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Department of Computing Science and HPC2N, Ume̊a University,
SE-901 87 Ume̊a, Sweden

{c02apr,granat,isak,bokg}@cs.umu.se

Abstract. We present parallel algorithms for triangular periodic Sylves-
ter-type matrix equations, conceptually being the third step of a periodic
Bartels–Stewart-like solution method for general periodic Sylvester-type
matrix equations based on variants of the periodic Schur decomposi-
tion. The presented algorithms are designed and implemented in the
framework of the recently developed HPC library SCASY and are based
on explicit blocking, 2-dimensional block cyclic data distribution and
a wavefront-like traversal of the right hand side matrices. High perfor-
mance is obtained by rich usage of level 3 BLAS operations. It is also
demonstrated how several important key concepts of SCASY regarding
communications and the treatment of quasi-triangular coefficient matri-
ces are generalized to the periodic case. Some experimental results from
a distributed memory Linux cluster demonstrate are also presented.

Keywords: Periodic Sylvester-type matrix equations, Bartels–Stewart’s
method, explicit blocking, level-3 BLAS, ScaLAPACK, condition estima-
tion, RECSY, SCASY.

1 Introduction

Consider the periodic continuous-time Sylvester (PSYCT) matrix equation

AkXk − Xk+1Bk = Ck, k = 0, 1, . . . , P − 1, (1)

where Ak ∈ R
m×m, Bk ∈ R

n×n and Ck, Xk ∈ R
m×n are P -cyclic general matri-

ces with real entries. A P -cyclic matrix is characterized by that it repeats itself
in a sequence of matrices every P th time, e.g., AP = A0, AP+1 = A1, etc. Matrix
equations of the form (1) have applications in, e.g., computation and condition
estimation of periodic invariant subspaces of square matrix products of the form

AP−1 · · ·A1A0 ∈ R
l×l, (2)

and in periodic systems design and analysis (see, e.g., [28] and the references
therein). Matrix products of the form (2) are conceptually studied via the peri-
odic real Schur form (PRSF): there exists an orthogonal P -cyclic matrix sequence
Zk ∈ R

l×l such that the sequence

ZT
k+1AkZk = Tk, k = 0, 1, . . . , P − 1, (3)
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consists of P − 1 upper triangular matrices and one upper quasi-triangular ma-
trix. The products of conforming 1 × 1 and 2 × 2 diagonal blocks of the matrix
sequence Tk contain the real and complex conjugate pairs of eigenvalues of the
matrix product (2). Similar to the standard case (P = 1, e.g., see [6]), the PRSF
is computed by means of a reduction to periodic Hessenberg form followed by ap-
plying a periodic QR algorithm to the resulting sequence [4,15]. The PRSF is an
important tool in several applications, including solving periodic Sylvester-type
and Riccati matrix equations, see, e.g., [15,27,28].

Periodic matrix equations of the forms (1) is a special case of the periodic
Sylvester-like (PSLE) equation

{
AkXk − Xk+1Bk = Ck, for sk = 1,
AkXk+1 − XkBk = Ck, for sk = −1,

(4)

arising in computing periodic eigenspaces of matrix products of the form

AsP −1
P−1 · · · As1

1 As0
0 , (5)

where sk ∈ {0, 1}, i.e., matrix products with arbitrary order of the ±1 exponents,
see [13] for details. Another special case of (4) is the periodic continuous-time
generalized coupled Sylvester (PGCSY) equation

{
AkXk − YkBk = Ck,

DkXk+1 − YkEk = Fk,
(6)

which is considered when computing periodic deflating subspaces of matrix prod-
ucts of the form

E−1
P−1AP−1 · · · E−1

1 A1E−1
0 A0, (7)

which are conducted via variants of the generalized periodic Schur decomposition
[4,15]. We refer to [12] for details.

Equation (1) has a unique solution if the matrix products AP−1 · · · A1A0 and
BP−1 · · · B1B0 have no eigenvalues in common. We solve it via periodic variants
of Bartels–Stewart’s method [2]:

1. Transform the matrix sequences Ak and Bk to PRSFs:

T
(k)
A = QT

k+1AkQk, (8)

T
(k)
B = UT

k+1BkUk, (9)

where Qk and Uk are P -cyclic orthogonal matrices and T
(k)
A and T

(k)
B are the

periodic real Schur forms, k = 0, 1, . . . , P − 1, with quasi-triangular factors
T

(r)
A and T

(s)
B , 0 ≤ r, s ≤ P − 1.

2. Update the matrix sequence Ck with respect to the two periodic Schur de-
compositions:

C̃k = QT
k+1CkUk, k = 0, 1, . . . , P − 1. (10)
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3. Solve the reduced triangular periodic matrix equation:

T
(k)
A X̃k − X̃k+1T

(k)
B = C̃k, k = 0, 1, . . . , P − 1. (11)

4. Transform the sequence X̃k back to the original coordinate system:

Xk = Qk+1X̃kUT
k , k = 0, 1, . . . , P − 1. (12)

In step 1, reliable and efficient software for computing the periodic Schur decom-
position should be used. Several attempts of implementing such software have
been conducted (see, e.g., [15,21,23] and the PEP software library [13]) and the
state-of-the-art implementation is implemented in the SLICOT routines MBVH03
(periodic Hessenberg reduction) and MBWS03 (periodic QR iterations). To the
best of our knowledge, no parallel implementation exists today.

Steps 2 and 4 above are performed as two series of P two-sided matrix-matrix
multiplication updates by P pairs of GEMM-operations [22].

In the rest of the paper, we focus on step 3. The reduced triangular prob-
lem (11) can be solved via a linear system representation of the corresponding
periodic Sylvester operator (see, e.g., [8]):

ZPSYCTx̃ = c̃, (13)

where

ZPSYCT =⎡
⎢⎢⎢⎢⎣

−T
(P−1)
B

T
⊗ Im In ⊗ T

(P−1)
A

In ⊗ T
(0)
A −T

(0)
B

T
⊗ Im

. . .
. . .

In ⊗ T
(P−2)
A −T

(P−2)
B

T
⊗ Im

⎤
⎥⎥⎥⎥⎦

(14)

and

x̃ =

⎡
⎢⎢⎣

vec(X̃0)
vec(X̃1)
· · ·
vec(X̃P−1)

⎤
⎥⎥⎦ , c̃ =

⎡
⎢⎢⎣

vec(C̃(P−1))
vec(C̃(0))
· · ·
vec(C̃(P−2))

⎤
⎥⎥⎦ . (15)

Only the nonzero blocks of ZPSYCT are displayed explicitly in (14) and by exploit-
ing this structure the system (13) can be solved at the cost of O(P (m2n+mn2))
flops by using Gaussian elimination with partial pivoting [8] or structured vari-
ants of QR factorization [12,13]; the latter method avoids excessive pivot growth
for ill-conditioned problems [5]. By storing only the block main diagonal, the
block sub-diagonal and the rightmost block column vector, the storage require-
ment for ZPSYCT can be kept at 3Pm2n2. Linear systems with this kind of
sparsity structure, Bordered Almost Block Diagonal (BABD) systems have been
studied extensively [5].
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The conditioning of (1) is essentially guided by the Sep-function

Sep[PSYCT] = inf
‖x‖2=1

‖ZPSYCTx‖2 = ‖Z−1
PSYCT‖−1

2 = σmin(ZPSYCT) (16)

= inf
(
∑ K−1

k=0 ‖Xk‖2
F )1/2=1

(
K−1∑
k=0

‖AkXk − Xk+1Bk‖2
F )1/2.

The quantity sep[PSYCT] can be estimated at the cost of solving a few PSYCTs
by exploiting the estimation technique for the 1-norm of the inverse of a matrix
[14,16,19,20] which was conducted in SCASY for the non-periodic case [10,11].

The Kronecker product representation (13) is only effective to use when m
and n are very small, e.g., in kernel solvers for (sub)matrices of dimensions 1–2.
Typically, for large-scale triangular matrix equations of the form (11), recursive
matrix blocking and/or iterative matrix blocking of several layers is applied to
reformulate the majority of the computational work into level 3 operations.

In [10], parallel algorithms for non-periodic Sylvester-type matrix equations
were presented, introducing the software library SCASY [11,26]. In this paper, we
show how the key concepts of SCASY can be generalized to cover even periodic
Sylvester-type matrix equations of the forms (1) and (11). The rest of the paper
is organized as follows. In Section 2, we present parallel wavefront algorithms
for solving the triangular reduced problem (11). In Section 3, we discuss some
implementation issues and before giving a summary and listing some future work
in Section 5, we present some real experimental results in Section 4.

2 Parallel Algorithms for Periodic Triangular Matrix
Equations

We assume that the cyclic matrix sequences Ak and Bk, k = 0, 1, . . . , P − 1, are
already in periodic Schur form with quasi-triangular factors Ar and Bs. If Ak

and Bk are partitioned by square mb × mb and nb × nb blocks, respectively, we
can rewrite (1) in block partitioned form

A
(k)
ii X

(k)
ij − X

(k+1)
ij B

(k)
jj = C

(k)
ij − (

DA∑
k=i+1

A
(k)
ik X

(k)
kj −

j−1∑
k=1

X
(k+1)
ik B

(k)
kj ), (17)

where DA = �m/mb�. Summation (17) can be implemented as a serial blocked
algorithm using a couple of nested loops, see, e.g., [19,10] and the algorithms in
[13] for matrix equations of the form (4). For high performance and portability,
level 3 BLAS (mostly GEMM operations) should be utilized for the periodic
right hand side updates.

Starting at the South-West corner of Xk, Equation (17) reveals that all subso-
lutions X

(k)
ij located on the same block (sub- or super)diagonal, are independent

and can be computed in parallel. Moreover, all subsequent updates are internally
independent and can be performed in parallel.
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Our parallel algorithms adapt to the ScaLAPACK (see, e.g., [3]) conventions
of a distributed memory (DM) environment, as follows:

– The parallel processes are organized into a rectangular Pr ×Pc mesh labeled
from (0, 0) to (Pr − 1, Pc − 1) according to their specific position indices in
the mesh.

– The matrices are distributed over the mesh using 2-dimensional (2D) block
cyclic mapping with the block sizes mb and nb in the row and column di-
mensions, respectively.

Here we assume that the sequences Ak, Bk and Ck are internally aligned. Then,
along the lines of the algorithms in SCASY, we formulate a parallel wavefront
algorithm for PSYCT in Algorithm 1.

Algorithm 1. Parallel algorithm for PSYCT.
Input: Matrix sequences Ak, Bk and Ck. Ak and Bk in PRSF. Block sizes mb and nb.

Process grid configuration Pr, Pc.
Output: Solution matrix sequence Xk (which overwrites Ck).

for k = 1, # block diagonals in Ck do
% Solve subsystems on current P block diagonals of C0:P−1 in parallel
if (mynode holds C

(0:P −1)
ij ) then

if (mynode does not hold A
(0:P −1)
ii and/or B

(0:P −1)
jj ) then

Communicate for A
(0:P −1)
ii and/or B

(0:P −1)
jj

end if
Solve subsystem A

(k)
ii X

(k)
ij − X

(k+1)
ij B

(k)
ij = C

(k)
ij , k = 0, 1, . . . , P − 1

Broadcast X
(0:P −1)
ij to processors holding blocks in block row i or block column j of C0:P−1

else if (mynode needs X
(0:P −1)
ij ) then

Receive X
(0:P −1)
ij

end if
if (mynode needs block in A0:P −1 for updates in block column j of C0:P−1) then

Communicate for requested block in A0:P −1
end if
Update block column j of C0:P−1 in parallel
if (mynode needs block in B0:P −1 for updates in block row i) then

Communicate for requested block in B0:P −1
end if
Update block row i of C0:P−1 in parallel

end for

Notice that the on-demand communication scheme from SCASY [10] is gen-
eralized to the periodic case by communication of subsequences of the involved
matrices. It is also possible to generalize the matrix block shifts communication
strategy (see [10] and the references therein) to the periodic case.

3 Implementation Issues

Node solvers. As node solvers, we use both the multi-layer blocked periodic
solvers from [9] and the recursive blocked periodic solvers from [8] which were
developed in the framework of RECSY [17,18]. Both variants are rich in level
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3 BLAS operations and apply blocking of each local subsystem to reduce its
matrix dimensions down to a level where a kernel solver based on the Kronecker
product representation (13) can be efficiently utilized.

Periodic implicit redistribution. To remove 2×2 blocks in Ar and Bs being
shared by several blocks (and processors) in the explicit blocking, we generalize
the concept of performing an implicit redistribution from SCASY [11]. In prin-
ciple, the implicit redistribution rearranges the data distribution such that all
data elements in the quasi-triangular factors are included but the distribution
still conforms with ScaLAPACK conventions (see [11] for details). Three main
routines from SCASY are used: PDEXTCHK, PDIMPRED and PDBCKRD. The periodic
implicit redistribution works as follows:

– PDEXTCHK is used for searching the main diagonals of Ar and Bs for any
2 × 2 blocks shared by several data layout blocks. The routine returns re-
distribution information which is broadcasted to all processors. PDEXTCHK is
only called two times, once for Ar and once for Bs, regardless of the length
of the period P .

– PDIMPRED exchanges data between the processors via message passing to
build up local arrays of extra elements which are used locally in constructing
and decomposing ”correct” subsequences from Ak, Bk and Ck (and Xk) on
the nodes before invoking local node solvers or performing local GEMM
updates. PDIMPRED is called P times, once for each triplet (Ak, Bk, Ck), k =
0, 1, . . . , P − 1, using the information from PDEXTCHK.

– PDBCKRD is called right before returning from the corresponding triangular
solver and sends back the redistributed parts of a solution matrix sequence
to their original owner processes such that the solution matrix sequence is
correctly distributed over the process mesh on output. PDBCKRD is called P
times, once for each right hand side matrix Ck.

4 Experimental Results

We have implemented Algorithm 1 as the routine PTRPSYCTD in Fortran 77 fol-
lowing the ScaLAPACK coding style. Our target machine is the 64-bit Opteron
Linux Cluster sarek with 192 dual AMD Opteron nodes (2.2 GHz), 8GB RAM
per node and a Myrinet-2000 high-performance interconnect with 250 MB/sec
bandwidth. All experiments where conducted using the Portland Group’s pgf77
1.2.5 64-bit compiler, the compiler flag -fast and the following software:
MPICH-GM 1.5.2 [24], LAPACK 3.0 [22], GOTO-BLAS r0.94 [7], ScaLAPACK
1.7.0 and BLACS 1.1patch3 [3], SCASY 0.10beta and RECSY 0.01alpha [25]. All
experiments are conducted in double precision arithmetic (εmach ≈ 2.2× 10−16).

Our test examples have the non-intersecting spectra: λ(AP−1 · · ·A1A0) =
{1, 2, . . . , m}, λ(BP−1 · · · B1B0) = {−1, −2, . . . , −n} and we use random right
hand sides C

(k)
ij ∈ [−1, 1], i = 1, 2, . . . , m, j = 1, 2, . . . , n, k = 0, 1, . . . , P − 1.

We present representative results for PSYCT using up to 8 × 8 processor
meshes in Table 1, including following quantities:
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– The periodicity and the dimensions of the PSYCT equation: P , m and n.
– Parallel execution time: Tp, in seconds, where p = Pr × Pc is the number of

utilized processor nodes.
– Parallel speedup: Sp = Tpmin/Tp, where p is the number of utilized processors

and pmin is the smallest number of processors for which the data structures
of the current problem instance can be stored in the pmin chunks of main
memory of the target computer.

– Mflops-rate: Mflops = P (m2n + mn2)10−6T−1
p

– Relative residual (Frobenius) norm:

r = max
k

ε−1
mach‖Ck − AkX̃k − X̃k+1Bk‖

‖Ak‖‖X̃k‖ + ‖Bk‖‖X̃k+1‖ + ‖Ck‖
,

where X̃k, i = 0, 1, . . . , P − 1, is the computed solution sequence. This
residual norm should be of O(1) for a reliable solution sequence X̃k [20],
regardless of the conditioning of the underlying problem.

A few remarks regarding Table 1 are in order:

– The parallel execution time increases roughly linearly with the periodicity
P , as illustrated in Figure 1.

– The Mflops-rate sometimes decreases with an increasing periodicity P for
fixed values of m and n. This can be partly explained by the fact that an
increased period leads to new data locality issues, since the blocks involved in
the different operations (subsystem solves and GEMM-updates) are located

Table 1. Results of PTRPSYCTD on sarek using the block sizes mb = nb = 64

P m n Pr × Pc Tp Mflops Sp r

2 3000 3000 1 × 1 63.1 1712 1.0 0.3
2 3000 3000 2 × 2 29.9 3583 2.1 0.3
2 3000 3000 4 × 4 14.8 6993 4.3 0.3
2 3000 3000 8 × 8 7.54 14524 8.4 0.3
4 3000 3000 1 × 1 139 1556 1.0 0.4
4 3000 3000 2 × 2 66.4 3253 2.1 0.4
4 3000 3000 4 × 4 31.9 6771 4.4 0.4
4 3000 3000 8 × 8 15.8 13704 8.8 0.4
8 3000 3000 2 × 2 142 3038 1.0 0.3
8 3000 3000 4 × 4 67.2 6406 2.1 0.3
8 3000 3000 8 × 8 32.0 13505 4.4 0.3
2 6000 6000 2 × 2 195 3658 1.0 0.2
2 6000 6000 4 × 4 90.1 7898 2.2 0.2
2 6000 6000 8 × 8 40.4 17624 4.8 0.2
4 6000 6000 2 × 2 415 3432 1.0 0.4
4 6000 6000 4 × 4 208 6856 2.0 0.4
4 6000 6000 8 × 8 87.4 16278 4.7 0.4
8 6000 6000 4 × 4 429 8047 1.0 0.2
8 6000 6000 8 × 8 167 20736 2.6 0.2
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Fig. 1. Execution time results for PTRPSYCTD in relation to the periodicity P solving the
PSYCT equation with m = n = 3000, 6000 on sarek using the block sizes mb = nb = 64

at far distance from each other, a problem that is amplified with an increasing
period (see [8] for a similar observation).

– A main limitation of the possibility of achieving parallel speedup is the lim-
ited amount of physical memory on the target machine. For large periods,
and when m and n are large enough for motivating the use of a distributed
memory parallel computer, there is often not sufficient space to store all P
matrices in the main memory unless one uses a huge number of processors.

The execution time information is also displayed in Figure 2. A general obser-
vation is that for all but the last results for n = 6000 and p = 8, an increase
of the number of processors by a factor 4 cuts down the parallel execution time
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Fig. 2. Execution time results for PTRPSYCTD solving the PSYCT equation with m =
n = 3000, 6000 on sarek using the block sizes mb = nb = 64
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by roughly a factor 2. This is consistent with earlier observations, see, e.g., the
performance model of the non-periodic (P = 1) SCASY implementations in [10].

5 Summary and Future Work

The work presented in this contribution was based on some preliminary results
presented in [1] and can be further generalized to other periodic matrix equations
(see, e.g., [8] for a list). In this context, there is a need for developing parallel
versions of the periodic QR and QZ algorithms; for serial variants see, e.g.,
[4,15,21,23] and the references therein.
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