
19TH INTERNATIONAL DEPENDENCY AND STRUCTURE MODELING
CONFERENCE, DSM 2017
ESPOO, FINLAND, SEPTEMBER 11 – 13, 2017

DSM 2017 25

The Logic of DSM
Patrik Eklund1, Mats Johansson1, Jari Kortelainen2, Vesa Salminen3

1Umeå University, Department of Computing Science, Sweden
2South-Eastern Finland University of Applied Sciences, Finland

 3Häme University of Applied Sciences, Finland

Abstract: In this paper we propose a logical enrichment DSM so that design
structure is described in a logical language rather than as an unstructured relation.
We further show how DSM potentially can embrace languages and notations that
support modelling of information and process.
Keywords: Category theory, lative logic, modules.

1 Introduction

Design structure described as a matrix (Eppinger and Browning, 2012) oversimplifies the
logic of DSM. Components, people and activities in DSM are simply names, so they are
logically just constants in the underlying signature of the logic, i.e., there are no operators
with arity beyond zero to describe components as terms. This means that task volatility in
DSM is connected only with information variability and likelihood, so DSM is not logical
but statistical with respect to modeling rework and redesign.
In order to explain the logical extension of DSM, and the use of many-valuedness instead
of variability, let ! be the set of components. The basic design matrix is a binary relation

! ⊆ !×!
which equivalently can be represented as a mapping

! ∶ !×! → 2
where 2 denotes the two-pointed set 0,1 !(!"! !"#$%, !"#$), i.e., representing binary
(two-valued) truth. The relation has initially no properties, so it may e.g. be asymmetric
indicating that the order between components is important. However, order as a structure
is not explicitly recognized within the formal notation, and in fact, DSM comes with very
little formal notation.
In design structures, order and many-valuedness are important. In logic it is an interesting
question whether order precedes many-valuedness, or vice versa. In (Eklund, Gutiérrez
García, Höhle and Kortelainen, 2017) we argue that order underlies many-valuedness.
We further show how category theory as a metalanguage, and monoidal closed categories
in particular, underlies logical considerations related to order and many-valuedness.
If we first extend 2 to !, a non-commutative quantale, we have a many-valued relation

! ∶ !×! → !
and non-commutativity of the quantale means that aggregations will consider the order
among elements in !. DSM also deals with many-valuedness, but in a rather pragmatic
way, and not using algebraic notions or logical formalism to describe it more precisely.

Part I: DSM Methods and Algorithm

 DSM 2017 26

This is clearly seen e.g. in DSM’s four types of interactions (spatial, energy, information,
and materials), with a 5-scale (-2 … 2) characterizing many-valuedness for each
interaction. That 5-scale can be viewed as a quantale, but the relation between respective
5-scales is not algebraically explained in DSM.
Many-valuedness and order is thus poorly explained in DSM, and for the set ! must also
have a more elaborate structure, otherwise the size of that unstructured set quickly grows
to become very large, and application development makes no practical sense. As we
indicated before, ! cannot be just a set of elements. It has to be a structure of elements.
As an example, if we only say ‘crankshaft’ as a name for a component in an automotive
system-of-systems, ‘crankshaft’ is just a logical constant, but if we include the attributes
!""#!,… , !""#! attached to a crankshaft it becomes a logical term. Using logical notation,
!"#$%&ℎ!"# is a logical constant (of zero arity), whereas !"#$%&ℎ!"# !""#!,… , !""#!
is a term, with

!"#$%&ℎ!"# ∶ ! !!×…×!! → !
being an operator (of arity !) and !!, ! = 1,… , !, and ! are types (sorts).
In first order logic, !"#$%&ℎ!"# !""#!,… , !""#! may be viewed as a term or a predicate,
but in lative logic (Eklund, Höhle and Kortelainen, 2014) we clearly separate terms from
sentences, so that !"#$%&ℎ!"# !""#!,… , !""#! is an expression (term) rather than a
statement or predicate (sentence). Conglomerates of sentences become part of the logical
theory related with the design structure.
In the simplest case, components are terms, built upon a signature!Σ = !,Ω , where ! is
the set of types and Ω is the set of operators. The set of all terms (expressions) is then
!!!, where ! is a set of variables. The design structure is then

! ∶ !!!×!!! → !
where order and many-valuedness reside in both components and the valuation of the
relation between them. In this situation, ! is a functor over the category of sets, so that
order and many-valuedness reside in the functor structure. However, as explained in
(Eklund, Galán, Helgesson and Kortelainen, 2014), ! can more generally be an
endofunctor over any monoidal biclosed category, so that order and uncertainty is
modeled in the underlying category (metalanguage) rather than in the functor itself.
Further, the relation ! may be constrained by properties, such as associativity.
Applications typically define these properties, as well as the nature of order and many-
valuedness.
We can enrich ! even further, and this makes us realize how DSM without structure is
capable of producing applications on a very general level only.

2 Substitution and value

As a starting point for discussing substitution, note how the mapping ! ∶ !×! → 2 can
be represented equivalently as

! ∶ ! → !"

P. Eklund, M. Johansson, J. Kortelainen,V. Salminen

DSM 2017 27

where ! is the powerset functor, i.e., !" is the set of all subsets of !. For ! ∈ !, ! ! is
intuitively the value that is substituted for !. This is more evident in the substitution

! ∶ ! → !!!
which, because !! as a functor is extendable to a monad !! = !!, !, ! , can be extended
to a mapping between expressions (terms)

! ∶ !!! → !!!!.
In a generalized view of components, people and activities, they are all members of term
sets with specific underlying signatures, e.g., with Σ! as the signature for components.
We then have !"#$%&ℎ!"# and !""#! as operators in the signature Σ! , so that

!"#$%&ℎ!"# !""#! !! ,… , !""#! !!
becomes the value in !!!! of the attributed crankshaft as a component.
An expression can also be at a higher level in a system-of-systems, e.g., as for a wheel
and its related suspension. In this case, we must provide the design very carefully, since
we must consider the order between wheel and suspension. A malfunctioning suspension,
as part of a suspension-wheel subsystem, will affect the wheel differently as compared to
how the wheel, as part of a wheel-suspension subsystem, will affect the suspension.
For people, with an underlying signature Σ!, the term for a human resource may be
designed so that the value of the resource in a team is represented as a particular
competence or skill. Two coworkers assigned to a task may then be ordered or unordered.
Activities are similar with an underlying signature Σ!. They precede one another, or
execute in parallel, where the overlap may not always be viewed in a binary way.
Components, people and activities can thus be seen to make use of an underlying
signature Σ!,!,! embracing sorts and operations in respective scopes of information.
Monads can be composed as was shown in (Eklund, Galán, Helgesson and Kortelainen,
2014), where the composed monad ! ∘ !! provides many-valued sets of terms. Note how
it is far from clear if the suspension-wheel subsystem as a term carrying value is more
suitable to have a many-valued representation as a term in ! ∘ !!!!, or as a term in
!!!!, where !!! would appear as a monad over a monoidal biclosed category, like the
Goguen category !"# ! , which includes structure that enable representation of
uncertainty. See (Eklund, Galán, Helgesson and Kortelainen, 2014) for detail and
examples.

3 Conglomerate and truth

The fundamental difference between expression (term) and statement (sentence) is that
the term functor is extendable to a monad so that substitutions can be composed within
the Kleisli category of that monad. If a functor composes with the term monad so that the
composed functor is not extendable to a monad, then we do not have terms, with which
we can substitute in expressions, but sentences acting as statements. Here we can then
compose further, so that we can distinguish between sentences and conglomerates, or
structured sets, of sentences, the latter appearing functorially as “generalized sets” of
program clauses in an inference machinery in a particular logic. The value of such

Part I: DSM Methods and Algorithm

 DSM 2017 28

sentences or conglomerates relate to qualitative truth rather than quantitative value like in
the case of values of terms.
The suspension-wheel subsystem can be designed as a generalized term, whereas an
engine system may need a structure as a conglomerate of statements. Note that statements
and conglomerates of statements do not hide terms residing within statements. On the
contrary, they are available for computation within that system. However, in this case an
engine system is observed from qualitative truth point of view whereas a crankshaft is
viewed as based on quantitative value considerations. Indeed, it is up to the designer to
make these distinctions, and design is a much more complicated process in this logically
extended view, as compared to only having matrices as in the basic DSM model.
Teams of people, and organization of teams across management, marketing, operation,
subsupply, etc., is requires a similar distinction between value and truth, and an executive
may wonder if ROI is quantitative value or qualitative truth.
Activities and tasks are part of processes, and then also to become formalized within
process modeling notations. A notation like BPMN (Business Process Modeling
Notation) involves bits of syntax, where logical considerations in this paper can be
represented, but BPMN also comes short when we aim at using the syntax of our logical
machinery at full strength to match the syntax of BPMN.

4 Actions

Previous sections explain how our logical extension of the DSM model of unstructured
relations to quite an elaborate distinction of generalized terms and sentences provides a
foundation for the logic of DSM. This extension is a path from the simplest DSM model

! ⊆ !×!
to the radically extended model

! ∶ ! ∘ !!!,!,!! → ! ∘ !!!,!,!!!.
Moreover, we are dealing not just with the !×! matrix as a starting point, but also with
!×!, with

! ∶ !×! → 2
as the functional representation. DSM deals implicitly with relations and interaction
between elements, respectively, in ! and !. However, DSM does not provide a model
about how an element in ! might act upon an element in !, and more generally, how the
structure of ! affects the structure of !. Initially, this can be denoted as

! ∶ !×! → !
and the tutorial example is that of a group action

! ∶ !×! → !
with !,∗ a group and ! a set, and ! satisfying

! !!,! !!, ! = !(!! ∗ !!, !)
Permutation groups are typical examples of this construction. In this case, ! has “more
structure” than !, and the action ! is capable of providing ! with more structure. This

P. Eklund, M. Johansson, J. Kortelainen,V. Salminen

DSM 2017 29

can be generalized in a categorical framework using modules. For detail, see (Eklund,
Gutiérrez García, Höhle and Kortelainen, 2017).
Actions enable to describe the complicated relation between interventions and evidence
that interventions have desired effect. This is important in maintenance and services, and
when dealing e.g. with availability and reliability, concepts that also need to be defined in
far more detail than just as a percentage of risk or duration of system downtime. In
(Eklund, Höhle and Kortelainen, 2017) we provide detail within the realm of health care.

5 Lative logic

Logic is a structure containing
• signatures
• terms
• sentences
• theoremata (conglomerates, or structured sets, of sentences)
• entailments
• algebras (models)
• satisfactions
• axioms
• theories
• proof calculi

and each of these have their respective many-valued extensions as based on underlying
order relations. This also enables to model communication between logics.
The structure of logic is further lative, because signatures are part of terms, terms are part
of sentences, and so on. Lativity restricts constructions in logic by disabling self-
referentiality, e.g. like in Gödel’s famous Incompleteness Theorem using his numbering
of sentences. In fact, Gödel’s approach is just a sophisticated use of the Liar Paradox, as
pointed out by Hilbert and Bernays in the Grundlagen der Mathematik. Logic in design
and structure must be lative for the same reason, namely so as not to enable self-
referentiality and ad hoc constructions fragmenting the logical description of design
structures. Fragmented logic only means we will eventually have fragmented data for
analytics, and analytics will produce only fragmented results and observations that cannot
be accommodated into a logically harmonized and unified framework. For a treatment of
logic in this lative view, see (Helgesson, 2012).

6 Conclusion – The Information & Process view of DSM

Development of complex products and large systems is a highly interactive social process
involving hundreds of people designing thousands of interrelated components and
making
millions of coupled decisions (Eppinger and Salminen, 2001). On business level, this
calls for a framework for synergy management during various types of innovation in life
cycle business evolution routing (Salminen, 2009).

Part I: DSM Methods and Algorithm

 DSM 2017 30

In the logically extended view of DSM, design structure becomes potentially supported
by information and process standards as appearing in the OMG (Object Management
Group) family of languages and notations, including

• UML (Unified Modeling Language)
• SysML (Systems Modeling language)
• BPMN (Business Process Modeling Notation)
• CMMN (Case Management Model and Notation)
• DMN (Decision Model and Notation)

UML’s Structure Diagram is an information model, whereas the Behaviour Diagram is a
process model. In fact, UML’s Behaviour Diagram is part of SysML, which is a process
model expanding the process model side of UML. SysML is intended e.g. to support
systems-of-systems modeling in engineering and manufacturing.
BPMN differs from SysML, and BPMN’s syntax enabling data flow with underlying
tokens can be provided with a semantic based on our approach to lative logic. BPMN
semantics for clinical decision-making has been provided in (Eklund and Helgesson,
2012), where our suggestion for information semantics is that BPMN's Data Object
coincides with documents and their structured content. Similarly, ‘token’ coincides with
variable substitution. We are then able to extract at any point in the data flow a valid
variable substitution that precisely represents an information snapshot of the process at
that particular point. An activity in the BPMN sense can then be viewed as a composition
of variable substitutions with the initial token or variable substitution.
On BPMN it should be noted how software implementations often tend to adopt or
related to Kanban and/or Scrum styles of business process structures. Kanban is lean,
whereas Scrum is agile, but lean is not always agile, similarly as agile is not always lean.
Both Kanban and Scrum processes involve pools and swimlanes. Agility underlines
sprints and milestones, whereas lean underlines manufacturing efficiency and just-in-time
production.
Whereas the underlying logic of BPMN has been explained, the underlying logic of
CMMN and DMN is in its infancy. The logic of DMN is basically a propositional logic
and on a very intuitive level. Propositional and relational logic for ontology like in web
and health ontology also shows how logically poor structures are unable to provide rich
information modeling. Logical extension of CMMN and DMN is outside the scope of this
paper, but similar techniques and approaches in this paper apply also for these extensions.
In conclusion, it is now clear that DSM can potentially embrace UML, SysML, BPMN,
CMMN and DMN, and this is feasible indeed because of the logical extension of DSM.

References

Eklund, P., Helgesson, R., 2012. Information ontology and process structure in social and health care,
unpublished, 2012. Appears partly as Chapter 6 in (Helgesson, 2013)

Eklund, P., Höhle, U., Kortelainen, J., 2017. Modules in health classifications, FUZZIEEE 2017.
Eklund, P., Höhle, U., Kortelainen, J., 2014. The fundamentals of lative logic, LINZ2014, 35th Linz

Seminar on Fuzzy Set Theory, Linz, Austria, February 18-22, 2014.
Eklund, P., Galán, M.A., Helgesson, R., Kortelainen, J., 2014. Fuzzy terms, Fuzzy Sets and Systems 256,

211-235.

P. Eklund, M. Johansson, J. Kortelainen,V. Salminen

DSM 2017 31

Eklund, P., Gutiérrez García, J., Höhle, U., Kortelainen, J., 2017. Semigroups in complete lattices:
Quantales, modules and related topics, book under review.

Eppinger, S.D., Browning. T.R., 2012. Engineering Systems: Design Matrix Methods and Applications,
MIT Press.

Eppinger, S.D., Salminen, V.K., 2001. Patterns of product development interactions, International
Conference on Engineering Design, ICED ´01. Professional Engineering Publishing, Glasgow,
pp. 283-290.

Helgesson, R., 2013. Generalized General Logics, Doctoral Thesis, Umeå University.
Salminen, V.K., 2009. Synergy Management by Hybrid Innovation, Doctoral Thesis, Tampere University

of Technology.

Contact: P. Eklund, Umeå University, Department of Computing Science, Umeå, Sweden, +46
70 586 4414, peklund@cs.umu.se

