
An Adaptive Hybrid Elasticity Controller

for Cloud Infrastructures

Ahmed Ali-Eldin, Johan Tordsson and Erik Elmroth
Department of Computing Science, Umeå University

Umeå, Sweden

Email:{ahmeda, tordsson, elmroth}@cs.umu.se

Abstract—Cloud elasticity is the ability of the cloud infras-
tructure to rapidly change the amount of resources allocated
to a service in order to meet the actual varying demands on
the service while enforcing SLAs. In this paper, we focus on
horizontal elasticity, the ability of the infrastructure to add or
remove virtual machines allocated to a service deployed in the
cloud. We model a cloud service using queuing theory. Using that
model we build two adaptive proactive controllers that estimate
the future load on a service. We explore the different possible
scenarios for deploying a proactive elasticity controller coupled
with a reactive elasticity controller in the cloud. Using simulation
with workload traces from the FIFA world-cup web servers,
we show that a hybrid controller that incorporates a reactive
controller for scale up coupled with our proactive controllers for
scale down decisions reduces SLA violations by a factor of 2 to
10 compared to a regression based controller or a completely
reactive controller.

I. INTRODUCTION

With the advent of large scale data centers that host out-

sourced IT services, cloud computing [1] is becoming one

of the key technologies in the IT industry. A cloud is an

elastic execution environment of resources involving multiple

stakeholders and providing a metered service at a specified

level of quality [2]. One of the major benefits of using cloud

computing compared to using an internal infrastructure is

the ability of the cloud to provide its customers with elastic

resources that can be provisioned on demand within seconds or

minutes. These resources can be used to handle flash crowds.

A flash crowd, also known as a slashdot effect, is a surge

in traffic to a particular service that causes the service to be

virtually unreachable [3]. Flash crowds are very common in

today’s networked world. Figure I shows the traces of the

FIFA 1998 world cup website. Flash crowds occur frequently

before and after matches. In this work, we try to automate

and optimize the management of flash crowds in the cloud by

developing an autonomous elasticity controller.

Autonomous elastic cloud infrastructures provision re-

sources according to the current actual demand on the in-

frastructure while enforcing service level agreements (SLAs).

Elasticity is the ability of the cloud to rapidly vary the allo-

cated resource capacity to a service according to the current

load in order to meet the quality of service (QoS) requirements

specified in the SLA agreements. Horizontal elasticity is the

ability of the cloud to rapidly increase or decrease the number

of virtual machines (VMs) allocated to a service according to

the current load. Vertical elasticity is the ability of the cloud to

Fig. 1. Flash crowds illustrating the rapid change in demand for the FIFA
world cup website.

change the hardware configuration of VM(s) already running

to increase or decrease the total amount of resources allocated

to a service running in the cloud.

Building elastic cloud infrastructures that scale up and down

with the actual demand of the service is a problem far from

being solved [2]. Scale up should be fast enough in order

to prevent breaking any SLAs while it should be as close

as possible to the actual required load. Scale down should

not be premature, i.e., scale down should occur when it is

anticipated that the service does not need these resources in

the near future. If scale down is done prematurely, resources

are allocated and deallocated in a way that causes oscillations

in the system. These resource oscillations introduce problems

to load balancers and add some extra costs due to the fre-

quent release and allocation of resources [4]. In this paper

we develop two adaptive horizontal elasticity controllers that

control scale up and scale down decisions and prevent resource

oscillations.

This paper is organized as follows; in Section II, we describe

the design of our controllers. In Section III we describe our

simulation framework, our experiments and discuss our results.

In Section IV we describe some approaches to building elas-

ticity controllers in the literature. We conclude in Section V.

II. BUILDING AN ELASTIC CLOUD CONTROLLER

In designing our controllers, we view the cloud as a control

system. Control systems are either closed loop or open loop

systems [5]. In an open loop control system, the control action

does not depend on the system output making open loop

control generally more suited for simple applications where no

204978-1-4673-0269-2/12/$31.00 c©2012 IEEE

Fig. 2. Adaptive Proactive Controller Model.

feedback is required and no system monitoring is performed.

Contrarily, a closed loop control system is more suited for

sophisticated application as the control action depends on the

system output and on monitoring some system parameters. The

general closed-loop control problem can be stated as follows:

The controller output μ(t) tries to force the system output

C(t) to be equal to the reference input R(t) at any time t
irrespective of the disturbance ΔD. This general statement

defines the main targets of any closed loop control system

irrespective of the controller design.

In this work, we model a service deployed in the cloud as

a closed loop control system. Thus, the horizontal elasticity

problem can be stated as follows: The elasticity controller

output μ(t) should add or remove VMs to ensure that the

number of service requests C(t) is equal to the total number

of requests received R(t) +ΔD(t) at any time unit t with an

error tolerance specified in the SLA irrespective of the change

in the demand ΔD while maintaining the number of VMs to

a minimum. The model is simplified by assuming that servers

start up and shut down instantaneously.

We design and build two adaptive proactive controllers to

control the QoS of a service as shown in Figure 2. We add an

estimator to adapt the output of the controller with any change

in the system load and the system model.

A. Modeling the state of the service

Figure 3 shows a queuing model representing the cloud

infrastructure. The infrastructure is modeled as a G/G/N
stable queue in which the number of servers N required is

variable [6]. In the model, the total number of requests per

second Rtotal is divided into two inputs to the infrastructure,

the first input R(t) represents the total amount of requests the

infrastructure is capable of serving during time unit t. The

second input, ΔD represents the change in the number of

requests from the past time unit. Since the system is stable,

the output of the queue is the total service capacity required

per unit time and is equal to Rtotal. P represents the increase

or decrease in the number of requests to the current service

capacity R(t).

Fig. 3. Queuing Model for a service deployed in the cloud.

The goal of a cloud provider is to provide all customers with

enough resources to meet the QoS requirements specified in

the SLA agreements while reducing over provisioning to a

minimum. The cloud provider monitors a set of parameters

stated in the SLA agreements. These parameters represent the

controlled variables for the elasticity controller. Our controllers

are parameter independent and can be configured to use any

performance metric as the controlled parameter. For the eval-

uation of our controllers, we choose the number of concurrent

requests received for the past time unit to be the monitored

parameter because this metric shows both the amounts of

over provisioned and under provisioned resources which is

an indicator to the costs incurred due to the elasticity engine.

Most of the previous work on elasticity considers response

time to be the controlled parameter. Response time is software

and hardware dependent and is not well suited for comparing

the quality of different elasticity approaches [7].

B. Estimating future usage

From Figure 3, the total future service capacity required per

unit time, C(t+1), is C(t+1) = ΔD(t)+R(t), where R(t)
is the current service capacity and ΔD(t) is the change in

the current service capacity required in order to meet the SLA

agreement while maintaining the number of VMs to minimum.

A successful proactive elasticity engine is able to estimate

the change in future demand ΔD(t) and add or remove VMs

based on this proactive estimation. ΔD(t) can be estimated

by

ΔD(t) = P (t)C(t) (1)

where P (t) is the gain parameter of the controller. P (t) is

positive if there is an increase in the number of requests,

negative if there is a decrease in the number of requests, or

zero if the number of requests is equal to the current service

capacity.

We define Ĉ to be the infrastructure’s average periodical

service rate over the past Td time units. Ĉ is calculated

2012 IEEE Network Operations and Management Symposium (NOMS) 205

for the whole infrastructure and not for a single VM. Thus,

Ĉ =

∑
Td

i
niti

Td

, where Td is a system parameter specifying the

period used for estimating the average periodical service rate

and ti is the time for which the number of requests received

per unit time for the whole infrastructure stay constant at

ni requests per unit time before the demand changes. Thus,∑Td

i
ti = Td. We also define n, the average service rate over

time as n =

∑
t
n(t)

T
.

From equation 1 and since the system is stable ,

F = Ĉ P, (2)

where F , the estimated increase or decrease of the load, is

calculated using the gain parameter of the controller P every

time unit. The gain parameter represents the estimated rate of

adding or removing VMs. We design two different controllers

with two different gain parameters.

For the first controller PC1, the gain parameter P1 is chosen

to be the periodical rate of change of the system load,

P1 =
ΔDTd

TD

. (3)

As the workload is a non-linear function in time, the periodical

rate of change of the load is the derivative of the workload

function during a certain period of time. Thus, the gain

parameter represents the load function changes over time.

For the second controller PC2, the gain parameter P2 is the

ratio between the change in the load and the average system

service rate over time,

P2 =
ΔDTd

n
. (4)

This value represents the load change with respect to the aver-

age capacity. By substituting this value for P in Equation 1, the

predicted load change is the ratio between the current service

rate and the average service rate multiplied by the change in

the demand over the past estimation period.

C. Determining suitable estimation intervals

The interval between two estimations, Td, represents the

period for which the estimation is valid, is a crucial parameter

affecting the controller performance. It is used for calculating

Ĉ for both controllers and for P1 in the case of the first

controller. Td controls the controllers’ reactivity. If Td is set

to one time unit, the estimations for the system parameters

are done every time unit and considers only the system load

during past time unit. At the other extreme, if Td is set to ∞,

the controller does not perform any predictions at all. As the

workload observed in data centers is dynamic [8], setting an

adaptive value for Td that changes with the load dynamics is

one of our goals.

We define K to be the tolerance level of a service i.e. the

number of requests the service does not serve on time before

making a new estimation, in other words,

Td =
K

Ĉ
. (5)

TABLE I
OVERVIEW OF THE NINE DIFFERENT WAYS TO BUILD A HYBRID

CONTROLLER.

Engine Name Scale up mechanism Scale down mechanism

UR-DR Reactive Reactive

UR-DP Reactive Proactive

UR-DRP Reactive Reactive and Proactive

URP-DRP Reactive and Proactive Reactive and Proactive

URP-DR Reactive and Proactive Reactive

URP-DP Reactive and Proactive Proactive

UP-DP Proactive Proactive

UP-DR Proactive Reactive

UP-DRP Proactive Reactive and Proactive

K is defined in the SLA agreement with the service owner.

If K is specified to be zero, Td should always be kept lower

than the maximum response time to enforce that no requests

are served slower by the system.

D. An elasticity engine for scale-up and scale-down decisions

The main goal of any elasticity controller is to enforce the

SLAs specified in the SLA agreement. For today’s dynamical

network loads [3], it is very hard to anticipate when a flash

crowd is about to start. If the controller is not able to estimate

the flash crowd on time, many SLAs are likely to be broken

before the system can adapt to the increased load.

Previous work on elasticity considers building hybrid con-

trollers that combines reactive and proactive controllers [9]

and [10]. We extend on this previous work and consider all

possible ways of combining reactive and proactive controllers

for scaling of resources in order to meet the SLAs. We define

an elasticity engine to be an elasticity controller that considers

both scale-up and scale-down of resources. There are nine

approaches in total to build an elasticity engine using a reactive

and a proactive controller. These approaches are listed in

Table I. Some of these combinations are intuitively not good,

but for the sake of completeness we evaluate the results of

all of these approaches. In order to facilitate our discussion,

we use the following naming convention to name an elasticity

engine; an elasticity engine consists of two controllers, a scale

up (U) and a scale down (D) controller. A controller can be

either reactive (R) or proactive (P). PC1 and PC2 are a special

case from proactive controllers e.g. URP-DRP elasticity engine

has a reactive and proactive controller for scale up and scale

down while a UR-DPC1 is an engine having a reactive scale

up controller and PC1 for scale down.

III. EXPERIMENTAL EVALUATION

In order to validate the controllers, we designed and built

a discrete event simulator that models a service deployed in

the cloud. The simulator is built using Python. We used the

complete traces from the FIFA 1998 world cup as input to our

model [11]. The workload contains 1.3 billion Web requests

recorded in the period between April 30, 1998 and July 26,

1998. We have calculated the aggregate number of requests per

second from these traces. They are by far the most used traces

in the literature. As these traces are quite old, we multiply the

206 2012 IEEE Network Operations and Management Symposium (NOMS)

number of requests received per unit time by a constant in

order to scale up these traces to the orders of magnitude of

today’s workloads. Although there are newer traces available

such as the Wikipedia trace [12], but they do not have the

number of peaks seen in the FIFA traces. We assume perfect

load balancing and quantify the performance of the elasticity

engines only.

A. Nine Approaches to build an elasticity engine

In this experiment we evaluate the nine approaches to a

hybrid controller and quantify their relative performance using

PC1 and PC2. We use the aggregate number of requests per

unit time from the world cup traces multiplied by a constant

equal to 50 as input to our simulator. This is almost the

same factor by which the number of Internet users increased

since 1997 [13]. To map the number of service requests

to the number of servers, we assume that each server can

serve up to 500 requests per unit time. This number is an

average between the number of requests that can be handled

by a Nehalem Server running the MediaWiki application [14]

and a Compaq ProLiant DL580 server running a database

application [15]. We assume SLAs that specify the maximum

number of requests not handled per unit time to be fewer than

5% of the maximum capacity of one server.

The reactive controller is reacting to the current load while

the proactive controller is basing its decision on the history

of the load. Whenever a reactive controller is coupled with a

proactive controller and the two controllers give contradicting

decisions, the decision of the reactive controller is chosen. For

the UR-DR controller, scale down is only done if the number

of unused servers is greater than two servers in order to reduce

oscillations.

To compare all the different approaches, we monitor and

sum the number of servers the controllers fail to provision on

time to handle the increase in the workload, S−. This number

can be viewed as the number of extra servers to be added

to avoid breaking all SLAs, or as the quality of estimation.

S− is the average number of requests the controller fails to

provision per unit time. Similarly, we monitor the number

of extra servers deployed by the infrastructure at any unit

time. The summation of this number indicates the provisioned

unused server capacity, S+. S+ is the averaged value over

time. These two aggregate metrics are used to compare the

different approaches.

Table II shows the aggregate results when PC1 and PC2

are used for the proactive parts of the hybrid engine. The two

right-most columns in the table show the values of S− and S+

as percentages of the total number of servers required by the

workload respectively. We compare the different hybridization

approaches with a UR-DR elasticity engine [16].

The results shown in the two tables indicate that using an

UR-DPC2 engine reduces S− by a factor of 9.1 compared

to UR-DR elasticity engine, thus reducing SLA violations

by the same ratio. This comes at the cost of using 14.33%

extra servers compared to 1.4% in the case of a UR-DR

engine. Similar results are obtained using a URPC2-DPC2

engine. These results are obtained because the proactive scale

down controller does not directly release resources when the

load decreases instantaneously but rather makes sure that this

decrease is not instantaneous. Using a reactive controller for

scale down on the other hand reacts to any load drop by

releasing resources. It is also observed that the second best

results are obtained using an UR-DPC1 elasticity engine. This

setup reduces S− by a factor of 4, from 1.63% to 0.41%
compared to a UR-DR engine at the expense of increasing the

number of extra servers used from 1.4% to 9.44%.

A careful look at the table shows that elasticity engines with

reactive components for both scale up and scale down show

similar results even when a proactive component is added. We

attribute this to the premature release of resources due to the

reactivity component used for the scale down controller. The

premature release of resources causes the controller output

to oscillate with the workload. The worst performance is

seen when a proactive controller is used for scale up with a

reactivity component in the scale down controller. This engine

is not able to react to sudden workload surges. In addition it

releases resources prematurely.

Figures 4(a), 4(b) and 4(c) shows the performance of a UR-

DR, UR-DPC1 and a UR-DPC2 elasticity engines over part of

the trace from 06:14:32, the 21st of June,1998 to 01:07:51

27th of June,1998. Figures 4(d), 4(e) and 4(f) shows an in

depth view of the period between 15:50:00 the 23rd of June,

1998 till 16:07:00 on the same day (between time unit 208349

and 209349 on the left hand side figures).

The UR-DR elasticity engine releases resources prematurely

as seen in Figure 4(d). These resources are then reallocated

when there is an increase in demand causing resource al-

location and deallocation to oscillate. The engine is always

following the demand but is never ahead. On the other

hand, figures 4(e) and 4(f) show different behavior where the

elasticity engine tries not to deallocate resources prematurely

in order to prevent oscillations and to be ahead of the demand.

It is clear in Figure 4(f) that the elasticity engine estimates the

future load dynamics and forms an envelope over the load.

An envelope is defined as the smooth curve that takes the

general shape of the load’s amplitude and passes through its

peaks [17]. This delay in the deallocation comes at the cost

of using more resources. These extra resources improve the

performance of the service considerably as it will be always

ahead of the load. We argue that this additional cost is well

justified considering the gain in service performance.

1) Three classes of SLAs: An infrastructure provider can

have multiple controller types for different customers and

different SLA agreements. The results shown in table II

suggest having three classes of customers namely, gold, silver

and bronze. A gold customer pays more in order to get

the best service at the cost of some extra over-provisioning

and uses a UR-DPC2 elasticity engine. A silver customer

uses the UR-DPC1 elasticity engine to get good availability

while a bronze customer uses the UR-DR and gets a reduced,

but acceptable, QoS but with very little over-provisioning.

These three different elasticity engines with different degrees

2012 IEEE Network Operations and Management Symposium (NOMS) 207

TABLE II
S− AND S+ FOR PC1 AND PC2

Name S− S− S+ S+ S−% S+%

UR-DR -1407732 -0.3 120641 0.026 -1.63% 1.4%

PC1 results

UR-DPC1 -354814 -0.077 8159220 1.78 -0.41% 9.44%

UR-DRPC1 -1412289 -0.3 1202806 0.26 -1.63% 1.4%

URPC1-DRPC1 -1411678 -0.3 1203170 0.26 -1.63% 1.4%

URPC1-DR -1407036 -0.3 1206391 0.26 -1.62% 1.4%

URPC1-DPC1 -354127 -0.077 8160627 1.78 -0.41% 9.4%

UPC1-DPC1 -4147953 -0.9 1827431 0.399 -4.8% 2.1%

UPC1-DR -8474040 -1.85 408447 0.399 -9.8% 2.1%

UPC1-DRPC1 -11408704 -2.49 190427.0 0.041 -10% 0.27%

PC2 results

UR-DPC2 -159029 -0.0347 12386346.0 2.7 -0.18% 14.33%

UR-DRPC2 -1418949.0 -0.31 1176239.0 0.257 -1.64% 1.36%

URPC2-DRPC2 -1419269.0 -0.31 1175393.0 0.257 -1.64% 1.35%

URPC2-DR -1407732.0 -0.31 1206407.0 0.263 -1.63% 1.4%

URPC2-DPC2 -159029 -0.0347 12386346.0 2.707 -0.18% 14.33%

UPC2-DPC2 -4350841.0 -0.951 2216866.0 0.485 -5.03% 2.6%

UPC2-DR -11245521 -2.458 396697 0.0867 -13% 0.46%

UPC2-DRPC2 -11408704 2.49 190427 0.0416 -13.2% 0.22%

(a) UR-DR performance in a period of 6 days. (b) UR-DPC1 performance in a period of 6 days. (c) UR-DPC2 performance in a period of 6 days.

(d) UR-DR: Zooming on a period of 17 minutes. (e) UR-DPC1: Zooming on a period of 17 minutes. (f) UR-DPC2: Zooming on a period of 17 minutes.

Fig. 4. Performance of UR-DR, UR-DPC1 and, UR-DPC2 elasticity engines with time: The Figures show how the different engines detect future load. It
can be observed that the UR-DR engine causes the capacity to oscillate with the load while UR-DPC1 and UR-DPC2 predict the envelope of the workload.

208 2012 IEEE Network Operations and Management Symposium (NOMS)

TABLE III
COMPARISON BETWEEN THE UR-DREGRESSION, UR-DPC1 , UR-DPC2 ,

AND UR-DR ELASTICITY ENGINES

Name S− S+ S− S+

UR-DRegression -74791.7 1568047.8 -2.24% 47%

UR-DPC1 -50307.2 1076236.3 -1.51% 32.24%

UR-DPC2 -35818.6 1326841.7 -1.07% 39.75%

UR-DR -99801.8 653082.9 -2.99% 19.57%

of over provisioning and qualities of estimation give cloud

providers convenient tools to handle customers of different

importance classes and thus increase their profit and decrease

their penalties. Current cloud providers usually have a general

SLA agreement for all their customers. RackSpace [18] for

example guarantees 100% availability with a penalty equal

to 5% of the fees for each 30 minutes of network or data

center downtime for the cloud servers. It guarantees 99.9%

availability for the cloud files. The network is considered not

available in case of [18]: (i) The Rackspace Cloud network

is down, or (ii) the Cloud Files service returns a server

error response to a valid user request during two or more

consecutive 90 second intervals, or (iii) the Content Delivery

Network fails to deliver an average download time for a 1-byte

reference document of 0.3 seconds or less, as measured by The

Rackspace Cloud’s third party measuring service. For an SLA

similar to the RackSpace SLA or Amazon S3 [19], using one

of our controllers significantly reduces penalties paid due to

server errors, allowing the provider to increase profit.

B. Comparison with regression based controllers

In this experiment we compare our controllers with the

controller designed by Iqbala et al. [10] who design a hy-

brid elasticity engine with a reactive controller for scale-up

decisions and a predictive controller for scale-down decisions.

When the capacity is less than the load, a scale up decision is

taken and new VMs are added to the service. For scale down,

their predictive component uses second order regression. The

regression model is recomputed for the full history every time

a new measurement data is available. If the current load is

less than the provisioned capacity for k time units, a scale

down decision is taken using the regression model. If the

predicted number of servers is greater than the current number

of servers, the result is ignored. Following our naming conven-

tion, we denote their engine UR-DRegression. As regression

is recomputed every time a new measurement data is available

on the full history, simulation using the whole world cup traces

would be time consuming. Instead, in this experiment we used

part of the trace from 09:47:41 on the 13th of May, 1998 to

17:02:49 on the 25th of May, 1998. We multiply the number

of concurrent requests by 10 and assume that the servers can

handle up to 100 requests. We assume that the SLA requires

that a maximum of 5% of the capacity of a single server is

not serviced per unit time.

Table III shows the aggregated results for four elasticity

engines; UR-DRegression, UR-DPC1, UR-DPC2 and UR-DR.

Although all the proactive approaches reduce the value of

S− compared to a UR-DR engine, PC2 still shows superior

results. The number of unused server that get provisioned by

the regression controller S+ is 50% more than for PC1 and

15% more than PC2 although both PC1 and PC2 reduces S−

more. The UR−DR controller has a higher SLA violation rate

(3%) while maintaining a much lower over-provisioning rate

(19.57%). As we evaluate the performance of the controller on

a different part of the workload and we multiply the workload

by a different factor, the percentages of the capacity the

controller fail to provision on time and the unused provisioned

capacity changed from the previous experiment.

Figures 5(a), 5(b) and 5(c) show the load compared to

the controller outputs for the UR-DR, UR-DPC2, and UR-

DRegression approaches. The amount of unused capacity

using a regression based controller is much higher than the

unused capacity for the other controllers. The controller output

for the UR-DRegression engine completely over-estimates the

load causing prediction oscillations between the crests and the

troughs. One of the key advantages of PC1 and PC2 is that

they depend on simple calculations. They are both scalable

with time compared to the regression controller. The highest

observed estimation time for the UR-DRegression is 6.5184

seconds with an average of 0.97695 seconds compared to

0.000512 seconds with an average of 5.797 × 10−6 in case

of PC1 and PC2.

C. Performance impact of the workload size

In this experiment we investigate the effect of changing the

load and server power on the performance of our proposed

elasticity engines. We constructed six new traces using the

world cup workload traces by multiplying the number of

requests per second in the original trace by a factor of

10, 20, 30, 40, 50, and 60. We ran experiments with the

new workloads using the UR-DR, UR-DPC1 and UR-DPC2

elasticity engines. For each simulation run, we assume that

the number of requests that can be handled by any server is

10 times the factor by which we multiplied the traces, e.g., for

an experiment run using a workload trace where the number of

requests is multiplied by 20, we assume that the server capacity

is up to 200 requests per second. We also assume that for

each experiment the SLA specifies the maximum unhandled

number of requests to be 5% of the maximum capacity of a

single server.

Figure 6(a) shows the percentage of servers the engines

failed to provision on time to handle the increase in demand

for each workload size (S−) while Figure 6(b) shows the

percentages of extra servers provisioned for each workload

size. It is clear that the UR-DR engine exhibits the same

performance with changing workloads. For the UR-DPC1 and

the UR-DPC2 engines on the other hand, the performance

depends on the workload and the server capacity. As the

factor by which we multiply the workload increases, the

percentage of servers the two engines failed to provision

on time decreases. Inversely, the percentage of extra servers

provisioned increases. These results indicate that the quality

of estimation changes with any change in the workload. We

2012 IEEE Network Operations and Management Symposium (NOMS) 209

(a) UR-DRegression elasticity engine. (b) UR-DPC2 elasticity engine. (c) UR-DR elasticity engine

Fig. 5. Performance Comparison of UR-DR, UR-DPC2 and UR-DRegression elasticity engines. The UR-DRegression controller over-provisions many servers
to cope with the changing workload dynamics.

(a) The effect of changing load size on the percentage of S− to the
total number of servers.

(b) The effect of changing load size on the percentage of S+ to the
total number of servers.

Fig. 6. The effect of changing the workload size and the server capacity on the UR-DR, UR-DPC1 and UR-DPC2 elasticity engines.

attribute the improvement in the quality of estimation when

the load increases using the UR-DPC1 and UR-DPC2 engines

to the ability of both estimators to predict the envelope of the

workload, thus decreasing the number of prematurely deallo-

cated resources. Although the number of requests increases in

the different workloads, the number of times the controllers

deallocate resources prematurely also increases, but at a slower

rate than the load. We have performed similar experiments

with the Wikipedia traces [12] and obtained similar results

[20]. Due to lack of space we omit those results.

D. Discussion

Although our proactive controllers PC1 and PC2 are de-

signed using the change in the load as the controller parameter,

they can be generalized to be used with any hardware param-

eter such as CPU load, memory consumption, network load

and disk load or any server level parameter such as response

time. When PC1 or PC2 controller is used with hardware

measured parameter, e.g., CPU load, C(t) becomes the total

CPU capacity needed by the system to handle the CPU load

per unit time. ΔD is the change in the load. Ĉ becomes

the average periodical measurement of the CPU load and n

the average measurement of the CPU load over time. The

definition of the two controllers remains the same.

Both the UR-DPC1 and UR-DPC2 engines can be integrated

in the model proposed by Lim et al. [21] to control a storage

cloud. In storage clouds, adding resources does not have an

instantaneous effect on the performance since data must be

copied to the new allocated resources before the effect of the

control action takes place. For such a scenario, PC1 and PC2

are very well suited since they predict the envelope of the

demand. The engines can also replace the elasticity controllers

designed by Urgaonkar et al. [9] or Iqbala et al. [10] for a

multi-tier service deployed in the cloud.

IV. RELATED WORK

The problem of dynamic provisioning of resources in com-

puting clusters has been studied for the past decade. Cloud

elasticity can be viewed as a generalization of that problem.

Our model is similar to the model introduced in [22]. In that

work, the authors tried to estimate the availability of a machine

in a distributed storage system in order to replicate its data.

Toffetti et al. [1] use Kriging surrogate models to approx-

imate the performance profile of virtualized, multi-tier Web

210 2012 IEEE Network Operations and Management Symposium (NOMS)

applications. The performance profile is specific to an appli-

cation. The Kriging surrogate model needs offline training.

A change in the workload dynamics results in a change in

the service model. Adaptivity of the service model of an

application is vital to cope with the changing load dynamics

in todays Internet [3].

Lim et al. [21] design an integral elasticity controller with

proportional thresholding. They use a dynamic target range for

the set point. The integral gain is calculated offline making this

technique suitable for a system where no sudden changes to

the system dynamics occur as the robustness of an integral

controller is affected by changing the system dynamics [23].

Urgaonkar et al. [9] propose a hybrid control mechanism

that incorporates both a proactive controller and a reactive

controller. The proactive controller maintains the history of

the session arrival rate seen. Provisioning is done before each

hour based on the worst load seen in the past. No short term

predictions can be done. The reactive controller acts on short

time scales to increase the resources allocated to a service

in case the predicted value is less than the actual load that

arrived. No scale down mechanism is available.

In [24], the resource-provisioning problem is posed as one

of sequential optimization under uncertainty and solved using

limited look-ahead control. Although the solution shows very

good theoretical results, it exhibits an exponential increase in

computation time as the number of servers and VMs increase.

It takes 30 minutes to compute the required elasticity decision

for a system with 60 VMs and 15 physical servers. Similarly,

Nilabja et al. use limited lookahead control along with model

predictive control for automating elasticity decisions. Improv-

ing the scalability of their approach is left as a future direction

to extend their work.

Chacin and Navaro [25] propose an elastic utility driven

overlay network that dynamically allocate instances to a

service using an overlay network. The instances of each

services construct an overlay while the non-allocated instances

construct another overlay. The overlays change the number

of instances allocated to a service based on a combination

of an application provided utility function to express the

service’s QoS, with an epidemic protocol for state information

dissemination and simple local decisions on each instance.

There are also some studies discussing vertical elasticity

[26]. Jung et al. [4] design a middleware for generating cost

sensitive adaptation actions such as elasticity and migration

actions. Vertical elasticity is enforced using adaptation action

in fixed steps predefined in the system. To allocate more

VMs to an application a migration action is issued from a

pool of dormant VMs to the pool of the VMs of the target

host followed by an increase adaptation action that allocates

resources on the migrated VM for the target application. These

decisions are made using a combination of predictive models

and graph search techniques reducing scalability. The authors

leave the scalability of their approach for future work.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we consider the problem of autonomic dy-

namic provisioning for a cloud infrastructure. We introduce

two adaptive hybrid controllers PC1 and PC2, that use both re-

active and proactive control to dynamically change the number

of VMs allocated to a service running in the cloud based on the

current and the predicted future demand. Our controllers detect

the workload envelope and hence do not deallocate resources

prematurely. We discuss the different ways of designing a

hybrid elasticity controller that incorporates both reactive and

proactive components. Our simulation results show that using

a reactive controller for scale up and one of our proactive

controllers for scale down improves the SLA violations rate

two to ten times compared to a totally reactive elasticity

engine. We compare our controllers to a regression based

elasticity controller using a different workload and demon-

strate that our engines over-allocate between 32% and 15%

less resources compared to a regression based engine. The

regression based elasticity engine SLA violation rate is 1.48

to 2.1 times the SLA violation rate for our engines. We also

investigate the effect of the workload size on the performance

of our controllers. For increasing loads, our simulation results

show a sublinear increase in the number of SLAs violated

using our controllers compared to a linear increase in the

number of SLAs violations for a reactive controller. In the

future, we plan to integrate vertical elasticity control in our

elasticity engine and modify the controllers to consider the

delay required for VM start up and shut down.

VI. ACKNOWLEDGMENTS

This work is supported by the OPTIMIS project

(http://www.optimis-project.eu/) and the Swedish govern-

ment’s strategic research project eSSENCE. It has been partly

funded by the European Commissions IST activity of the 7th

Framework Program under contract number 257115 . This re-

search was conducted using the resources of High Performance

Computing Center North (http://www.hpc2n.umu.se/).

REFERENCES

[1] P. Mell and T. Grance, “The nist definition of cloud computing,”
National Institute of Standards and Technology, vol. 53, no. 6, 2009.

[2] D. Kossmann and T. Kraska, “Data management in the cloud: Promises,
state-of-the-art, and open questions,” Datenbank-Spektrum, vol. 10,
pp. 121–129, 2010, 10.1007/s13222-010-0033-3. [Online]. Available:
http://dx.doi.org/10.1007/s13222-010-0033-3

[3] I. Ari, B. Hong, E. Miller, S. Brandt, and D. Long, “Managing flash
crowds on the Internet,” 2003.

[4] G. Jung, K. R. Joshi, M. A. Hiltunen, R. D. Schlichting, and C. Pu, “A
cost-sensitive adaptation engine for server consolidation of multitier ap-
plications,” in Proceedings of the 10th ACM/IFIP/USENIX International

Conference on Middleware, ser. Middleware ’09. Springer-Verlag New
York, Inc., 2009, pp. 9:1–9:20.

[5] K. Ogata, Modern control engineering. Prentice Hall, 2009.

[6] H. Li and T. Yang, “Queues with a variable number of servers,”
European Journal of Operational Research, vol. 124, no. 3, pp. 615
– 628, 2000.

[7] P. Bodık, “Automating datacenter operations using machine learning,”
Ph.D. dissertation, University of California, 2010.

2012 IEEE Network Operations and Management Symposium (NOMS) 211

[8] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “Vl2: a scalable and flexible data
center network,” in Proceedings of the ACM SIGCOMM 2009 conference

on Data communication, ser. SIGCOMM ’09. New York, NY, USA:
ACM, 2009, pp. 51–62.

[9] B. Urgaonkar, P. Shenoy, A. Chandra, P. Goyal, and T. Wood, “Agile
dynamic provisioning of multi-tier Internet applications,” ACM Transac-

tions on Autonomous and Adaptive Systems (TAAS), vol. 3, no. 1, p. 1,
2008.

[10] W. Iqbal, M. N. Dailey, D. Carrera, and P. Janecek, “Adaptive resource
provisioning for read intensive multi-tier applications in the cloud,”
Future Generation Computer Systems, vol. 27, no. 6, pp. 871 – 879,
2011.

[11] M. Arlitt and T. Jin. (1998, August) ”1998 world cup web site access
logs”. [Online]. Available: http://www.acm.org/sigcomm/ITA/

[12] G. Urdaneta, G. Pierre, and M. van Steen, “Wikipedia workload analysis
for decentralized hosting,” Elsevier Computer Networks, vol. 53, no. 11,
pp. 1830–1845, July 2009, http://www.globule.org/publi/WWADH
comnet2009.html.

[13] (2011, July) Internet growth statistics. [Online]. Available: http:
//www.internetworldstats.com/emarketing.htm

[14] A. Krioukov, P. Mohan, S. Alspaugh, L. Keys, D. Culler, and R. Katz,
“Napsac: design and implementation of a power-proportional web clus-
ter,” ACM SIGCOMM Computer Communication Review, vol. 41, no. 1,
pp. 102–108, 2011.

[15] P. Dhawan. (2001, October) Performance comparison: Exposing existing
code as a web service. [Online]. Available: http://msdn.microsoft.com/
en-us/library/ms978401.aspx

[16] A. Quiroz, H. Kim, M. Parashar, N. Gnanasambandam, and N. Sharma,
“Towards autonomic workload provisioning for enterprise grids and
clouds,” in Grid Computing, 2009 10th IEEE/ACM International Con-

ference on. IEEE, 2009, pp. 50–57.
[17] W. M. Hartmann, Signals, sound, and sensation. Amer Inst of Physics,

1997.
[18] (2009, June) Rackspace hosting: Service level agreement. [Online].

Available: http://www.rackspace.com/cloud/legal/sla/
[19] (2007, October) Amazon S3 service level agreement. [Online].

Available: http://aws.amazon.com/s3-sla/
[20] A. J. Ferrer, F. Hernndez, J. Tordsson, E. Elmroth, A. Ali-Eldin,

C. Zsigri, R. Sirvent, J. Guitart, R. M. Badia, K. Djemame, W. Ziegler,
T. Dimitrakos, S. K. Nair, G. Kousiouris, K. Konstanteli, T. Varvarigou,
B. Hudzia, A. Kipp, S. Wesner, M. Corrales, N. Forg, T. Sharif, and
C. Sheridan, “Optimis: A holistic approach to cloud service provision-
ing,” Future Generation Computer Systems, vol. 28, no. 1, pp. 66 – 77,
2012.

[21] H. C. Lim, S. Babu, and J. S. Chase, “Automated control for elastic
storage,” in Proceeding of the 7th international conference on Autonomic

computing, ser. ICAC ’10. New York, NY, USA: ACM, 2010, pp. 1–10.
[22] A. Duminuco, E. Biersack, and T. En-Najjary, “Proactive replication in

distributed storage systems using machine availability estimation,” in
Proceedings of the 2007 ACM CoNEXT conference, ser. CoNEXT ’07.
New York, NY, USA: ACM, 2007, pp. 27:1–27:12.

[23] M. Morari, “Robust stability of systems with integral control,” Automatic

Control, IEEE Transactions on, vol. 30, no. 6, pp. 574–577, 1985.
[24] D. Kusic, J. Kephart, J. Hanson, N. Kandasamy, and G. Jiang, “Power

and performance management of virtualized computing environments
via lookahead control,” Cluster Computing, vol. 12, no. 1, pp. 1–15,
2009.

[25] P. Chacin and L. Navarro, “Utility driven elastic services,” in Distributed

Applications and Interoperable Systems. Springer, 2011, pp. 122–135.
[26] E. Kalyvianaki, T. Charalambous, and S. Hand, “Self-adaptive and

self-configured cpu resource provisioning for virtualized servers using
kalman filters,” in Proceedings of the 6th international conference on

Autonomic computing, ser. ICAC ’09. New York, NY, USA: ACM,
2009, pp. 117–126.

212 2012 IEEE Network Operations and Management Symposium (NOMS)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

