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Abstract.

We present a direct method for reordering eigenvalues in the generalized periodic real
Schur form of a regular K-cylic matrix pair sequence (Ak, Ek). Following and generaliz-
ing existing approaches, reordering consists of consecutively computing the solution to
an associated Sylvester-like equation and constructing K pairs of orthogonal matrices.
These pairs define an orthogonal K-cyclic equivalence transformation that swaps adja-
cent diagonal blocks in the Schur form. An error analysis of this swapping procedure is
presented, which extends existing results for reordering eigenvalues in the generalized
real Schur form of a regular pair (A, E). Our direct reordering method is used to com-
pute periodic deflating subspace pairs corresponding to a specified set of eigenvalues.
This computational task arises in various applications related to discrete-time periodic
descriptor systems. Computational experiments confirm the stability and reliability of
the presented eigenvalue reordering method.
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1 Introduction

Discrete-time periodic descriptor systems of the form

Ekxk+1 = Akxk + Bkuk,
yk = Ckxk + Dkuk,

(1.1)

with Ak = Ak+K , Ek = Ek+K ∈ Rn×n, Bk = Bk+K ∈ Rn×m, Ck = Ck+K ∈
Rr×n and Dk = Dk+K ∈ Rr×m for some period K ≥ 1 arise naturally from
processes that exhibit seasonal or periodic behavior [6]. Design and analysis
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problems of such systems (see, e.g., [30, 31, 38]) are conceptually studied in terms
of state transition matrices [38] ΦE−1A(j, i) = E−1

j−1Aj−1E
−1
j−2Aj−2 . . . E−1

i Ai ∈
Rn×n, with the convention ΦE−1A(i, i) = In. A state transition matrix over a
complete period ΦE−1A(j + K, j) is the monodromy matrix of (1.1) at time j.
Its eigenvalues are called the characteristic multipliers and are independent of
the time j. Specifically, the monodromy matrix at time j = 0 corresponds to
the matrix product

E−1
K−1AK−1E

−1
K−2AK−2 · · ·E−1

1 A1E
−1
0 A0.(1.2)

Matrix products of the general form (1.2) are studied, e.g., in [3, 5, 25, 39].
We study the K-cyclic matrix pair sequence (Ak, Ek) with Ak, Ek ∈ Rn×n

from (1.1) via the generalized periodic Schur decomposition [8, 17]: there exists
a K-cyclic orthogonal matrix pair sequence (Qk, Zk) with Qk, Zk ∈ Rn×n such
that, given k ⊕ 1 = (k + 1) mod K, we have

{
Sk = QT

k AkZk,
Tk = QT

k EkZk⊕1,
(1.3)

where all matrices Sk, except for some fixed index j with 0 ≤ j ≤ K − 1, and
all matrices Tk are upper triangular. The matrix Sj is upper quasi-triangular;
typically j is chosen to be 0 or K − 1. The sequence (Sk, Tk) is the general-
ized periodic real Schur form (GPRSF) of (Ak, Ek), k = 0, 1, . . . , K − 1. The
decomposition (1.3) is a K-cyclic equivalence transformation of the matrix pair
sequence (Ak, Ek).

Computing the GPRSF is the standard method for solving the generalized
periodic (product) eigenvalue problem (GPEVP)

E−1
K−1AK−1E

−1
K−2AK−2 · · ·E−1

1 A1E
−1
0 A0x = λx,(1.4)

where all matrices in the pairs (Ak, Ek) are general and dense. For K = 1, (1.4)
corresponds to a generalized eigenvalue problem Ax = λEx with (A, E) regular
(see, e.g., [12]). Using the GPRSF to solve a GPEVP for K ≥ 1 means that we
do not need to compute any matrix products in (1.4) explicitly, which avoids
numerical instabilities and allows to handle singular factors Ek.

The 1× 1 and 2× 2 blocks on the diagonal of a GPRSF define t ≤ n K-cyclic
diagonal block pairs (S(k)

ii , T
(k)
ii ), corresponding to real eigenvalues and complex

conjugate pairs of eigenvalues, respectively.
A real eigenvalue is simply given by

λi =
0∏

k=K−1

S
(k)
ii

T
(k)
ii

.

This eigenvalue is called infinite if
∏0

k=K−1 T
(k)
ii = 0 but

∏0
k=K−1 S

(k)
ii 6= 0. If

there are 1 × 1 blocks for which both
∏0

k=K−1 S
(k)
ii = 0 and

∏0
k=K−1 T

(k)
ii = 0

then the K-cyclic matrix pair sequence (Ak, Ek) is called singular, otherwise
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the sequence (Ak, Ek) is called regular. In the degenerate singular case, the
eigenvalues become ill-defined and other tools [27, 36] need to be used to study
the periodic eigenvalue problem. For the rest of the paper, it is therefore assumed
that (Ak, Ek) is regular.

For two complex conjugate eigenvalues λi, λ̄i, all matrices T
(k)
ii are nonsingular

and

λi, λ̄i ∈ λ

(
0∏

k=K−1

T
(k)
ii

−1
S

(k)
ii

)
,

where λ(M) denotes the set of eigenvalues of a matrix M . In finite precision
arithmetic, great care has to be exercised to avoid underflow and overflow in the
explicit eigenvalue computation involving 2× 2 blocks [34].

For every l with 1 ≤ l ≤ n such that no 2× 2 block resides in Sj(l :l+1,l :l+1),
the first l pairs of columns of (Q0, Z0) span a deflating subspace pair correspond-
ing to the first l eigenvalues of the matrix product (1.2). More generally, the first
l pairs of columns of (Qk, Zk) span a left and right periodic (or cyclic) deflat-
ing subspace pair sequence associated with the first l eigenvalues of the matrix
product (1.2) [5].

The decomposition (1.3) is computed via the periodic QZ algorithm (see, e.g.,
[8, 17, 23, 24]), which consists of an initial reduction to generalized periodic
Hessenberg form and a subsequent iterative process to generalized periodic Schur
form. In [37], the generalized periodic Schur form is extended to periodic matrix
pairs with time-varying and possibly rectangular dimensions. This includes a
preprocessing step that truncates parts corresponding to spurious characteristic
values, which then yields square system matrices of constant dimensions.

1.1 Ordered GPRSF and periodic deflating subspaces

In many applications, it is desirable to have the eigenvalues along the diagonal
of the GPRSF in a certain order. If the generalized periodic Schur form has its
eigenvalues ordered in a certain way as in (1.5), it is called an ordered GPRSF.
For example, if we have

Sk =

[
S

(k)
11 S

(k)
12

0 S
(k)
22

]
, Tk =

[
T

(k)
11 T

(k)
12

0 T
(k)
22

]
,(1.5)

with S
(k)
11 , T

(k)
11 ∈ Rl×l such that the upper left part sequence (S(k)

11 , T
(k)
11 ) contains

all eigenvalues in the open unit disc, then (Sk, Tk) is an ordered GPRSF and the
first l columns of the sequence Zk span stable right periodic deflating subspaces.
For initial states x0 ∈ span(Z0e1, . . . , Z0el) with ei being the ith unit vector, the
states of the open loop system Ekxk+1 = Akxk satisfy xk ∈ span(Zke1, . . . , Zkel)
and 0 is an asymptotically stable equilibrium.

Other important applications relating to periodic discrete-time systems include
the stable-unstable spectral separation for computing the numerical solution of
the discrete-time periodic Riccati equation [37] in LQ-optimal control, which we
illustrate in Section 2, and pole placement where the goal is to move some or all
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of the poles to desired locations in the complex plane [28, 15]. In [4], ordered
Schur forms are used for solving generalized Hamiltonian eigenvalue problems.

In this paper, we extend the work in [2, 14, 20, 24, 15] to perform eigenvalue
reordering in a regular periodic matrix pair sequence in GPRSF.

The rest of the paper is organized as follows. In Section 2, we illustrate how
an ordered GPRSF can be used to solve the discrete-time periodic Riccati equa-
tion that arises in an LQ-optimal control problem. Section 3 presents our direct
method for reordering eigenvalues of a periodic (cyclic) matrix pair sequence
(Ak, Ek) in GPRSF. To compute an ordered GPRSF, a method for reordering
adjacent K-cyclic diagonal block pairs is combined with a bubble-sort like proce-
dure in an LAPACK-style [1, 2, 22] fashion. The proposed method for swapping
adjacent diagonal block pair sequences relies on orthogonal K-cyclic equivalence
transformations and the core step consists of computing the solution to an as-
sociated periodic generalized coupled Sylvester equation, which is discussed in
Section 4. An error analysis of the direct reordering method is presented in
Section 5, which extends and generalizes results from [20, 14]. In Section 6, we
discuss some implementation issues regarding the solution of small-sized periodic
generalized coupled Sylvester equations and how we control and guarantee sta-
bility of the reordering. Some examples and computational results are presented
and discussed in Section 7. Finally, in Section 8 we discuss some extensions of
the reordering method.

2 LQ-optimal control and periodic deflating subspaces

Given the system (1.1), the aim of linear quadratic (LQ) optimal control is
to find a feedback sequence uk which stabilizes the system and minimizes the
functional

1
2

∞∑

k=0

(xT
k Hkxk + uT

k Nkuk),

with Hk ∈ Rn×n symmetric positive semidefinite and Nk ∈ Rm×m symmetric
positive definite. Moreover, we suppose that the weighting matrices are K-
periodic, i.e., Hk+K = Hk and Nk+K = Nk. Under mild assumptions [7], the
optimal feedback is linear and unique. For each k, it can be expressed as

u?
k = −(Nk + BT

k Xk+1Bk)−1BT
k Xk+1Akxk,

where Xk = Xk+K is the unique symmetric positive semidefinite solution of the
discrete-time periodic Riccati equation (DPRE) [17]

0 = CT
k HkCk − ET

k−1XkEk−1 + AT
k Xk+1Ak

−AT
k Xk+1Bk(Nk + BT

k Xk+1Bk)−1BT
k Xk+1Ak,

(2.1)

provided that all Ek are invertible. The 2n× 2n periodic matrix pair

(Lk,Mk) =
([

Ak 0
−CT

k HkCk ET
k−1

]
,

[
Ek−1 BkN−1

k BT
k

0 AT
k

])
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is closely associated with (2.1). Similarly as for the case Ek = In [17], it can
be shown that this pair has exactly n eigenvalues inside the unit disk under
the assumption that (1.1) is d-stabilizable and d-detectable. By reordering the
GPRSF of (Lk,Mk) we can compute a periodic deflating subspace defined by
the orthogonal matrices Uk, Vk ∈ R2n×2n with Vk+K = Vk such that

UT
k LkVk =

[
S

(k)
11 S

(k)
12

0 S
(k)
22

]
, UT

k MkVk+1 =

[
T

(k)
11 T

(k)
12

0 T
(k)
22

]
,

where the n× n periodic matrix pair (S(k)
11 , T

(k)
11 ) contains all eigenvalues inside

the unit disk. If we partition

Uk =

[
U

(k)
11 U

(k)
12

U
(k)
21 U

(k)
22

]

with U
(k)
ij ∈ Rn×n, then

U
(k)
21

[
U

(k)
11

]−1

= XkEk−1,

from which Xk can be computed. The proof of this relation is similar as for the
case K = 1, see, e.g., [26]. We note that if Nk is not well-conditioned then it is
better to work with 3n× 3n matrix pairs, as described in [26].

3 Direct method for eigenvalue reordering in GPRSF

Given a regular K-cyclic matrix pair sequence (Ak, Ek) in GPRSF, our method
to compute an ordered GPRSF (1.5) with respect to a set of specified eigenvalues
reorders 1 × 1 and 2 × 2 diagonal blocks in the GPRSF such that the selected
set of eigenvalues appears in the matrix pair sequence (S(k)

11 , T
(k)
11 ). Following

LAPACK, we assume that the set of specified eigenvalues are provided as an
index vector for the blocks of eigenvalue pairs that should appear in (S(k)

11 , T
(k)
11 ).

The procedure is now to swap adjacent diagonal blocks in the GPRSF in a
bubble-sort fashion such that the specified eigenvalue ordering is satisfied [1, 2,
22]. In the following, we focus on the K-cyclic swapping of diagonal blocks using
orthogonal transformations.

3.1 Swapping of K-cyclic diagonal block matrix pairs

Consider a regular K-cyclic matrix pair sequence (Ak, Ek) in GPRSF

(Ak, Ek) =

([
A

(k)
11 A

(k)
12

0 A
(k)
22

]
,

[
E

(k)
11 E

(k)
12

0 E
(k)
22

])
(3.1)

with A
(k)
11 , E

(k)
11 ∈ Rp1×p1 and A

(k)
22 , E

(k)
22 ∈ Rp2×p2 , for k = 0, 1, . . . , K − 1.
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Swapping consists of computing orthogonal matrices Uk, Vk such that
[

Â
(k)
11 Â

(k)
12

0 Â
(k)
22

]
= UT

k

[
A

(k)
11 A

(k)
12

0 A
(k)
22

]
Vk,(3.2)

[
Ê

(k)
11 Ê

(k)
12

0 Ê
(k)
22

]
= UT

k

[
E

(k)
11 E

(k)
12

0 E
(k)
22

]
Vk⊕1,(3.3)

for k = 0, . . . ,K − 1, and

λ(Π̂11) = λ(Π22), λ(Π̂22) = λ(Π11),(3.4)

where
Πii =

[
E

(K−1)
ii

]−1
A

(K−1)
ii · · · [E(0)

ii

]−1
A

(0)
ii ,(3.5)

Π̂ii =
[
Ê

(K−1)
ii

]−1
Â

(K−1)
ii · · · [Ê(0)

ii

]−1
Â

(0)
ii .(3.6)

If some of the E
(k)
ii are singular then the products (3.5) and (3.6) should only be

understood in a formal sense, with their finite and infinite eigenvalues defined via
the GPRSF. The relation (3.4) means that all eigenvalues of Π22 are transferred
to Π̂11 and all eigenvalues of Π11 to Π̂22. For our purpose, A

(k)
ii , E

(k)
ii ∈ Rpi×pi

are the diagonal blocks of a GPRSF and it can thus be assumed that pi ∈ {1, 2}.
The K-cyclic swapping is performed in two main steps. First, the sequence

(Ak, Ek) in (3.1) is block diagonalized by a nonorthogonal K-cyclic equivalence
transformation. Second, orthogonal transformation matrices are computed from
this matrix pair sequence that perform the required K-cyclic swapping.

3.2 Swapping by block diagonalization and permutation

Let us consider a K-cyclic matrix pair sequence (Lk, Rk), with Lk, Rk ∈
Rp1×p2 , which solves the periodic generalized coupled Sylvester equation (PGCSY)

{
A

(k)
11 Rk − LkA

(k)
22 = −A

(k)
12 ,

E
(k)
11 Rk⊕1 − LkE

(k)
22 = −E

(k)
12 .

(3.7)

Then (Lk, Rk) defines an equivalence transformation that block diagonalizes the
K-cyclic matrix pair sequence (Ak, Ek) in (3.1):

[
A

(k)
11 A

(k)
12

0 A
(k)
22

]
=

[
Ip1 Lk

0 Ip2

][
A

(k)
11 0
0 A

(k)
22

] [
Ip1 −Rk

0 Ip2

]
,

[
E

(k)
11 E

(k)
12

0 E
(k)
22

]
=

[
Ip1 Lk

0 Ip2

] [
E

(k)
11 0
0 E

(k)
22

] [
Ip1 −Rk⊕1

0 Ip2

]
,

(3.8)

for k = 0, 1, . . . , K − 1. In Section 4, we show that PGCSY (3.7) has a unique
solution if and only if

λ(ΦE−1
11 A11

(K, 0)) ∩ λ(ΦE−1
22 A22

(K, 0)) = ∅.(3.9)
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We refer to (L0, R0) as the generator matrix pair for the periodic reordering of
ΦE−1A(K, 0) [14]. Periodic matrix Sylvester-type equations were studied in, e.g.,
[29, 35] and an overview was given in [38]. The PGCSY equation was recently
studied in [13].

The diagonal blocks of the block diagonal matrices in (3.8) are swapped by a
simple equivalence permutation:

[
0 Ip2

Ip1 0

] ([
A

(k)
11 0
0 A

(k)
22

]
,

[
E

(k)
11 0
0 E

(k)
22

])[
0 Ip1

Ip2 0

]
=

([
A

(k)
22 0
0 A

(k)
11

]
,

[
E

(k)
22 0
0 E

(k)
11

])
.

(3.10)

Altogether, by defining the matrices

Xk =
[

Lk Ip1

Ip2 0

]
, Yk =

[
0 Ip2

Ip1 −Rk

]
, k = 0, . . . , K − 1,

we obtain a non-orthogonal K-cyclic equivalence transformation such that
[

A
(k)
11 A

(k)
12

0 A
(k)
22

]
= Xk

[
A

(k)
22 0
0 A

(k)
11

]
Yk,

[
E

(k)
11 E

(k)
12

0 E
(k)
22

]
= Xk

[
E

(k)
22 0
0 E

(k)
11

]
Yk⊕1.

(3.11)

3.3 Swapping by orthogonal transformation matrices

From the observation that the first block column of Xk and the last block row
of Yk have full column and row ranks, respectively, we can choose orthogonal
matrices Qk and Zk from QR and RQ factorizations such that

[
Lk

Ip2

]
= Qk

[
T

(k)
L

0

]
,

[
Ip1 −Rk

]
=

[
0 T

(k)
R

]
ZT

k ,(3.12)

where T
(k)
L ∈ Rp2×p2 , T

(k)
R ∈ Rp1×p1 are all non-singular and upper triangular

for k = 0, 1, . . . , K − 1.
Partitioning Qk and Zk in conformity with Xk and Yk as

Qk =

[
Q

(k)
11 Q

(k)
12

Q
(k)
21 Q

(k)
22

]
, Zk =

[
Z

(k)
11 Z

(k)
12

Z
(k)
21 Z

(k)
22

]
,

we observe that

QT
k Xk =

[
T

(k)
L Q

(k)
12

T

0 Q
(k)
22

T

]
, YkZk =

[
Z

(k)
21 Z

(k)
22

0 T
(k)
R

]
.(3.13)
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By applying (Qk, Zk) as an orthogonal K-cyclic equivalence transformation to
(Ak, Ek) we obtain

(QT
k AkZk, QT

k EkZk⊕1) =

(
QT

k

[
A

(k)
11 A

(k)
12

0 A
(k)
22

]
Zk, QT

k

[
E

(k)
11 E

(k)
12

0 E
(k)
22

]
Zk⊕1

)
=

(
QT

k Xk

[
A

(k)
22 0
0 A

(k)
11

]
YkZk, QT

k Xk

[
E

(k)
22 0
0 E

(k)
11

]
Yk⊕1Zk⊕1

)
≡

([
Â

(k)
11 Â

(k)
12

0 Â
(k)
22

]
,

[
Ê

(k)
11 Ê

(k)
12

0 Ê
(k)
22

])
,

where 



Â
(k)
11 = T

(k)
L A

(k)
22 Z

(k)
21 ,

Â
(k)
12 = T

(k)
L A

(k)
22 Z

(k)
22 + Q

(k)
11

T
A

(k)
11 T

(k)
R ,

Â
(k)
22 = Q

(k)
12

T
A

(k)
11 T

(k)
R ,

(3.14)

and 



Ê
(k)
11 = T

(k)
L E

(k)
22 Z

(k⊕1)
21 ,

Ê
(k)
12 = T

(k)
L E

(k)
22 Z

(k⊕1)
22 + Q

(k)
11

T
E

(k)
11 T

(k⊕1)
R ,

Ê
(k)
22 = Q

(k)
12

T
E

(k)
11 T

(k⊕1)
R .

(3.15)

From the equations above, we see that (A(k)
11 , E

(k)
11 ) and (A(k)

22 , E
(k)
22 ) are K-cyclic

equivalent to (Â(k)
22 , Ê

(k)
22 ) and (Â(k)

11 , Ê
(k)
11 ), respectively. In other words, the

eigenvalues of the K-cyclic matrix pair sequence (Ak, Ek) have been reordered
as desired.

We remark that (Â(k)
11 , Ê

(k)
11 ) and (Â(k)

22 , Ê
(k)
22 ) are generally not in GPRSF

after the K-cyclic swapping and have to be further transformed by orthogonal
transformations to restore the GPRSF of the matrix pair sequence (Ak, Ek) (see
Section 6.2).

4 The periodic generalized coupled Sylvester equation

The core step of the reordering method is to solve the associated PGCSY (3.7).
Using Kronecker products this problem can be rewritten as a linear system of
equations

ZPGCSYx = c,(4.1)

where ZPGCSY is a 2Kp1p2× 2Kp1p2 matrix representation of the periodic gen-
eralized coupled Sylvester operator defined by the left hand sides of (3.7) for
k = 0, . . . , K − 1:
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ZPGCSY =


−A
(0)
22

T ⊗ Ip1 Ip2 ⊗A
(0)
11

−E
(0)
22

T ⊗ Ip1 Ip2 ⊗ E
(0)
11

Ip2 ⊗A
(1)
11 −A

(1)
22

T ⊗ Ip1

−E
(1)
22

T ⊗ Ip1

. . .

. . .

−A
(K−1)
22

T ⊗ Ip1

−E
(K−1)
22

T ⊗ Ip1 Ip2 ⊗ E
(K−1)
11




,

and x and c are 2Kp1p2 × 1 vector representations of the assembled unknowns
and right hand sides, respectively:

x =




vec(L0)
vec(R1)
vec(L1)
vec(R2)
...
vec(RK−1)
vec(LK−1)
vec(R0)




, c =




vec(−A
(0)
12 )

vec(−E
(0)
12 )

vec(−A
(1)
12 )

vec(−E
(1)
12 )

...
vec(−A

(K−1)
12 )

vec(−E
(K−1)
12 )




.

Here, the operator vec(M) stacks the columns of a matrix M on top each other
into one long vector. Note also that only the nonzero blocks of ZPGCSY are dis-
played explicitly above. The sparsity structure of ZPGCSY can be exploited when
using Gaussian elimination with partial pivoting (GEPP) or a QR factorization
to solve (4.1), see Section 6 for more details.

If all E
(k)
ii are nonsingular, the PGCSY equation (3.7) can be manipulated to

achieve a sequence of independent generalized coupled Sylvester (GCSY) equa-
tions as

{
A

(k)
11 Rk − LkA

(k)
22 = −A

(k)
12 ,

A
(k)
11 ΦE−1

11 A11
(K + k, k)−1Rk − LkA

(k)
22 ΦE−1

22 A22
(K + k, k)−1 = Ck,

(4.2)

k = 0, 1, . . . ,K − 1, where Ck is a sum of products formed from blocks of the
left and right hand sides in (3.7). It is well-known that the GCSY (4.2) has a
unique solution Xk for each k if and only if the regular matrix pairs

(A(k)
11 , A

(k)
11 ΦE−1

11 A11
(K + k, k)−1), (A(k)

22 , A
(k)
22 ΦE−1

22 A22
(K + k, k)−1)

have no eigenvalues in common and it is easy to see that this corresponds to

λ(ΦE−1
11 A11

(K + k, k)) ∩ λ(ΦE−1
22 A22

(K + k, k)) = ∅.
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Since the characteristic multipliers are independent of k, it suffices to require
this condition to be satisfied for k = 0, i.e.,

λ(Π11) ∩ λ(Π22) = ∅(4.3)

with Πii = ΦE−1
ii Aii

(K, 0) as in (3.5). Also if some E
(k)
ii happen to be singular,

a continuity argument can be used to show that (4.3) is sufficient and necessary
for the unique solvability of (3.7). Throughout this paper we assume that the
condition (4) is fulfilled. If the condition is violated then, since (Ak, Ek) is
in GPRSF, the eigenvalues of Π11 and Π22 are actually equal and there is in
principle no need for swapping.

The condition (4) is equivalent to

sep[PGCSY] = σmin(ZPGCSY) 6= 0.(4.4)

As for deflating subspaces of regular matrix pairs (see, e.g., [32, 22]), the quantity
sep[PGCSY] measures the sensitivity of the periodic deflating subspace pair of
the GPRSF [5, 25, 33]. If K, p1 or p2 become large this quantity is very expensive
to compute explicitly. By using the well-known estimation technique described
in [16, 18, 21, 22], reliable sep[PGCSY]-estimates can be computed at the cost
of solving a few PGCSYs.

5 Error analysis of K-cyclic equivalence swapping of diagonal blocks

In this section, we present an error analysis of the direct method described in
Section 3 by extending the results in [20] to the case of periodic matrix pairs.
We sometimes omit the index range k = 0, 1, . . . ,K − 1, assuming that it is
implicitly understood.

In finite precision arithmetic, the transformed matrix pair sequence will be
affected by roundoff errors, resulting in a computed sequence (Ãk, Ẽk). We
express the computed transformed matrix pairs as

(Ãk, Ẽk) = (Âk + ∆Ak, Êk + ∆Ek),

where (Âk, Êk) for k = 0, . . .K − 1 correspond to the exact matrix pairs in the
reordered GPRSF of (Ak, Bk). Our task is to derive explicit expressions and
upper bounds for the error matrices ∆Ak and ∆Ek. Most critical are of course
the subdiagonal blocks of a 2× 2 block partioned sequence (∆Ak,∆Ek). These
must be negligible in order to guarantee numerical backward stability for the
swapping of diagonal blocks.

Let (L̃k, R̃k) = (Lk + ∆Lk, Rk + ∆Rk) denote the computed solution to the
associated PGCSY. The residual pair sequence of the computed solution is then
given by (Y (k)

1 , Y
(k)
2 ), where

{
Y

(k)
1 ≡ A

(k)
11 R̃k − L̃kA

(k)
22 + A

(k)
12 ,

Y
(k)
2 ≡ E

(k)
11 R̃k⊕1 − L̃kE

(k)
22 + E

(k)
12 .

(5.1)
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In addition, let Q̃k, T̃
(k)
L denote the computed factors of the kth QR factorization

G̃
(k)
L ≡

[
L̃k

Ip2

]
= Q̃k

[
T̃

(k)
L

0

]
,(5.2)

where Q̃k = Qk +∆Qk, T̃
(k)
L = T

(k)
L +∆T

(k)
L and Qk, T

(k)
L are the exact factors.

Similarly, let Z̃k, T̃
(k)
R denote the computed factors of the kth RQ factorization

G̃
(k)
R ≡ [

Ip1 −R̃k

]
=

[
0 T̃

(k)
R

]
Z̃T

k ,(5.3)

where Z̃k = Zk+∆Zk, T̃
(k)
R = T

(k)
R +∆T

(k)
R and Zk, T

(k)
R are the exact factors. If

Householder transformations are used to compute the factorizations (5.2)-(5.3),
Q̃k and Z̃k are orthogonal to machine precision [40]. The error matrices ∆Qk

and ∆Zk are essentially bounded by the condition numbers of G̃
(k)
L and G̃

(k)
R ,

respectively, times the relative errors in these matrices (e.g., see [32, 19]).
We transform (Ak, Ek) using the computed (Q̃k, Z̃k) in a K-cyclic equivalence

transformation giving

Q̃T (Ak, Ek)Z̃k = (Âk + ∆Ak, Êk + ∆Ek),(5.4)

where (Âk, Êk) is the exact reordered GPRSF of the periodic (Ak, Bk) se-
quence. Our aim is to derive explicit expressions and norm bounds for blocks of
(∆Ak, ∆Ek). First,

Q̃T AkZ̃k = (Qk + ∆Qk)T Ak(Zk + ∆Zk) =

= QT
k AkZk + ∆QT

k AkZk + QT
k Ak∆Zk + ∆QT

k Ak∆Zk,
(5.5)

and by dropping the second order term and using Âk = QT
k AkZk and ∆QT

k Qk =
−Qk∆QT

k up to first order we get

Q̃T AkZ̃k = Âk + Âk(ZT
k ∆Zk) + (−Qk∆QT

k )Âk = Âk + ∆Ak,

with ∆Ak ≡ ÂkUk + WkÂk, where Uk = ZT
k ∆Zk and Wk = −Qk∆QT

k .

(5.6)

Similarly, we get

Q̃T BkZ̃k⊕1 = Êk + ∆Ek with ∆Ek ≡ ÊkUk⊕1 + WkÊk.(5.7)

After partitioning Uk, Uk⊕1, Wk and (∆Ak,∆Ek) in conformity with (Âk, Êk)
and doing straightforward block matrix multiplications we get

∆A
(k)
11 = Â11U

(k)
11 + W

(k)
11 Â

(k)
11 + Â

(k)
12 U

(k)
21 ,

∆A
(k)
12 = Â

(k)
11 U

(k)
12 + Â

(k)
12 U

(k)
22 + W

(k)
11 Â

(k)
12 + W

(k)
12 Â

(k)
22 ,

∆A
(k)
21 = Â

(k)
22 U

(k)
21 + W

(k)
21 Â

(k)
11 ,

∆A
(k)
22 = Â

(k)
22 U

(k)
22 + W

(k)
22 Â

(k)
22 + W

(k)
21 Â

(k)
12 ,
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and

∆E
(k)
11 = Ê11U

(k⊕1)
11 + W

(k)
11 Ê

(k)
11 + Ê

(k)
12 U

(k⊕1)
21 ,

∆E
(k)
12 = Ê

(k)
11 U

(k⊕1)
12 + Ê

(k)
12 U

(k⊕1)
22 + W

(k)
11 Ê

(k)
12 + W

(k)
12 Ê

(k)
22 ,

∆E
(k)
21 = Ê

(k)
22 U

(k⊕1)
21 + W

(k)
21 Ê

(k)
11 ,

∆E
(k)
22 = Ê

(k)
22 U

(k⊕1)
22 + W

(k)
22 Ê

(k)
22 + W

(k)
21 Ê

(k)
12 .

Observe that ∆A
(k)
11 , ∆A

(k)
22 , ∆E

(k)
11 , ∆E

(k)
22 affect the reordered K-cyclic diag-

onal block pairs and possibly the eigenvalues, while ∆A
(k)
21 and ∆E

(k)
21 are even

more critical since they affect the eigenvalues as well as the stability of the re-
ordering; these are the perturbations of interest that we investigate further. The
analysis in [20] applied to (5.2)–(5.3), results in the following expressions for
blocks of Uk and Wk:

U
(k)
11 = −Z

(k)
21

−1
Z

(k)
22 T

(k)
R

−1
∆RkZ

(k)
21 ,

U
(k)
21 = T

(k)
R

−1
∆RkZ

(k)
21 ,

U
(k)
22 = T

(k)
R

−1
∆RkZ

(k)
22 ,

and

W
(k)
11 = −Q

(k)
11

T
∆LkT

(k)
L

−1
,

W
(k)
21 = −Q

(k)
12

T
∆LkT

(k)
L

−1
,

W
(k)
22 = Q

(k)
12

T
T

(k)
L

−1
Q

(k)
11

T
Q

(k)
12

−T
,

up to first order perturbations. By substituting the expressions for U
(k)
ij and

W
(k)
ij in ∆A

(k)
ij , ∆E

(k)
ij we obtain

∆A
(k)
11 = Q

(k)
11

T
Y

(k)
1 Z

(k)
21 ,(5.8)

∆A
(k)
21 = Q

(k)
12

T
Y

(k)
1 Z

(k)
21 ,(5.9)

∆A
(k)
22 = Q

(k)
12

T
Y

(k)
1 Z

(k)
22 ,(5.10)

and

∆E
(k)
11 = Q

(k)
11

T
Y

(k)
2 Z

(k⊕1)
21 ,(5.11)

∆E
(k)
21 = Q

(k)
12

T
Y

(k)
2 Z

(k⊕1)
21 ,(5.12)

∆E
(k)
22 = Q

(k)
12

T
Y

(k)
2 Z

(k⊕1)
22 ,(5.13)

with the residuals (Y (k)
1 , Y

(k)
2 ) as in (5.1). From the QR and RQ factorizations

(3.12) we have

Q
(k)
21 = T

(k)
L

−1
, T

(k)
L

T
T

(k)
L = Ip2 + LT

k Lk,(5.14)
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and
Z

(k)
12

T
= T

(k)
R

−1
, T

(k)
R T

(k)
R

T
= Ip1 + RkRT

k .(5.15)
From (5.14)–(5.15) we obtain the following relations between the singular values
of T

(k)
L , T

(k)
R , Lk and Rk:

σ2(T (k)
L ) = 1 + σ2(Lk), σ2(T (k)

R ) = 1 + σ2(Rk).(5.16)

Further, from the CS decomposition (see, e.g., [12]) of Qk and Zk, respectively,
we obtain the relations

‖Q(k)
12

T ‖2 = ‖Q(k)
21 ‖2, ‖Q(k)

22 ‖2 = ‖Q(k)
11 ‖2,

‖Z(k)
12

T ‖2 = ‖Z(k)
21 ‖2, ‖Z(k)

22 ‖2 = ‖Z(k)
11 ‖2.

Combining these results, we get

‖Q(k)
12

T ‖2 = ‖T (k)
L

−1‖2 =
1

σmin(T (k)
L )

=
1

(1 + σ2
min(Lk))1/2

,

‖Q(k)
11 ‖2 =

σmax(Lk)
(1 + σ2

max(Lk))1/2
,

and

‖Z(k)
21 ‖2 = ‖T (k)

R

−1‖2 =
1

σmin(T (k)
R )

=
1

(1 + σ2
min(Rk))1/2

,

‖Z(k)
22 ‖2 =

σmax(Rk)

(1 + σ2
max(Rk))1/2

,

and we have proved the following theorem by applying the submultiplicativity
of matrix norms to (5.8)–(5.13).

Theorem 5.1. After applying the computed transformation matrices Q̃k, Z̃k

from (5.2)-(5.3) in a K-cyclic equivalence transformation of (Ak, Ek) defined in
(3.1), we get

Q̃T
k AkZ̃k = Ãk, where Ãk ≡ Âk + ∆Ak =

[
Â

(k)
11 Â

(k)
12

0 Â
(k)
22

]
+

[
∆A

(k)
11 ∆A

(k)
12

∆A
(k)
21 ∆A

(k)
22

]
,

Q̃T
k EkZ̃k⊕1 = Ẽk, where Ẽk ≡ Êk + ∆Ek =

[
Ê

(k)
11 Ê

(k)
12

0 Ê
(k)
22

]
+

[
∆E

(k)
11 ∆E

(k)
12

∆E
(k)
21 ∆E

(k)
22

]
.

The critical blocks of the error matrix pair (∆Ak,∆Ek) satisfy the following
error bounds, up to first order perturbations:

‖∆A
(k)
11 ‖2 ≤

σmax(Lk)

(1 + σ2
max(Lk))1/2

· 1

(1 + σ2
min(Rk))1/2

· ‖Y (k)
1 ‖F ,

‖∆A
(k)
21 ‖2 ≤

1

(1 + σ2
min(Lk))1/2

· 1

(1 + σ2
min(Rk))1/2

· ‖Y (k)
1 ‖F ,

‖∆A
(k)
22 ‖2 ≤

1

(1 + σ2
min(Lk))1/2

· σmax(Rk)

(1 + σ2
max(Rk))1/2

· ‖Y (k)
1 ‖F ,
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and

‖∆E
(k)
11 ‖2 ≤

σmax(Lk)

(1 + σ2
max(Lk))1/2

· 1

(1 + σ2
min(Rk⊕1))

1/2
· ‖Y (k)

2 ‖F ,

‖∆E
(k)
21 ‖2 ≤

1

(1 + σ2
min(Lk))1/2

· 1

(1 + σ2
min(Rk⊕1))

1/2
· ‖Y (k)

2 ‖F ,

‖∆E
(k)
22 ‖2 ≤

1

(1 + σ2
min(Lk))1/2

· σmax(Rk⊕1)

(1 + σ2
max(Rk⊕1))

1/2
· ‖Y (k)

2 ‖F ,

for k = 0, 1, . . . ,K−1. Moreover, the matrix pair sequences (Â(k)
11 , Ê

(k)
11 ), (A(k)

22 , E
(k)
22 )

and (A(k)
11 , E

(k)
11 ), (Â(k)

22 , Ê
(k)
22 ) are K-cyclic equivalent and have the same gener-

alized eigenvalues, respectively.
Remark 5.1. Theorem 5.1 shows that the stability and accuracy of the re-

ordering method is governed mainly by the conditioning and accuracy of the
solution to the associated PGCSY. The errors ‖∆A

(k)
ij ‖2 and ‖∆E

(k)
ij ‖2 can be

as large as the norm of the residuals ‖Y (k)
1 ‖F and ‖Y (k)

2 ‖F , respectively. Indeed,
this happens when the smallest singular values of the exact sequences Lk and
Rk are tiny, indicating an ill-conditioned underlying PGCSY equation. We have
experimental evidence that ‖Y (k)

1 ‖F and ‖Y (k)
2 ‖F can be large for large-normed

(ill-conditioned) solutions of the associated PGCSY. In the next section, we show
how we handle such situations and guarantee backward stability of the periodic
reordering method.

Remark 5.2. For periodicity K = 1, Theorem 5.1 reduces to the main theo-
rem of [20] on the perturbation of the generalized eigenvalues under eigenvalue
reordering in the generalized real Schur form of a regular matrix pencil.

6 Algorithms and implementation aspects

In this section, we address some implementation issues of the direct method
for reordering eigenvalues in a generalized periodic real Schur form described
and analyzed in the previous sections.

6.1 Algorithms for solving the PGCSY

The linear system (4.1) that arises from the PGCSY (3.7) has a pariticular
structure that needs to be exploited in order to keep the cost of the overall
algorithm linear in K. The matrix ZPGCSY in (4.1) belongs to the class of
bordered almost block diagonal (BABD) matrices, which takes the more general
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form

Z =




Z0,0 Z0,2K−1

Z1,0 Z1,1

Z2,1 Z2,2

Z3,2 Z3,3

Z4,3
. . .
. . .

Z2K−2,2K−2

Z2K−1,2K−2 Z2K−1,2K−1




,(6.1)

where each nonzero block Zi,j is m × m (note that m = p1p2 for the matrix
ZPGCSY of size 2Km× 2Km). An overview of numerical methods that address
linear systems with such BABD structure is given in [10]. Gaussian elimination
with partial pivoting, for example, preserves much of the structure of Z and can
be implemented very efficiently. Unfortunately, matrices with BABD structure
happen to be among the rare examples of practical relevance which may lead to
numerical instabilities because of excessive pivot growth [42]. Gaussian elimina-
tion with complete pivoting avoids this phenomenom but is too expensive both
in terms of cost and storage space. In contrast, structured variants of the QR
factorization are both numerically stable and efficient [11, 41]. In the following,
we describe such a structured QR factorization in more detail.

Algorithm 6.1 Overlapping QR factorization of the BABD-system Zx = y

Input: Matrix Z ∈ R2Km×2Km, right hand side vector y ∈ R2Km.
Output: Orthogonal transformations Q̄k ∈ R2m×2m, k = 0, 1, . . . , 2K − 2,

Q̄2K−1 ∈ Rm×m, triangular factor R̄ ∈ R2Km×2Km with
structure as in Equation (6.2), vector ȳ ∈ R2Km such that R̄x = ȳ.

for k = 0 up to 2K − 2 do

QR factorize: Q̄kR̄k =
�
ZT

k,k, ZT
k+1,k

�T

Update:
�
ZT

k,k+1, ZT
k+1,k+1

�T
= Q̄T

k

�
ZT

k,k+1, ZT
k+1,k+1

�T

Update:
�
ZT

k,K−1, ZT
k+1,K−1

�T
= Q̄T

k

�
ZT

k,K−1, ZT
k+1,K−1

�T
Update right hand side: ȳk = Q̄T

k yk

end for
QR factorize: Q̄2K−1R̄2K−1 = Z2K−1,2K−1

Update right hand side: ȳ2K−1 = Q̄T
2K−1y2K−1

To solve a linear system Zx = y, we first reduce the matrix Z in (6.1) to upper
triangular form. For this purpose, we successively apply Householder transfor-

mations to reduce each block
[
ZT

k,k, ZT
k+1,k

]T

, k = 0, 1, . . . , K − 2, to upper
trapezoidal form, and the block Z2K−1,2K−1 to upper triangular form. Each
computed Householder transformation is applied to the corresponding block row
(as well as the right hand side y of the equation, which is blocked in conformity
with Z) before the next transformation is computed. The factorization pro-
cedure is outlined in Algorithm 6.1, where for simplicity of presentation the
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Householder transformations are accumulated into orthogonal transformation
matrices Q̄k.

0 20 40 60 80
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20
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50

60

70

80

nz = 726

R − Triangular factor

Figure 6.1: The resulting R-factor from applying overlapping QR factorizations to the
matrix ZPGCSY for K = 10, p1 = p2 = 2, visualized by the Matlab spy command.
The ”sawtooth” above the main block diagonal is typical for the PGCSY and does not
occur in the case of periodic matrix reordering [14].

Algorithm 6.2 Backward substitution for solving R̄x = ȳ

Input: Matrix R̄ ∈ R2Km×2Km, with the structure displayed in
Equation (6.2), right hand side vector ȳ ∈ R2Km partitioned
in conformity with the structure of R̄.

Output: Solution vector x ∈ R2Km such that R̄x = ȳ.

for k = K − 1 down to 0 do
Solve: x2k+1 = [R̄2k+1]

−1ȳ2k+1 using backward substitution (R̄2k+1 ← Im×m)
Update: ȳ2k = ȳ2k −Gkx2k+1 (Gk ← 0)
if (k = K − 1) then

for i = K − 2 down to 0 do
Update: ȳ2k+1 = ȳ2k+1 − F2k+1x2K−1 (F2k+1 ← 0)
Update: ȳ2k = ȳ2k − F2kx2K−1 (F2k ← 0)

end for
end if
Solve: x2k = [R̄2k]−1ȳ2k using backward substitution (R̄2k ← Im×m)
if (k > 0) then

Update: ȳ2k−1 = ȳ2k−1 − L̄k−1x2k (L̄k−1 ← 0)
end if

end for
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It is straightforward to see that this procedure of computing overlapping or-
thogonal factorizations produces the same amount of fill-in elements in the right-
most block columns of Z as would GEPP produce in the worst case, see also
Figure 6.1. More formally, the QR factorization reduces the matrix Z into the
following form:




R̄0 G0 F0

R̄1 L̄0 F1

R̄2 G1 F2

R̄3 L̄1 F3

. . .
...

. . .
...

R̄2K−4 GK−2 F2K−4

R̄2K−3 L̄K−2 F2K−3

R̄2K−2 GK−1

R̄2K−1




,(6.2)

with R̄k, L̄k, Fk, Gk ∈ Rm×m: R̄k (k = 0, 1, . . . , 2K − 1) are upper triangular,
whereas L̄k (k = 0, 1, . . . ,K − 2), Gk, (k = 0, 1, . . . , K − 1), and Fk (k =
0, 1, . . . , 2K−3) are dense matrices. Moreover, the blocks L̄k are lower triangular
provided that Z2,2, Z4,4, . . . , Z2K−2,2K−2 and Z2,1, Z4,3, . . . , Z2K−2,2K−1 in (6.1)
are lower and upper triangular, respectively, which is the case for ZPGCSY. To
compute x we employ backward substitution on this structure, as outlined in
Algorithm 6.2.

We remark that the new algorithms described here for solving small-sized
PGCSY equations can be used as kernel solvers in recursive blocked algorithms [13]
for solving large-scale problems.

Remark 6.1. Solving a linear system with QR factorization yields a small
norm-wise backward error [19], i.e., the computed solution x̂ is the exact solution
of a slightly perturbed system (Z +4Z)x̂ = y, where ‖4Z‖F = O(u‖Z‖F ) with
u denoting the unit roundoff. However, the standard implementation of the QR
factorization is not row-wise backward stable, i.e., the norm of a row in 4Z may
not be negligible compared to the norm of the corresponding row in Z. This may
cause instabilities if the norms of the coefficient matrices Ak, Ek differ signifi-
cantly. To avoid this effect, we scale each Ak and Ek to Frobenius norm 1 before
solving (3.7). Then each block row in ZPGCSY has Frobenius norm at most

√
2

amd ‖ZPGCSY‖F ≤ 2
√

K. The resulting swapping transformation is applied to
the original unscaled K-cyclic matrix pair sequence. The corresponding residuals
satisfy

‖Y (k)
1 ‖F = O(u‖Ak‖F ‖(Lk, Rk)‖F ), ‖Y (k)

2 ‖F = O(u‖Ek‖F ‖(Lk, Rk⊕1)‖F ).

Combined with Theorem 5.1, this shows that the backward error of the developed
reordering method is norm-wise small for each coefficient Ak and Ek, unless (3.7)
is too ill-conditioned.
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6.2 K-cyclic equivalence swapping algorithm with stability tests

Considering the error analysis in Section 5 and in the spirit of [22, 14], we
formulate stability test criteria for deciding whether a K-cyclic equivalence swap
should be accepted or not.

From Equation (3.12) and the following partition of the transformation matrix
sequences Qk and Zk, we obtain the relations

LkQ
(k)
21 −Q

(k)
11 = 0, Z

(k)
12

T
Rk + Z

(k)
22

T
= 0,(6.3)

which can be computed before the swapping is performed. We use computed
quantities of these relations to define the weak stability criterion:

Rweak = max
0≤k≤K−1

max


‖L̃kQ̃

(k)
21 − Q̃

(k)
11 ‖F

‖L̃k‖F

,
‖Z̃(k)

12

T

R̃k + Z̃
(k)

22

T

‖F

‖R̃k‖F


 .(6.4)

We remark that the relative criterion Rweak should be small even for ill-conditioned
PGSCY equations with large normed solutions Lk and Rk (see also Remarks 5.1
and 6.1). After the swap has been performed, the maximum residual over the
whole K-period defines a strong stability criterion:

Rstrong = max
0≤k≤K−1

max

(
‖Ak − Q̃kÃkZ̃T

k ‖F

‖Ak‖F
,
‖Ek − Q̃kẼkZ̃T

k⊕1‖F

‖Ek‖F

)
.(6.5)

If both Rweak and Rstrong are less than a specified tolerance εu (a small constant
times the machine precision), the swap is accepted, otherwise it is rejected. In
this way, backward stability is guaranteed for the K-cyclic equivalence swapping.

In summary, we have the following algorithm for swapping two matrix pair
sequences of diagonal blocks in the GPRSF of a regular K-cyclic matrix pair
(Ak, Bk) of size (p1 + p2)× (p1 + p2):

1. Compute K-cyclic matrix pair sequence (L̃k, R̃k) by solving the scaled PGCSY
(3.7) using Algorithm 6.1 and Algorithm 6.2.

2. Compute K-cyclic orthogonal matrix sequence Q̃k using QR factorizations:
[

L̃k

Ip2

]
= Q̃k

[
T̃

(k)
L

0

]
, k = 0, 1, . . . , K − 1.

3. Compute K-cyclic orthogonal matrix sequence Z̃k using RQ factorizations:

[
Ip1 −R̃k

]
=

[
0 T̃

(k)
R

]
Z̃T

k , k = 0, 1, . . . , K − 1.
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4. Compute (Ã, Ẽ) = (Q̃T
k AkZ̃k, Q̃T

k EkZ̃k⊕1) for k = 0, 1, . . . ,K − 1, i.e., an
orthogonal K-cyclic equivalence transformation of (Ak, Ek):

Ã ≡
[

Ã
(k)
11 Ã

(k)
12

Ã
(k)
21 Ã

(k)
22

]
= Q̃T

k

[
A

(k)
11 A

(k)
12

0 A
(k)
22

]
Z̃k,

Ẽ ≡
[

Ẽ
(k)
11 Ẽ

(k)
12

Ẽ
(k)
21 Ẽ

(k)
22

]
= Q̃T

k

[
E

(k)
11 E

(k)
12

0 E
(k)
22

]
Z̃k⊕1.

5. If Rweak < εu ∧Rstrong < εu, accept swap and

5a. set Ã
(k)
21 = Ẽ

(k)
21 = 0,

5b. restore GPRSF of (Ã(k)
11 , Ẽ

(k)
11 ) and (Ã(k)

22 , Ẽ
(k)
22 ) by the periodic QZ

algorithm;

otherwise reject swap.

The stability tests in step 5 for accepting a K-cyclic swap guarantee that
the subdiagonal blocks Ã

(k)
21 and Ẽ

(k)
21 are negligible compared to the rest of

the matrices. Step 5b can be performed by a fixed number of operations for
adjacent diagonal blocks in the GPRSF, i.e., for pi ∈ {1, 2} (see [14] for the
standard periodic matrix case).

Properly implemented, this algorithm requires O(K) floating point operations
(flops), where K is the periodicity. When it is used to reorder two adjacent
diagonal blocks in a larger n × n periodic matrix pair in GPRSF then the off-
diagonal parts are updated by the transformation matrices Q̃k and Z̃k, which
additionally requires O(Kn) flops.

There are several other important implementation issues to be considered for
a completely reliable implementation. For example, iterative refinement in ex-
tended precision arithmetic can be used to improve the accuracy of the PGCSY
solution and avoid the possibility of rejection (see, e.g., [19]). Our experiences
so far concern iterative refinement in standard precision arithmetic and (as ex-
pected) the results show no substantial improvements.

7 Computational experiments

The direct reordering algorithm described in the previous sections has been
implemented in MATLAB. A more robust and efficient Fortran implementa-
tion will be included in a forthcoming software toolbox for periodic eigenvalue
problems. In this section, we present some numerical results using our pro-
totype implementation. All experiments were carried out in double precision
(εmach ≈ 2.2× 10−16).

The test examples range from well-conditioned to ill-conditioned problems,
including matrix pair sequences of small and large periodicity. In Table 7.1,
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we display some problem characteristics: problem dimension n (2, 3 or 4 cor-
responding to swapping a mix of 1 × 1 and 2 × 2 blocks), periodicity K, the
computed value of sep[PGCSY] = σmin(ZPGCSY) (see Section 4) and

s = 1/
√

1 + ‖(L0, R0)‖2F ,

where (L0, R0) is the generator matrix pair (see Section 3.2). The quantities
s and sep[PGCSY] partly govern the sensitivity of the selected eigenvalues and
associated periodic deflating subspaces, see [5, 25, 33].

The results from the periodic reordering are presented in Table 7.2. These
include the weak (Rweak) and strong (Rstrong) stability tests, the residual norms
for the GPRSF before (Rgprsf) and after (Rreord) the reordering computed as in
Equation (6.5), a relative orthogonality check of the accumulated transforma-
tions after (Rorth) the reordering computed as

Rorth =
maxk(‖Ink

− W̃T
k W̃k‖F , ‖Ink

− W̃kW̃T
k ‖F )

εmach
,

where the maximum is taken over the period K for all transformation matrices
Q̃k and Z̃k. The last column displays the maximum relative change of the
eigenvalues after the periodic reordering

Reig = max
k

|λk − λ̃k|
|λk| , λk ∈ λ(ΦE−1A(K, 0)).

Notice that we normally do not compute λi explicitly but keep it as an eigenvalue
pair (αi, βi) to avoid losing information because of roundoff errors. This is
especially important for tiny and large values of αi and/or βi.

The eigenvalues before and after reordering are shown in full precision under
each example. For 2× 2 matrix sequences, we compute the generalized eigenval-
ues via unitary transformations in the GPRSF as is done in LAPACK’s DTGSEN
[1].

Table 7.1: Problem characteristics.

Example n K sep[PGCSY] s
I 2 2 1.1E-8 1.4E-4
II 4 10 3.3E-2 4.9E-1
III 4 100 1.4E-3 1.9E-1
IV 4 100 1.4E-14 6.1E-7
V 3 5 7.1E-2 6.2E-1
VI 2 50 1.6E-2 5.8E-1

Example I. Consider the following sequence with n = 2,K = 2:

A1 =
[

2ε1/2 −1
0 −2ε1/2

]
, A2 = E1 = E2 =

[
ε1/2 1
0 ε1/2

]
.



Computing Periodic Deflating Subspaces Associated with a Specified Set of Eigenvalues 21

Table 7.2: Reordering results using QR factorization to solve the associated PGCSY.

Example Rweak Rstrong Rgprsf Rreord Rorth Reig

I 6.3E-17 5.0E-16 0 5.0E-16 2.0 3.2E-9
II 1.6E-16 9.0E-16 4.8E-15 5.6E-15 7.5 4.6E-15
III 1.8E-16 1.3E-15 2.2E-16 3.2E-15 8.3 3.3E-14
IV 8.3E-17 1.0E-15 2.2E-16 2.4E-15 7.6 3.8E-14
V 1.3E-16 7.0E-16 8.3E-17 9.1E-16 2.8 1.8E-15
VI 3.8E-16 8.2E-16 0 9.8E-16 2.0 1.1E-16

This product has the (α, β)-pairs

(α1, β1) = (4.4408920985006, 2.2204460492503) × 10−16,
(α2, β2) = (−4.4408920985006,−2.2204460492503) × 10−16,

which correspond to well-defined eigenvalues λ1 = 2.0 and λ2 = −2.0. But all
αi and βi are at the machine precision level and this fact signals an obvious risk
for losing accuracy after the reordering:

(α̃1, β̃1) = (9.5161972853921,−4.7580986273341) × 10−16,

(α̃2, β̃2) = (−2.0724163126336,−1.0362081563168) × 10−16,

which define the eigenvalues λ̃1 = −2.00000000645717 and λ̃2 = 2.00000000000000.
Example II. Consider reordering the eigenvalues λ1,2 = 2± 2i and λ3,4 = 1± i
in a matrix pair sequence with dimension n = 4 and period K = 10. The
computed eigenvalues from the GPRSF are correct to full machine precision.
After reordering we get the following (α, β)-pairs:

(α̃1, β̃1) = (−6.69743899940721− 6.69743899940718i,−6.69743899940718),
(α̃2, β̃2) = (1.03550511685258− 1.03550511685258i, 1.03550511685258),
(α̃3, β̃3) = (1.93142454580911 + 1.93142454580911i, 0.96571227290455),
(α̃4, β̃4) = (0.29862160747967− 0.29862160747967i, 0.14931080373983).

A quick check reveals that these pairs correspond to a reordering at almost full
machine precision.
Example III. The eigenvalue pair cos π

4 ± sin π
4 i is located on the unit circle.

In LQ-optimal control (see Section 2) we want to compute a periodic deflating
subspace corresponding to the stable eigenvalues, i.e., the eigenvalues inside the
unit disc.

For illustration, consider reordering the eigenvalues λ1,2 = (cos π
4 +δ)±(sin π

4 +
δ)i and λ3,4 = (cos π

4−δ)±(sin π
4−δ)i, where δ ∈ [0, 1], in a matrix pair sequence

of period K = 100 arising, for example, from performing multi-rate sampling of
a continuous-time system. At first, let δ = 10−1. The matrix product has the
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computed (α, β)-pairs

(α1, β1) = (0.80710678118654 + 0.80710678118654i, 1.00000000000002),
(α2, β2) = (0.80710678118654− 0.80710678118654i, 1.00000000000002),
(α3, β3) = (−0.60710678118655− 0.60710678118655i,−0.99999999999999),
(α4, β4) = (−0.60710678118655 + 0.60710678118655i,−1.00000000000000),

which correspond to the eigenvalues λ1,2 = 0.80710678118652±0.80710678118652i
and λ3,4 = 0.60710678118655± 0.60710678118655i. After reordering we have

(α̃1, β̃1) = (−1.53524924293502− 1.53524924293503i,−2.52879607098851),
(α̃2, β̃2) = (−6.49961741950939 + 6.49961741950943i,−10.70588835592705),
(α̃3, β̃3) = (−0.07538905267396− 0.07538905267396i,−0.09340654103182),
(α̃4, β̃4) = (0.31916641695471− 0.31916641695471i, 0.39544509400044),

which define the eigenvalues λ̃1,2 = 0.60710678118654± 0.60710678118655i and
λ̃3,4 = 0.80710678118654± 0.80710678118654i.
Example IV. We consider Example III again, now with δ = 10−12. The matrix
product has the computed (α, β)-pairs

(α1, β1) = (−0.70710678118754− 0.70710678118754i,−1.00000000000002),
(α2, β2) = (−0.70710678118755 + 0.70710678118755i,−0.99999999999999),
(α3, β3) = (0.70710678118555 + 0.70710678118555i, 1.00000000000000),
(α4, β4) = (−0.70710678118555 + 0.70710678118555i,−1.00000000000000),

which define the eigenvalues λ1,2 = 0.70710678118755± 0.70710678118754i and
λ3,4 = 0.70710678118555± 0.70710678118555i. After reordering we have

(α̃1, β̃1) = (−0.70710678121274− 0.70710678121274i,−1.00000000003845),
(α̃2, β̃2) = (0.70710678121274− 0.70710678121274i, 1.00000000003845),
(α̃3, β̃3) = (−0.70710678116035− 0.70710678116036i,−0.99999999996155),
(α̃4, β̃4) = (−0.70710678116036 + 0.70710678116036i,−0.99999999996155),

which correspond to the eigenvalues λ̃1,2 = 0.70710678118555±0.70710678118555i

and λ̃3,4 = 0.70710678118754±0.70710678118755i. The eigenvalues outside and
inside the unit disc come closer and closer with a decreasing δ and the problem
gets more ill-conditioned but we are still able to reorder the eigenvalues with
satisfying accuracy. We illustrate the situation in Figure 7.
Example V. Consider reordering the following single eigenvalue λ1 =

√
3 with

the eigenvalue pair λ2,3 =
√

3
2 ± 1√

7
i. The original (α, β)-pairs are

(α1, β1) = (1.73205080756888, 1.00000000000000),
(α2, β2) = (−0.86602540378444− 0.37796447300923i,−1.00000000000000),
(α3, β3) = (0.86602540378444− 0.37796447300923i, 1.00000000000000).

After reordering we have

(α̃1, β̃1) = (2.97791477286351 + 1.29966855807374i, 3.43859979147302),
(α̃2, β̃2) = (−1.43573050214952 + 0.62660416225306i,−1.65783878379957),
(α̃3, β̃3) = (0.30383422966230, 0.17541877428455),
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Figure 7.1: Results from reordering the eigenvalues of Examples III and IV with
δ ∈ [0, 1]. The displayed quantities are the same as in Tables 7.1-7.2. The hori-
zontal axis shows the logarithm of the parameter δ and the vertical axis displays the
logarithm of the computed quantities.

which define eigenvalues λ̃1,2 = 0.86602540378444±0.37796447300923i and λ̃3 =
1.73205080756888.
Example VI. Consider reordering the eigenvalues λ1 = 1 and λ2 = ∞. The
original (α, β)-pairs are

(α1, β1) = (−0.9999999999999986, 1.000000000000000),
(α2, β2) = (1.000000000000000, 0.000000000000000).

After reordering we have

(α̃1, β̃1) = (−1.564941642946474E−5, 0.000000000000000),
(α̃2, β̃2) = (6.390014634138052E+4, 6.390014634138062E+4),

which correspond to the eigenvalues λ̃1 = −∞ and λ̃2 = 0.9999999999999985.

8 Extensions of the K-cyclic reordering method

Below, we briefly describe two straightforward extensions to the direct reorder-
ing algorithm.

8.1 K-cyclic swapping in complex arithmetic

The algorithm described in this paper can easily be adopted to the complex
case. Then we only have to cope with reordering of 1 × 1 blocks (p1 = p2 = 1)
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using unitary matrices in the K-cyclic equivalence transformations. The main
alternative is to reorder each adjacent eigenvalue pair by propagating a (Givens)
rotation through the K-cyclic matrix pair [8], which requires more or less sophis-
ticated implementation techniques to avoid underflow or overflow in the result
[9], especially when the period K becomes large (see also Example 3 in [14]).
Even with a careful implementation, the rotation approach may fail—for Exam-
ple I we get the following swapped complex eigenvalues

λ̃1 = −1.87282049572853 + 0.58861866785157i,

λ̃2 = 1.74709648107590 + 0.47770138864644i.

As can be seen from the results in the previous section, our algorithm achieves
significantly higher accuracy for this particular example.

8.2 Reordering in even more general matrix products

Reordering can also be considered in matrix products of the form

A
sK−1
K−1 A

sK−2
K−2 · · ·As0

0 , s0, . . . , sK−1 ∈ {1,−1},(8.1)

which is needed, e.g., in [4]. This can be accomplished by insertion of identity
matrices into the matrix pair sequence so that the exponent structure falls back
on the same structure as in Equation (1.2), i.e., every second matrix is an in-
verse. By this procedure, the direct reordering method presented in the paper
is applicable to any product of the general form (8.1). The obvious drawback is
that the new periodic matrix pair sequence in the worst case will have two times
as large period as the original pair.

We remark that an efficient implementation that is able to handle matrix
products of the form (8.1) must rely on a data structure that allows insertion
of new matrices into the sequence without to much data copying. These, and
other implementation aspects, will be addressed in our forthcoming toolbox for
periodic eigenvalue problems.
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