Recursive Blocked Algorithms for Solving
Periodic Triangular Sylvester-Type
Matrix Equations

Robert Granat, Isak Jonsson, and Bo Kagstrom

Department of Computing Science and HPC2N, Umea University,
SE-901 87 Umea, Sweden
{granat, isak, bokg}@cs.umu.se

Abstract. Recently, recursive blocked algorithms for solving triangu-
lar one-sided and two-sided Sylvester-type equations were introduced by
Jonsson and Kagstrom. This elegant yet simple technique enables an au-
tomatic variable blocking that has the potential of matching the memory
hierarchies of today’s HPC systems. The main parts of the computations
are performed as level 3 general matrix multiply and add (GEMM) oper-
ations. We extend and apply the recursive blocking technique to solving
periodic Sylvester-type matrix equations. Successive recursive splittings
are performed on 3-dimensional arrays, where the third dimension rep-
resents the periodicity of a matrix equation.

Keywords: Sylvester-type matrix equations, periodic matrix equations,
recursion, blocking, level 3 BLAS, superscalar.

1 Introduction

The standard Sylvester equation AX — X B = C' has a periodic counter-part

ApXp — Xpy1 By = Crq1, k=1,...,p—1,
A, X, — X1B, = C1,

where p is the periodicity of the matrix sequences, such that Ay, = A, Biip =
By, and Ciyp = Cj [16/19]. In this contribution, we focus on recursive blocked
algorithms for solving triangular periodic matrix equations, i.e., the matrix se-
quences A and By, for k = 1,...,p are assumed to be in periodic real Schur
form (PRSF) [UI0]. This means that p — 1 of the matrices in each sequence are
upper triangular and one matrix in each sequence, say A, and By, 1 < r,s < p,
is quasi-triangular. The products of conforming diagonal blocks of the matrix se-
quences Ay and By, contain the eigenvalues of the matrix products A1 As--- A,
and BBy --- By, respectively, where the 1 x 1 and 2 x 2 blocks on the main
block diagonal of A, and Bs correspond to real and complex conjugate pairs of
eigenvalues of the corresponding matrix products.

Triangular matrix equations appear naturally in estimating the condition num-
bers of matrix equations and different eigenspace computations (e.g., see [T4UT5]

B. Kéagstrom et al. (Eds.): PARA 2006, LNCS 4699, pp. 531539, |2007.
© Springer-Verlag Berlin Heidelberg 2007

532 R. Granat, I. Jonsson, and B. Kagstrom

and [2I17]), including decoupling and stability analysis. Periodic Sylvester-type
matrix equations also appear in the context of eigenvalue reordering for compu-
tation and condition estimation of periodic invariant (deflating) subspaces of a
matrix (pair) sequence [7I89]. To solve a triangular matrix equation is also a ma-
jor step in the classical Bartels-Stewart method [I], which is our base-point for
solving general non-reduced periodic matrix equations.

2 Recursive Algorithms for Periodic Triangular Matrix
Equations

Our work includes novel recursive blocked algorithms for solving the most com-
mon one-sided and two-sided triangular periodic Sylvester-type matrix equa-
tions. In Table [Il, a summary of the periodic matrix equations considered is
displayed.

The classification in one-sided and two-sided matrix equations was introduced
in [TTJI2] and is implicit in the definition of a matrix equation. A periodic matrix
equation is one-sided if it only includes terms where the solution is involved in
matrix products of two matrices, e.g., op(Ax) Xy or Xpop(Ay), where op(Ayg)
can be Ay or AL. Similarly, a periodic matrix equation is two-sided if it includes
matrix products of three matrices, e.g., A;x X kB,{, where X}, is the solution se-
quence. This distinction relates to how blocks (subarrays) of matrices of the
solution sequence (e.g., Xy in PSYCT) are used in updates of the right hand
side matrices (C in PSYCT) in the recursive blocked algorithms. For exam-
ple, our algorithms for two-sided matrix equations require more space and flops,
compared to similar algorithms for one-sided equations.

For the two-sided equations, we only display one periodic transpose variant.
The other variants can be derived by moving the transpose to the left multiplying
matrices and replacing the periodic dependence k£ + 1 by k and vice versa. For
example, a second variant of PSYDT is

AkTXk+lBk:_Xk:Ck7 k:]-v"'up_]-v
AT X B, — X, = C,.

For the generalized equations in Table[J] we assume that the involved periodic
matrix pairs, namely (A, Dy) and (By, Ex) in PGCSY, (Ag, Ck) and (By, Dy)
in PGSYL, and (Ag, Ex) in PGLYCT and PGLYDT, are in generalized periodic
real Schur form (GPRSF) (see, e.g., [AI10] for details).

By using and reusing recursive templates, we can solve all matrix equations
listed in Table [utilizing only a small set of subroutines. By this, we mean
that, e.g., the PLYCT problem can be largely solved by the PSYCT routine.
Therefore, the efforts of optimizing the implementation can be concentrated on
a few core routines.

In the following, we discuss only a few of the periodic matrix equations of
Table [in some more detail.

The periodic matrix sequences are stored as 3-dimensional arrays, where the
third dimension is the periodicity p of the matrix equation. The successive recur-

Recursive Blocked Algorithms for Periodic Triangular Matrix Equations 533

Table 1. Considered one-sided (top) and two-sided (bottom) periodic Sylvester-type
matrix equations. Here, p is the periodicity of each equation and 1 < k <p — 1.

Name Mnemonic Matrix equation

Periodic continuous-time
standard Sylvester

Aka — Xk+1Bk = Ck
PSYCT {Apo —X\B, =C,
Periodic continuous-time
standard Lyapunov

A Xy + X1 AT = Gy,

PLYCT 4 AT — ¢,

Periodic generalized

coupled Sylvester PGESY

standard Sylvester PSYDT A, X,B,T — X1 =0,

A X AT — X1 = Cy,
A X, AT — X1 =G,

Periodic discrete-time

standard Lyapunov PLYDT

AkaBkT - Cka+1DkT = Ek

Periodic generalized Sylvester PGSYL A,X,B,T — CyX.D," = E,

Periodic continuous-time

generalized Lyapunov A Xp By + EpXiApT =Gy

Periodic discrete-time
generalized Lyapunov

Periodic discrete-time { Ap Xk BT — Xjp1 = O

sive splittings are performed on the 3-dimensional arrays explicitly, leading to
new types of data locality issues, compared to our previous work with RECSY

[TTT2U13].
2.1 Periodic Recursive Sylvester Solvers

Consider the real periodic continuous-time Sylvester (PSYCT) matrix equation

ApXp — Xpy1Br = Crg1, k=1,...,p—1,
Ay X, — X1By = Cy,
where the sequences Ay of size M x M and By of size N x N for k=1,...,p

are in PRSF form. The right hand sides C} and the solution matrices X are of
side M x N. Depending on the dimensions M and N, we consider three ways of

534 R. Granat, I. Jonsson, and B. Kagstrom

recursive splitting. First, we consider splitting of Ay by rows and columns and
C}% by rows only. The second alternative is to split B by rows and columns
and Cj by columns only. The third alternative is to split all three matrices by
rows and columns. No matter which alternative is chosen, the number of flops
is the same. Performance may differ greatly, though. Our algorithm picks the
alternative that keeps matrices as “squarish” as possible, i.e., 1/2 < M/N < 2,
which guarantees a good ratio between the number of flops and the number of
elements referenced.

Next, we consider the periodic generalized continuous-time Lyapunov (PG-
LYCT) equation

A X By' 4 By X AT =0, k=1,...,p— 1,
A X BN+ E, XA, =C,,

where the periodic matrix pair sequence (A, Ey) is in generalized periodic real
Schur form (GPRSF), and Cy and X (overwrites Cy) are symmetric M x M.
Because of symmetry, there is only one way to split the equation, resulting in
two triangular PGLYCT equations and one generalized periodic Sylvester (PG-
SYL) equation, all of which can be solved recursively using the following tem-
plate:

k) v (k) (k)T k) v (k+1) 4 (k)T k
APXVEY + B x{TVAR =y
k) v ()T)T B) v (k+1)T ()T
A X BT B X A
k) (k) (k)T k) v (k+1) (k)T
_Agl)X1(2)E£2) - E§1)X1(2)Agz)
k) (k) (k)T k) v (k+1) (k)T
_Agz)X§2)E§2) - E§2)X2(2)Agz))
k) v (k) ()T | (k) (k1) ()T k) k) v (B) ()T (k) (k1) (k)T
Ag1)X1(2)E§2) + E§1)X1(2Jr)Agz) = Ciz) - A(z)Xz(z)Eéz) - Eiz)Xz(;)Agz)
k) v (k) (k)T k) v (k+1) 4 (k)T k
AXWES + ERXETAL =l
Assuming that we have algorithms for solving PGLYCT and PGSYL (kernel
solvers are discussed in Section 2.2), we start by solving for the sequence XQ(’;),
k=1,...,p from the third (last) equation. After updating C’g) in the PGSYL
equation (second above) with respect to XQ(I;), k=1,...,p, we can solve for the
sequence Xl(;c). Finally, after updating C{Jf) in the first PGLYCT equation with

respect to Xl(g) and XQ(S) for k =1,...,p, we solve for the sequence Xl(’f).

The recursive template is now applied repeatedly to the three periodic matrix
equations above (divide phase) until the subproblems are small enough, when
kernel solvers are used for solving the node-leaf problems of the recursive tree.
In the conquer phase, the tree is traversed level by level, finally producing the
complete matrices Xy, k= 1,...,p, i.e., the solution of PGLYCT.

)

2.2 Kernel Solvers for Leaf Problems

In each step of the recursive blocking, the original periodic matrix equation is
reduced to several subproblems involving smaller and smaller matrices, and a

Recursive Blocked Algorithms for Periodic Triangular Matrix Equations 535

great part of the computation emerges as standard matrix-matrix operations,
such as general matrix multiply and add (GEMM) or triangular matrix mul-
tiply (TRMM) operations. At the end of the recursion tree, small instances of
periodic matrix equations have to be solved. Each such matrix equation can be
represented as a linear system Zx = ¢, where Z is a Kronecker product repre-
sentation of the associated periodic Sylvester-type operator, and it belongs to
the class of bordered almost block diagonal (BABD) matrices [6]. For example,
the PSYCT matrix equation can be expressed as Zx = ¢, where the matrix Z
of size mnp X mnp is

(Bl ® I, I, ® A,

In ® Ap—l Bg_l ® Im_
and
z = [vee(X1), vee(Xa), - -, vee(X,)]", ¢ = [vec(Ch), vec(Ca), - - -, vee(Cp)] "

In the algorithm, recursion proceeds down to problem sizes of 1 x 1 to 2 x 2.
For these problems, a compact form of the matrix Z which utilizes the sparsity
structure of the problem is computed and the problem is solved using Gaussian
elimination with partial pivoting (GEPP). These solvers are based on the super-
scalar kernels that were developed for the RECSY library [13]. Moreover, the
block diagonal of the matrix Z sometimes (see, e.g., PGCSY in [§]) has a certain
structure that can be exploited by the GEPP procedure. The memory usage for
Z is O(m®n®p), and the number of operations required to solve the problem is
O(m>®n3p). In case of an ill-conditioned matrix Z, the Gaussian elimination is
aborted when bad pivot elements are detected, an error condition is signaled,
and the solution process is restarted with a new problem from a higher level of
the recursion tree. This larger problem is then solved using LU with complete
pivoting (GECP) on a non-compact form of Z, which in turn results in a p times
larger memory requirement, namely O(m?n?p?) storage. However, since m and
n are small, typically 1 or 2, this is an effective procedure for typical sizes of
the periodicity p. The extra workspace can either be provided by the user or
dynamically allocated.

2.3 Storage Layout of Matrices

For storage of regular dense matrices, there are two major linear variants: row-
major (“C-style”) and column-major (“Fortran-style”). In addition, several re-
cursive blocked storage schemas have proven to give substantial performance
improvements, see [5] and further references therein.

For the periodic matrix sequences, there are six (3!) different linear variants.
One advantage of having the periodic dimension as the minor (innermost) di-
mension is better locality of the Z matrix in the kernel solver. However, this

536 R. Granat, I. Jonsson, and B. Kagstrom

efficiently disables all use of standard level 3 BLAS. Therefore, we have the pe-
riodicity p as the outermost dimension. Column-major storage layout is used for
each coefficient matrix (A, By, Ck etc.) in the periodic matrix sequences.

3 Sample Performance Results

The recursive blocked algorithms for the periodic Sylvester-type equations have
been implemented in Fortran 90, using the facilities for recursive calls of sub-
programs, dynamic memory allocation and threads. In this section, we present
sample performance results of implementations of solvers for one-sided and two-
sided equations executing on an AMD Opteron processor-based system. The
system has a dual AMD Opteron 2.2 GHz processor, with a 64 kB level 1 cache,
a 1024 kB level 2 cache and 8 GB memory per node. Theoretical peak per-
formance is 4.4 Gflops/s per processor. The peak performance of DGEMM and
other level 3 BLAS routines used vary between 3.0-3.5 Gflops/s. All performance
numbers presented are based on uniprocessor computations.

Recursive periodic Sylvester solve on AMD 2200

2500 ; ; ‘ ‘ ‘
2000
1500 -
o
a8
o
s
1000 -
500 -
/
RPSYCT, p=3
— — —RPSYCT, p=10
——— RPSYCT, p=20
0 | | | | | | | I I
0 200 400 600 800 1000 1200 1400 1600 1800 2000

M=N

Fig. 1. Performance results for the one-sided PSYCT equation (M = N) on AMD
Opteron. The three graphs correspond to the periodicity p = 3, 10, and 20.

Recursive Blocked Algorithms for Periodic Triangular Matrix Equations 537

3.1 Performance of the Recursive Blocked PSYCT Solver

In Figure[Il performance graphs for the implementation of the recursive blocked
PSYCT algorithm are displayed. The problem size (M = N) ranges from 100
to 2000, and the periodicity p = 3,10, and 20. For large enough problems the
performance approaches 70% of the DGEMM performance, which is on a level
with the recursive blocked SYCT solver in RECSY [IIJI3]. For an increasing
periodicity p the performance decreases only marginally.

3.2 Performance of the Recursive Blocked PGSYL Solver

In Figure 2l we show performance graphs for our implementation of the recursive
blocked algorithm for the two-sided PGSYL equation. The performance results
are somewhat inferior to the PSYCT performance, but still on a level with the
recursive blocked GSYL solver in RECSY [12I13]. We also see that the relative
decrease in performance with respect to an increasing periodiciy p is larger than
for the PSYCT solver. Reasons for this degradation include that the PGSYL
kernel solver is more complex and somewhat less efficient, and the two-sided
updates in the recursive blocked algorithm result in extra operations compared

Recursive periodic general Sylvester solve on AMD 2200

2500 T T T T T T T
2000 B
1500 -
©
0
Q
S
s
1000 -
500 -
// i
% RPGSYL, p=3
* — — —RPGSYL, p=10
—+— RPGSYL, p=20
0 Il Il Il Il Il Il Il I I
0 200 400 600 800 1000 1200 1400 1600 1800 2000

M=N

Fig. 2. Performance results for the two-sided PGSYL equation (M = N) on AMD
Opteron. The three graphs correspond to the periodicity p = 3, 10, and 20.

538 R. Granat, I. Jonsson, and B. Kagstrom

to a true level 1 or level 2 algorithm. Such overhead never appear in the one-
sided equations, but increases with p for two-sided equations. However, the use of
efficient level 3 operations compensates for some of this computational overhead.

4 Conclusions and Future Work

We have presented novel recursive blocked algorithms for solving various periodic
triangular matrix equations. Such equations stem from different applications
with a periodic or seasonal behaviour, e.g., the study of periodic control systems
[3], and discrete-time periodic (descriptor) systems [19] in particular.

Our recursive blocked algorithms are based on RECSY, an HPC library for the
most common non-periodic matrix equations (see [IIIT2JT3]). The performance
results are on the level of RECSY, which confirm that the recursive blocking ap-
proach is an efficient way of solving periodic triangular Sylvester-type equations.
The reason is three-fold: (i) recursion allows for good temporal locality; (ii) re-
cursion enables the periodic matrix equations to be rewritten mainly as level 3
operations; (#it) novel superscalar kernel solvers deliver good performance for the
small leaf-node problems. Our goal is to provide a complete periodic counter-
part of the RECSY library. This study will also include alternative blocking
techniques.

Acknowledgments

This research was conducted using the resources of the High Performance Com-
puter Center North (HPC2N). Financial support has been provided by the
Swedish Research Council under grant VR 621-2001-3284 and by the Swedish
Foundation for Strategic Research under grant A3 02:128.

References

1. Bartels, R.H., Stewart, G.W.: Solution of the equation AX + XB = C. Comm.
Assoc. Comput. Mach. 15, 820-826 (1972)

2. Benner, P., Mehrmann, V., Xu, H.: Perturbation analysis for the eigenvalue prob-
lem of a formal product of matrices. BIT 42(1), 1-43 (2002)

3. Bittanti, S., Colaneri, P. (eds.): Periodic Control Systems. In: Proceedings volume
from the IFAC Workshop, August 27-28, 2001, Elsevier Science & Technology,
Cernobbio-Como, Italy (2001)

4. Bojanczyk, A.W., Golub, G., Van Dooren, P.: The Periodic Schur Decomposition.
Algorithms and Applications. In: Luk, F.T. (ed.) Proceedings SPIE Conference,
vol. 1770, pp. 31-42 (1992)

5. Elmroth, E., Gustavson, F., Jonsson, 1., Kagstrom, B.: Recursive Blocked Algo-
rithms and Hybrid Data Structures for Dense Matrix Library Software. SIAM
Review 46(1), 3-45 (2004)

6. Fairweather, G., Gladwell, I.: Algorithms for Almost Block Diagonal Linear Sys-
tems. STAM Review 44(1), 49-58 (2004)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Recursive Blocked Algorithms for Periodic Triangular Matrix Equations 539

. Granat, R., Kagstrom, B.: Direct Eigenvalue Reordering in a Product of Matrices

in Periodic Schur Form. STAM J. Matrix Anal. Appl. 28(1), 285-300 (2006)

. Granat, R., Kagstrom, B., Kressner, D.: Reordering the Eigenvalues of a Periodic

Matrix Pair with Applications in Control. In: Proc. of 2006 IEEE Conference on
Computer Aided Control Systems Design (CACSD), pp. 25-30 (2006) ISBN: 0-
7803-9797-5

. Granat, R., Kagstrom, B., Kressner, D.: Computing Periodic Deflating Subspaces

Associated with a Specified Set of Eigenvalues. BIT Numerical Mathematics, De-
cember 2006 (submitted)

Hench, J.J., Laub, A.J.: Numerical solution of the discrete-time periodic Riccati
equation. IEEE Trans. Automat. Control 39(6), 1197-1210 (1994)

Jonsson, 1., Kagstrom, B.: Recursive blocked algorithms for solving triangular sys-
tems — Part I: One-sided and coupled Sylvester-type matrix equations. ACM
Trans. Math. Softw. 28(4), 392-415 (2002)

Jonsson, 1., Kagstrom, B.: Recursive blocked algorithms for solving triangular sys-
tems — Part II: Two-sided and generalized Sylvester and Lyapunov matrix equa-
tions. ACM Trans. Math. Softw. 28(4), 416-435 (2002)

Jonsson, I., Kagstrom, B.: RECSY — A High Performance Library for Sylvester-
Type Matrix Equations. In: Kosch, H., Boszorményi, L., Hellwagner, H. (eds.)
Euro-Par 2003. LNCS, vol. 2790, pp. 810-819. Springer, Heidelberg (2003)
Kagstrom, B., Poromaa, P.: LAPACK-Style Algorithms and Software for Solv-
ing the Generalized Sylvester Equation and Estimating the Separation between
Regular Matrix Pairs. ACM Trans. Math. Software 22, 78-103 (1996)

Kagstrom, B., Westin, L.: Generalized Schur methods with condition estimators for
solving the generalized Sylvester equation. IEEE Trans. Automat. Control 34(4),
745-751 (1989)

Sreedhar, J., Van Dooren, P.: A Schur approach for solving some matrix equations.
In: Helmke, U., Menniken, R., Saurer, J. (eds.) Systems and Networks: Mathemat-
ical Theory and Applications, Mathematical Research, vol. 77, pp. 339-362 (1994)
Sun, J.-G.: Perturbation bounds for subspaces associated with periodic eigenprob-
lems. Taiwanese Journal of Mathematics 9(1), 17-38 (2005)

Varga, A.: Periodic Lyapunov equations: some applications and new algorithms.
Internat. J. Control 67(1), 69-87 (1997)

Varga, A., Van Dooren, P.: Computational methods for periodic systems. In: Prepr.
IFAC Workshop on Periodic Control Systems, Como, Italy, pp. 177-182 (2001)

	Recursive Blocked Algorithms for Solving Periodic Triangular Sylvester-Type Matrix Equations
	Introduction
	Recursive Algorithms for Periodic Triangular Matrix Equations
	Periodic Recursive Sylvester Solvers
	Kernel Solvers for Leaf Problems
	Storage Layout of Matrices

	Sample Performance Results
	Performance of the Recursive Blocked PSYCT Solver
	Performance of the Recursive Blocked PGSYL Solver

	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

