some programs do excellent structural superimpositions using rigid
bodies, they often fail to deduce the sequence alignments. In our implementa-
tion we trust on STAMP to give a good multiple sequence alignment, based on
the structures. Even though STAMP is nor perfect, the results we get are quite
good, with relatively low false positive rate.

Some other program, existing or not yet implemented, could produce more
accurate alignments. An alternative could be to use different programs for dif-
ferent families, depending on the characteristics of the family and/or program.
Another alternative would be to construct the structure anchored alignments
manually or semi-manually, starting with an automatically derived superimpo-
sition and manually determining which residues to align. But such an approach
would be VERY time consuming and require expert knowledge of the proteins
in question, and therefore is not a realistic alternative.

There are reports that also superposition of structures may give ambiguous
alignments [25], that distinct alignments can be generated that are identical in
the number of residues aligned and in the RMSD of the superposition. This
indicates that great care has to be taken in the choice of target function to
optimize, and that perhaps also other parameters than purely geometric ones
should be considered.

To be able to construct good sequence alignments based on structural su-
perposition is an area where more work has to be done.

In our implementation we use the SCOP classification (see Section 6.6) to
divide protein domains into families. SCOP is a highly reliable classification,
since it is manually curated by experts, and therefore is a very good base for
the HMMs. However, this is also the drawback of using this database. The ex-
istence of the database relies on a few people, and the inclusion of new protein
structures in the database cannot be done immediately. There exist some au-
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tomatically created databases, but the exact classification of domains depends
on the method used.

We chose to use the family level in the SCOP classification as the base for
our HMMs. The results might be better if one works on the superfamily level,
especially by pooling the result of all families in the same superfamily. In the
work of Gough et al. [30], they show that constructing many HMMs representing
the same superfamily, and combining their results, give higher coverage than an
HMM constructed from all members of the superfamily.

The structure base sequence alignment can be extended to include sequences
without known structures, that are similar in sequence to one or more of the
individual proteins the alignment is built from. To construct a larger structure
anchored multiple sequence alignment in this way would give the HMM more
family specific information, and decrease the need for general prior information.
This was discussed in Section 7.1, but has not been implemented yet. To imple-
ment the addition of more sequences there are some questions to be answered,
and some decisions to be made. For example, if one sequence is aligned dif-
ferently to two members of the family, which alignment should be used? How
many extra sequences should be included in the alignment? How much can the
number of extra sequences differ between members in a family without intro-
ducing too much bias? How similar to a family member or to each other can
the extra sequences be, to be useful? These questions remain to be answered.

Of the all the new protein structures released in the PDB (Section 6.2) in
1998, 92.6% were structurally similar to known folds and two thirds of these had
related functions as well. Of those proteins that had no clear sequence similarity
to any other protein with known structure, 75% had high structural similarity
to previously known folds, and almost 50% of these had related functions [48].
Since the number of new structures grow all the time, these numbers can be
expected to have increased since the study was done, and continue to rise as
the structural genomics projects proceed. Only 26% of the new structures had
no clear sequence similarity to already known structures. We were able to
construct saHMMs for almost half of the families in SCOP, but since the number
of structures in each protein family are likely to increase rapidly, this number is
expected to increase as the number of structures known for each protein family
grows. This will make the saHMMs cover more of the protein space, and as
more structures become known, more members can be included in the models
and make them even better.

To increase the performance of the HMMs the parameters in HMMER2.0
might have to be optimized. For example, in these kind of experiments, an HMM
designed to find a global match to the HMM locally in the sequence might be
better suited. Or more or less or different prior information should be used to
best take care of the structural information in the structure anchored sequence
alignments and the careful selection of only very distant representatives.

The main work to be done now is first to study the alignments the saH-
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MMs are based on, and relate these to the results of the individual saHMMs.
Then the saHMMs should be compared to other currently available methods for
recognition of distant relationships, and benchmark the performances.

To increase the sensitivity of the saHMMs, the inclusion of more sequences
using for example BLAST as discussed above, should be implemented.

Within a near future, the method should be available as a server, where it is
possible to submit a sequence and get a family assignment back, if a relationship
can be found. The performance and reliability of such a server is expected to
increase as more structures become known, and as the saHMMs are optimized.
Also, the database of saHMMs the server relies upon should be automatically
updated as new releases of SCOP become available.

Since the saHMMs are based on structure anchored sequence alignments, it
could be possible to assign a secondary structure to a query sequence. If a match
is found between a query and an saHMM modeling a certain family, the query
can be aligned to the family members (representatives) the HMM is based upon
using the saHMM. The structures of all representatives are known, meaning that
such an alignment would give a clue about the secondary structures of the query
sequence. If the representatives all have an alpha helix at a certain position,
then the corresponding residues in the query should form an alpha helix too.
This kind of secondary structure predictions remain to be implemented and
evaluated.
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A Appendix
URL’s related to

• Databases:

– Biology WorkBench - http://workbench.sdsc.edu/
A web-based tool to search many protein and nucleic acid sequence
databases, integrated with access to analysis and modeling tools.

– SRS - http://srs6.ebi.ac.uk
An interface that provides access to data stored in publicly available
databases. SRS makes it easy to browse very diverse data, such as
literature or biological sequences.

– GenBank -9
All known nucleotide and protein sequences.

– EMBL Nucleotide Sequence Database -
http://www.ebi.ac.uk/embl/index.html
All known nucleotide and protein sequences.

9http://www.psc.edu/general/software/packages/genbank/genbank.html
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– DNA Data Bank of Japan (DDBJ) - http://www.ddbj.nig.ac.jp/
All known nucleotide and protein sequences.

– TrEMBL - http://www.ebi.ac.uk/trembl/index.html
Translated EMBL. All DNA sequences stored in the EMBL data base
are translated into their corresponding protein sequences.

– Swiss-Prot - http://www.ebi.ac.uk/swissprot/
Annotated protein sequence information.

– PIR - http://pir.georgetown.edu/
Functionally annotated protein sequences.

– UniProt - http://pir.georgetown.edu/uniprot/
A project aimed at creating a central data base of protein sequence
and function.

• Classifications of proteins

– CATH - http://www.biochem.ucl.ac.uk/bsm/cath_new/index.html
Hierarchical classification of protein domain structures.

– SCOP - http://scop.mrc-lmb.cam.ac.uk/scop/
Structural Classification of Proteins. Familial and structural protein
relationships.

– PDB - http://www.rcsb.org/pdb/
A data base containing the 3D-coordinates of all currently known
macromolecular structures (predominantly protein).

– Pfam - http://pfam.cgb.ki.se
Multiple sequence alignments and hidden Markov models of protein
domains.

• Programs and servers

– BLAST - http://www.ncbi.nlm.nih.gov/blast/
Server for sequence searches using BLAST, PSI-BLAST or other vari-
ants.

– ClustalW - http://www.ebi.ac.uk/clustalw/
Server for multiple sequence alignments.

– T-Coffee10 -
The T-Coffee program itself and information related to it, links to
servers that construct multiple sequence alignments using T-Coffee.

– HMMER - http://hmmer.wustl.edu/
The HMMER program package and information related to it.

10http://igs-server.cnrs-mrs.fr/~cnotred/Projects_home_page/t_coffee_home_page.html
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– CE Home Page - http://cl.sdsc.edu/ce.html
Databases and tools for comparison of protein structures using com-
binatorial extension.

– CL Home Page - http://cl.sdsc.edu/cl1.html
Using the compound likeness method for finding similarities in pro-
tein structures.

– MAPS - http://bioinfo1.mbfys.lu.se/TOP/maps.html
Description of the program MAPS (Multiple Alignment of Protein
Structures) and links to download it.

– TOP - http://bioinfo1.mbfys.lu.se/TOP/top.html
The TOP manual - a program for TOPological comparison of protein
structures. The foundation for MAPS.

– MATCH3D -
http://omega.omrf.ouhsc.edu/zhangc/programs/match3d.html
Program to do three dimensional structure homology searches by
representing a protein as a set of vectors (the secondary structures).

– DALI - http://www.ebi.ac.uk/dali/
Comparison of protein structures.

– STAMP -
http://www.hgmp.mrc.ac.uk/Registered/Option/stamp.html
A server to make multiple structure alignments.
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Paper II
Hidden Markov Models That Use Predicted Secondary

Structures For Fold Recognition†

Jeanette Hargbo‡ and Arne Elofsson
Department of Biochemistry, Stockholm University

Stockholm, Sweden.

Abstract

There are many proteins that share the same fold but have no clear se-
quence similarity. To predict the structure of these proteins, so called
protein fold recognition methods have been developed. During the last
few years, improvements of protein fold recognition methods have been
achieved through the use of predicted secondary structures (Rice and
Eisenberg, J Mol Biol 1997;267:1026 1038), as well as by using multiple se-
quence alignments in the form of hidden Markov models (HMM) (Karplus
et al., Proteins Suppl 1997;1:134 139). To test the performance of different
fold recognition methods, we have developed a rigorous benchmark where
representatives for all proteins of known structure are matched against
each other. Using this benchmark, we have compared the performance
of automatically-created hidden Markov models with standard sequence-
search methods. Further, we combine the use of predicted secondary
structures and multiple sequence alignments into a combined method that
performs better than methods that do not use this combination of infor-
mation. Using only single sequences, the correct fold of a protein was
detected for 10% of the test cases in our benchmark. Including multiple
sequence information increased this number to 16%, and when predicted
secondary structure information was included as well, the fold was cor-
rectly identified in 20% of the cases. Moreover, if the correct secondary
structure was used, 27% of the proteins could be correctly matched to
a fold. For comparison, BLAST2, FASTA, and SSEARCH identifies the
fold correctly in 13 17% of the cases. Thus, standard pairwise sequence
search methods perform almost as well as hidden Markov models in our
benchmark. This is probably because the automatically created multiple
sequence alignments used in this study do not contain enough diversity
and because the current generation of hidden Markov models do not per-
form very well when built from a few sequences.

Keywords: protein structure; HMM; SCOP; HSSP; threading; BLAST; FASTA;
SSEARCH; protein fold recognition

†With permission from Proteins: Structure, Function and Genetics, 36 (1999), pp. 68–76.
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Hidden Markov Models That Use Predicted Secondary
Structures For Fold Recognition
Jeanette Hargbo and Arne Elofsson*
Department of Biochemistry, Stockholm University, Stockholm, Sweden

ABSTRACT There are many proteins that share
the same fold but have no clear sequence similarity.
To predict the structure of these proteins, so called
‘‘protein fold recognition methods’’ have been devel-
oped. During the last few years, improvements of
protein fold recognition methods have been achieved
through the use of predicted secondary structures
(Rice and Eisenberg, J Mol Biol 1997;267:1026–1038),
as well as by using multiple sequence alignments in
the form of hidden Markov models (HMM) (Karplus
et al., Proteins Suppl 1997;1:134–139). To test the
performance of different fold recognition methods,
we have developed a rigorous benchmark where
representatives for all proteins of known structure
are matched against each other. Using this bench-
mark, we have compared the performance of auto-
matically-created hidden Markov models with stan-
dard-sequence-search methods. Further, we combine
the use of predicted secondary structures and mul-
tiple sequence alignments into a combined method
that performs better than methods that do not use
this combination of information. Using only single
sequences, the correct fold of a protein was detected
for 10% of the test cases in our benchmark. Includ-
ing multiple sequence information increased this
number to 16%, and when predicted secondary struc-
ture information was included as well, the fold was
correctly identified in 20% of the cases. Moreover, if
the correct secondary structure was used, 27% of the
proteins could be correctly matched to a fold. For
comparison, blast2, fasta, and ssearch identifies the
fold correctly in 13–17% of the cases. Thus, standard
pairwise sequence search methods perform almost
as well as hidden Markov models in our benchmark.
This is probably because the automatically-created
multiple sequence alignments used in this study do
not contain enough diversity and because the cur-
rent generation of hidden Markov models do not
perform very well when built from a few sequences.
Proteins 1999;36:68–76. 1999 Wiley-Liss, Inc.

Key words: protein structure; HMM; Scop; HSSP;
threading; blast; fasta; ssearch; protein
fold recognition

INTRODUCTION

The most promising method for predicting the structure
of a protein is to identify a protein with a known structure
that shares the same fold. Traditionally, this has been done

by identifying proteins that have similar sequences. How-
ever, of late, many examples of structures that have
similar folds but no detectable sequence similarity have
been found,. This has led to the development of methods to
detect the fold of a probe sequence from a library of known
target folds. These methods are often referred to as fold
recognition methods.

Fold recognition methods can roughly be divided into
three different types, based on the type of information that
they use. Within each category there are many different
implementations. The three types of methods are sequence-
based methods,1,2 structure-based methods,3,4 and predic-
tion-based methods.5–9,10 In this study, we introduce a new
method that combines multiple-sequence-alignment meth-
ods with predicted secondary structure information. We
also compare the performance of hidden Markov models
with standard sequence-based methods. All these compari-
sons are made with a more rigorous benchmark than those
used in most earlier studies.

Sequence-based methods are the oldest methods for fold
recognition.11 It seems a bit surprising that sequence-
based methods are able to detect a similar fold of proteins
that show no sequence similarity, but the amino-acid
sequence contains much information about the physical
environment at each position in the sequence. Thus, even
if there is no detectable sequence similarity between two
proteins that have the same fold, the corresponding posi-
tions in the proteins will have similar properties. More-
over, there are many examples where there is no obvious
sequence similarity, but where two proteins clearly are
homologous. Of course, these targets might be detected
with improved sequence-based methods. One way to in-
crease the performance of sequence-based methods is to
use information from a family of sequences, instead of
from just one sequence. With the inclusion of multiple
sequence alignment information and modern computa-
tional methods, such as hidden Markov models, sequence-
based methods have proven to be successful in fold recogni-
tion.2

Abbreviations: Scop, a structural classification of proteins database;
HMM, Hidden Markov Model; ssHMM, hidden Markov models that
use secondary structure information; predHMM, hidden Markov
models that use secondary structure information with predicted
secondary structures.

*Correspondence to: Arne Elofsson, Department of Biochemistry,
Stockholm University, 106 91 Stockholm, Sweden. E-mail: arne@
biokemi.su.se
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A hidden Markov model (HMM), or more correctly a
profile-HMM, is a generalized version of a profile that is
mathematically more consistent. A general description of
HMMs (applied in speech recognition, where they were
originally used) has been written by Rabiner and Juang.12

In biology, HMMs have been used in many different areas,
such as gene prediction,13 membrane protein prediction,14

and protein sequence comparisons.1,2 One major difference
between profile-HMMs and a profile is that in a profile the
penalty for gaps or insertions are the same in every
position of the alignment, even though some regions are
more variable than others. Ideally, these regions should
have a smaller penalty for gaps than more conserved
areas. In the HMM, the penalties are position-dependent,
and are learned from the training data.

An alternative type of information has been used in the
structure-based fold recognition methods. These methods
do not use sequence information to determine if two
proteins have the same fold or not. Instead, they use an
energy function that describes how well a probe sequence
matches a target fold. The energy function is often ob-
tained from a database of known protein structures, and
can be used, for instance, to describe the environment of
each residue15 or the probability of finding two residues at
a certain distance from each other.3,4

Proteins having a similar fold also have similar second-
ary structures, so that even though the amino acid se-
quences may have changed a great deal during evolution,
the secondary structure will still be the same for related
proteins belonging to the same fold. Today, the secondary
structure can be predicted from the amino acid sequence
with an accuracy of more than 70%.16 Several approaches
attempt to use this information, in addition to the amino
acid sequence, to recognize the correct fold.5,6,9 Fischer and
Eisenberg5 align a probe sequence to known folds and then
calculate the probability of the protein having a certain
fold. The score for an aligned amino acid normally depends
on how likely it is to have that particular amino acid in
that position in the fold, but Fischer and Eisenberg also
take the predicted secondary structure into account, in-
creasing the score if it fits the secondary structure of the
fold and decreasing the score otherwise. The addition of
the secondary structure information seems to help signifi-
cantly in recognizing the correct fold, indicating that, even
though the predicted secondary structure is not completely
correct, it still contains a lot of useful information that
could complement other information.

Usually, a HMM only uses the amino acid sequence
when modeling a protein family, making very distant
homologues difficult to recognize. The aim of this work is to
create a HMM that uses the predicted secondary structure
in addition to the primary sequence. By combining the
information from both sequence and secondary structure, it
should be possible to recognize even distant or non-homolo-
gous proteins that share a similar fold. The idea of using
secondary structure predictions and multiple sequence infor-
mation HMMs has been proposed earlier but not tested in this
type of benchmark.8,17 In addition, our implementation of this
approach differs from earlier attempts.

MATERIALS AND METHODS
An Implementation of HMMs Using Secondary
Structure Information

The program package HMMER, version 1.8.4,18 was
modified to include secondary structure information when
building a hidden Markov model (HMM) of a protein
family, as well as when matching an amino acid sequence
to an HMM. The secondary structure HMMs (ssHMMs)
are models of protein families based both on amino acid
sequence and on secondary structure information.

Ordinary profile HMMs consist of a sequence of match
states, analogous to positions in a multiple sequence
alignment, and corresponding insert and delete states. To
each insert and match state a probability distribution over
all amino acids is associated, these distributions giving the
probability of a certain amino acid, given that particular
state. The parameters of the model are the probabilities for
transitions between states and the amino acid probability
distributions, and these are optimized so that all se-
quences belonging to the modeled family obtain high
probabilities and all other sequences low. Thus a sequence
s � x1 . . . xL following the path q � q0 . . . qN�1 through
model µ has the probability

P(s 0q, µ) � �
i�1

N�1

T(qi 0qi�1) �
i�1

N

P(xl(i) 0qi ) (1)

where T(qi0qI�1) is the probability for a transition from
state qI�1 to qi and l(I) is the index for amino acid x in the
sequence in state qi , P(xl(I)0qi) is the probability of having
amino acid xl(I) in state qi, and N is the number of states in
the path. The lower indexes represent the position in the
path. The theory behind HMMs has been described in
more detail in earlier work.1,18,19 In comparison with
sequence profiles, one of the major differences is that for
each position there is a correct transition probability for
each gap and insertion parameter.

The ssHMM has an extra distribution of probabilities for
the secondary structures E, H, and L associated with each
insert and match state. In each state, the model emits a
probability for the amino acid, as before, but in addition to
this it emits another probability for the secondary struc-
ture assigned to that position. In this way, the probability
for the sequence is higher if the secondary structure is the
same as in the modeled family. The total probability for a
sequence s � x1 . . . xL having the secondary structure ss �

y1 . . . yL given the path q � q0 . . . qN�1 and model µ is now:

P(s,ss 0q, µ) � �
i�1

N�1

T(qi 0qi�1) �
i�1

N

P(xl(i ) 0qi ) �
i�1

N

P( ym(i ) 0qi ) (2)

where ym(I) is the secondary structure emitted in state qi.
The emission probabilities of the secondary structures are
found in the same way as the amino acid emission probabili-
ties when training the model. The combined HMM will be
referred to as a secondary structure HMM (ssHMM). The
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modified HMMER program is available from http://
www.biokemi.su.se/�arne/sshmm/

As the number of parameters in the model increases,
additional information is needed to produce a useful
model. To decrease the number of free parameters, the
emission probabilities P(x0ik) for the insert states are set
equal or to some background frequency. The problem with
having too little information, i.e., too few training se-
quences, concerns fitting, i.e., a HMM created from this
data will be able to recognize only proteins that are very
closely related to the proteins used to create the HMM. In
this situation, a prior distribution can be used, and the
model is not allowed to specialize too much. However, a
prior distribution assumes that any change from one
amino acid to another is equally probable, which is not the
case. 19 A standard HMM could be seen as building a
sequence profile using an identity matrix, which certainly
is not the most efficient matrix to use. The inclusion of
substitution parameters into HMMER can be made through
the use of a special prior distribution using a substitution
matrix. The inclusion of substitution matrices are made
when building the HMM by adding a partial count to all
amino acid types when a certain amino acid is found in a
position. This partial count is related to the probability of
an amino acid having been replaced by another particular
amino acid. In this study, we have used the Pam250
substitution matrix, which was included in the HMMER
package. For the secondary structure counts, we were not
able to create a prior distribution that significantly im-
proved the performance. Therefore we chose not to use any.
At the beginning of the training, all secondary structures
are assumed to occur at equal probabilities. Thus, even if a
position is found in only one secondary structure type, the
other secondary structure types will also have a small
probability of occurrence.

A library of ssHMMs was built from the sequences and
secondary structures of a representative set of all proteins
with a known structure. For a given protein, all related
proteins in Swissprot were found through the HSSP
database,20 and the secondary structure was assumed to
be the same for all proteins in a family. The multi-
ple sequence alignment from HSSP, together with the
secondary structure, was used to build a ssHMM, as
described above. For comparison with the original
HMM method, HMMs not using the secondary structure
were also created, as were HMMs (and ssHMMs) using
substitution matrices. These last will be referred to as
HMM-pam and ssHMM-pam. Finally, another set of
HMMs, ignoring multiple sequence alignments, were cre-
ated. These will be referred to as HMM-single, ssHMM-
single, etc. For a complete description of all HMMs built
see Table I.

To match a protein against a library of HMMs, a query
sequence is matched against all HMMs. We examined the
four different alignment algorithms included in HMMER
local, global, endsfree, and fragmentary matches. How-
ever, in all cases, the hmms program that uses a global
alignment algorithm performed best, and only results
using this algorithm were evaluated in this study. When a

protein is matched against a ssHMM it is necessary to
assume the secondary structure of the protein; this was
done in two different ways. First, the correct secondary
structure was used. Second, the secondary structure pre-
dicted by predator21 was used. The tests using the pre-
dicted secondary structures are referred to as predHMM
etc. (see Table I). The rather mediocre performance of 68%
was probably due to the fact that 45% of the sequences in
our database had 10 or fewer homologous sequences in
HSSP. For comparison with the standard sequence search
methods we have used blast2,22 fasta,23 and ssearch23 on
our benchmark. These methods were used with default
parameters, and the scoring has been done by using the
expectation-values.

Measuring the Performance

To compare the performance of different fold recognition
methods, it is of great importance to use a large and
well-crafted benchmark. Several recent studies6,24,25 have
shown that a useful benchmark can be created using
Scop26 as a standard for classifying proteins into families
of similar fold or of evolutionary relationship. Scop is a
database in which all known protein structures are classi-
fied into a hierarchical classification: class, fold, superfam-
ily, and family. In this study we have focused on proteins
that have the same fold but belong to different families,
according to Scop. Two proteins that are classified into to
the same fold have the same secondary structure elements
in a similar topological arrangement, while two proteins
that belong to the same family have a clear common
evolutionary origin. Two proteins classified into the same
fold but to different families might belong to the same
superfamily or they might not.

We created a benchmark from the pdb40 dataset of Scop
version 1.37. This dataset contains a subset of Scop where

TABLE I. Description of Information Used
in Methods Studied†

Name
SS in
HMM

Query
True SS

Query
Pred SS

Substi-
tution
matrix MSA

HMM X
predHMM X X X
ssHMM X X X
HMM-single
predHMM-single X X
ssHMM-single X X
HMM-pam X X
predHMM-pam X X X X
ssHMM-pam X X X X
HMM-pam-single X
predHMM-pam-single X X X
ssHMM-pam-single X X X
blast2 X
fasta X
ssearch X
†SS in HMM, secondary structure in the HMM; Query True SS, correct
secondary structure in query sequence; Query Pred SS, predicted
secondary structure in query; MSA, multiple sequence alignment.
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no proteins have more than 40% sequence identity to any
other member of the dataset.25 However, this dataset did
not completely match the latest release of HSSP in that (1)
HSSP was created from another subset of pdb and (2) the
proteins in Scop are divided into domains, whereas pro-
teins in HSSP are not. To overcome this problem, we
matched each sequence in pdb40 to the HSSP database
and replaced the sequence with the HSSP sequence if the
match had a significance better than 1.e-5 using fasta, and
if the alignment produced was of the same length as the
original sequence. Using this procedure, 1,130 out of 1,272
sequences in pdb40 were retained. This procedure re-
moved all Scop entries of the ‘‘non-proteins’’ class and
many of the peptides, as they were not present in HSSP.
For each of the 1,130 sequences, the multiple sequence
alignment and the secondary structure were read from
HSSP. On average, 26 sequences were included in a
sequence family. However, many of these sequences
were identical or almost identical to the original sequence.
This dataset of sequences and multiple sequence align-
ments is available from http://www.biokemi.su.se/�arne/
sshmm/

In our benchmark, see Figure 1, all proteins were
matched to the HMMs of all other proteins, and for each
pair the folds and families (according to Scop) were re-
corded. As the family classification in Scop is a sub-
classification of a fold, two proteins can belong either to the
same family, to two different families but to the same fold,
or to two different folds. If the two proteins belong to the
same family, we have eliminated them from further consid-
eration, because this indicates that they are homologous
and thereby not a good test of fold recognition methods. If
the fold, but not the family, of the two entries is the same,

the match was considered to be a true match, while if the
two entries belong to different folds they were considered
to be a false match. To create a good benchmark it is
necessary to have a large and complete set of proteins; in
our benchmark set there are 730 proteins that have at
least one true match, i.e., there are 400 proteins in the
database that do not have any true match. These 400
entries were retained, because they provided potentially
important information about false matches. The total
number of true hits is 8,312, and there are more than 1.2
million false hits in the benchmark (see Table II). The
benchmark includes proteins from 359 different folds and
666 different families in Scop. We believe that this bench-
mark contains a significant fraction of all possible targets
for fold-recognition.

Fig. 1. A schematic description of the ssHMMs. First a library of
representative folds is created, second, all homologous sequences of
these proteins are found. These multiple sequence alignments, together
with the secondary structures of the representative proteins, are used to

construct the library. For the probe sequence, a secondary structure
prediction is performed. Finally, the sequence with the predicted second-
ary structure is probed against all folds in the fold library.

TABLE II. Description of the Benchmark

Data
Number of
data points

Protein domains in pdb40 1,272
Protein domains both in HSSP and in pdb40 1,130
Protein domains with at least one true match

(another domain from the same fold but from
another family) 730

Number of pairwise comparisons 1,273,618
True matches (protein domains from the same fold

but different families) 8,312
False matches (protein domains from different folds

and families) 1,265,306
Number of different protein families 666
Number of different protein folds 359
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We have used two different criteria to analyze the
performance of a fold recognition method on our bench-
mark. First, we simply examined at what rank the
first true hit was found. This is a very intuitive mea-
sure, however, and it does not measure the reliablity
of a match of a certain score. For some proteins there
are several possible correct hits and with this measure
the first match could be to any one of these proteins, while
for others there is only a single match. Second, as a
complementary measure, we have used specificity-sensitiv-
ity plots, or spec-sens plots, as in Rice and Eisenberg.6

The main advantage of this method is that it describes
the ability of a method to find all pairwise matches in
the benchmark. The sensitivity is based on the model’s
ability to find all members of the same fold. In other
words:

SENS(score) � TP(score)/(TP(score) � TN(score)) (3)

where TP(score) is the number of true hits that have a
score above score, and TN(score) is the number of true hits
with a score less than score. The specificity measures the
probability that a pair of sequences with a score greater
than a certain threshold really belong to the same fold. The
specificity is defined as:

SPEC(score) � TP(score)/(TP(score) � FP(score)) (4)

where FP(score) is the number of false hits that have a
score above score and TP is defined as above. The sensitiv-
ity is plotted as a function of specificity, each point in the
plot corresponding to a certain score. One difference
between our two measures is that the spec-sens curves
represent a method’s ability to recognize all proteins from
the same fold (but from different families), while the
simple counting method measures the ability of a method
to identify any member of the same fold (but from another
family).

RESULTS AND DISCUSSION

Every two years there is a community-wide effort, CASP,
to analyze protein structure prediction methods by blind
predictions, allowing predictors to ‘‘guess’’ the structure of
soon-to-be solved protein structures.27 At the second CASP
process in 1996, five groups were selected for the best
performance in the threading category. One of these groups
used predicted secondary structures,7 another group used
hidden Markov models (HMM),2 a third group used a
hidden Markov model that only used secondary structure
and matched a predicted secondary structure against this
model.8 The last two groups4,28 used either human expert
knowledge or a physical energy function in their threading
studies. The success of using HMMs and the idea of using
predicted secondary structures makes it a natural step to
try to combine these two methods, as we have done in this
study.

This study is based on matching all proteins in our test
set against all other proteins of the test set. Each protein is
classified as belonging to a protein family and as having a

certain fold, according to Scop.26 The Scop classification is
hierarchical, i.e., a fold is a superset of one or several
families, and thus two proteins might belong to the same
fold but to different families. Two proteins from the same
fold, but from different families, are not assumed to be
homologous but still have a similar structure. A match
between two proteins is ignored if the two proteins belong
to the same family, it is considered as a true match if the
proteins belong to different families but to the same fold,
and it is considered to be a false match if the proteins
belong to different folds. Using this benchmark, we have
compared the performance of the newly developed ssHMMs,
standard HMMs, and pairwise sequence comparisons
methods.

Secondary Structure Increases the Performance
of HMMs

Earlier studies showed that including predicted second-
ary structure sequence into single sequence-based search
methods increased the performance significantly.5,6,9 There-
fore, we believed that the same would be true for hidden
Markov models. In Figure 2 it can be seen that our
assumption are apparently correct, as the sensitivity of a
hidden Markov model is increased when the secondary
structure is included. For instance, at a specificity of 5%,
the sensitivity increases from 2% to 30% if the true

Fig. 2. A specificity versus sensitivity plot of HMM, predHMM, and
ssHMM. It can be seen that the sensitivity increases when predicted or
true secondary structure information is included.
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secondary structure is used and to 13% if the predicted
secondary structure is used (Table III). The fraction of the
possible hits that were ranked in first place is increased as
well, from 12% to 30% when using the secondary structure,
and to 19% if the predicted secondary structure is used
(Table IV). The increase in performance is similar to that
reported for single sequence-based methods; for instance,
Fischer and Eisenberg increased the fraction of hits found
in first rank from 54% to 65% by using predicted secondary
structures and the BLOSUM62 matrix.29 In the study by
Rice and Eisenberg, the sensitivity increased from approxi-
mately 15% to 30% when predicted secondary structures
were used at 5% specificity.

It should also be noted that our benchmark seems
significantly more difficult than the benchmark used by
Fisher and Eisenberg, as they were able to detect 54% of
the proteins in first place using sequence alignment meth-
ods, while we were able to detect only 17%. The difficulty of
the benchmark used by Rice and Eisenberg seems to be
similar to the difficulty of ours.

Using Multiple Sequence Information Increases
the Performance of HMMs

It has been assumed that using multiple sequences
improves the performance of sequence-based search meth-
ods. However to our knowledge, there has been no studies
showing that this is in fact true, using as complete
benchmark as the one we have used here. Figure 3 shows
that the sensitivity at a given specificity is increased for
models built from multiple sequences compared to models
built from just one sequence. This is most obvious for the
ssHMMs, where at a specificity of 5%, the sensitivity
increases from 17% to 30% when using multiple sequences
to build the ssHMMs, compared to single sequences. A
clear increase can also be seen for ordinary HMMs, and
when using predicted secondary structures. The number of
sequences placed at rank one is more than doubled when
building models from multiple sequence alignments. They
increase from 14% to 30% for the ssHMMs, from 10% to
19% using predHMMs, and from 4% to 12% for the
ordinary HMMs (Table IV). It should be remembered that
when using multiple sequence alignments we have used
only automatically-created alignments from HSSP, and for
many proteins these alignments do not contain enough

TABLE III. Sensitivity of Methods
at Specificity � 5% and 10%

Name Spec � 5% Spec � 10%

HMM 2% 1%
predHMM 13% 1%
ssHMM 30% 8%
HMM-single 0% 0%
predHMM-single 6% 0%
ssHMM-single 17% 0%
HMM-pam 11% 6%
predHMM-pam 11% 2%
ssHMM-pam 26% 7%
HMM-pam-single 8% 2%
predHMM-pam-single 17% 5%
ssHMM-pam-single 24% 11%
Blast2 3% 2%
Fasta 5% 3%
ssearch 13% 6%

TABLE IV. Fraction of Possible True Hits Placed
at Ranks 1, 5, 10, and 25

Name #1 #5 #10 #25

HMM 12% 24% 32% 45%
predHMM 19% 38% 47% 59%
ssHMM 30% 49% 59% 69%
HMM-single 4% 15% 24% 38%
predHMM-single 10% 29% 38% 51%
ssHMM-single 14% 34% 44% 56%
HMM-pam 16% 30% 40% 51%
predHMM-pam 20% 36% 45% 57%
ssHMM-pam 27% 48% 56% 67%
HMM-pam-single 10% 22% 31% 44%
predHMM-pam-single 17% 35% 44% 55%
ssHMM-pam-single 21% 39% 48% 60%
Blast2 17% 30% 37% 48%
Fasta 13% 25% 37% 43%
ssearch 17% 25% 30% 40%

Fig. 3. When multiple sequence alignment is used (bold lines) the
sensitivity of the hidden Markov models is increased, compared to using
only single sequence alignments. In (a) standard HMMs are used, in (b)
predHMMs, and in (c) ssHMMs.
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diversity to perform as well as HMMs created from a more
diverse set of sequences.

Using a Substitution Matrix Increases
the Performance of HMMs

A standard hidden Markov model does not include any
information about which substitutions are most likely, i.e.,
a substitution matrix is not used. If the protein family is
large enough and diverse enough this should not be a
problem. However, in our benchmark, we have many small
families with low diversity. By including a substitution
matrix we attempted to overcome this problem. As can be
seen in Figure 4a,b, the use of a substitution matrix when
building the models increased the sensitivity significantly.
For hidden Markov models built from multiple sequence
alignments, the sensitivity increases from 2% to 11%, at a
specificity of 5%, when using the substitution matrix.
When comparing Figures 4a and 3a, and Figures 4a and
4c, it can be seen that the use of a substitution matrix
helps more than the use of multiple sequence alignments.

In Figure 4d,f, it can be seen that the ssHMMs and
predHMMs built from single sequences have higher sensi-
tivities when using a substitution matrix than when not.

However, for the ssHMMs built from multiple sequence
alignments, using a substitution matrix does not seem to
improve the performance. On the contrary, the sensitivity
decreases from 30% to 26% when the substitution matrix
is added to the ssHMMs (Fig. 4e, Table III). This indicates
that the prior distribution might not be optimized for the
secondary structure HMMs. For these, another prior,
where the secondary structure is included, could be used.

When Creating a Hidden Markov Model It Is Best
to Use Multiple Sequence Alignments and
Substitution Matrices

From the previous results it was concluded that the use
of multiple sequence alignments and substitution matrices
give the best results. A comparison between the HMM-pam
methods with or without secondary structure information
can be seen in Figure 5. At a low specificity (�5% for
predHMM and �10% for ssHMM), the secondary struc-
ture HMMs have a higher sensitivity than the ordinary
HMMs. For higher specificities, however, the ordinary
HMMs have a higher sensitivity. One possible explanation
of this is that the ssHMMs give very high scores to some
false matches. When studying false matches with high
scores for predHMM-pams, we found that there were a few
families that caused a very large part of these false
positives. The majority of these matches were between

Fig. 4. The specificity is increased when a substitution matrix is used
(bold lines). In (b,d,f) HMMs created from single sequences are used,
while in (a,c,e) multiple sequence HMMs are used. In (a,b) standard
HMMs are used, in (c,d) predHMMs, and in (e,f) ssHMMs.

Fig. 5. A final comparison of HMMs that use multiple sequence
information as well as substitution matrices. It can be noted that at higher
specificities the sensitivity is lower for the ssHMMs and predHMMs than
for the HMMs that do not use secondary structure information.
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different families that all consisted of a various number of
alpha helices. From this data, it seems plausible that the
contribution from the secondary structure was ranked too
high in comparison with the contribution from the se-
quence. The secondary-structure-based HMMs still place
more correct sequences at high ranks than the ordinary
HMMs (Table IV). For example, the number of sequences
correctly ranked as number one is increased from 16% to
27% when adding the secondary structure, and to 20 %
when using predicted structures.

In Tables III and IV and in Figure 5, a summary of all
methods is shown. The ranks clearly support the conclu-
sions that using multiple sequence alignment, predicted
secondary structures, and a substitution matrix improves
the performance of HMMs. For instance, when using a
single sequence HMM, only 4% of the probe sequences
recognize a correct target. This figure increases to 12%
when using a multiple sequence alignment, and to 10%
when using either a predicted secondary structure or a
substitution matrix. When using a combination of all three
methods, the number of probe sequences that recognize a
correct target is increased further to 20%. The number of
probes that recognize a correct target among the top 10
hits is increased from 24% to 31–38% when using multiple
sequence alignments, predicted secondary structures, or
substitution matrix, and to 45% when using all three.

The sensitivity shows a pattern similar to that of the
ranks, although there are also some notable differences.
First, it can be seen that predHMM-pam-single performs
better than the HMMs that use multiple sequence align-
ments. This might indicate that the use of substitution
matrices is not the optimal choice with the ssHMMs, as
discussed above. Second, the standard HMMs that use
substitution matrices perform better at higher specificity
than the predHMMs. This might be due to the occurrence
of a few false positives that have very high scores, as
described above.

HMMs Perform as Well as but not Better Than
Single-Sequence-Based Methods

The performances of all these methods were compared
with the performance of single-sequence-based methods—
fasta, blast, and ssearch. It could be assumed that the
performance of ssearch should be similar to the perfor-
mance of single sequence HMMs using a substitution
matrix. However, ssearch performs better than HMM-
single, as can be seen in Tables III and IV. Actually, all the
single-sequence-based methods perform significantly bet-
ter than HMM-pam-single and when it comes to ranks,
they actually perform as well as standard HMMs. When
studying the spec-sens curves it can be seen that the
performance of blast and fasta are not superior to HMM-
pam-single. However, ssearch still performs as well as
standard (multiple sequence) HMM methods.

The reason why the multiple sequence information does
not improve the performance further is probably due to the
following. (1) In our benchmark, 45% of the HMMs are
built from sequences with less than 10 sequences and
HMMER is not optimized for small families. Furthermore,

even in the case where there are several sequences they
are often very similar, and thus still fail to provide the
necessary diversity. (2) The gap penalties in a HMM are
calculated individually for each position in the model.
However, when an HMM is created from a family with low
diversity, and thus few gaps, the gap penalties will not be
optimal for recognizing a distant member of the family. (3)
Blast, fasta, and ssearch use an extreme value distribution
to fit the scores. This method has been included in HMMER-
2.0, and consequently the performance has improved (data
not shown). (4) When a hidden Markov model is created, it
includes a process of optimizing the transition probabili-
ties. Ideally, one should make several tries and create
several hidden Markov models for a given sequence family
and then use the one that performs best. However, this
was not possible in this study, due to computational
limitations. All these points show some of the limitations of
the current generation of HMMs, but also indicate some
easy methods to improve the performance of HMMs.

In fold recognition it is not enough to identify the correct
fold of a protein, it is also necessary to make the correct
alignment between the two proteins to obtain three-
dimensional studies. In the alignments obtained for
ssHMM and the other methods from our benchmark,
however, most pairs in our benchmark contained proteins
that were very distantly related, or not homologous at all,
and these proteins are extremely difficult to align correctly.
We were, unfortunately, not able to detect any significant
improvement of the alignments using ssHMM (data not
shown). In a future study we plan to create an alignment
benchmark using a set of less difficult proteins to align and
examine whether ssHMMs, or standard HMMs, are able to
align proteins better than standard pairwise sequence
methods.

Use of ssHMM in CASP3

The ssHMM method, together with other methods and
manual judgment, were used for blind predictions in the
CASP3 process.27 Three successful fold predictions were
made of CASP3 targets T0046, T0053, and T0071a. T0046
(gamma-adaptin, ear domain) is an IG-like fold, and
several methods (ssHMM, standard HMMs, and threader3)
consistently scored high for IG-like domains. For T0053
(CbiK protein), we mainly focussed on the threader re-
sults. Our best prediction was T0071 (Alpha adaptin ear
domain), in which, using ssHMM, we were able to identify
the first 125 residues as an IG-like fold. We were also able
to produce a rather good alignment, with 21 out of 125
residues correctly aligned.

Summary

The program package HMMER was modified to allow
the construction of hidden Markov models (HMMs) that
use the secondary structure, in addition to the amino acid
sequence, to model protein families. This was accom-
plished by adding a distribution over emission probabili-
ties for secondary structures to each match and insert
state in the model. It was shown that the resulting
secondary structure HMMs perform better than the ordi-
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nary HMMs, with both the true and the predicted second-
ary structures used to recognize proteins having the same
fold as the modeled sequences. We have also analyzed the
performance of automatically-created HMMs, using a rig-
orous benchmark. It was shown that using a substitution
matrix improved the performance of HMMs. Finally, it was
shown that the automatically-created HMMs did not
perform significantly better than single sequence based
methods.
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