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Abstract. Recently, recursive blocked algorithms for solving triangu-
lar one-sided and two-sided Sylvester-type equations were introduced by
Jonsson and K̊agström. This elegant yet simple technique enables an au-
tomatic variable blocking that has the potential of matching the memory
hierarchies of today’s HPC systems. The main parts of the computations
are performed as level 3 general matrix multiply and add (GEMM) oper-
ations. We extend and apply the recursive blocking technique to solving
periodic Sylvester-type matrix equations. Successive recursive splittings
are performed on 3-dimensional arrays, where the third dimension rep-
resents the periodicity of a matrix equation.

Keywords: Sylvester-type matrix equations, periodic matrix equations,
recursion, blocking, level 3 BLAS, superscalar.

1 Introduction

The standard Sylvester equation AX − XB = C has a periodic counter-part

AkXk − Xk+1Bk = Ck+1, k = 1, . . . , p − 1,

ApXp − X1Bp = C1,

where p is the periodicity of the matrix sequences, such that Ak+p = Ak, Bk+p =
Bk and Ck+p = Ck [16,19]. In this contribution, we focus on recursive blocked
algorithms for solving triangular periodic matrix equations, i.e., the matrix se-
quences Ak and Bk for k = 1, . . . , p are assumed to be in periodic real Schur
form (PRSF) [4,10]. This means that p − 1 of the matrices in each sequence are
upper triangular and one matrix in each sequence, say Ar and Bs, 1 ≤ r, s ≤ p,
is quasi-triangular. The products of conforming diagonal blocks of the matrix se-
quences Ak and Bk contain the eigenvalues of the matrix products A1A2 · · · Ap

and B1B2 · · · Bp, respectively, where the 1 × 1 and 2 × 2 blocks on the main
block diagonal of Ar and Bs correspond to real and complex conjugate pairs of
eigenvalues of the corresponding matrix products.

Triangular matrix equations appear naturally in estimating the condition num-
bers of matrix equations and different eigenspace computations (e.g., see [14,15]
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and [2,17]), including decoupling and stability analysis. Periodic Sylvester-type
matrix equations also appear in the context of eigenvalue reordering for compu-
tation and condition estimation of periodic invariant (deflating) subspaces of a
matrix (pair) sequence [7,8,9]. To solve a triangular matrix equation is also a ma-
jor step in the classical Bartels-Stewart method [1], which is our base-point for
solving general non-reduced periodic matrix equations.

2 Recursive Algorithms for Periodic Triangular Matrix
Equations

Our work includes novel recursive blocked algorithms for solving the most com-
mon one-sided and two-sided triangular periodic Sylvester-type matrix equa-
tions. In Table 1, a summary of the periodic matrix equations considered is
displayed.

The classification in one-sided and two-sided matrix equations was introduced
in [11,12] and is implicit in the definition of a matrix equation. A periodic matrix
equation is one-sided if it only includes terms where the solution is involved in
matrix products of two matrices, e.g., op(Ak)Xk or Xkop(Ak), where op(Ak)
can be Ak or AT

k . Similarly, a periodic matrix equation is two-sided if it includes
matrix products of three matrices, e.g., AkXkBT

k , where Xk is the solution se-
quence. This distinction relates to how blocks (subarrays) of matrices of the
solution sequence (e.g., Xk in PSYCT) are used in updates of the right hand
side matrices (Ck in PSYCT) in the recursive blocked algorithms. For exam-
ple, our algorithms for two-sided matrix equations require more space and flops,
compared to similar algorithms for one-sided equations.

For the two-sided equations, we only display one periodic transpose variant.
The other variants can be derived by moving the transpose to the left multiplying
matrices and replacing the periodic dependence k + 1 by k and vice versa. For
example, a second variant of PSYDT is

Ak
T Xk+1Bk − Xk = Ck, k = 1, . . . , p − 1,

Ap
T X1Bp − Xp = Cp.

For the generalized equations in Table 1 we assume that the involved periodic
matrix pairs, namely (Ak, Dk) and (Bk, Ek) in PGCSY, (Ak, Ck) and (Bk, Dk)
in PGSYL, and (Ak, Ek) in PGLYCT and PGLYDT, are in generalized periodic
real Schur form (GPRSF) (see, e.g., [4,10] for details).

By using and reusing recursive templates, we can solve all matrix equations
listed in Table 1 utilizing only a small set of subroutines. By this, we mean
that, e.g., the PLYCT problem can be largely solved by the PSYCT routine.
Therefore, the efforts of optimizing the implementation can be concentrated on
a few core routines.

In the following, we discuss only a few of the periodic matrix equations of
Table 1 in some more detail.

The periodic matrix sequences are stored as 3-dimensional arrays, where the
third dimension is the periodicity p of the matrix equation. The successive recur-
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Table 1. Considered one-sided (top) and two-sided (bottom) periodic Sylvester-type
matrix equations. Here, p is the periodicity of each equation and 1 ≤ k < p − 1.

Name Mnemonic Matrix equation

Periodic continuous-time
standard Sylvester PSYCT

{
AkXk − Xk+1Bk = Ck

ApXp − X1Bp = Cp

Periodic continuous-time
standard Lyapunov PLYCT

{
AkXk + Xk+1Ak

T = Ck

ApXp + X1Ap
T = Cp

Periodic generalized
coupled Sylvester PGCSY

⎧⎪⎪⎨
⎪⎪⎩

AkXk − YkBk = Ck

DkXk+1 − YkEk = Fk

ApXp − YpBp = Cp

DpX1 − YpEp = Fp

Periodic discrete-time
standard Sylvester PSYDT

{
AkXkBk

T − Xk+1 = Ck

ApXpBp
T − X1 = Cp

Periodic discrete-time
standard Lyapunov

PLYDT
{

AkXkAk
T − Xk+1 = Ck

ApXpAp
T − X1 = Cp

Periodic generalized Sylvester PGSYL
{

AkXkBk
T − CkXk+1Dk

T = Ek

ApXpBp
T − CpX1Dp

T = Ep

Periodic continuous-time
generalized Lyapunov PGLYCT

{
AkXkEk

T + EkXk+1Ak
T = Ck

ApXpEp
T + EpX1Ap

T = Cp

Periodic discrete-time
generalized Lyapunov PGLYDT

{
AkXkAk

T − EkXk+1Ek
T = Ck

ApXpAp
T − EpX1Ep

T = Cp

sive splittings are performed on the 3-dimensional arrays explicitly, leading to
new types of data locality issues, compared to our previous work with RECSY
[11,12,13].

2.1 Periodic Recursive Sylvester Solvers

Consider the real periodic continuous-time Sylvester (PSYCT) matrix equation

AkXk − Xk+1Bk = Ck+1, k = 1, . . . , p − 1,

ApXp − X1Bp = C1,

where the sequences Ak of size M × M and Bk of size N × N for k = 1, . . . , p
are in PRSF form. The right hand sides Ck and the solution matrices Xk are of
side M × N . Depending on the dimensions M and N , we consider three ways of
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recursive splitting. First, we consider splitting of Ak by rows and columns and
Ck by rows only. The second alternative is to split Bk by rows and columns
and Ck by columns only. The third alternative is to split all three matrices by
rows and columns. No matter which alternative is chosen, the number of flops
is the same. Performance may differ greatly, though. Our algorithm picks the
alternative that keeps matrices as “squarish” as possible, i.e., 1/2 < M/N < 2,
which guarantees a good ratio between the number of flops and the number of
elements referenced.

Next, we consider the periodic generalized continuous-time Lyapunov (PG-
LYCT) equation

AkXkEk
T + EkXk+1Ak

T = Ck, k = 1, . . . , p − 1,

ApXpEp
T + EpX1Ap

T = Cp,

where the periodic matrix pair sequence (Ak, Ek) is in generalized periodic real
Schur form (GPRSF), and Ck and Xk (overwrites Ck) are symmetric M × M .
Because of symmetry, there is only one way to split the equation, resulting in
two triangular PGLYCT equations and one generalized periodic Sylvester (PG-
SYL) equation, all of which can be solved recursively using the following tem-
plate:
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Assuming that we have algorithms for solving PGLYCT and PGSYL (kernel
solvers are discussed in Section 2.2), we start by solving for the sequence X

(k)
22 ,

k = 1, . . . , p from the third (last) equation. After updating C
(k)
12 in the PGSYL

equation (second above) with respect to X
(k)
22 , k = 1, . . . , p, we can solve for the

sequence X
(k)
12 . Finally, after updating C

(k)
11 in the first PGLYCT equation with

respect to X
(k)
12 and X

(k)
22 for k = 1, . . . , p, we solve for the sequence X

(k)
11 .

The recursive template is now applied repeatedly to the three periodic matrix
equations above (divide phase) until the subproblems are small enough, when
kernel solvers are used for solving the node-leaf problems of the recursive tree.
In the conquer phase, the tree is traversed level by level, finally producing the
complete matrices Xk, k = 1, . . . , p, i.e., the solution of PGLYCT.

2.2 Kernel Solvers for Leaf Problems

In each step of the recursive blocking, the original periodic matrix equation is
reduced to several subproblems involving smaller and smaller matrices, and a
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great part of the computation emerges as standard matrix-matrix operations,
such as general matrix multiply and add (GEMM) or triangular matrix mul-
tiply (TRMM) operations. At the end of the recursion tree, small instances of
periodic matrix equations have to be solved. Each such matrix equation can be
represented as a linear system Zx = c, where Z is a Kronecker product repre-
sentation of the associated periodic Sylvester-type operator, and it belongs to
the class of bordered almost block diagonal (BABD) matrices [6]. For example,
the PSYCT matrix equation can be expressed as Zx = c, where the matrix Z
of size mnp × mnp is

Z =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

BT
p ⊗ Im In ⊗ Ap

In ⊗ A1 BT
1 ⊗ Im

. . . . . .

In ⊗ Ap−1 BT
p−1 ⊗ Im

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

and

x = [vec(X1), vec(X2), · · · , vec(Xp)]
T

, c = [vec(C1), vec(C2), · · · , vec(Cp)]
T

.

In the algorithm, recursion proceeds down to problem sizes of 1 × 1 to 2 × 2.
For these problems, a compact form of the matrix Z which utilizes the sparsity
structure of the problem is computed and the problem is solved using Gaussian
elimination with partial pivoting (GEPP). These solvers are based on the super-
scalar kernels that were developed for the RECSY library [13]. Moreover, the
block diagonal of the matrix Z sometimes (see, e.g., PGCSY in [8]) has a certain
structure that can be exploited by the GEPP procedure. The memory usage for
Z is O(m2n2p), and the number of operations required to solve the problem is
O(m3n3p). In case of an ill-conditioned matrix Z, the Gaussian elimination is
aborted when bad pivot elements are detected, an error condition is signaled,
and the solution process is restarted with a new problem from a higher level of
the recursion tree. This larger problem is then solved using LU with complete
pivoting (GECP) on a non-compact form of Z, which in turn results in a p times
larger memory requirement, namely O(m2n2p2) storage. However, since m and
n are small, typically 1 or 2, this is an effective procedure for typical sizes of
the periodicity p. The extra workspace can either be provided by the user or
dynamically allocated.

2.3 Storage Layout of Matrices

For storage of regular dense matrices, there are two major linear variants: row-
major (“C-style”) and column-major (“Fortran-style”). In addition, several re-
cursive blocked storage schemas have proven to give substantial performance
improvements, see [5] and further references therein.

For the periodic matrix sequences, there are six (3!) different linear variants.
One advantage of having the periodic dimension as the minor (innermost) di-
mension is better locality of the Z matrix in the kernel solver. However, this
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efficiently disables all use of standard level 3 BLAS. Therefore, we have the pe-
riodicity p as the outermost dimension. Column-major storage layout is used for
each coefficient matrix (Ak, Bk, Ck etc.) in the periodic matrix sequences.

3 Sample Performance Results

The recursive blocked algorithms for the periodic Sylvester-type equations have
been implemented in Fortran 90, using the facilities for recursive calls of sub-
programs, dynamic memory allocation and threads. In this section, we present
sample performance results of implementations of solvers for one-sided and two-
sided equations executing on an AMD Opteron processor-based system. The
system has a dual AMD Opteron 2.2 GHz processor, with a 64 kB level 1 cache,
a 1024 kB level 2 cache and 8 GB memory per node. Theoretical peak per-
formance is 4.4 Gflops/s per processor. The peak performance of DGEMM and
other level 3 BLAS routines used vary between 3.0–3.5 Gflops/s. All performance
numbers presented are based on uniprocessor computations.
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Fig. 1. Performance results for the one-sided PSYCT equation (M = N) on AMD
Opteron. The three graphs correspond to the periodicity p = 3, 10, and 20.
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3.1 Performance of the Recursive Blocked PSYCT Solver

In Figure 1, performance graphs for the implementation of the recursive blocked
PSYCT algorithm are displayed. The problem size (M = N) ranges from 100
to 2000, and the periodicity p = 3, 10, and 20. For large enough problems the
performance approaches 70% of the DGEMM performance, which is on a level
with the recursive blocked SYCT solver in RECSY [11,13]. For an increasing
periodicity p the performance decreases only marginally.

3.2 Performance of the Recursive Blocked PGSYL Solver

In Figure 2, we show performance graphs for our implementation of the recursive
blocked algorithm for the two-sided PGSYL equation. The performance results
are somewhat inferior to the PSYCT performance, but still on a level with the
recursive blocked GSYL solver in RECSY [12,13]. We also see that the relative
decrease in performance with respect to an increasing periodiciy p is larger than
for the PSYCT solver. Reasons for this degradation include that the PGSYL
kernel solver is more complex and somewhat less efficient, and the two-sided
updates in the recursive blocked algorithm result in extra operations compared
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Fig. 2. Performance results for the two-sided PGSYL equation (M = N) on AMD
Opteron. The three graphs correspond to the periodicity p = 3, 10, and 20.
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to a true level 1 or level 2 algorithm. Such overhead never appear in the one-
sided equations, but increases with p for two-sided equations. However, the use of
efficient level 3 operations compensates for some of this computational overhead.

4 Conclusions and Future Work

We have presented novel recursive blocked algorithms for solving various periodic
triangular matrix equations. Such equations stem from different applications
with a periodic or seasonal behaviour, e.g., the study of periodic control systems
[3], and discrete-time periodic (descriptor) systems [19] in particular.

Our recursive blocked algorithms are based on RECSY, an HPC library for the
most common non-periodic matrix equations (see [11,12,13]). The performance
results are on the level of RECSY, which confirm that the recursive blocking ap-
proach is an efficient way of solving periodic triangular Sylvester-type equations.
The reason is three-fold: (i) recursion allows for good temporal locality; (ii) re-
cursion enables the periodic matrix equations to be rewritten mainly as level 3
operations; (iii) novel superscalar kernel solvers deliver good performance for the
small leaf-node problems. Our goal is to provide a complete periodic counter-
part of the RECSY library. This study will also include alternative blocking
techniques.
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